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 7 

Abstract: The capitalization and the analysis of historical information is nowadays a prerequisite for any 8 

effective risk management and assessment in a wide range of domains. Despite the development of mathematical 9 

models, procedures, support decision systems and databases, some engineering disciplines, such as civil 10 

engineering, remain resistant to the use of new digital technology due to the gap between the expectations of the 11 

engineers and the support that the tools may really provide. It is essential to propose a tool able to process both 12 

cross disciplinary and interdisciplinary knowledge flux and feedback from experience in a common and 13 

convenient unifying framework. The aim is to assist and to support engineering work and to make the task of 14 

knowledge modelling easier. The domain of dam systems is no exception to the rule. Dam failures are still 15 

commonplace. These failures stem from a lack of understanding about the complex relationships between three 16 

different factors: random hazards, the limit states of dam structures along with human activities and decisions. 17 

No generic and holistic approach is currently available that permits the processing of both knowledge and data, 18 

performs inferences and is easily usable for all types of users. This paper proposes the basic principles of a 19 

convenient design methodology for capitalizing, learning and predicting based on the formalism of conceptual 20 

graphs. The aim is to provide an easily usable tool able to (1) capitalise heterogeneous knowledge and store a 21 

database about dams, (2) issue alerts on current projects, (3) draw lessons from past dam failures and (4) tackle 22 

key issues in forensic civil engineering. 23 

Keywords: Knowledge representation, conceptual graph, dam failure, forensic engineering 24 

1. Introduction 25 

In this paper, knowledge corresponds to general concepts representing a set of things with a common meaning in 26 

a domain and data correspond to specific instances (Wiederhold, 1986). With the explosion of data availability, 27 

digitized engineering works and knowledge due to technological advances, capitalization and analysis of 28 

historical information is nowadays a prerequisite for any effective risk management and assessment in a wide 29 

range of domains (agri-food, biomedicine, petrophysics, etc). It is a priority among researchers and industrials 30 

from diverse backgrounds (Buche et al., 2019; Cárdenas et al., 2013; Giacona et al., 2019). To better understand 31 

failure and damages to systems caused by natural phenomena over time or human intervention, it is necessary to 32 

acquire, structure, model, and share cross disciplinary and interdisciplinary knowledge flows in a common and 33 
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unifying framework (Bokade et al., 2021 ; Kamsu-Foguem and Noyes, 2013). Nevertheless, this is not an easy 34 

task given the heterogeneous character of the sources of knowledge and manipulated scales.  35 

 36 

The domain of dam systems is no exception to the rule.  Dam systems are an important part of the infrastructure 37 

systems of many countries. They meet demands for irrigation and agriculture, energy generation, flood control, 38 

domestic use, storage of mining by-products, etc. The Association of State Dam Safety Officials (“Dam Failures 39 

and Incidents | Association of State Dam Safety,” n.d.) reported in the U.S 251 dam failures and 547 "incidents" 40 

from 2010 through 2020 where 64 (resp. 38) of them have the incident mechanism (resp. incident driver) 41 

unknown. The unknown character of the incident driver supposes human failings, human errors due to the non-42 

compliance of rules regarding the design, the construction and the operations of dams (Adamo et al., 2020). 43 

Despite (1) the development of decision support systems to better understand and to manage the complexity of 44 

dam systems and (2) the new building standards imposed by the public authorities after each dam failure; dams 45 

are still today confronted with failures that can lead to dramatic situations (Silva Rotta et al., 2020; Latrubesse et 46 

al., 2020). Blockley (1980) identified 3 main types of structural failure causes: limit states (overload, corrosion, 47 

erosion …), random hazards (floods, earthquake …) and human based errors (design error, poor communication, 48 

mistakes…). Dam systems are complex systems (Northrop, 2014) in that the interactions of the individual 49 

components at different levels, in uncertain environments (natural hazards, stakeholder behaviours, construction 50 

activities, etc) determine the emergent functionalities and properties, which individually do not exist. It would 51 

not be consistent and sufficient to individually analyse each component against a prescribed standard to assure 52 

the safety of dams (Regan, 2010). Tackling this complexity through interdisciplinary fields (artificial 53 

intelligence, civil engineering, forensic engineering) could improve our grasp of the system in a holistic way, and 54 

provide more robust and efficient decision making alternatives in risk management (Choi and Pak, 2006). It is 55 

then essential to propose conceptual approaches able to assemble the puzzle of knowledge regarding the studied 56 

system in order to assist and to support engineering work and hopefully to make the task of knowledge 57 

modelling easier. 58 

 59 

Current research, to represent complex systems, relies on the development of networks in which nodes represent 60 

entities and the links represent their relationships (Boccaletti et al., 2006). The framework of conceptual graphs 61 

(CGs) provides a practical and attractive mathematical formalism that permits the management of terminology, 62 

the facts, the rules and the complex computations of an application domain (Jr, 1983, Chein and Mugnier, 2009). 63 

The expressive power of CGs and their capacity to formalize procedural and declarative knowledge have been 64 

widely proven in the domain of agri-food and successfully used to implement decision support systems (DSSs) 65 

(Thomopoulos et al., 2009; Martin et al., 2020; Buche et al., 2019). The resulting DSS allows users (1) to control 66 

quality and defects of food manufacturing by recommending relevant actions and (2) determine the 67 

consequences on food product quality given the supported actions. This formalism has been investigated in 68 

medical domains (Doumbouya et al., 2015) as well as others, from industry  (Kamsu-Foguem et al., 2019) to 69 

natural language processing (Boonpa et al., 2017). Reasoning in these DSSs mainly consists in applying 70 

iteratively a set of rules based on the first order logic.  By associating a scripting language with the formalism of 71 

CGs, it will then be possible to take complex physical, mechanical, etc behaviours into account.  72 

 73 



Within an approach of engineering informatics, the aim of this paper is to propose a flexible and usable tool 74 

capable of integrating the interconnected information flow between computing, computational method and 75 

engineering related to civil engineering infrastructures. The development of the tool is based on an innovative 76 

graph-based knowledge model of Dam systems relying on conceptual graphs (CGs) and must be able to 77 

