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Escaping limit cycles: Global convergence for con-
strained nonconvex-nonconcave minimax problems

Thomas Pethick˚ Puya Latafat: Panagiotis Patrinos: Olivier Fercoq; Volkan Cevher˚

Abstract

This paper introduces a new extragradient-type algorithm for a class of
nonconvex-nonconcave minimax problems. It is well-known that finding a local
solution for general minimax problems is computationally intractable. This ob-
servation has recently motivated the study of structures sufficient for convergence
of first order methods in the more general setting of variational inequalities when
the so-called weak Minty variational inequality (MVI) holds. This problem class
captures non-trivial structures as we demonstrate with examples, for which a large
family of existing algorithms provably converge to limit cycles. Our results require
a less restrictive parameter range in the weak MVI compared to what is previously
known, thus extending the applicability of our scheme. The proposed algorithm is
applicable to constrained and regularized problems, and involves an adaptive step-
size allowing for potentially larger stepsizes. Our scheme also converges globally
even in settings where the underlying operator exhibits limit cycles. Moreover, a
variant with stochastic oracles is proposed—making it directly relevant for train-
ing of generative adversarial networks. For the stochastic algorithm only one of
the stepsizes is required to be diminishing while the other may remain constant,
making it interesting even in the monotone setting.

1 Introduction

Many machine learning applications, from generative adversarial networks (GANs) to robust re-
inforcement learning, result in nonconvex-nonconcave constrained minimax problems, which pose
notorious difficulties to the scalable (stochastic) first order methods. Indeed, there is no shortage of
results illustrating divergent or cycling behavior when going beyond minimization problems (Be-
naım & Hirsch, 1999; Hommes & Ochea, 2012; Mertikopoulos et al., 2018b; Hsieh et al., 2021).

Traditionally, minimax problems have been studied for more than half a century under the umbrella
of the variational inequalities (VIs). The extragradient-type algorithms from the VI literature was
recently brought to the awareness of the machine learning community (Mertikopoulos et al., 2018a;
Gidel et al., 2018; Böhm et al., 2020), and have provided a principled way of stabilizing training and
avoiding Poincaré recursions. However, these results mostly concern the convex-concave setting.

In nonconvex-nonconcave minimax problems, or more generally nonmonotone variational inequali-
ties (VIs), even finding a local solution is in general intractable. This has been made precise through
exponential lower bound of the classical optimization type (Hirsch & Vavasis, 1987) and computa-
tional complexity results (Papadimitriou, 1994; Daskalakis et al., 2021b). This is in sharp contrast
to minimization problems, where only finding a global solution is intractable. The recent result of
(Hsieh et al., 2021) provides some intuition behind this difference by showing that the asymptotic
limits of most schemes, including extragradient, can converge to attracting limit cycles.

To make progress in lieu of these negative results, Diakonikolas et al. (2021) proposes a simple
generalization of extragradient, called (EG+), that can converge to a stationary point even for a class
of nonmonotone problems provided that the weak Minty variational inequality (MVI) holds. This
problem class is parametrized by a constant ρ, which controls the degree of nonconvexity. However,
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Figure 1: Forsaken (Hsieh et al., 2021, Example 5.2) provides an example where the weak MVI constant
ρ does not satisfy algorithmic requirements of (EG+) and (EG+) does not converge to a stationary point
but rather the attracting limit cycle (left). In contrast, adaptively choosing the extrapolation stepsize large
enough with our new method, called (CurvatureEG+), is sufficient for avoiding the limit cycles (right).
The repellant limit cycle is indicated in black and the stream plot shows the vectorfield Fz. The blue and
red curves indicate multiple trajectories of the algorithms starting from initializations indicated in black.
See Appendix C.4 for properties of Forsaken.

given the range of ρ in Diakonikolas et al. (2021), the new class is still too small to include even the
simplest counterexample of Hsieh et al. (2021) for the general Robbins-Monro schemes.

Contributions Building on the analysis in Diakonikolas et al. (2021), we propose a new adaptive
scheme, called (CurvatureEG+), that converges even in the difficult counter example of Hsieh et al.
(2021) as illustrated in Fig. 1. Our main contributions are summarized below.

1. We propose an adaptive extragradient-type algorithm that converges for a larger range of ρ, the
parameter in the weak MVI assumption (cf. Assumption I(iii)) than previously known.
2. More importantly, we show that convergence is ensured if 2ρ`γk ą 0, where γk is the extrapola-
tion stepsize. This is crucial since by selecting γk through a backtracking procedure larger stepsizes
are allowed, which in turn implies convergence for more negative values of ρ, thus capturing a larger
class of problems. In addition, we show that the linesearch eventually passes without triggering any
backtrack if initialized based on the Jacobian of F (cf. Section 4).
3. We present a non-adaptive variant of our algorithm (CEG+), and show that for particular pa-
rameter choices (EG+) of Diakonikolas et al. (2021), and when ρ “ 0 the celebrated forward-
backward-forward (FBF) algorithm of Tseng (2000) are recovered, thus unifying and generalizing
both methods. We improve upon Diakonikolas et al. (2021) by not only relaxing the problem class
but also the stepsize range. We show that our results are tight by providing a matching lower bound,
thus providing a complete picture of (EG+) under weak MVI.
4. In the stochastic setting, similarly to Hsieh et al. (2020), we consider two separate stepsizes.
Whereas they require both to be diminishing we show that the extrapolation step can in fact be
picked constant—a modification which is critical for convergence when only the weak MVI holds.

Related work The community has resorted to various approaches to make progress for
nonconvex-nonconcave minimax problems. One line of work focuses on deriving local convergence
results (Mazumdar et al., 2019; Fiez & Ratliff, 2020; Heusel et al., 2017). For global results, the
two primary approaches have been to either assume a global oracle for the inner problem (Jin et al.,
2019; Davis & Drusvyatskiy, 2018) or assume particular problem structure such as the Polyak-
Łojasiewicz condition (Nouiehed et al., 2019; Yang et al., 2020) or concavity for the inner problem
(Rafique et al., 2019).

We follow the same tradition of assuming structure, but from the general perspective of operator
theory. The idea of studying minimax and related problems through the lens of variational inequality
has a long history (Minty, 1962; Rockafellar, 1976; Polyak, 1987; Bertsekas, 1997), with recent
renewed interest due to its relevance for minimax formulations (Mertikopoulos et al., 2018a; Gidel
et al., 2018; Azizian et al., 2020).
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One relaxation of the monotone case for which we have positive results is that of Minty variational
inequalities (MVI) (Mertikopoulos et al., 2018a; Song et al., 2021; Zhou et al., 2017), which in-
cludes all quasiconvex-concave and starconvex-concave problems. Diakonikolas et al. (2021) intro-
duced the relaxed condition of weak MVI. In the unconstrained setting they showed non-asymptotic
convergence results under a restricted problem constant ρ. Similarly to us, Lee & Kim (2021a) ex-
tends the regime but under the stronger condition of cohypomonotonicity. They do so by studying a
more evolved variant of extragradient building on anchoring techniques. We instead directly improve
upon (EG+) and generalize it to new settings.

In the stochastic setting, usually the stepsize for the extrapolation step is diminishing. This is the
case in Böhm et al. (2020) where they consider a forward-backward-forward type scheme. However,
they remain in the monotone setting, where the limit cycles are non-attracting, as exemplified by a
bilinear game. Hsieh et al. (2021) recently showed that a large family of algorithms, which includes
the extragradient method with diminishing stepsize, can converge to attracting limit cycles. Going
beyond this restriction, Hsieh et al. (2020) interestingly considers two separate stepsizes similar to
us. However, only the more restrictive setting where MVI is satisfied is considered, and both of the
stepsizes are required to be diminishing.

