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Abstract

This work discusses three aspects of topology optimisation (TO) problems dealing with
structural stiffness maximisation of anisotropic continua under mixed inhomogeneous
Neumann-Dirichlet boundary conditions (BCs). Firstly, the total potential energy (TPE)
is introduced as intuitive measure of the structural stiffness instead of the work of applied
forces and displacements (WAFD). Secondly, it is proven that the WAFD under mixed
BCs is not a self-adjoint functional, while the one related to the TPE is always a self-
adjoint functional, regardless of the BCs nature. Thirdly, the influence of the anisotropy,
of the applied BCs and of the design requirement on the volume fraction on the opti-
mised topology is investigated: depending on these features, the optimal solutions of the
two problem formulations, i.e., minimisation of the TPE or minimisation of the WAFD
subject to a constraint on the volume fraction, can coincide. The problem is formulated
in the context of a special density-based TO approach wherein a Non-Uniform Rational
Basis Spline (NURBS) hyper-surface is used to represent the topological descriptor, i.e.,
the pseudo-density field. The properties of NURBS entities are efficiently exploited to
derive the gradient of the physical responses involved in the problem formulation and to
easily satisfy the minimum length scale requirement (related to manufacturing needs).
The differences between TPE-based and WAFD-based formulations and the effectiveness
of the proposed method are shown on 2D and 3D problems.
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Acronyms

AM additive manufacturing
BK1-2D first 2D benchmark problem
BK2-2D second 2D benchmark problem
BK3D 3D benchmark problem
B-spline basis spline
BC boundary condition
BESO bi-directional evolutionary struc-

tural optimisation
CAD computer aided design
CNLPP constrained non-linear program-

ming problem
CP control point
DOF degree of freedom
ESO evolutionary structural optimisation
FE finite element
GCMMA globally-convergent method of

moving asymptotes

LSM level set method
MBB Messerschmitt Bölkow Blohm
MMC moving morphable component
MMV moving morphable void
ND Neumann-Dirichlet
NLPP non-linear programming problem
NURBS non-uniform rational basis

spline
SANTO SIMP and NURBS for topology

optimisation
SIMP solid isotropic material with penal-

isation
TO topology optimisation
TPE total potential energy
TV topological variable
WAFD work of applied forces and dis-

placements

1. Introduction

Nowadays topology optimisation (TO) methods are increasingly used in several indus-
trial sectors during the preliminary design phase of a product/system. TO is, indeed,
knowing a new “era” mainly because of the development of modern additive manufac-
turing (AM) technologies, which can be exploited to manufacture products of complex
shapes. Moreover, during the last 30 years, TO has gained an increasing attention to such
an extent that, today, it constitutes a widespread research topic in different fields of study.

The goal of TO is to determine the optimal distribution of the material, within a
prescribed domain, to minimise a given merit function, while satisfying a set of design re-
quirements. Among the different TO methods available in the literature, the solid isotropic
material with penalisation (SIMP) approach [1, 2], and the level set method (LSM) [3–6],
are, undoubtedly, the most popular methodologies.
In the context of the SIMP approach [1, 2], the goal is to find the optimal distribution
of a fictitious, heterogeneous material by introducing a pseudo-density field, ρ(x) ∈ [0, 1],
which affects, via a penalisation law, the stiffness tensor of the elements constituting the
finite element (FE) model.
In the framework of the LSM, the FE model is used solely to evaluate the physical re-
sponses involved into the problem formulation. The topological descriptor is a level-set
function, whose sign is conventionally associated to solid or void zones, while the zero
value represents the boundary of the optimised structure [6]. A detailed discussion of the
LSM for TO is available in [3–6].

Further TO methods available in the literature include: the evolutionary structural op-
timisation (ESO) method [7] and its extension, i.e., the bi-directional evolutionary struc-
tural optimisation (BESO) method [8]. The ESO method is based on the combination of a
metaheuristic algorithm and the FE method, whilst the BESO method is a generalisation
of the former, which includes operators able to produce mesh-independent results (without
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checker-board pattern) and a sensitivity number averaging method, which allows avoiding
convergence issues [9, 10].