• assist in practice experts and engineer users not only to structure and enter the pieces of knowledge to 78 

build the model but also to understand and to control the results of the model and how the model 79 

computed these results. 80 

• provide a generic skeleton to represent any kind of dam system in its environment using a common and 81 

controlled vocabulary 82 

• instantiate, implement and store a database containing factual knowledge relative to any kind of dam 83 

system in its environment, and dam failures  84 

• estimate the current and the future states of dam systems regarding uncertainty by integrating 85 

simulating models,  86 

• identify possible mechanisms, phenomena, human behaviours, etc which can lead to a dam failure 87 

known as forensic engineering  (Noon, n.d.) 88 

• be enriched and updated each time new information is available without damage to the whole structure 89 

of the model and the graph-database  90 

 91 

Figure 1 summarizes the workflow process for building the tool that facilitates knowledge integration and 92 

utilization for improving the operations of dam systems throughout their lifecycle. All kinds of knowledge are 93 

represented by means of graphs and thus may be visualized, managed and updated in a natural way by a range of 94 

users including engineering experts, designers, etc. It is important to realize that the presented paper is a proof of 95 

concept applied to dams while it also provides an overview of the potential of the graph formalism. Theoretical 96 

simplified models are used for demonstration purposes. 97 

 98 

The article is organized as follows: Section 2 reviews related works; Section 3 details the material regarding the 99 

conceptual graph models; Section 4 proposes the graph-based knowledge model for representing any kind of 100 

dam system and Section 5 illustrates the use of the developed graph-based knowledge model in the framework of 101 

diagnostic, prediction and forensic engineering. 102 



 103 

Figure 1 : The iterative design process of the graph based knowledge model 104 

2. Related works 105 

There have been many different approaches and tools devised to support engineers in their work. These tools 106 

focus on providing support in several areas: the formalization and representation of knowledge, data analysis and 107 

process modelling and simulation. In civil engineering, the aim of these tools is (i) to design and evaluate safe 108 

infrastructure, (ii) to predict the future state and function of civil engineering systems in operation and when 109 

failures occur, (iii) to explain the likely causes. 110 

 111 

Knowledge-Based Engineering (KBE) and Knowledge-Based System (KBS) are examples of such tools. These 112 

digital tools have been developed by integrating knowledge in the form of rules and constraints. They are 113 

capable of integrating different sources of knowledge for the capture, storage and reuse of engineering 114 

knowledge. They are composed of two distinguishing features: a knowledge base (representing facts about the 115 

studied domain) and an inference engine (rule systems capable of deducing new information). Although KBE 116 

and KBS have been successfully developed and used in various domains (Häußler and Borrmann, 2021) their 117 

implementation still requires significant effort and remains case dependent. They tend to be ‘black box’ type 118 

applications, lacking explanations and thus complicating the reuse of the knowledge found within the KBE 119 

system (Verhagen et al., 2012). 120 

 121 

Failure mode and effects analysis (FMEA, (Fonseca and Ávila, 2016)), fault tree analysis or simple failure 122 

analysis (FTA, (Ren et al., 2012)) are popular methods used in civil engineering to collect and analyze 123 

knowledge used to determine the causes and effects of dam failures and set up actions to prevent failures (Amin 124 

et al., 2019). As with KBE and KBS, the construction of these methods requires a large amount of effort, and 125 

they remain dependent on the system studied. Furthermore, fault tree analysis and its extensions (fuzzy, 126 

probabilistic FTA) are limited by the use of Boolean algebra which assumes all failures are binary meaning that 127 

components are either failed or working (Baig et al., 2013).  128 



Other Expert Systems have been developed using rule bases, fuzzy rule bases and logic to evaluate the safety of 129 

dams (Ribas and Pérez-Díaz, 2019, Supakchukul et al., 2019 ; Curt et al., 2011 ; Curt et al., 2010). No matter 130 

which approach is used, it still requires a case-by-case description of the dam specifics and the developed models 131 

are dependent on dam type. Numerical models have been developed to simulate the physical and mechanical 132 

behaviour of dams, these are usually based on finite element methods (Haiqing et al., 2004; Chen et al., 2019; 133 

Kojima et al., 2020; Hariri-Ardebili, 2020). Unfortunately, numerical approaches imply large degrees of freedom 134 

in the finite element models and mainly consider the technical aspects of failures.  135 

 136 

Several failure databases have been created in the last decade. These databases are in the form of tabular data; 137 

they are useful for compiling cases for statistical analysis or in a teaching context. The Association of State Dam 138 

Safety Officials (“Dam Failures and Incidents | Association of State Dam Safety,” n.d.) provides a database 139 

(“Incidents Search | Association of State Dam Safety,” n.d.) that lists a set of incidents and dam failures which 140 

allows the retrieval of basic information about an incident based on search fields such as dam name, incident 141 

mechanisms, failure date, etc. Alternately, Bernard-Garcia and Mahdi (2020) record a total of 3,861 cases of 142 

historical dam failures, the largest compilation of such failures recorded to date (17-02-2020). However, the data 143 

and knowledge referring to these dam failures and incidents are stored in the form of reports. This format lacks a 144 

global vision and the explanations of such failures are difficult to exploit with reasoning tools.  Although such 145 

database systems handle and provide an easy access to rough massive data, they may not represent knowledge 146 

such as rules, constraints, etc. There have since been databases enriched with relational models such as Liu and 147 

Zhou (2008) who developed a relational database for dam safety monitoring systems. Associative research was 148 

carried out to analyse the failure reports and to find similarities between different accidents (Nakao et al., 2008). 149 

This work points out one major difficulty of database analysis: the extraction of general and useful conclusions 150 

from the analysis of many independent cases. Although relational models are widely popular and have been used 151 

since the 1980s for storing and retrieving data (Adeli and Yu, 1993), their dependence on a rigid schema and the 152 

explosive growth of available data result in the loss of their interest and importance (“Comparative analysis of 153 

relational and graph databases | BibSonomy,” n.d.). Indeed, the schema of a relational database (1) makes it 154 

difficult to add new relationships between the objects and thus to efficiently model highly complex networks 155 

connecting all the manipulated objects describing a system in its entirety. Implementing complex systems in 156 

relational databases requires introducing associative tables (also known as join tables) when many-to-many 157 

relationships occur in the model and this is expensive to calculate. To overcome the limits of relational 158 

databases, NoSQL databases provide a very efficient tool for managing a huge volume of complex data, 159 

especially for retrieving relationships between objects. However, NoSQL databases are often schema-less data 160 

models and the unknown general structure of the data especially makes tasks modelling purposes or data analysis 161 

very difficult beyond retrieval data. 162 

 163 

A lack of a formalized language and models in the domain of construction, and notably regarding risk 164 

management, was also pointed out by Mehdizadeh et al. (2012). To overcome the lack of genericity, the use of 165 

ontology (Poli et al., 2010) seems to be an adequate paradigm for structuring the domain of dam systems. In this 166 

sense, the National Performance of Dams Program (“NPDP Dam Dictionary | National Performance of Dams 167 

Program,” n.d.) (http://npdp.stanford.edu/dam_dictionary) has edited a dictionary allowing the definition of the 168 



different elements of dams and their failures. Attempts of ontology have been initiated in the domain of dams 169 

(Anh et al., 2017). Developing a suitable ontology for the domain of dams is of capital importance (1) to share a 170 

common vocabulary in a trans-disciplinary community and (2) to achieve Semantic Interoperability in the field 171 

of dam systems. Although ontology allows users to describe domains and to retrieve information, it is not 172 

capable of simulating or predicting the behaviour of the system while taking uncertainty into account. Ontology 173 

does, however, play a key role in simulation modelling (Benjamin et al., 2006 ; Guizzardi et al., 2015) especially 174 

in disambiguating the terminology of a domain. Ontology and databases complement each other, the ontology-175 

based model gives a rich representation of data whereas database models are more consistent for querying and 176 

updating (Ramis Ferrer et al., 2021). The trend today is to develop Cloud Collaborative platforms exploiting both 177 

technologies in the same framework allowing companies to exchange information through the web. For instance, 178 