2 Problem formulation and preliminaries

In this paper we are interested in finding zeros of an operator (or set-valued mapping) T : �n Ñ �n

that is written as the sum of a Lipschitz continuous (but possibly nonmonotone) operator F and a
maximally monotone operator A. That is, we wish to find z P �n such that the general inclusion

0 P Tz B Az` Fz (2.1)
holds. The set of all such points is denoted by zer T B tz P Rn | 0 P Tzu. Throughout the paper
problem (2.1) is studied under the following assumptions (definitions can be found in Appendix A).

Assumption I. In problem (2.1),

(i) Operator A : �n Ñ �n is a maximally monotone operator.

(ii) Operator F : �n Ñ �n is L-Lipschitz continuous.

(iii) Weak Minty inequality (MVI) holds, i.e., there exists a nonempty set S‹ Ď zer T such that for
all z‹ P S‹ and some ρ P p´ 1

2L ,8q

xv, z´ z‹y ě ρ}v}2, for all pz, vq P gph T. (2.2)

Generally, we do not require the weak Minty assumption to hold at every z‹ P zer T . In fact, as
shown in Theorem 3.1 nonemptiness of S‹ is sufficient for ensuring that the limit points belong to
zer T . Interestingly, despite nonmonotonicity of F, global (as opposed to subsequential) convergence
can be established when S‹ “ zer T , an assumption that is still weaker than cohypomonotonicity.

VIs provide a convenient abstraction for a range of problems. We mention some central examples
below but otherwise defer to the overview in Facchinei & Pang (2007). Subsequently, we provide
examples where the weak MVI holds.

Example 1: (minimax optimization). A comprehensive way to capture a wide range of applications
in machine learning is to consider structured minimax problems of the form

minimize
xP�nx

maximize
yP�ny

Lpx, yq B ϕpx, yq ` gpxq ´ hpyq, (2.3)

where ϕ is not necessarily convex in x or concave in y. Functions g and h are proper extended
real-valued lower semicontinuous and convex, with easy to compute proximal maps. Common ex-
amples for g and h involve regularizers such as `1, `2 norms, or indicator functions of sets al-
lowing us to capture constrained minimax problems. The first order optimality condition asso-
ciated with this problem may be written in the form of the structured inclusion (2.1) by letting
Fz “ p∇xϕpx, yq,´∇yϕpx, yqq, Az “ pBgpxq, Bhpyqq.

As it will become clear in the next section (cf. Algorithm 1), the main computations involved in the
proposed scheme are evaluations of F and resolvent JA “ pid` Aq´1. Recall that the resolvent of a
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maximally monotone operator is firmly nonexpansive with full domain (cf. (Bauschke & Combettes,
2017, Sect. 23)). If A “ B f is the subdifferential operator of a convex function f , then its resolvent
is the proximal mapping. For instance when A is as in Example 1, then its resolvent is given by
JApx, yq “ pproxgpxq,proxhpyqq.

Example 2: (N-player games). More generally, we can consider a continuous game of N players in
normal form. Denote the decision variables z :“ pzi; z´iq :“ pz1, ..., zNq and let the loss incurred by
the ith player be Lipzi; z´iq “ ϕipzq ` gipziq where ϕi is the payoff function and gi typically enforce
constraints on zi. Then we seek a Nash equilibrium, which is any decision which is unilaterally
stable, i.e.,

Lipz‹i ; z‹´iq ď Lipzi; z‹´iq @zi and i P rNs B t1, . . . ,Nu. (2.4)
The corresponding first order optimality conditions may be written as Az “ pBg1pz1q, . . . , BgNpzNqq

and Fz “ p∇z1ϕ1pzq, . . . ,∇zNϕNpzqq.

A solution to (2.1) thus returns a candidate for which the first order condition of the above problems
is satisfied. In the monotone case these two solution concepts coincide, while in the more general
case of weak MVI, we provide examples where this still holds. In particular, we introduce in Sec-
tion 5 a nonconvex-nonconcave minimax game which additionally exhibits limit cycles for Fz. As
a consequence most schemes including gradient descent ascent, extragradient and optimistic gradi-
ent descent ascent do not converge to a stationary point globally (Hsieh et al., 2021). However, the
global Nash equilibrium satisfies Assumption I(iii) with ρ ą ´1{2L, which we show is sufficient for
global convergence of (CEG+).

The weak MVI condition is satisfied in certain reinforcement learning settings. Specifically, Di-
akonikolas et al. (2021); Daskalakis et al. (2021a) considers a two-player zero-sum game where the
weak MVI holds, while neither MVI nor cohypomonotonicity holds. Interestingly, the formulation
requires constraint—a condition they do not handle. We thus provide the first provable algorithm for
this setting. Weak MVI also contains all quasiconvex-concave and starconvex-concave problems.
For further examples, the literature on cohypomonotonicity (Bauschke et al., 2020) is relevant since
it implies weak MVI, see for instance Lee & Kim (2021b, Example 1).

3 Generalizing Extragradient+

Our starting point is the Extragradient+ (EG+) algorithm of Diakonikolas et al. (2021) which is
identical to extragradient (Korpelevich, 1976) except for the second stepsize being smaller. They
only treat the inclusion (2.1) when A ” 0, and in our notation require ρ P p´1{8L, 0s. Specifically,

z̄k “ zk ´ γkFzk, zk`1 “ zk ´ ᾱkγkFz̄k (EG+)
where they choose γk “ 1{L and ᾱk “ 1{2 (Diakonikolas et al., 2021, Thm. 3.2).

We generalize (EG+) in Algorithm 1 to take the operator A into account—consequently we capture
constraint and regularized problems as well. In addition, the scheme is adaptive in ᾱk. We will show
that the weaker requirement of ρ P p´1{2L,8q suffices even for the more general inclusion (2.1).

The main convergence results of Algorithm 1 are established in the next theorem. The proof is
largely inspired by recent developments in operator splitting techniques in the framework of mono-
tone inclusions (Latafat & Patrinos, 2017; Giselsson, 2021). The key idea lies in interpreting each
iteration of the algorithm as a projection onto a certain hyperplane, an interpretation that dates back
to Solodov & Tseng (1996); Solodov & Svaiter (1999).
Theorem 3.1. Suppose that Assumption I holds, and let λk P p0, 2q, γk P

`

t´2ρu`, 1{L
‰

where
txu` B maxt0, xu, δk P p´γk{2, ρs, lim infkÑ8 λkp2 ´ λkq ą 0, and lim infkÑ8pδk ` γk{2q ą 0.
Consider the sequences pzkqkP�, pz̄kqkP� generated by Algorithm 1. Then for all z‹ P S‹,

min
k“0,1,...,m

1
γ2

k
}Hz̄k ´ Hzk}2 ď 1

κpm`1q}z
0 ´ z‹}2, (3.1)

where κ “ lim infkÑ8 λkp2´ λkqpδk ` γk{2q2. Moreover, the following holds

(i) pz̄kqkP� is bounded and its limit points belong to zer T;

(ii) if in addition lim supkÑ8 γk ă 1{L and S‹ “ zer T, then pzkqkP�, pz̄kqkP� both converge to
some z‹ P zer T.
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Algorithm 1 (AdaptiveEG+) Deterministic algorithm for problem (2.1)

Initialize z0 “ zinit P �n, λk P p0, 2q, γk P
`

t´2ρu`, 1{L
‰

, δk P p´γk{2, ρs,
Repeat for k “ 0, 1, . . . until convergence
1.1: Let z̄k “

`

id` γkA
˘´1`zk ´ γkFzk

˘

1.2: Compute stepsize

αk “
δk
γk
`
xz̄k ´ zk,Hz̄k ´ Hzky

}Hz̄k ´ Hzk}2 ,

where H “ id´ γkF.
1.3: Update the vector zk`1 “ zk ` λkαkpHz̄k ´ Hzkq

Return zk`1

Note that whenever lim supkÑ8 γk ă
1
L , Lemma A.3(ii) may be used to derive a similar inequality

in terms of }z̄k ´ zk} by lower bounding }Hz̄k ´Hzk} in (3.1). We also remark that tighter rates may
be obtained in the regime ρ ě 0, however, this will not be pursued in this work.