Among the most recent TO methods allowing for both a design variables count reduc-
tion during optimisation and an explicit representation of the boundary of the optimised
topology it is worth to mention the moving morphable component (MMC) approach [11]
and its dual counterpart, i.e., the moving morphable void (MMV) method [12]. An effi-
cient and versatile method belonging to this class is the SIMP method reformulated in the
framework of non-uniform rational basis spline (NURBS) hyper-surfaces [13–21]. Unlike
classical density-based TO approaches [2], the NURBS-based SIMP method separates the
pseudo-density field, describing the topology of the continuum, from the mesh of the FE
model. More precisely, for general 3D problems, a 4D NURBS hyper-surface is used as a
topological descriptor, whilst for 2D problems a standard 3D NURBS surface is employed.
In this way, the topological descriptor, i.e., the pseudo-density field, relies on a purely
geometric entity.
In the framework of the NURBS-based SIMP method, the computer aided design (CAD)
reconstruction phase of the optimised topology becomes a trivial task [22, 23] because the
topology boundary is available (at each iteration of the optimisation process) in a CAD-
compatible format (thanks to the use of NURBS entities). Moreover, some fundamental
properties of the NURBS basis functions, like the local support property, can be conve-
niently exploited to determine the gradient of the physical responses with respect to the
topological variables, i.e., the pseudo-density evaluated at control points (CPs) and the
related weights. Indeed, as discussed in [16, 17], NURBS entities allow for handling in
the most efficient way the design requirements of geometrical nature (like minimum and
maximum length scale requirements) during the optimisation process.

Regardless of the adopted TO method, it is a well-known fact that the most studied
problem in the literature is the one dealing with the maximisation of the structural stiffness
subject to a design requirement on the total volume/mass [2]. It is noteworthy that, in
the vast majority of cases [1, 2, 4, 5, 7, 8, 10–14], a combination of non-zero boundary
conditions (BCs) of the Neumann type (i.e., on generalised forces) and null BCs of the
Dirichlet type (i.e., on generalised displacements) are imposed on the nodes belonging to
the boundary. In such cases, the work of applied forces and displacements (WAFD) can
be adopted as a measure of the structural stiffness.

Nevertheless, the WAFD cannot be considered as a measure of the structural stiffness
when non-zero Dirichlet’s BCs are considered. To the best of the author’s knowledge,
the effect of mixed non-zero Neumann-Dirichlet (ND) BCs on the structural maximisation
problem formulation has been investigated only by few authors [24–27]. In [24], the authors
studied the influence of non-zero Dirichlet’s type BCs on both minimum compliance and
maximum strength problems. However, the merit function used as a measure of the
compliance in [24] was the total elastic energy (defined as twice the strain energy) of the
continuum which equals the WAFD (under static equilibrium condition). The authors
noticed that the two problem formulations lead to different design and the optimised
topologies obtained in both cases are not characterised by a uniform distribution of the
strain energy density.
In [25], Niu et al. proposed a new formulation of structural maximisation problems under
non-zero mixed BCs by introducing a new functional obtained as a linear combination of
the WAFD and of the work done by reaction forces at nodes where non-zero Dirichlet’s
BCs are applied. They provided a proof to determine the gradient of this functional, by
showing that it is equal to the gradient of the compliance in the standard case of non-zero
Neumann’s BCs and zero Dirichlet’s BCs. Moreover, they conducted a sensitivity analysis
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of the optimised topology to the applied non-zero displacement.
Later, and independently, Klarbring and Strömberg [26] and Barbarosie and Lopes [27]
proved that the formulation of the structural maximisation problem proposed by [25] can
be related, from a calculus of variations standpoint, to the minimisation of a merit function
proportional to the total potential energy (TPE) of the continuum. In particular, Klarbring
and Strömberg [26] formalised this concept by using a notation related to the discrete
algebraic formulation of the FE method, by confirming the results found in [25]. On the
other hand, Barbarosie and Lopes [27] proposed a formulation (referred to as generalised
compliance) making use of the formalism of variational mechanics. They highlighted, by
using a low-resolution density-based TO method, that the results obtained by minimising
the generalised compliance are different from those obtained minimising the WAFD.