Jeong et al. (2019) developed an interoperable cyber infrastructure platform for bridge monitoring capable of 179 

managing and easily accessing the sensor data and bridge information through NoSQL database, cloud  180 

computing  and  web  services. 181 

 182 

Thanks to the availability and accessibility of substantial data and advances in computing power, more recent 183 

approaches stemming from machine learning have started to emerge.  Using the neural networks framework, 184 

Danso-Amoako et al. (2012) (resp. Wang et al. (2020)) propose a predictive tool of dam failure risk for 185 

sustainable flood retention basins (resp. crack opening of concrete dam).  Belmokre et al. (2019) tested random 186 

forests and support vector machines for analyzing seepage and collected data in order to predict seepage flow in 187 

concrete gravity dams. Probabilistic graphical models have been investigated to develop models capable of 188 

estimating the likely causes and possible consequences of earth dam failure assigned by probabilities (Morales 189 

Napoles et al., 2014; Ponnambalam et al., 2019). Readers may refer to Allawi et al. (2018) for further details. 190 

The drawback of the mining and learning methods is that they require substantial data.  191 

 192 

The previous detailed discussion shows that the challenge to effectively developing a practical user-friendly tool 193 

capable of capitalizing, diagnosing, predicting and learning in a unified framework using a controlled vocabulary 194 

is still not addressed in the operation of civil engineering infrastructure and particularly in dam systems. To the 195 

best of our knowledge, the methodology exposed in this paper has never been proposed and tested in the 196 

framework of dam systems.  197 

 198 

3. Preliminary notions about Conceptual Graphs (CGs) 199 

CG is a knowledge representation and reasoning formalism based on labelled graphs. They have the advantage 200 

of being easily translated into the terminology of some other approaches in knowledge engineering, such as 201 

RDFS (Resource Description Framework Schema) (Yao and Etzkorn, 2006) and its evolution, the OWL (Web 202 

Ontology Language) (Casteleiro and Des Diz, 2008; Horrocks et al., 2005) mainly applied in connection with the 203 

Semantic Web framework (Shadbolt et al., 2006). It is composed of two parts: the terminological support which 204 

represents basic ontological knowledge and a set of graphs, based on this support, which basically represent facts 205 

(data) expressing factual knowledge. The formalism of CGs allows the development of querying and reasoning 206 

mechanisms to retrieve knowledge without using the language of logic but only using graphs. Logical formulas 207 

and requests may be encoded by means of these graphs which are very interesting to the end-users because this 208 



makes it possible to explain the reasoning and the results of requests visually in a natural way. The support of 209 

CGs may then be enriched by rules that express knowledge of the form “if hypothesis then conclusion” where 210 

hypothesis and conclusion are both graphs. The graph data management model presented in this paper has been 211 

implemented in CoGui2, a visual conceptual graph editor. CoGui makes possible the manipulation of any CoGui 212 

objects with a Java-like scripting language, which allows users to create and integrate complex mathematical 213 

models describing physical behaviours or system functionality. To avoid ambiguity, class, concept, entity, type, 214 

or category are considered as synonymous terms in this article. Class represents a set of things having a common 215 

meaning in a domain. The same applies to the terms instance, object, element, individual belonging to a class. 216 

 217 

3.1 The terminological support  218 

The terminological support consists of a partially ordered set of concepts and a partially ordered set of relations; 219 

the relations are characterized by their arity which is the number of arguments of the relation. The partial order 220 

defines a hierarchy relationship allowing a specialization of concepts and relations. For instance Fig. 2 displays 221 

an extract from the terminological support of Dam systems where the concept “SiphonSpillway” (resp. the 222 

relation “Apply_mechanic_flow()”) is a specialization of the concept “Spillway” (resp. the relation 223 

“Apply_flow()”) that itself is a specialization of the concept “Component” (resp. the relation “Ternary()”). The 224 

relation “Has_Default(Component,Defaults)” takes two arguments corresponding to the concepts “Component” 225 

and “Defaults” describing that “a component has a default”. 226 

 227 

Figure 2 : An extraction of a terminological support: an example of the hierarchy of concept types and relation 228 

types, Dt refers to a period of time.  229 

                                                           

2 http://www.lirmm.fr/cogui/ 



 230 

3.2 Basic graph 231 

Generic knowledge may be represented by means of a basic graph, based on the terminological support that is a 232 

bipartite graph composed of: 233 

• concept nodes labelled by a pair [C:c], where C is a concept type and c is called the marker of this 234 

node. Either this marker is a specific individual name, that is c is an instance of the concept C (e.g 235 

[DamSystem:Grande-Dixence-dam] means that Grande-Dixence-dam is an individual of the 236 

DamSystem concept; it is a concrete gravity dam in Switzerland); otherwise this marker is the generic 237 

marker, denoted by ∗, if the node refers to an unspecified individual in the knowledge base (e.g 238 

[DamSystem : ∗] means there exists an individual of type DamSystem in the knowledge base). 239 

• relation nodes labelled by a relation r expressing relationships between concept nodes. The number 240 

of incident edges (i.e the number of edges to which it is connected) is equal to the arity of the 241 

relation. CoGui software offers the possibility of managing specific data types (string, integer, float, 242 

boolean) by means of binary relations allowing the integration of physical phenomena inside rules by 243 

means of scripts (see below). 244 

 245 

3.3 Facts 246 

Basic graphs may be then used to generate factual knowledge called Facts (or fact graphs). Classically, concept 247 

nodes are represented by rectangles and relation nodes by ovals. Figure 3 displays a simple example of a basic 248 

graph describing the bodies of dam associated with its reservoirs. The basic graph means that any reservoir R of 249 

type Reservoir with a level water WH of type Water_height associated with a float value wh applies a water 250 

pressure WP on the dam body DB that has a height HD of value hd. From this basic graph, facts may be 251 

instantiated as for instance the Konya dam, the largest completed hydroelectric power plant in India, by means of 252 

R=Konya_reservoir, wh=92 meters, DB=Konya_dam_body and hd=103 meters (see fact graph in Figure 3).  253 

 254 

3.4 Rules 255 

Different kinds of reasoning may be graphically defined in the framework of conceptual graphs namely applying 256 

inference rules or contextual reasoning (i.e. find a current situation having similar features with already 257 

encountered situations). Rules express knowledge of the form “if hypothesis then conclusion” where hypothesis 258 

and conclusion are both graphs sharing common nodes. Intuitively, when the hypothesis graph is found in a fact 259 

graph, then the conclusion graph can be added to this fact. A rule R is applicable to a fact graph G if there exists 260 

an injective homomorphism (also called injective projection) from its hypothesis to G, i.e this projection consists 261 

of knowing whether the hypothesis graph is present in G. Then the application of R on G according to the 262 

projection produces a new graph fact obtained from G by adding the conclusion. For instance, Figure 4 displays 263 

the result of the use of two rules applied to a fact graph. The fact graph expresses that there is an excessive flood 264 

in the environment of a spillway which has for function to evacuate water. The first rule formally says that “for 265 

any flood f, spillway s and evacuate e, if f is excessive and s has for function e, then e is failed. There is one to 266 

one correspondence between the concept node [Evacuate: ∗] in the hypothesis and with the concept node 267 