3.1 Non-adaptive stepsize variant

Although we do not incur additional costs for evaluating the adaptive stepsize αk in step 1.2, it
proves instructive to present a variant with constant stepsize. As a result we compare the range of our
stepsizes against Diakonikolas et al. (2021) showing an improvement by a factor of 3{2. Moreover, in
the monotone case (ρ “ 0), with a certain choice of stepsizes the algorithm reduces to the celebrated
forward-backward-forward (FBF) algorithm of Tseng (2000). We remark that the relation of FBF to
projection-type algorithms was noted in Tseng (2000), (Giselsson, 2021, Sect. 6.2.1).

To this end, in this subsection consider the following non-adaptive variant of Algorithm 1 that gen-
eralizes (EG+). Letting ᾱk P p0, 1` 2δk{γkq:

z̄k “
`

id` γkA
˘´1`zk ´ γkFzk˘, zk`1 “ zk ` ᾱkpHz̄k ´ Hzkq. (CEG+)

The convergence of this algorithm is an immediate byproduct of Theorem 3.1. To see this, note
that the zk`1 update in step 1.3 may be written as zk`1 “ zk ` 2ηkαkpHz̄k ´ Hzkq, for ηk P p0, 1q.
Therefore, convergence is still ensured for any ᾱk ă 2αk as the difference may be absorbed by the
relaxation parameter ηk. Note that by 1{2-cocoercivity of H (cf. Lemma A.3(i))

ᾱk ă
2δk
γk
` 1 ď 2δk

γk
`

2xHz̄k ´ Hzk, z̄k ´ zky

}Hz̄k ´ Hzk}2 “ 2αk, (3.2)

establishing the validity of the prescribed stepsize range. The convergence of the non-adaptive vari-
ant is summarized in the next corollary that for simplicity is stated with constant parameters (drop-
ping subscripts k).
Corollary 3.2 (Constant stepsize). Suppose that Assumption I holds, and let γ P

`

t´2ρu`, 1{L
‰

,
δ P p´γ{2, ρs, and ᾱ P p0, 1 ` 2δ{γq. Consider the sequences pzkqkP�, pz̄kqkP� generated according to
the update rule (CEG+). Then,

min
k“0,1,...,m

}Hz̄k ´ Hzk}2 ď
}z0 ´ z‹}2

κpm` 1q
, (3.3)

where κ “ ᾱp1` 2δ
γ
´ ᾱq. Moreover, the claims of Theorems 3.1(i) and 3.1(ii) hold true.

The setting of Diakonikolas et al. (2021) in (EG+) involves the stepsizes γk “ 1{L, αk “ 1{2. Note
that when restricting to A ” 0, the iterates (CEG+) simplify to this form owing to the fact that
Hz̄k´Hzk “ z̄k´γFz̄k´Hzk “ ´γFz̄k. In comparison, in our setting if δ “ ρ “ ´1{8L (the smallest
ρ permitted in Diakonikolas et al. (2021)) is selected, then based on our analysis in Corollary 3.2 we
may select γk “ 1{L, and ᾱk P p0, 3{4q, thus the upper bound for the second stepsize is 3{2 times that
of Diakonikolas et al. (2021).
Remark 3.3 (relation to FBF). In Corollary 3.2 the range of stepsizes γ, ᾱ may alternatively be set
as γ P

`

t´2ρu`, 1{L
˘

, ᾱ P p0, 1`2δ{γs. This is due to the fact that if γ ă 1{L (strictly), then H is strictly
1{2-cocoercive. Therefore, in (3.2), 1` 2δ

γ
ă 2αk holds, and thus the stepsize ᾱ “ 1` 2δ

γ
is permitted.

Although this may appear to be of little practical significance, by setting γ P p0, 1{Lq, δ “ ρ “ 0,
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Figure 2: The grey region indicates where convergence provably cannot be guaranteed by Theorem 3.4.
The dashed line indicates where ρ “ ´1{8L. This is the condition under which (Diakonikolas et al., 2021,
Thm. 3.2) shows the first convergence result p˛q. Corollary 3.2 improves their result by matching the lower
bound for any ᾱ, in particular for ᾱ “ 3{4 p q. The adaptive scheme in Theorem 3.1 matches the smallest
possible ρ for any (EG+) scheme with fixed stepsize p�q.

and ᾱ “ 1 in (CEG+), we obtain zk`1 “ z̄k ` γFzk ´ γFz̄k, which is the forward-backward-forward
(FBF) algorithm of Tseng (2000), (Bauschke & Combettes, 2017, Thm. 26.17)).

3.2 Lower bounds

We show that the result in Corollary 3.2 is tight by providing a matching lower bound when A ” 0.
We do so by fixing ᾱk and showing a stepsize dependent lower bound. In particular, note that if
ᾱk “ 1{2 as in Diakonikolas et al. (2021, Thm. 3.2), then Theorem 3.4 implies a lower bound of
ρ ą ´1{4L for the (EG+) scheme. The lower bound is contextualized in Fig. 2 by relating it to our
convergence results and existing results in the literature.
Theorem 3.4. Consider a sequence pzkqkPN generated according to (EG+) fixing γk “ γ “ 1{L

and ᾱk “ ᾱ P p0, 1q. Let ´ρL ě 1´ᾱ
2 . Then, there exists an F : �n Ñ �n, n ą 1, satisfying

Assumption I(ii) and Assumption I(iii) for which the sequence will not converge.

3.3 Stochastic setting

In this section we assume that one has access only to independent samples of F that will be denoted
by F̂p¨, ξq depending on some random variable ξ whose distribution is revealed online by observa-
tions of i.i.d. copies of ξ. We make the following standard assumptions.
Assumption II. For all z P �n

(i) Eξ
“

F̂pz, ξq
‰

“ Fpzq,

(ii) Eξ
“

}F̂pz, ξq ´ Fpzq}2
‰

ď σ2.

We proceed by presenting Algorithm 2 which is the stochastic variant of (CEG+). Interestingly, our
analysis does not impose further assumptions on γk (may be selected constant), while it is only αk
that must satisfy the classical conditions

ř8

k“1 αk “ 8, and
ř8

k“1 α
2
k ă 8 to guarantee convergence.

Theorem 3.5. Suppose that Assumptions I and II hold, γk P pt´2ρu`, 1{Ls, and let αk P p0, 1
2 `

ρ
γk
q.

The sequence pzkqkP� generated by Algorithm 2 satisfies

E
“

}zk`1 ´ z‹}2‰ ď E
“

}zk ´ z‹}2‰´ ηkE
“

}Hz̄k ´ Hzk}2‰` 8γ2
kα

2
kσ

2, (3.4)

where ηk “ 2αk
`

p 1
2 `

ρ
γk
q ´ αk

˘

and H “ id´ γkF.

Set constant stepsize γk “ γ P pt´2ρu`, 1{Ls and αk “ βkp
1
2 `

ρ
γ
q for some pβkqkP� with βk P p0, 1q.

Then the following holds

E
“

}Hz̄k‹ ´ Hzk‹}2‰ ď

1
2

`

1
2 `

ρ
γ

˘´2
}z0 ´ z‹}2 ` 4γ2σ2 řm

k“0 β
2
k

řm
k“0 βk

, (3.5)

where k‹ is chosen from t0, 1, . . . ,mu according to probability Prk‹ “ ks “ βk
řm

i“1 βk
.