This work aims to shed a light on the influence of mixed non-zero BCs on the struc-
tural stiffness maximisation problem of anisotropic continua. Particularly, three theoreti-
cal/numerical aspects are discussed in this study.
Firstly, a proof simpler than the one proposed in [25] is provided to determine the gradient
of the merit function related to the TPE.
Secondly, it is shown that, under mixed non-zero ND BCs, the optimisation problem mak-
ing use of the TPE as structural stiffness descriptor is self-adjoint while the one making
use of the WAFD as merit function is not self-adjoint.
Finally, three sensitivity analyses are conducted for both problem formulations (i.e., min-
imisation of the WAFD and minimisation of the functional related to the TPE). The first
one aims to assess the influence of the elastic symmetry type of the continuum on the
optimised topology. The second one aims to investigate the influence of the non-zero
Dirichlet’s type BCs on the solution. The last one aims to determine the influence of the
design requirement on the volume fraction on the optimsed solution.
A large campaign of numerical tests is conducted on both 2D and 3D benchmark problems:
results highlight that, depending on the elastic symmetry type of the continuum and on
the value of the constraint on the volume fraction, the optimal topologies resulting from
the two problem formulations can be the same.

The reminder of the paper is as follows. The fundamentals of NURBS hyper-surfaces
are briefly recalled in Sec. 2. The main features of the NURBS-based SIMP method
and the two problem formulations involving the WAFD and the TPE as merit functions,
respectively, are presented in Sec. 3. The numerical results are presented and discussed
in Sec. 4, whilst Sec. 5 ends the paper with meaningful conclusions and prospects.

Notation. Upper-case bold letters and symbols are used to indicate tensors and matri-
ces, while lower-case bold letters and symbols indicate column vectors. ]S denotes the
cardinality of the generic set S.

2. NURBS hyper-surfaces

A NURBS hyper-surface is a polynomial-based function, defined as h : RN → RD,
where N is the dimension of the parametric space, whilst D is the dimension of the co-
domain. The formula of a NURBS hyper-surface reads:

h(ζ1, . . . , ζN ) :=

n1∑
i1=0

· · ·
nN∑
iN=0

Ri1...iN (ζ1, . . . , ζN )yi1,...,iN , (1)
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where Ri1...iN (ζ1, . . . , ζN ) are the piece-wise rational basis functions, which are related to
the standard Bernstein’s polynomials Nik,pk(ζk), (k = 1, . . . , N) by means of the relation-
ship:

Ri1...iN :=
ωi1...iN

∏N
k=1Nik,pk(ζk)∑n1

j1=0 · · ·
∑nN

jN=0

[
ωj1...jN

∏N
k=1Njk,pk(ζk)

] . (2)

In Eqs. (1) and (2) , h(ζ1, . . . , ζN ) is a D-dimension vector-valued rational function, ζk ∈
[0, 1] is the k-th dimensionless coordinate (or parametric coordinate), whilst yi1,...,iN ∈ RD
are the control points (CPs) coordinates , while nj ∈ N and pj ∈ N ∪ 0 (j = 1, . . . , N) are
the number of CPs and the basis functions degree, respectively, along the ζj parametric

direction. The j-th CP coordinate y
(j)
i1,...,iN

is stored in the array Y(j) ∈ R(n1+1)×···×(nN+1)

, j = 1, . . . , D. The explicit expression of CPs coordinates is:

YT
i1,...,iN

= {y(1)i1,...,iN
, . . . , y

(D)
i1,...,iN

}. (3)

The CPs layout is referred to as control hyper-net [28]. The generic CP affects the shape
of the NURBS entity by means of its coordinates. The overall number of CPs constituting
the hyper-net is:

nCP :=

N∏
i=1

(ni + 1). (4)

In Eq. (2), a weight ωi1...iN is associated to the generic CP. The higher the weight the
more the NURBS entity is attracted towards the associated CP. For each parametric
direction ζk, the NURBS blending functions Nik,pk(ζk) appearing in Eq. (2) can be defined
recursively as:

Nik,0(ζk) :=

{
1, if v

(k)
ik
≤ ζk < v

(k)
ik+1,

0, otherwise,
(5)

Nik,q(ζk) =
ζk−v

(k)
ik

v
(k)
ik+q

−v(k)ik

Nik,q−1(ζk) +
v
(k)
ik+q+1−ζk

v
(k)
ik+q+1−v

(k)
ik+1

Nik+1,q−1(ζk), q = 1, ..., pk, k = 1, . . . , N,

(6)

where each constitutive blending function is defined on the knot vector:

vT
(k) = {0, . . . , 0︸ ︷︷ ︸

pk+1

, v
(k)
pk+1, . . . , v

(k)
mk−pk−1, 1, . . . , 1︸ ︷︷ ︸

pk+1

}, v(k) ∈ Rmk+1, k = 1, . . . , N, (7)

with:

mk = nk + pk + 1. (8)