[Evacuate: ∗] in the conclusion. These two nodes linked by a relation called co-reference (symbolized by dashed 268 

edges and circle vertices in Fig. 4) refer to the same entity.  269 

 270 

 271 

Figure 3 : Example of a specific fact graph instantiated from the basic graph 272 

273 

Figure 4 : Example of two rules applied to a fact graph 274 

Concept graph rules may be extended in the CoGui software by using a Java-like scripting language allowing 275 

users to add computations. Figure 5.b displays the graph rule associated with its script in Fig.5.c allowing users 276 

to compute, as the result of the calculation process, the weight of a concrete dam schematized in Fig.5.a.  277 

 278 



 279 

Figure 5 : Example of a script (c) allowing users to compute the weight of a concrete dam (a) that is associated 280 

with the graph rule (b) 281 

As in rules, a query-answering mechanism may be developed in the framework of CGs by using (1) the relation 282 

of projection from graphs to graphs and (2) the definition of requests by means of graphs. Let B be a knowledge 283 

base composed of a set of fact graphs, e.g., the fact about the Konya dam in Figure 3. Elements in B answering a 284 

query Q are intuitively present in Q. Query-answering mechanism and inferences rules may be coupled. For 285 

example, the request graph (see Fig. 6.a) requires searching, in the knowledge base, all reservoirs with a water 286 

height over 90 metres, and Figure 6.d displays the answer graph. The idea is (1) to apply the rule in Fig. 6.b 287 

associated with its script in Fig. 6.c to all facts in the knowledge database creating new facts extended with the 288 

criterion “>90” or“<90” and (2) to identify all new fact graphs containing the request graph in Fig.6.a. Figure 6.d 289 

shows that the Konya reservoir answers this request. 290 

 291 

4. Formal graph-based knowledge representation of dam systems  292 

4.1 The core ontology of Dam systems 293 

The ontology supports the description of all key concepts (entities, variables and attributes) which play a role in 294 

the dam systems (and, with a reduced scope, in the structural and functional performance of the dam). It also 295 

supports the model by explaining how they can be consistently described at different scales (i.e. levels of details) 296 

and what their relations are. This section exposes the terminological support related to dam systems and dam 297 

failures required to build a generic model of dam systems for the implementation of a graph-based knowledge 298 

database of dam systems. It is difficult to propose a unique classification of dams. Indeed, dams may be 299 

classified by several aspects for instance based on shape, height, construction material or type of use, etc. The 300 

proposed model will make it possible to free oneself from any classification and will allow an analysis from 301 

different angles (i.e. design, function, performance, etc). 302 



 303 

 304 

 305 

Figure 6 : Example of a query-answering in the form of a graph (d) coupling a request graph (a) with an 306 

inference rule (b) associated with a script (c). 307 

 308 

A system “is a set of entities with relations between them” (Langefors and Dahlbom, 1995) ; it will be 309 

considered as the top level of the concept type hierarchy. A dam system is a system and defined according to its 310 

structural components, its functions and its environment. At each level of decomposition of the system, structural 311 

components perform functions that contribute to the global functions of the dam system. The building of 312 

ontology is based on a Middle-out strategy which is a combination of the Top-down and Bottom-up approaches 313 

(Aminu et al., 2020). By relying on the dictionary of National Performance of Dams Program (“NPDP Dam 314 

Dictionary | National Performance of Dams Program,” n.d.), relevant generic concepts and relations have been 315 

collected by domain experts elicitation. These top level concepts and relations have been refined by means of 316 

more specific concepts and relations manually extracted from a corpus of Dam failure cases. This extraction 317 

process will be able to be automated by using ontology learning tools (Konys, 2019) allowing ontology designer 318 

to support the building process. A terminological support has then been developed and it is composed of  319 

 320 

Concepts: 321 

• Component is associated with all components that compose a dam system such as spillway, reservoir, 322 

dam body, foundation.  323 

• Function is what the system or component is intended to do. It is specified by (1) mechanical functions 324 

such as sliding stability, (2) technical functions such as control flood and (3) useful functions such as 325 

recreational activity, energy production. 326 



• Design is associated with the type of design of dam such as embankment, arch, buttress dams etc. 327 

• Performance is the capacity of a system or component to fulfil its function as for instance the 328 

performance of spillway evacuation is its capacity to evacuate water. 329 

• Expected level represents the level of performance designed to satisfy the function of a component as 330 

for instance the tolerated increase of the drainage flow 331 

• Measured level is the quantitative measure of the performance level of a component that indicates the 332 

actual degree to which it performs the function as for instance the height of water in the reservoir. 333 

• Property concerns all attributes, properties and characteristics allowing the description of a component, 334 

a function, an environment, a load, a flow such as the geometrical shape of dam body, the intensity and 335 

the duration of rainfall, the level of reservoir. 336 

• Load characterizes the load transfers that take place in the dam system between components. It is 337 

specified into horizontal loads such as horizontal water pressure from the reservoir to the dam body and 338 

vertical load such as the uplift pressure. 339 

• Flow characterizes the flow transfers that take place in the dam system between a flow outside the dam 340 

system and the components such as overflow, seepage, spillway discharge, etc. 341 

• Material represents any material which is used for construction and operation of a system such as water, 342 

tailings, concrete, soil, rock. 343 

• Time represents the notion of time. 344 

• External environment represents all factors outside of the dam system that interact with it such as 345 

human activity, weather, temperature. 346 

• Failure is defined as an unacceptable performance of a structure to perform its function. 347 

 348 

Relations: 349 

• Is_composed_of is a binary relation that links the dam system with its components. 350 

• Has_for_function links the component to its function. 351 

• Has_value links a property to its value of float type. For instance [Reservoir_area: ∗]-(1)-Has_value-352 

(2)[Float: *]. 353 

• Has_for_material links a component to its material of string type. For instance [Dam_body: ∗]-(1)-354 

Has_for_material-(2)-[String: ‘concrete’]. 355 

• Is_Evaluated_By is a binary relation that links a function with the property that allows the function to 356 

be evaluated as for instance the function “to evacuate”, associated with the component “spillway”, may 357 

be evaluated by the property : the evacuated water flow. 358 

• Exist_at is a binary relation linking all types of concepts to time that can change over time according to 359 

different events or phenomena. 360 

• Has_Measured_Level (resp. Has_Expected_Level) is a binary relation linking a measured value (resp. 361 

expected value) of quantitative properties. For instance, the evacuated water flow, that evaluates the 362 

function “evacuate” of spillway, has a measured level and an expected level. 363 

• Has_for_performance is a binary relation that links the function of a component to its performance. 364 

• Has_for_property is the binary relation that links the properties of any concepts. This relation may be 365 

declined according to the manipulated concepts such as the relation Has_for_flow_rate (resp. 366 