When γ ă 1
L , Lemma A.3(ii) may be used to derive a similar inequality in terms of E

“

}z̄k‹ ´ zk‹}
‰

.
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Algorithm 2 (SEG+) Stochastic algorithm for problem (2.1)

Require z0 “ zinit P �n, γk P
`

t´2ρu`, 1{L
‰

, αk “ βkp
1
2 `

ρ
γk
q, βk ą 0

Repeat for k “ 0, 1, . . . until convergence
2.1: Sample ξk „ P and let Fk “ F̂pzk, ξkq

2.2: z̄k “ pid` γkAq´1pzk ´ γkFkq

2.3: Sample ξ̄k „ P and let F̄k “ F̂pz̄k, ξ̄kq

2.4: zk`1 “ zk ` αk
`

pz̄k ´ zkq ´ γkpF̄k ´ Fkq
˘

Return zk`1

Next, we derive complexity bounds based on Theorem 3.5. Set βk “
ξ

?
m`1

for some constant ξ.
Assume that m is large enough such that βk ă 1. By minimizing the left-hand-side in (3.5) we
obtain ξ “ 1

2
?

2σγ
p 1

2 `
ρ
γ
q´1}z0 ´ z‹}. Therefore, the algorithm will reach E

“

}Hz̄k ´ Hzk}
‰

ď ε

accuracy for some k P t0, 1, . . . ,mu after at most m “ r 8
ε4σ

2γ2p 1
2 `

ρ
γ
q2}z0 ´ z‹}2s iterations.

We remark that stochastic variant of (EG+) was also studied in (Diakonikolas et al., 2021, Thm.
4.4(i)) under a more restricted range of parameters ρ P p 1

8
?

2L
, 0s and γ “ 1

2
?

2L
.

4 Adaptively taking larger stepsizes using local curvature

As made apparent in the analysis in Section 3 (cf. Appendix B.1) the bound on the smallest weak
MVI constant ρ in Assumption I(iii) may be replaced with the requirement that ρ ą ´γk{2 for all
k P �. Therefore, larger stepsizes γk would guarantee global convergence for an even larger class
of problems. Since a global Lipschitz constant is inherently pessimistic the natural question then
becomes how to locally choose a maximal stepsize without diverging.

The proposed scheme involves a backtracking linesearch that uses the local curvature for its initial
guess. The reason being that this will immediately pass, close enough to the solution z‹, by argu-
ment of continuity. More precisely, we will set the initial guess to something slightly smaller than
}JFpzkq}´1, where JFpzq denotes the Jacobian of F at z and } ¨ } is the spectral norm. Note that, de-
spite the use of second order information, the scheme remains efficient since }JFpzq} only requires
one eigenvalue computation performed through Jacobian-vector product (Pearlmutter, 1994).

Given an initial point z0 “ zinit and ν P p0, 1q, the final scheme which we denote (CurvatureEG+)
proceeds for k “ 0, 1, . . . as follows:

1. Obtain γk and z̄k according to Algorithm 3 with γinit “ ν}JFpzkq}´1

2. Compute zk`1 according to steps 1.2 and 1.3 of Algorithm 1
(CurvatureEG+)

The above intuitive reasoning is made precise in the next lemma where it is shown that backtracking
linesearch will terminate in finite time and that γinit will be immediately accepted asymptotically.

Lemma 4.1 (Lipschitz constant backtracking). Suppose that F : �n Ñ �n is a L-Lipschitz contin-
uous operator. Consider the linesearch procedure in Algorithm 3. Then,

(i) The linesearch terminates in finite time with γ ě mintγinit, ντ{Lu;

(ii) Suppose that pzkqkP� converges to z‹ P zer T. If F is continuously differentiable, and γinit P

p0, ν}JFpzkq}´1q with ν P p0, 1q, then eventually the backtrack will never be invoked (γinit

would be accepted).

Algorithm 3 Lipschitz constant backtracking

Initialize zk P �n, τ P p0, 1q, ν P p0, 1q
3.1: Set initial guess γ “ γinit, and let Gγpzkq B

`

id` γA
˘´1`zk ´ γFzk

˘

while γ}FpGγpzkqq ´ Fzk} ą ν}Gγpzkq ´ zk} do γÐ τγ

Return γk “ γ and z̄k “ Gγpzkq
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The convergence results for (CurvatureEG+) are deduced based of the above lemma and The-
orem 3.1 and are provided in Corollary B.1 in Appendix B.2. We illustrate the behavior of
(CurvatureEG+) in Fig. 1 and in Section 6.

5 Constructing toy examples

When Assumption I(iii) holds for negative ρ, limit cycles of the underlying operator Fz can emerge.
We illustrate this with simple polynomial examples for which all the properties of interest can be
computed in closed form.
Definition 1 (PolarGame). A PolarGame denotes a two-player game whose associated operator F
has limit cycles at }z}2 “ ci for all i P rks where ci ‰ 0.

This turns out to be particularly easy to construct in polar coordinates as the name suggests (see
Appendix C.1). Apart from introducing arbitrary number of limit cycles it also gives us control over
ρ. This is illustrated in the following instantiations capturing three important cases.

Example 3: (PolarGame). Consider Fz “ pψpx, yq ´ y, ψpy, xq ` xq where }z}8 ď 11{10 and
ψpx, yq “ 1

16 axp´1` x2 ` y2qp´9` 16x2 ` 16y2q. We have the following three cases:

(i) a “ 1 then ρ P p´ 1
L ,´

1
2L q (ii) a “ 3

4 then ρ P p´ 1
2L ,´

1
3L q (iii) a “ 1

3 then ρ P p´ 1
8L ,´

1
10L q

where L denotes the Lipschitz constant of F restricted to the constraint set. For all cases F exhibits
limit cycles at }z} “ 1 and }z} “ 3{4. Proof is deferred to Appendix C.2.

Example 4: (minimax). In the particular case of constrained minimax problem we introduce the
following polynomial game:

minimize
|x|ď4{3

maximize
|y|ď4{3

φpx, yq :“ xy` ψpxq ´ ψpyq, (GlobalForsaken)

where ψpzq “ 2z6

21 ´
z4

3 `
z2

3 . We provide proof of the following properties in Appendix C.3:

(i) There exists a repellant limit cycle and an attracting limit cycle of F.
(ii) z‹ “ p0, 0q is a global Nash equilibrium for which Assumption I(iii) holds inside the constraint

with ρ ą ´1{2L, where L denotes the Lipschitz constant of F restricted to the constraint set.

6 Experiments

The algorithms considered in the experiments include the adaptive Algorithm 1, (CurvatureEG+),
and constant stepsize methods that can be seen as instances of (CEG+) for various choices of γk
and ᾱk. When γk “ 1{L and ᾱk “ 1 we recover a constrained variant of extragradient, which we
denote CEG. When ᾱk “ 1{2 we denote the scheme CEG+, which is the direct generalization to the
constraint setting of the (EG+) scheme studied in Diakonikolas et al. (2021, Thm. 3.2). Note that this
choice of ᾱk restricts the problem class for which we otherwise can have guaranteed convergence
according to Corollary 3.2. When ᾱk is chosen adaptively according to Algorithm 1 we refer to it as
AdaptiveEG+. Finally, when γk is additionally chosen adaptively we use the name (CurvatureEG+).

In the stochastic setting, we consider Algorithm 2. When γk “ 1{k and αk “ 1, effectively both
stepsizes diminish, and we recover a constrained variant of the popular stochastic extragradient
scheme (see e.g. Hsieh et al. (2021, Algorithm 3)), which we refer to as SEG. When γk “ 1{L as
suggested by Theorem 3.5, and only αk is decreasing, we refer to it as SEG+.