The NURBS blending functions are characterised by several interesting properties: the
interested reader is addressed to [28] for more details on the topic. Here, only the local
support property is recalled because it is exploited in the context of the NURBS-based
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SIMP method [13, 14]:

Ri1...iN (ζ1, . . . , ζN ) 6= 0, if (ζ1, . . . , ζN ) ∈
[
v
(1)
i1
, v

(1)
i1+p1+1

[
× · · · ×

[
v
(N)
iN

, v
(N)
iN+pN+1

[
. (9)

Eq. (9) means that each CP (and the respective weight) affects only a precise zone of the
parametric space, which is denoted as local support.

3. The NURBS-based SIMP method

A detailed description of the mathematical background of the NURBS-based SIMP
method is available in [13, 14]. The main features of the approach are briefly described
here only for 3D TO problems.

3.1. Design variables

Consider the compact Euclidean space D ⊂ R3, defining the design domain in a Carte-
sian orthogonal frame O(x1, x2, x3):

D := {xT = (x1, x2, x3) ∈ R3 : xj ∈ [0, Lj ], j = 1, 2, 3}, (10)

where Lj , is the characteristic length of the domain defined along xj axis. In the SIMP
approach the material domain Ω ⊆ D is identified by means of the pseudo-density function
ρ(x) ∈ [0, 1] for x ∈ D: ρ(x) = 0 means absence of material, whilst ρ(x) = 1 implies
presence of material.

In the context of the NURBS-based SIMP method, the topological variable (TV), i.e.,
the pseudo-density field, for a problem of dimension D is represented by means of a NURBS
entity of dimension D + 1 . Therefore, if a 3D TO problem is considered, a 4D NURBS
hyper-surface is needed to describe the part topology [14]. The first three coordinates of
the NURBS entity correspond to the Cartesian coordinates defining the domain, while the
last coordinate is the pseudo-density field that reads:

ρ(ζ1, ζ2, ζ3) =

n1∑
i1=0

n2∑
i2=0

n3∑
i3=0

Ri1i2i3(ζ1, ζ2, ζ3)ρi1i2i3 . (11)

In Eq. (11), ρi1i2i3 is the value of the pseudo-density at the generic CP, i.e., the fourth
coordinate of the vector h in Eq. (1), while Ri1i2i3 is the generic rational basis function of
Eq. (2).

The dimensionless parameters ζj can be defined as:

ζj :=
xj
Lj
, j = 1, 2, 3. (12)

Among the parameters involved in the definition of the NURBS entity, only the pseudo-
density at CPs and the associated weights are included in the design variable vectors ξ1
and ξ2, which are defined as:

ξT1 := (ρ000, · · · , ρn1n2n3) , ξT2 := (ω000, · · · , ωn1n2n3) , ξ1, ξ2 ∈ RnCP , (13)

accordingly, the number of design variables is, at most, nvar = 2nCP.
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The other parameters tuning the shape of the NURBS entity, i.e., degrees, knot-vector
components and number of CPs, are pre-defined at the beginning of the optimisation
process. For a deeper insight in the NURBS-based SIMP method the reader is addressed
to [13, 14].

3.2. Objective function

Consider the static equilibrium of the FE model in the most general case of mixed
non-zero ND BCs:

K̂û = f̂ , û, f̂ ∈ RN̂DOF , K̂ ∈ RN̂DOF×N̂DOF , (14)

where N̂DOF is the overall number of degrees of freedom (DOFs) before the application
of BCs, K̂ is the non-reduced (singular) stiffness matrix of the FE model, while f̂ and û
are the non-reduced vectors of the external generalised nodal forces and displacements,
respectively. Consider, now, the following definition:

Definition 3.1. Let M̂ ∈ Rm×n be a generic rectangular matrix and R ⊂ {i | 1 ≤ i ≤ m}
and C ⊂ {j | 1 ≤ j ≤ n} two sets of positive natural numbers. The operator M :=

R
(
M̂,R, C

)
returns the matrix M obtained by deleting the i-th row and the j-th column

from M̂, ∀i ∈ R and ∀j ∈ C. Similarly, given v̂ ∈ Rn, v := R (v̂,R) denotes the vector
obtained by suppressing the i-th row of v̂, ∀i ∈ R.