Has_for_flow_pressure, Has_for_load_magnitude) which specifies the rate of the overflow (resp. the 367 

pressure of the overflow and the magnitude of the horizontal water pressure).    368 

• Has_for_probability is a binary function that assigns a probability to an event. 369 

• Apply_load is a ternary relation that describes the transfer of a load on a component to another 370 

component. This relation will be subdivided into two sub-relations: Apply_mechanic_load and 371 

Apply_hydraulic_flow. For instance, earthquake applies an earthquake hydrodynamic load to reservoir; 372 

reservoir applies a mechanical load namely a pressure to the dam body. 373 

• Apply_Flow_Through is a binary relation that links a flow to a component such as an overflow to the 374 

dam body. 375 

• Before is a binary relation between two time concepts that represents a sequence of events or state 376 

changes in a temporal order.  377 

• Has_state_function is a binary relation that describes the state of the function of component. 378 

 379 

For the sake of clarity of the paper, only the first levels of the core ontology are described in this section.  Fig. 2 380 

shows a part of the hierarchy view of concepts and relations stemming from the developed terminological 381 

support of dam systems. 382 

 383 

4.2 Basic graph representing dam systems 384 

The core ontology allows the definition of a basic graph enabling users to represent any kind of dam as an 385 

assemblage of load-bearing components that interact with each other to perform the designated function of the 386 

system. Figure 7 shows the basic skeletal graph corresponding to a high level representation of dam systems. It 387 

means that, for any time t, any dam system ds of type DamSystem is composed of components c of type 388 

Component. Any component c (1) is impacted by an external environment ee of type External_Environment, (2) 389 

has properties p of type PropertyComponent and functions f of type Function. Any function f has performance 390 

criterion perf of type Performance that are estimated by means of the properties of components associated with 391 

their modes of degradation. The interaction between components is described through load l of type Load that 392 

has a magnitude m of type Magnitude associated with a value v of type float. Any flow f of type Flow has a flow 393 

rate fr of type FlowRate associated with a value vr and a flow pressure fp of type FlowPressure associated with a 394 

value vp that passes through a component. Each component may have several functions and properties and it is 395 

sufficient to duplicate this skeleton for each component in order to have a whole description of dam systems. 396 

Each magnitude, flow rate, flow pressure, performance could be either measured or computed by means of 397 

physical laws and modes of degradation. The basic skeletal graph may be extended by a specification allowing 398 

users to describe components, functions, performances at finer levels. For instance, an embankment dam is a 399 

dam system that is composed of a dam body that may be composed of upstream and downstream shells, a 400 

permeable membrane and a drain (see Fig. 8). The capacity of the dam body to resist internal erosion will depend 401 

on the permeability function, the drainage function and the filtration function (see Fig. 8). The core ontology 402 

may then describe the complexity of components at different levels of interaction with others and their 403 

environment. Its use, at a given level, consists in identifying adequate components, functions and relationships. 404 



 405 

Figure 7 : Section of the basic skeletal graph representing dam systems using the core ontology 406 

 407 

 408 

 409 



 410 

 411 

Figure 8 : Section of a specification of the basic skeletal graph representing embankment dam system 412 

The description of failures or degradation processes must include time (essential for detecting failure 413 

precursors); with the concept Time, the basic skeletal graph may be extended by using the binary relation Before 414 

to describe dam systems over the time. For instance, Fig. 9 displays a section of the basic skeletal graph 415 

representing one functional state of a component associated with its performance over two time steps. It means 416 

that there exists a component c that has a functional state f1 (resp. f2) with its performance p1 (resp. p2) at time t1 417 

(resp. t2). By unrolling the two time steps over n time steps, we may have a description of dam systems over 418 

time. 419 



 420 

4.3  Performance estimation of component functional states 421 

The functional states of components are assessed by their performances. These performances can be estimated 422 

by means of decision rules associated with mathematical models capable of simulating physic-chemical 423 

degradation modes linked to erosion, dissolution phenomena, sliding, overturning, shearing, etc. For the sake of 424 

clarity, we only present in the following a few simplified reasoning graphs representing mechanism, phenomena, 425 

etc in a macroscopic view. These simplified models must not be used to assess dam safety. However, it will be 426 

possible to couple existing complex and more accurate numerical models with our model. The aim here is not to 427 

be exhaustive but to illustrate the approach. For example: 428 

 429 

i. The water pressure load over the time Pwh(t) is applied to the dam body can be estimated by Pwh(t)= 430 

γ.h(t)2/2 where γ corresponds to the density of water and h(t) corresponds to the height of water inside 431 

the reservoir. This estimation may be integrated in a graph rule by using the Java-like scripting 432 

language in the CoGui software (see Fig. 10). 433 

 434 

Figure 1 Section of the basic skeletal graph representing the functional state of a component over two time steps 

 



 435 

Figure 10: Graph rule associated with its script to estimate the horizontal water pressure 436 

 437 

ii. The capacity to resist external erosion for a dam body, in the case of overflow, allows the assessment 438 

judgement of the state of one dam body function that is to resist external erosion. It can be evaluated by 439 

means of a depth of breach inside the dam body. It depends on the erodibility of the dam body, the 440 

width of crest and the overflow level associated with its throughput. We can for instance use the 441 

following very simple rule :  442 

 443 

If Wc(t) ≥ 0 444 

� Wc(t+1) = max( 0, Wc(t) – e.Hflow(t)×∆t ) 445 

Else         (Eq.1)  446 

� Wc(t+1)=0 447 

� Hbreach(t+1) = Hbreach(t) + e.Hflow(t)×∆t 448 

  449 

where Wc(t) (resp. e, Hbreach(t), Hflow(t), ∆t ) corresponds to the width of crest (resp. the erodibility factor, 450 

the height of breach, the height of overflow and the duration of overflow). This rule means that the 451 

width of crest Wc(t) may be reduced to zero only if there exists an overflow Hflow(t) during ∆t. The 452 

breach which appears from the width of crest is null and its depth increases according to the overflow 453 

level Hflow(t) associated with its ∆t. As mentioned previously, the breach depth may be estimated by 454 

using a graph rule associated with a script implementing the above rule. Of course, more complex 455 



models for dam breaching can be implemented, depending on the material properties and the shape of 456 

the dam section (Peter et al., 2018, Zhong et al., 2021). 457 

 458 

The performance of the stability function against the sliding of the dam may be estimated by a Boolean 459 

factor that is 1 if the friction angle (inclination  angle  that  a  considered  sliding  plane  can  have  460 

before  it  starts  to  slide) is lower than a limit and 0 otherwise. The friction angle, denoted α(t) may be 461 

estimated by: 462 

 463 

α(t)  =Arctan(Pwh(t) / ( Psw(t)- Pup(t)) )×180/π (Eq.2) 464 

 465 

where Psw(t) is the self-weight of dam body, Pup(t) is the uplift pressure and Pwh(t) is the horizontal 466 

water pressure. This rule is depicted by means of the graph in figure 11. 467 

 468 

iii. The performance of spillway, at a time step, may be estimated by its capacity CAP_EVAC to evacuate 469 

water : 470 

 471 

CAP_EVAC = QCAP/ (Dsp × Wcc × Surf_Res) (Eq. 3) 472 

 473 

where QCAP (resp. Dsp, Wcc and Surf_Res) is the measured flow (resp. the design storm project, the 474 

ratio watershed area/reservoir area and the surface of reservoir). The function of spillway may be then 475 

considered as failed if CAP_EVAC < 1. This rule is depicted by means of the graph in figure 12. 476 