We test the algorithms on the constructed examples and confirm their convergence guarantees.
Specifically, we apply the algorithms to the minimax problem in Example 4, the PolarGames in
Example 3, and a worst case construction, Example 5, from the proof of the lower bound (cf. Ap-
pendix B.3). For Example 5 we choose the problem parameters such that ρ “ ´1{3L according to
(B.15), and additionally add an `8-ball constraint to keep the iterates bounded. To simulate the
stochastic setting we add Gaussian noise to calls of F. Results for the deterministic setting and
stochastic setting can be found in Fig. 3 and Fig. 4 respectively.
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(a) Example 3 (a “ 1) (b) Example 5 (ρ “ ´1{3L)

Figure 3: Deterministic setting. In (a) we have an instance of Example 3 with ρ ă ´1{2L for which
Theorem 3.4 provides lower bound for extrapolation stepsize γk “ 1{L. However, adaptively choosing
γk larger can converge as illustrated with (CurvatureEG+). In addition, (b) confirms with Example 5,
that (CEG+) for ᾱk “ 1{2 and CEG may indeed not converge even when ρ “ ´1{3L. In contrast, both
AdaptiveEG+ and (CurvatureEG+) converges to the stationary point. Note that picking ᾱk ă 1{3 would
lead to convergence of (CEG+) by Corollary 3.2. See Fig. 6 and Fig. 7 for supplementary experiments.

(a) Example 4 (b) Example 5 (ρ “ ´1{3L)

Figure 4: Stochastic setting. In (a) we test the stochastic algorithms on our nonconvex-nonconcave con-
strained minimax example. The cycling behavior of SEG is inline with Hsieh et al. (2021), who shows that
the sequence generated by SEG can converge to limit cycles of the underlying operator F. On the other
hand, SEG+ converges in terms of 1

γk
}Hz̄k ´ Hzk}. In (b) we also provide a more challenging example

motivated by our lower bound. Nonetheless, SEG+ still converges in accordance with Theorem 3.5.

7 Conclusion

This paper introduced an EG-type algorithm for a class of nonconvex-nonconcave minimax prob-
lems that satisfy the weak Minty variational inequality (MVI). The range of parameter in the weak
MVI was extended compared to EG+ of Diakonikolas et al. (2021), and tightness of our results were
demonstrated through construction of a counter example. In addition, EG+ (Diakonikolas et al.,
2021), as well as the forward-backward-forward algorithm (Tseng, 2000) were all shown to be spe-
cial cases of our scheme. Furthermore, (CurvatureEG+) was proposed that performs a backtracking
linesearch on the extrapolation stepsize γk allowing for larger stepsizes and relaxes the condition
ρ ą 1

2L to ρ ą ´γk{2 which is often a much weaker condition. More importantly, it is shown that
asymptotically the linesearch always passes with γk “ ν}JFpzkq}´1 for any ν P p0, 1q, thus ratifying
the name (CurvatureEG+). In the stochastic setting, unlike what is common in the literature, it was
shown that it is only the second stepsize that must be diminishing. Future direction include explor-
ing applications of the proposed algorithm in particular in the setting of GANs. It is also interesting
to develope a variance reduced variant of the algorithm for finite sum minimax problems.
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A Preliminary definitions

Notationally we will use txu` B maxt0, xu throughout. We additionally recall some standard defini-
tions and results and refer to Bauschke & Combettes (2017); Rockafellar (1970)) for further details.

An operator or set-valued mapping A : �n Ñ �d maps each point x P �n to a subset Ax of �d. We
will use the notation Apxq and Ax interchangably. We denote the domain of A by

dom A B tx P �n | Ax ‰ Hu,
its graph by

gph A B tpx, yq P �n ˆ�d | y P Axu,

and the set of its zeros by zer A B tx P �n | 0 P Axu. The inverse of A is defined through its graph:
gph A´1 B tpy, xq | px, yq P gph Au. The resolvent of A is defined by JA B pid ` Aq´1, where id
denotes the identity operator.

Definition A.1 ((co)monotonicity Bauschke et al. (2020)). An Operator A : �n Ñ �n is said to be
ρ-monotone for some ρ P �, if for all px, yq, px1, y1q P gph A

ρ}x´ x1}2 ď xx´ x1, y´ y1y,
and it is said to be ρ-comonotone if for all px, yq, px1, y1q P gph A

ρ}y´ y1}2 ď xx´ x1, y´ y1y.
The operator A is said to be maximally (co)monotone if its graph is not strictly contained in the
graph of another (co)monotone operator.

We say that A is monotone if it is 0-monotone. When ρ ă 0, ρ-comonotonicity is also referred to as
|ρ|-cohypomonotonicity.

Definition A.2 (Lipschitz continuity and cocoercivity). LetD Ď �n be a nonempty subset of �n. A
single-valued operator A : DÑ �n is said to be L-Lipschitz continuous if for any x, x1 P D

}Ax´ Ax1} ď L}x´ x1},
and β-cocoercive if

β}Ax´ Ax1}2 ď xx´ x1, Ax´ Ax1y.

Moreover, A is said to be nonexpansive if it is 1-Lipschitz continuous, and firmly nonexpansive if it
is 1-cocoercive.

The resolvent operator JA is firmly nonexpansive (with dom JA “ �
n) if and only if A is (maximally)

monotone.

The following lemma plays an important role in our convergence analysis.

Lemma A.3. Let A : �n Ñ �n denote a single valued operator. Then,

(i) A is 1-Lipschitz if and only if T “ id´ A is 1{2-cocoercive.

(ii) If A is L-Lipschitz, then T “ id ´ ηA, η P p0, 1{Lq, is p1 ´ ηLq-monotone, and in particular
}Tu´ Tv} ě p1´ ηLq}u´ v} for all u, v P �n.

Proof. The first claim follows directly from (Bauschke & Combettes, 2017, Prop.4.11). That T is
strongly monotone is a consequence of the Cauchy Schwarz inequality and Lipschitz continuity of
A:

xTv´ Tu, v´ uy “ }v´ u}2 ´ ηxAv´ Au, v´ uy ě p1´ ηLq}v´ u}2.

In turn, the last claim follows from the Cauchy-Schwarz inequality.

B Proofs and further results

B.1 Proofs of Section 3
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Proof of Theorem 3.1. Let H “ id´ γkF. By Step 1.1 Hzk P z̄k ` γkAz̄k. Therefore,
1
γk
pHzk ´ Hz̄kq P Az̄k ` Fz̄k (B.1)

In what follows we will show that Algorithm 1 is equivalent to taking a forward-backward step
followed by a correction step. Consider the updates

z̄k B pid` γkAq´1`zk ´ γkFzk˘, (B.2)

zk`1 “ p1´ λkqzk ` λkΠDkpz
kq, where Dk B

!

w | xHzk ´ Hz̄k, z̄k ´ wy ě δk
γk
}Hzk ´ Hz̄k}2

)

.

Note that
xHz̄k ´ Hzk, z̄k ´ zky `

δk
γk
}Hz̄k ´ Hzk}2 ě p 1

2 `
δk
γk
q}Hz̄k ´ Hzk}2 (B.3)

where in the inequality Lemma A.3(i) was used. Hence, by (B.3) the stepsize αk is positive and
bounded away from zero. Moreover, if zk P Dk, then from (B.3) we may conclude that }Hz̄k´Hzk} ď

0 which implies that the generated sequence remains constant and z̄k P zer T (cf. (B.1)).

The projection ontoDk for any v R Dk is given by

ΠDkpvq “ v`
xz̄k ´ v,Hzk ´ Hz̄ky ´

δk
γk
}Hzk ´ Hz̄k}2

}Hzk ´ Hz̄k}2 pHzk ´ Hz̄kq

Moreover, (B.1) together with Assumption I(iii) at z̄k yields
1
γk
xHzk ´ Hz̄k, z̄k ´ z‹y ě ρ

γ2
k
}Hzk ´ Hz̄k}2 ě

δk

γ2
k
}Hzk ´ Hz̄k}2, (B.4)

thus ensuring z‹ P S‹ Ď Dk. The projection ontoDk is then given byΠDkpz
kq “ zk`αkpHz̄k´Hzkq,

where αk is as in step 1.2.