Let IU ⊂ {i | 1 ≤ i ≤ N̂DOF} and IBC ⊂ {i | 1 ≤ i ≤ N̂DOF} be two generic sets of
indices such that: IU ∩ IBC = ∅, ]IU = NDOF, ]IBC = NBC and NDOF + NBC = N̂DOF

(i.e., NBC is the number of DOFs where displacements are imposed, whilst NDOF is the
number of unknown DOFs). By applying Def. 3.1 to Eq. (14), one gets

[
K KBC

KT
BC K̃

]{
u

uBC

}
=

{
f
r

}
, (15)

with:

u := R (û, IBC) , f := R
(
f̂ , IBC

)
uBC := R (û, IU) , r := R

(
f̂ , IU

)
,

K := R
(
K̂, IBC, IBC

)
, KBC := R

(
K̂, IBC, IU

)
, K̃ := R

(
K̂, IU, IU

)
,

u, f ∈ RNDOF , uBC, r ∈ RNBC ,

K ∈ RNDOF×NDOF , KBC ∈ RNDOF×NBC , K̃ ∈ RNBC×NBC .

(16)

In Eq. (15), u and uBC are the unknown and imposed vectors of generalised displace-
ments, respectively; f is the vector of generalised external nodal forces, whilst r is the
vector of (unknown) generalised nodal reactions on the nodes where BCs on generalised
displacements are imposed. K, KBC and K̃ are the stiffness matrices of the FE model
after applying BCs.

In the context of the SIMP approach, the density field of Eq. (11) affects the element
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stiffness matrix and, accordingly, the global stiffness matrix of the FE model as follows:

K̂ :=

Ne∑
e=1

ραe L̂T
e K0

eL̂e =

Ne∑
e=1

L̂T
e KeL̂e,

K0
e,Ke ∈ RN

e
DOF×N

e
DOF , L̂e ∈ RN

e
DOF×N̂DOF ,

(17)

where ρe is the fictitious density of Eq. (11) computed at the centroid of the generic
element e, whilst α ≥ 1 is a suitable parameter used to penalise the intermediate densities
between 0 and 1, in agreement with the classic SIMP approach (α = 3 in this study). Ne is
the total number of elements and N e

DOF is the number of DOFs of the generic element. In
Eq. (17), K0

e and Ke are the non-penalised and the penalised stiffness matrices of element
e, expressed in the global reference frame of the FE model, whilst L̂e is the connectivity
matrix of element e relating the DOFs at the element-level to their counterparts at the
structure-level:

ue = L̂eû, (18)

where ue ∈ RNe
DOF is the vector of nodal displacements for element e.

The physical responses functions related to the design requirements considered in this
study are presented in the following. Two different merit functions (related to just as
many requirements) are considered. The first one is the WAFD which reads:

W(ξ1, ξ2) := fTu + uT
BCr. (19)

The second one is the so-called generalised compliance [26, 27], which depends upon the
TPE of the continuum Π as follows:

C(ξ1, ξ2) := −2Π(ξ1, ξ2), (20)

where the TPE is defined as

Π(ξ1, ξ2) :=
1

2
ûTK̂û− fTu. (21)

By injecting Eq. (15) in Eq. (21) and, subsequently, Eq. (21) in Eq. (20), the generalised
compliance reads:

C(ξ1, ξ2) = fTu− uT
BCr. (22)

The physical meaning of the generalised compliance in the form of Eq. (22) is intuitively
clear: a stiff structure should react to the applied loads by having small displacements and
to the applied displacements by having large reaction forces. Conversely, this is not the
case when the WAFD of Eq. (19) is used as objective function under mixed inhomogeneous
BCs.

Inasmuch as the solution search for the TO problem is carried out by means of a
suitable deterministic algorithm, the derivation of the formal expression of the gradient
of the objective function with respect to the TVs (and of the constraint function too) is
needed to speed up the iterations. To this end, consider the following propositions.

Proposition 3.1. Consider a deformable continuum subject to given external loads and
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displacements. If the imposed loads and displacements are independent from the pseudo-
density field, the gradient of the WAFD reads:

∂W
∂ξiτ

=
∑
e∈Sτ

α

ρe

∂ρe
∂ξiτ

(
we − 2uT

e0fe
)
, i = 1, 2, τ = 1, · · · , nCP. (23)

where the internal work of the generic element e, i.e., we, is defined as

we := uT
e Keue, (24)

whilst ue0 and fe can be obtained from the following relations

ue0 = R
(
L̂e,∅, IBC

)
u0 = Leu0, (25)

fe = ραeK0
eue = Keue. (26)

A proof of proposition 3.1 is provided in Appendix A.