 477 

 478 

 479 

 480 



 481 

Figure11 : Graph rule associated with its script to estimate the horizontal water pressure 482 

  483 



Figure 12: Graph rule to estimate the capacity of spillway to evacuate water 484 

 485 

5. Uses of the graph-based knowledge model 486 

 487 

The model can be used for four purposes: (1) to store a database of dam systems either in operation or having 488 

experienced a failure; (2-3) to analyze the condition of a structure and either estimate or foresee the associated 489 

risks and (4) to identify the likely causes or reasons of failures when they occur. In the first use, the user will be 490 

able to implement a database of dam systems and their environments. In the second and third use, the user, 491 

through the tool, will be able to either assess the states of current dam systems or predict different possible 492 

failure scenarios. Lastly, the user will be able to highlight the possible causes of some past failures, in order to 493 

draw lessons. 494 

 495 

 496 

5.1 Informing the fact graph database 497 

 498 

By using the generic graph in Fig.7, the creation of the fact graph database is illustrated by the example of the 499 

instantiation of the Grande-Dixence dam located in the canton of Valais in Switzerland on the Dixence river and 500 

the failure of the Malpasset dam which is an arch concrete dam on the Reyran River in the south of France. 501 

Figure 13 displays a section of the representation of the Grande-Dixence dam (the tallest concrete gravity dam). 502 

That is the Grande-Dixence is an individual of concept DamSystem that is composed of three components 503 

namely the Grande-Dixence dam body (resp. the Grande-Dixence foundation, the Grande-Dixence reservoir) 504 

that is of type Dam body (resp. Foundation and Reservoir). The dam body of the Grande-Dixence dam has a 505 

height of 285 metres and a length of 700 metres at the date of 15/12/2020. It applies a load of 1.47×1011 N over 506 



the foundation. One of the functions of the dam body is to ensure the sliding stability Resist_sliding which 507 

depends on the magnitude of foundation seepage uplift load, the water pressure load and the self-weight load. 508 

This estimation may be integrated under the form of a rule coupled with a Java script as explained in section 3.  509 

 510 

Figure 14 represents a section of the functional state of the Malpasset dam body over two time steps. Malpasset 511 

dam was breached on December 2, 1959 partially due to heavy rainfall. This resulted in an increase of reservoir 512 

load water on the dam body that implied an increase of dam weight on the foundations. The generated uplift 513 

pressures and the low shear strength along a fault led to the collapse of foundation and the breach of the dam 514 

body. Figure 14 reveals that the quantity of rain during 24 hours was 130 mm that implied an increase of load 515 

water (resp. water level) from 15680 kN tons to 18000 kN tons (resp. from 56 m to 60 m) between the 12/1/1959 516 

and 12/2/1959. The water level in the reservoir then reached the height of the dam body. However, the failure 517 

stemmed from uplift pressures: the water present in the foundation could not be evacuated due to the poor 518 

mechanical characteristics of the rock foundation. This led to a sudden failure of the foundation and 519 

consequently of the dam itself. Based on the basic graphs presented previously, it is possible to implement a 520 

graph dam database to store information about operating dams and dams having a known failure. 521 

 522 

Figure 13 : Section of a representation of the Grande-Dixence dam using the basic skeleton graph in Fig.7 



The graph database will be enriched and updated with the existing database (“Incidents Search | Association of 523 

State Dam Safety,” n.d.) (Bernard-Garcia and Mahdi, 2020). Missing data or missing knowledge may be taken 524 

into account by means of the generic marker ∗ (see section 3) which refers to an unspecified or unknown 525 

individual in the knowledge base. Since each dam implementation may be incomplete and updated later, the 526 

graph database can thus be implemented by any stakeholders such as experts, teachers, technicians, owner, etc.  527 

 528 

 529 

Figure 14 : Section of the graph representing the functional state of the Malpasset dam body over two time 530 

steps. 531 

5.2 Diagnostic and prediction 532 

 533 

The aim of this subsection is to highlight the consistency of the model through its predictive character and that 534 

the model may potentially describe complex behaviours by using a common formalism. We consider a fictitious 535 

simplified embankment dam system where the properties of dam body, reservoir, and spillway are summarized 536 

in table 1. Erodibility is a simplified parameter for this case study that describes the vertical and horizontal 537 

erosion of mass in metres by days; its value is underestimated in these examples for the sake of demonstration. 538 

Watershed concentration coefficient is a surface ratio watershed area/reservoir area and describes a coefficient of 539 

watershed water concentration meaning that 1 cm of rainfall in the drainage basin leads to an increase of 50 cm 540 



of water in the reservoir. The spillway could be either obstructed or not, according to an occurrence probability 541 

each day and the obstruction is associated with an intensity coefficient, lying within [0,1]. 542 

 543 

The predictive character of the model is tested and illustrated according to three different scenarios: 544 

 545 

i. The dam is confronted with rainfall and remains operational thanks to the ensured function of the 546 

spillway. 547 

ii. The dam system is confronted with strong rainfall leading to a flood; the function of the spillway is 548 

ensured but it does not have the capacity to sufficient evacuate water leading to an overflow and then 549 

the erosion of the dam. 550 

iii. The dam system is confronted with rainfall and an obstruction of the spillway leading to an overflow 551 

but the stopping of rainfall and a clearing of the spillway will allow the dam to partially recover all its 552 

functions.  553 

 554 

Dam Body properties 

Height (m) Base Width (m) 

Crest 

width (m)   Material 

Tolerated 

overflow (m) 

Erodibility 

30 110 10 embankment 0 3m×day-1 

Reservoir properties 

Height (m) Surface area (m²) Watershed concentration coefficient (-) 

24 300 000 50 

Spillway properties 

Height (m) design storm project (m×day-1) 

27 0.05 

Table 1 : Main properties of the three components of the dam system 555 

Many factors such as human errors or natural hazards may cause either immediate or long-term failures. The use 556 

of scripts in rules allows the capture and representation of random phenomena by introducing probabilistic nodes 557 

that take into account uncertainty associated with the mechanisms or properties. For instance, in cases of heavy 558 

rains, vegetation can induce blockage in some pipes. Figure 15 displays the graph rule associated with its script 559 

allowing the user to assign a probability of obstruction of the spillway and its intensity each day. For instance, in 560 

the case where there exists a non-null probability of obstruction, we assume that the spillway will be obstructed 561 

at 80% (denoted by K=0.80 in the script). The probability of obstruction will be lower than 0.01% (denoted by 562 

“(rand<0.9999)” in the script, Fig. 15) for scenarios (1) and (2) and greater than 99% for scenario (3). 563 