Finally, since the projection ΠDk is firmly nonexpansive, it follows from (Bauschke & Combettes,
2017, Cor. 4.41) that the mapping p1´ λkqid` λkΠDk is λk{2-averaged. Consequently, we may con-
clude that pzkqkP� is Fejér monotone relative to S‹ (Bauschke & Combettes, 2017, Prop. 4.35(iii)).
That is for all z‹ P S‹

}zk`1 ´ z‹}2 ď }zk ´ z‹}2 ´ λkp2´ λkqα
2
k}Hz̄k ´ Hzk}2.

(B.3) ď }zk ´ z‹}2 ´
εk

γ2
k
}Hz̄k ´ Hzk}2, (B.5)

where εk B λkp2´λkqp
γk
2 `δkq

2. The convergence rate in (3.1) is obtained by telescoping (B.5). Since
lim infkÑ8 εk ą 0, p 1

γ2
k
}Hz̄k ´ Hzk}2qkP� converges to zero. Moreover, p}zk ´ z‹}2qkP� converges

and the sequence pzkqkP� is bounded. Since γk is bounded, and F and the resolvents pid`γkAq´1 are
Lipschitz continuous (cf. (Bauschke & Combettes, 2017, Cor. 23.9)), so is their composition. Hence,
pz̄kqkP� is also bounded. Let pz̄kqkPK be a subsequence converging to some z̄ P �n. Combined with the
fact that p 1

γ2
k
}Hz̄k´Hzk}2qkP� converges to zero, we may conclude from (B.1) along with (Bauschke

& Combettes, 2017, Prop. 20.38) and Lipschitz continuity of F that z̄ P zer T . Finally, if in addition
γ “ lim supkÑ8 γk ă 1{L, then p1´ γLq}z̄k ´ zk} ď }Hz̄k ´ Hzk} (invoke Lemma A.3(ii)). There-
fore, p}z̄k ´ zk}qkP� converges to zero, which in turn implies that a subsequence pzkqkPK1 converges
to a point z1 iff so does the subsequence pz̄kqkPK1 . Hence, pzkqkPK also converges to z̄ P zer T . Conse-
quently, if Assumption I(iii) holds at all of the zeros of T , i.e., if S‹ “ zer T , then the second claim
follows by invoking (Bauschke & Combettes, 2017, Thm. 5.5).

Proof of Corollary 3.2 (Constant stepsize). The proof of convergence was already given prior to
the statement of the corollary. It remains to derive (3.3). By Assumption I(iii) and owing to 1{2-
cocoercivity of H (cf. Lemma A.3(i))

xzk ´ z‹,Hz̄k ´ Hzky “ xz̄k ´ z‹,Hz̄k ´ Hzky ` xzk ´ z̄k,Hz̄k ´ Hzky

(B.4) ď ´ p 1
2 `

δk
γk
q}Hz̄k ´ Hzk}2. (B.6)

Therefore, provided that ᾱ ą 0 we have
}zk`1 ´ z‹}2 “ }zk ´ z‹}2 ` ᾱ2}Hz̄k ´ Hzk}2 ` 2ᾱxzk ´ z‹,Hz̄k ´ Hzky

(B.6) ď }zk ´ z‹}2 ´ ᾱp2p 1
2 `

δ
γ
q ´ ᾱq}Hz̄k ´ Hzk}2.

Telescoping the above inequality yields the claimed inequality.
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Proof of Theorem 3.5. Let wk “ F̂pzk, ξkq ´ Fpzkq, w̄k “ F̂pz̄k, ξ̄kq ´ Fpz̄kq denote the additive
noise associated with the stochastic oracle access at zk and z̄k, respectively. Then, letting Ĥpzkq “

Hpzkq ´ γkwk, Ĥpz̄kq “ Hpz̄kq ´ γkw̄k, it holds that

}Ĥpz̄kq ´ Ĥpzkq}2 “ }γk
`

wk ´ w̄k˘` Hpz̄kq ´ Hpzkq}2

ď 2γ2
k}w

k ´ w̄k}2 ` 2}Hpz̄kq ´ Hpzkq}2

ď 4γ2
k

`

}wk} ` }w̄k}2˘` 2}Hpz̄kq ´ Hpzkq}2, (B.7)
where the Young inequality was used in both inequalities. Using the law of total expectation, for
z‹ P zer T
E
“

xzk ´ z‹, Ĥpz̄kq ´ Ĥpzkqy
‰

“ E
“

E
“

xzk ´ z‹, Ĥpz̄kqy | F̄k
‰‰

` E
“

E
“

xzk ´ z‹,´Ĥpzkqy | Fk
‰‰

Assumption II(i) “ E
“

xzk ´ z‹,Hz̄k ´ Hzky
‰

(B.6) ď ´ p 1
2 `

ρ
γk
qE
“

}Hz̄k ´ Hzk}2‰. (B.8)

where Fk and F̄k represent the information available at zk and z̄k updates, repectively. It follows from
the above two inequalities that

E
“

}zk`1 ´ z‹}2‰ “ E
“

}zk ´ z‹}2‰` α2
kE

“

}Ĥpz̄kq ´ Ĥpzkq}2‰

` 2αkE
“

xzk ´ z‹, Ĥpz̄kq ´ Ĥpzkqy
‰

(B.8), (B.7), Assumption II(ii) ď E
“

}zk ´ z‹}2‰´ 2αk
`

1
2 `

ρ
γk

˘

E
“

}Hz̄k ´ Hzk}2‰

` 2α2
kE

“

}Hz̄k ´ Hzk}2‰` 8γ2
kα

2
kσ

2,

as claimed. Next, with constant stepsize γ and pαkqkP� as prescribed in the lemma, ηk “ 2βkp1 ´
βkq

`

1
2 `

ρ
γ

˘2
ě 2βk

`

1
2 `

ρ
γ

˘2. Using this and summing (3.4) over k we obtain

2p 1
2 `

ρ
γ
q2

m
ÿ

k“0

βkE
“

}Hz̄k ´ Hzk}2‰ ď Ek
“

}z0 ´ z‹}2‰` 4σ2γp1` γqp 1
2 `

ρ
γ
q2

m
ÿ

k“0

β2
k .

Dividing both sides by 2p 1
2 `

ρ
γ
q2
řm

k“0 βk yields

1
řm

k“0 βk

m
ÿ

k“0

βkE
“

}Hz̄k ´ Hzk}2‰ ď

1
2

`

1
2 `

ρ
γ

˘´2
}z0 ´ z‹}2 ` 2γp1` γqσ2 řm

k“0 β
2
k

řm
k“0 βk

,

establishing the claimed inequality.

B.2 Convergence results and proofs of Section 4

The convergence results for (CurvatureEG+) are provided in the next corollary where ρ in Assump-
tion I(iii) is allowed to take potentially larger values provided that ρ ą ´γk{2. Note that owing to the
lower bound on γk (cf. Lemma 4.1(i)), the weak MVI assumption in the corollary is always satisfied
if ρ P p´ντ{2L,8q, however, in practice γk may take larger values.

Corollary B.1. Suppose that Assumptions I(i) and I(ii) hold, and consider the sequences pzkqkP�,
pz̄kqkP� generated by (CurvatureEG+). Suppose that Assumption I(iii) holds for some ρ P �

satisfying γk ` 2ρ ą 0, and let δk P p´γk{2, ρs, λk P p0, 2q, lim infkÑ8 λkp2 ´ λkq ą 0, and
lim infkÑ8pδk ` γk{2q ą 0. Then,

(i) The sequence p}z̄k ´ zk}2qkP� vanishes;

(ii) pz̄kqkP�, pzkqkP� are bounded, and have the same limit points belonging to zer T;

(iii) if in addition S‹ “ zer T, then pzkqkP�, pz̄kqkP� both converge to some z‹ P zer T.