 564 



 565 

Figure 15 : Rule graph associated with its script allowing the user to assign a probability to the spillway being 566 

obstructed 567 

In the first scenario, the dam system is confronted with rainfall of 0.05m×day-1 over four days. Each day, the 568 

model updates and stores the state of variables over time by using inference rules. Figure 16 displays for 569 

instance, a section of the graph rule allowing the reservoir to update its water level after rainfall over a certain 570 

period. That is if there exists a reservoir r with its water level lw at time t then there exists a new water level lw’ 571 

of the reservoir r at time t’ that updates lw, after rainfall during Dt. By using the query-answering mechanism 572 

developed in the framework of CGs (see Section 3), it is possible to query the fact graph database to extract 573 

either all variables or only a set of variables at defined times. For example, Figure 17 displays the request graph 574 

and the answer graph corresponding to the projection of the request graph into the fact graph database containing 575 

the results of scenario 1. The request graph is looking to find the capacity of the spillway to evacuate, the water 576 

level in the reservoir and the horizontal water pressure on the dam body on the second day of rain. 577 

 578 

Figure 16 : Section of the rule graph allowing the updating of the water level in reservoir after a Rainfall during  579 

a period of Dt 580 

The answer graph in Fig. 17 shows that the function of the spillway is ensured. From the answer graph, it is 581 

possible to recover the fact graph in which the request graph has been projected and thus to have an overview of 582 

the dam system over the four days. For instance, table 2 shows a part of the variables extracted from this fact 583 

graph and shows that the spillway correctly evacuates water despite rainfall of 0.05m×day-1.   584 

 585 



 586 

Figure 17 : Request and answer graph regarding horizontal water pressure, sliding stability, reservoir water level 587 

and inclination 588 

scenario i Day 0 Day 1 Day 2 Day 3 Day 4 

Rainfall (m×day-1) 0.05 0.05 0.05 0.05 

Obstruction {0,1} 0 0 0 0 0 

Reservoir height water (m) 24 26,5 29 29 29 

Crest width (m) 10 10 10 10 10 

Dam body self weight (kN×m-1) 39600 39600 39600 39600 39600 

Dam body height (m) 30 30 30 30 30 

Horizontal Water pressure (kN×m-1) 2880 3511,25 4205 4205 4205 

Spillway function (Ensured/Failed) ensured ensured ensured ensured ensured 

Function Resist Erosion (Ensured/Failed) ensured ensured ensured ensured ensured 

Reservoir function (Ensured/Failed) ensured ensured ensured ensured ensured 

Table 2 : Simulated results by using inference rules according to a scenario with a constant rainfall for four days 589 

In the second scenario, the dam system is faced with eight days of rain with an increase of rainfall on the first 590 

day. Table 3 summarizes a part of the simulated states of variables after using inference rules. The simulation 591 

shows us that the spillway does not manage to evacuate the water in the reservoir. The level of water (31m) in 592 

the reservoir runs over the height of dam body (30m) on the third day leading to an overflow. The function of the 593 

spillway is ensured but it is incapable of evacuating enough water indicating that the spillway has been badly 594 

designed. This overflow implies an erosion of the crest leading to a 3m decrease of the dam body on the eighth 595 

day and thus a decrease of horizontal water pressure. 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 



scenario ii Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 

Rainfall (m×day-1) 0,05 0,07 0,07 0,07 0,07 0,07 0,07 0,07 

Obstruction {0,1} 0 0 0 0 0 0 0 0 0 

Reservoir heigh 

water (m) 
24 26,5 30 31 31 31 31 31 28 

Crest width (m) 10 10 10 10 7 4 1 0 0 

Dam body 

selfweight (kN×m-1) 
39600 39600 39600 39600 38610 37620 36630 36300 32670 

Dam body 

 height (m) 
30 30 30 30 30 30 30 30 27 

Horizontal Water 

pressure (kN×m-1) 
2880 3511,25 4500 4805 4805 4805 4805 4805 3920 

Spillway function 

(Ensured/Failed) 
ensured ensured ensured ensured ensured ensured ensured ensured ensured 

Resist Erosion 

function 

(Ensured/Failed) 

ensured ensured ensured ensured ensured ensured ensured ensured failed 

Reservoir function 

(Ensured/Failed) 
ensured ensured ensured failed failed failed failed failed failed 

 604 

Table 3 : Simulated results by using inference rules according to a scenario with an increase of rainfall from the 605 

first day exceeding the capacity of spillway 606 

 607 

In the third scenario, the dam system is faced with eight days of constant rainfall and an obstruction of the 608 

spillway followed by a stop in rainfall and a clearing of the spillway. Table 4 summarizes a part of the simulated 609 

states of variables after using inference rules. The simulation shows us that the water level in the reservoir 610 

increases until an overtopping occurs because the spillway is obstructed leading to an overflow. This overflow 611 

implies an erosion of the crest decreasing its width to 0 but the stopping of the rainfall allowed the spillway to 612 

clear from the 8th day, decreasing the water level in the reservoir which implies that the dam system’s original 613 

functions are partially restored. 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 



scenario iii Day 0 Day 1 Day 2 … Day 7 Day 8 Day 9 Day 10 

Rainfall (m×day-1) 0.05 0.05 0.05 … 0.05 0 0 
 

Obstruction {0,1} 1 1 1 … 1 0 0 0 

Obstruction 

 intensity (%) 
49% 49% 92% … 5% 0% 0% 0% 

Reservoir 

 height water (m) 
24 26,5 29 … 31 31 27 27 

Crest width (m) 10 10 10 … 4 1 0 0 

Dam body 

 selfweight (kN×m-1) 
39600 39600 39600 … 37620 36630 36300 36300 

Dam body  height (m) 30 30 30 … 30 30 30 30 

Horizontal Water 

 pressure (kN×m-1) 
2880 3511,25 4205 … 4805 4805 3645 3645 

Spillway function 

 (Ensured/Failed) 
Failed Failed Failed … Failed Ensured Ensured Ensured 

Resist  Erosion function 

(Ensured/Failed) 
Ensured Ensured Ensured … Ensured Ensured Ensured Ensured 

Reservoir function 

 (Ensured/Failed) 
Ensured Ensured Ensured … Failed Failed Ensured Ensured 

 624 

Table 4 : Simulated results using inference rules according to a scenario with a constant rainfall, an obstructed 625 

spillway for eight days followed by a stopping of rainfall and a cleaning of the spillway 626 

 627 

5.3 Forensic engineering 628 

 629 

The aim in this section is to highlight the capacity of our approach to deal with forensic engineering allowing the 630 

definition of the responsibilities (legal issues) and drawing lessons enabling designers and builders or managers 631 

to develop safer alternatives and to improve their practices. The objective is to illustrate the use of the model to 632 

acquire knowledge about past and future failures. Forensic engineering, initially applied in USA in the 50s, has 633 

been widely developed in Anglo-Saxon countries. Nowadays it is used in many fields such as medicine, civil 634 

engineering, road traffic incidents and accidents, planes and fire engineering etc (Noon, n.d.). Forensic 635 

engineering consists in finding possible mechanisms, phenomena, human behaviors, etc leading to a failure. In 636 

the biomedical domain, Mujtaba et al., 2018 proposed a conceptual graph-based model to classify forensic 637 

autopsy reports. The model has thus two possible uses: on the one hand to teach lessons and on the other hand to 638 

provide explanations for failures.  639 

Assuming that an expert would like to identify situations of a failure similar to a past failure which occurred on a 640 

dam system then, any information about these cases could be valuable for better analyzing a new failure of the 641 

dam and the reasons behind it. The aim is to propose possible explanations based on similar facts. With this aim 642 



in mind, the use of request graphs allows users to find similar cases in the available fact graph database. For 643 

instance, consider that an expert is faced with an embankment dam system that suffered a breach. The expert 644 

would like to identify situations in which similar failures have occurred previously. The expert may formulate 645 

his request in the form of a graph (see graph request in Figure 18) and the tool provides a set of fact graphs 646 

corresponding to the request graph projection in the fact graph database of which the Baia Mare dam is one (see 647 

a section of graph answer in Fig. 18; on this graph, the elements composing the query were coloured green). For 648 

instance, the expert knows that there was heavy rainfall (40 mm) when the dam crest was washed away. The 649 

exploitation of the whole graph will allow experts to know the different state of component functions over time 650 

that lead to the failure. In fact, the Baia Mare dam collapse resulted from heavy rain and melting snow leading to 651 

the destruction of dam crest over a length of 25 metres implying the release of 100,000 m3 of cyanide-652 

contaminated liquid into the Lapus stream, tributary of the Somes/Szamos, Tisza/Theiss, and Danube Rivers in 653 

Romania (Soldán et al., 2001). This use of the tool is similar to a documentary search, in which the tool 654 

automates the search. This allows the user to benefit from previous concrete examples, allowing them to enrich 655 

the analysis. 656 

 657 

Figure 18 : Section of one graph answer corresponding to one projection of the graph request in the fact graph 658 

database.   659 



Let us consider the case of an expert who is faced with a reservoir the function of which is to store water that has 660 

failed at any given time (described in the fact graph in Figure 19) and he/she would like to know the possible 661 

reasons for this failure. By projecting the fact graph into the base of inference rules and applying the rules to this 662 

fact, new graphs are constructed (described in answer graph in Figure 19 where the new elements are coloured 663 

blue) highlighting possible explanations for the failure. For instance, the left answer graph in Fig. 19 shows that 664 

the function of the reservoir may have failed because the rainfall is heavy whereas the right answer graph shows 665 

that the function of reservoir may have failed because the spillway is obstructed. The expert may then conclude 666 

that the failure of reservoir may be due to a heavy rainfall and/or an obstruction of the spillway. Unlike requests 667 

that aim at finding similar cases of failure, the application of the rules allows the provision of possible 668 

explanations for the failure. 669 

 670 

 671 

 672 

Figure 19 : Answer graphs corresponding to the inference result of the projection of the fact graph in the base of 673 

rule graphs 674 



6. Discussion and conclusion 675 

 676 

This paper illustrates how the implementation process of the graph-based knowledge model is designed to be 677 

simple to handle and provides a consistent and unified usable practical support tool able to process 678 

heterogeneous knowledge and data. It allows users including scientists, engineers and experts to easily (1) 679 

integrate the interconnected information related to civil engineering systems, (2) perform inferences for 680 

predicting, understanding and learning and (3) derive new knowledge. We are aware that applications remain at 681 

a macro level of detail and the knowledge gained here in these simple applications may seem trivial. A 682 

substantial fact database, documented with hundreds or thousands of cases, will allow users to overcome the 683 

limits of current practices related to expert capacity and memory. 684 

The model presented in this paper is still under construction and a first important task will be to build a 685 

sufficiently solid knowledge base covering a wide variety of dam systems (Thesaurus), and to make inferences 686 

(i.e. sufficient rules learned from the fact graph database). The developed model associated with the formalism 687 

of CG is generic enough and versatile enough to deal with various types of dams and failures. The more 688 

complete the database, the more detailed and more valuable the knowledge that can be drawn from it. An 689 

advantage of the model is that it may be updated or enriched in an iterative process without damage to the whole 690 

model. Several solutions can be explored to improve the knowledge base: benchmark with experts, surveys, etc. 691 

In the first stage, the knowledge base will be completed using existing databases already mentioned in the 692 

introduction.  693 

 694 

The current model remains widely deterministic using the first-order logic associated with empirical and 695 

chemical-physical models. The taking into account of uncertainty into account then remains limited in the model 696 

regarding the natural hazards, stakeholder behaviour, etc. An improvement of the model could involve 697 

considering probabilistic assessment and modelling. From this perspective, conditional relations would then be 698 

quantified through a probabilistic description by means of the formalism of the probabilistic relational model 699 

where the properties and attributes (e.g. the water level in reservoir) of concepts (e.g. reservoir) would become 700 

random variables (Baudrit et al., 2019). 701 

 702 

This paper presented an original approach that allows scientists, engineers, experts, stakeholders to: 703 

  704 

- Represent, implement and store any kind of dam systems in operation or failed in the form of a graph 705 

- Diagnose and predict the states of each component of a structure in operation 706 

- Tackle a key issue in forensic engineering that is drawing new knowledge from accumulated data and 707 

facts  708 

- Enrich and update the model each time new information is available without damage to the whole 709 

structure of model 710 

- Use easily in practice not only to enter knowledge to build the model but also to understand and to 711 

control the results of the model and how the model computed these results. 712 

 713 



While the present tool is only a seminal version, it appears to be promising for addressing this complex issue, 714 

and paving the way for a real improvement in forensic engineering, and a wider and more efficient use of failure 715 

databases. It can be noted that most of the concepts exposed in the section 4.1 are not specific to dams but also 716 

apply to many other types of constructions (bridges, tunnels, high-rise buildings...), which is an additional aspect 717 

of the concept. Indeed, by using and enriching vocabulary at the first level and sub levels of the core ontology 718 

with in section 4.1, it is possible to describe any kind of civil engineering structure along with either their failure 719 

or their maintenance or both. Consider the example of the collapse of the Hintze Ribeiro bridge over the Douro 720 

River in Portugal in 2001 (Sousa and Bastos, 2013). The obsolescence of the structure is the major cause of the 721 

disaster. Erosion of the 116-year old columns and scouring appear to be the main mechanisms responsible for the 722 

collapse. Scour was aggravated by the extraction of excessive sand for 20 years and the modification of the river 723 

bed by the construction of upstream and downstream dams. Heavy rains also increased the river's flow. By 724 

adding for instance Pile and Deck (resp. Scouring) as sub concept of Component (resp. External Environment) 725 

in the core ontology of section 4.1, it is possible, to formalize the failure of Hintze Ribeiro bridge that Fig 20 726 

displays a brief section of what could be the fact graph. 727 

 728 

Figure 20 : Brief section of the graph fact representing the collapse of the Hintze Ribeiro bridge by using and 729 

enriching the core ontology of section 4.1 730 
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