Moreover, if zk, z̄k Ñ z‹ P zer T (as is the case in B.1(iii)), and F is continuously differentiable, then
eventually the backtrack will never be invoked.
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Proof. Observe that in the proof of Theorem 3.1 1-Lipschitz continuity of γkF is only used at the
generated points z̄k and zk (see (B.3)), and is thus ensured by the linesearch Algorithm 3. Therefore,
it is easy to see that αk is positive and bounded away from zero provided that ρ ą ´γk{2 , see (B.3).
Moreover, since γk}Fz̄k´Fzk} ď ν}z̄k´ zk}, arguing as in Lemma A.3(ii) we obtain }Hz̄k´Hzk} ě

p1´ νq}z̄k ´ zk}. Hence, it follows from (B.5) that

}zk`1 ´ z‹}2 ď }zk ´ z‹}2 ´
εkp1´νq

γ2
k
}z̄k ´ zk}2,

By telescoping the inequality and noting that γk is bounded, we obtain
ř

kP� }z̄
k ´ zk}2 ă 8,

implying B.1(i). Noting this and arguing as in the last part of the proof of Theorem 3.1 establishes
B.1(ii), B.1(iii). The last claim is the direct consequence of Lemma 4.1(ii).

Proof of Lemma 4.1 (Lipschitz constant backtracking). 4.1(i): Since F is L-Lipschitz continuous
the linesearch would terminate in finite steps. Either γinit satisfies the condition, or else the back-
track procedure is invoked, which in turn implies the previous candidate γ{τ should have violated
the condition leading the the claimed lower bound.

4.1(ii): Since the resolvent pid`γAq´1 and F are Lipschitz continous, so is their composition. Hence,
Gγpzkq Ñ Gγpz‹q. Furthermore, by definition z‹ ´ γFz‹ P Gγpz‹q ` γApGγpz‹qq. Consequently,
using monotonicity of A at Gγpz‹q and z‹, and that ´Fz‹ P Az‹ yields 0 ď xz‹ ´ γFz‹ ´Gγpz‹q `
Fz‹,Gγpz‹q ´ z‹y “ ´ }z‹´Gγpz‹q}2. Thus Gγpz‹q “ z‹. Using the fact that both pGγpzkqqkP� and
pzkqkP� converges to z‹ P zer T :

lim
kÑ8

}FpGγpzkqq ´ Fzk}

}Gγpzkq ´ zk}
ď lim sup

z,z1Ñz‹

}Fz1 ´ Fz}
}z1 ´ z}

“ lip Fpz‹q “ }JFpz‹q},

where (Rockafellar & Wets, 2009, Thm. 9.7) was used. The claim follows from continuity of JF
and the fact that pzkqkP� converges to z‹.

B.3 Proofs of Section 3.2

To prove the lower bound we introduce the following unconstrained bilinear minimax problem with
an unstable critical point.

Example 5: Consider the following minimax problem:

minimize
xPR

maximize
yPR

f px, yq :“ axy`
b
2
px2 ´ y2q, (B.9)

where b ă 0 and a ą 0.

Proof of Theorem 3.4. The associated operator of Example 5 can easily be computed,
Fz “ pay` bx, by´ axq, (B.10)

where z “ px, yq. In this particular case, both L and ρ turn out to be constants. By simple calculation
we have,

}JFpzq} “
a

a2 ` b2, ρ “
b

a2 ` b2 (B.11)

where } ¨ } is the spectral norm. Since the norm of the Jacobian is constant it equates the global
Lipschitz constant, L “ }JFpzq}.

By linearity of F, one step of (EG+) is conveniently also a linear operator. Specifically,

zk`1 “ Tzk with T :“

¨

˚

˝

p1´ᾱqa2`b
´

´ᾱ
?

a2`b2`ᾱb`b
¯

a2`b2 ´
aᾱ

´?
a2`b2´2b

¯

a2`b2

aᾱ
´?

a2`b2´2b
¯

a2`b2

p1´ᾱqa2`b
´

´ᾱ
?

a2`b2`ᾱb`b
¯

a2`b2

˛

‹

‚
. (B.12)

We know that a linear dynamical system is globally asymptotically stable if and only if the spectral
radius of the linear mapping is strictly less than 1.
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Let λ1, λ2 be the eigenvalues of T . Then the spectral radius is the largest absolute value of the
eigenvalues. For T this becomes,

max
iPt1,2u

|λi| “

d

p2pᾱ´ 1qᾱ` 1qa2 ´ 2ᾱpᾱ` 1qb
`
?

a2 ` b2 ´ b
˘

` b2

a2 ` b2 . (B.13)

So we can ask what c in ρ “ ´ c
L needs to be for the sequence pzkqkPN to converge. Solving for c in

this equality with maxi |λi| ă 1, we obtain,

c ă
1´ ᾱ

2
, (B.14)

provided that we pick ?
1´ c2

c
“ ´

a
b
. (B.15)

Equation (B.15) provides a specification for Example 5. As long as (B.14) is satisfied, (EG+) is
guaranteed to converge for γk “ 1{L. On the other hand, since (B.12) is a linear system, we simulta-
neously learn that picking c any larger would imply non-convergence through maxi |λi| ě 1 (given
z0 ‰ 0). We can trivially embed problem (B.12) into a higher dimension to generalize the result.
Noting that c “ ´ρL completes the proof.

We provide Mathematica code to verify each step of the above proof.1

C Toy examples

In the following appendix, L denotes the Lipschitz constant of F restricted to the constraint set and
ρ is the parameter of the weak MVI (Assumption I(iii)) when restricted to the constraint set. This
restriction of the definitions is warranted, since zk remains within the constraint set in all simulations,
while z̄k is guaranteed to stay within by definition of Step 1.1 in Algorithm 1 (and likewise for all
other considered method treating problem (2.1)).

All computer-assisted calculations can be found in the supplementary code.1

C.1 Constructing a PolarGame (Definition 1)

Recall Definition 1 which considers a vectorfield F : Rn Ñ Rn with limit cycles at r P tc1, ..., cku

where ci ‰ 0 for all i P rks. Such a vectorfield can be constructed for n “ 2 by departing from the
following dynamics in polar coordinates,

Br
Bt
“ ´a ¨ rptq

k
ź

i“1

prptq ` ciq ¨ prptq ´ ciq

Bθ

Bt
“ ´b ¨ rptq,

(C.1)

with a, b ‰ 0. Transforming this dynamics into cartesian coordinates yields the desired vectorfield,
F, while subsequently integrating with respect to x and y yields the two potentials associated with the
two players. Note that the roots t´ciu

k
i“1 for the polynomial defining 9r are not strictly necessary for

showing existence of limit cycles, but leads to a simpler form for Fz. We illustrate the construction
in Fig. 5.

Proposition 1. Let Fz “ p 9x, 9yq be the evolution in cartesian coordinates of the associated vectorfield
in polar coordinates defined by (C.1). Then the only stationary point of F is at the origin p0, 0q and
there exists a limit cycle at r “ ci for all i P rks.

Proof. Let r “
a

x2 ` y2. It is easy to see from (C.1) that the only stationary point is at r “ 0. By
construction, 9r is a polynomial with roots ci for all i P rks, so any trajectory starting on the circle
defined by r “ ci remains in that set. However, 9θ is strictly nonzero. As a consequence Fz is nonzero,
so r “ ci must define a limit cycle, which proofs the claim.

1The supplementary code can be found at https://github.com/LIONS-EPFL/weak-minty-code/.
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ùñ

Figure 5: We can construct the desired properties in polar coordinates pr, θq and subsequently transform
it into a vectorfield in cartesian coordinates px, yq. This is illustrated by a PolarGame with attracting limit
cycles at radius }z} “ 1 and repellant limit cycle at }z} “ 3{4 for the associated operator Fz as indicated
in red and blue respectively.

(a) a “ 1 (b) a “ 3{4 (c) a “ 1{3

Figure 6: Example 3 for different values of a (and thereby different values of ρ). Note that even extragra-
dient may escape the limit cycles even though ρ ă 0. This is not in conflict with the negative results of
Hsieh et al. (2021) since the stepsize is not diminishing. However, in the general case even extragradient
with fixed stepsize will not converge as shown by the lower bound in Theorem 3.4.

C.2 Proof for properties of Example 3

The operator F : R2 Ñ R2 defined in Example 3 is obtained by constructing the associated dynamics
in polar coordinates,

Br
Bt
“ ´a ¨ rptq ¨ prptq ` 1q ¨ prptq ´ 1q ¨ prptq ` 3{4q ¨ prptq ´ 3{4q

Bθ

Bt
“ ´rptq.

(C.2)

This can easily be verified by a change of variables. From Proposition 1 it then follows, that there
must exist a limit cycle at }z} “ 1 and }z} “ 3{4. To verify the conditions on ρ we compute the
closed form solution to ρ and L in Mathematica:

(i) For a “ 1 we have ρ “ ´ 50176
1050977 and L “

?
2538096

?
704424929`70246989617

20000

(ii) For a “ 3{4 we have ρ “ ´ 602112
16798825 and L “

?
7614288

?
6383574361`635022906553

80000

(iii) For a “ 1{3 we have ρ “ ´ 150528
9439585 and L “

?
2538096

?
754424929`73446989617

60000

It can easily be verified that the stated conditions for ρ in Example 3 are met for the values above.
This completes the proof.

We provide Mathematica code verifying the construction of F and the closed form solutions to L
and ρ.
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(a) Example 4 (b) Example 5 (ρ “ 1{3L)

Figure 7: In (a) we observe that all algorithms converge, despite F having an attracting limit cycle in
Example 4. However, note that in the stochastic setting, where diminishing stepsize is required, SEG does
not converge to the critical point (see Fig. 4a). In (b) we demonstrate that when ρ “ ´1{3L, picking
ᾱk ă 1{3 for (CEG+) is necessary for convergence in general. See Section 6 for the experimental setup.

C.3 Proof for properties of Example 4

Under the definitions of ρ and L in Appendix C, we claim that the origin p0, 0q in (GlobalForsaken)
is a global Nash equilibrium and satisfies Assumption I(iii) with ρ ą ´1{2L.

To verify that p0, 0q is indeed a global Nash equilibrium we need to check that the solution cannot
be unilaterally improved. In other words, the solution should coincide with px‹, y‹q where

x‹ “ arg min
x

φpx, 0q

y‹ “ arg max
y

φp0, yq.
(C.3)

We can easily verify this with Minimize in Mathematica, since the functions are polynomial for
which a closed form solutions to the global optimization problem will be returned.

To find ρ for z‹ “ p0, 0q we solve the global minimization problem,

minimize
z

xFz, z´ z‹y
}Fz}2 , (C.4)

for which a closed form solution can be found with Mathematica, which when numerically evaluated
is approximately ´0.119732.

We need to compute L to ensure ρ ą ´1{2L. In our case of convex constraints, C, we have that
L “ supzPC }JFpzq} where } ¨ } denotes the spectral norm (Rockafellar & Wets, 2009, Thm. 9.2
and 9.7). Under our constraint }z}8 ď 4{3, this can similarly be computed in closed form, yielding
L “

b

1
2 p9409

?
59721901`74125591q{2835. So ´ 1

2L « ´0.165432 which satisfy the condition ρ ą ´ 1
2L .

This completes the proof.

Proposition 2. Let F be the associated operator of φ in (GlobalForsaken) defined as Fz “

p∇xφpx, yq,´∇yφpx, yqq. Define the radius as r “ }z}. Then, Fz has a stable critical point at the
origin p0, 0q, at least one attracting limit cycle in the region defined by

a

3{2 ă r ă 2 and at least
one repellant limit cycle within r ď

a

3{2.

Proof. We follow a similar argument as in Hsieh et al. (2021, D.2). We can compute the associated
operator F,

ˆ

9x
9y

˙

“

˜

4x5

7 ´ 4x3

3 ` 2x
3 ` y

´x` 4y5

7 ´
4y3

3 `
2y
3

¸

. (C.5)
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Figure 8: Demonstration of algorithms on (Hsieh et al., 2021, Example 5.2). Only (CurvatureEG+) con-
verges to the critical point, while the remaining methods, CEG, (CEG+) with ᾱk “ 1{2, and AdaptiveEG+
converges to an attracting limit cycle. See Section 6 for further specification of the algorithms.

With a change of variables into polar coordinates pr, θq we get that r “
a

x2 ` y2 evolves as,

9r “ ´
1

42
r
`

9r4 cosp4θq ´ 14r2 cosp4θq ` 15r4 ´ 42r2 ` 28
˘

. (C.6)

When r “
a

3{2 this reduces to 9r “ 3 cosp4θq`5
56
?

6
and we observe that 9r ą 0 for any θ. Likewise for

r “ 2, we have that 9r “ ´ 4
21 p22 cosp4θq`25qwhich implies 9r ă 0. Since there is no stationary point

in the region S “
!

pr, θq :
a

3{2 ă r ă 2
)

it then follows from the Poincaré-Bendixson theorem
(Teschl, 2012, Thm. 7.16) that there must exist at least one attracting limit cycle in S. Further, it
is easy to see that p0, 0q is a critical point and that it is stable by inspection of the Jacobian JFpzq.
Since S is trapping, it follows from Poincaré–Hopf index theorem, that there must exist a repellant
limit cycles in the region defined by r ă

a

3{2. This completes the proof.

C.4 Proof of properties for (Hsieh et al., 2021, Example 5.2)

This section considers (Hsieh et al., 2021, Example 5.2) on the constraint domain D “ tz P �n |

}z}8 ď 3{2u. We show that the unique critical point z‹ does not satisfies the weak MVI for ρ ą ´1{2L

even when restricted to the constraint set z P D. We restate the example with the additional constraint
for convenience.

Example 6: (Hsieh et al., 2021, Example 5.2)
minimize
|x|ď3{2

maximize
|y|ď3{2

φpx, yq :“ xpy´ 0.45q ` ψpxq ´ ψpyq, (Forsaken)

where ψpzq “ 1
4 z2 ´ 1

2 z4 ` 1
6 z6.

By using Mathematica, we can obtain a closed form solution of the Lipschitz constant L of F re-

stricted to the constraint set, which we find to be L “ 1
80

b

1
2

`

1089
?

801761` 993841
˘

. Math-
ematica can solve approximately for the critical point, yielding z‹ “ p0.0780267, 0.411934q. To
find ρ we want to globally minimize ρpzq :“ xFz,z´z‹y

}Fz}2 for z P D. Mathematica finds the candi-
date z1 “ p´1.01236,´0.104749q for which ρpz1q “ ´0.477761. So ρ must be at least this small,
i.e. ρ ă ´0.477761. Since ´1{2L « ´0.04, this implies that ρ ă ´1{2L. See Forsaken.nb for
Mathematica-assisted computations.

This rules out convergence guarantees for both (CEG+) and AdaptiveEG+ (Algorithm 1), which is
supported by the simulation in Figure 8. However, as observed, (CurvatureEG+) converges in the
simulations.
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