Remark 3.1. The vector of nodal displacements u0 appearing in Eq. (25) is the solution of
Eq. (15) when BCs of Dirichlet’s type are null, i.e., uBC = 0. In this case the equilibrium
equation simplifies to:

Ku0 = f . (27)

Remark 3.2. The WAFD is not a self-adjoint functional because to assess its gradient
the following adjoint vector must be introduced:

η = u− 2u0, (28)

which requires the resolution of the auxiliary system of Eq. (27). All the details about the
adjoint system of which η is the solution are provided in Appendix A.

Remark 3.3. In Eq. (23), the linear index τ has been introduced for the sake of compact-
ness. The relation between τ and ij, (j = 1, 2, 3) is:

τ := 1 + i1 + i2(n1 + 1) + i3(n1 + 1)(n2 + 1). (29)

Moreover, in Eq. (23), the quantity Sτ is the discretised version of the local support of

Eq. (9), while
∂ρe
∂ξiτ

reads:

∂ρe
∂ξiτ

=


Rτe, if i = 1,

Rτe
ξ2τ

(ξ1τ − ρe) , if i = 2.
(30)

The scalar quantity Rτe appearing in Eq. (30) is the NURBS rational basis function of
Eq. (2) evaluated at the element centroid.
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Proposition 3.2. Under the same hypotheses of Prop. 3.1, the gradient of the generalised
compliance reads:

∂C
∂ξiτ

= −
∑
e∈Sτ

α

ρe

∂ρe
∂ξiτ

we, i = 1, 2, τ = 1, · · · , nCP. (31)

A proof of proposition 3.2, simpler than the one presented by [25], is provided in
Appendix B.

3.3. Constraint functions

Two design requirements are considered in this study. The first one deals with the
lightness of the structure and is formulated in terms of a constraint on the overall volume
of the structure V :

V =

Ne∑
e=1

ρeVe, (32)

where Ve is the volume of the generic element. By differentiating Eq. (32) one obtains:

∂V

∂ξiτ
=
∑
e∈Sτ

Ve
∂ρe
∂ξiτ

, i = 1, 2, τ = 1, · · · , nCP. (33)

Therefore the lightness requirement can be formulated as:

g1(ξ1, ξ2) :=
V

Vref
− γ ≤ 0, (34)

where Vref is a reference value of the volume, whilst γ is the imposed volume fraction.
The second requirement deals with the manufacturing constraint on the minimum

thickness that can be fabricated through the selected manufacturing process. This re-
quirement is formulated as minimum length scale (or minimum member size) constraint
as:

g2(ξ1, ξ2) := 1− dmin

dMP
≤ 0. (35)

In Eq. (35), dmin is the minimum length scale of the topology, while dMP is the minimum
dimension that can be obtained through the considered manufacturing process.

Remark 3.4. As discussed in [16], the main advantage of the NURBS-based SIMP method
is in the handling of the geometric constraints imposed on the TV. In particular, since the
pseudo-density field describing the topology of the continuum is described by means of a
NURBS hyper-surface, it is possible to properly set the integer parameters (i.e., number
of CPs nCP and basis functions degree pj along each parametric direction) governing its
shape to automatically satisfy the minimum length scale requirement, without introducing
an explicit optimisation constraint in the problem formulation. Therefore, in the following,
the manufacturing requirement of Eq. (35) will be controlled through this feature.

Remark 3.5. As discussed in [16], unlike the classical SIMP method, the minimum mem-
ber size requirement, which can be met by properly tuning the value of the integer param-
eters involved in the definition of the NURBS entity does not depend upon the size of the
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elements composing the mesh. This means that an eventual mesh refinement has an impact
only on the value of the structural responses (displacements, strains, stresses, etc.), but
not on the minimum member size of the topology.

3.4. Problem formulation

Two different problem formulations are considered in this work, depending on the
considered objective function, i.e., the work of applied forces and displacements and the
generalised compliance. In each case, the optimisation problem is formulated in the form
of a non-linear programming problem (NLPP). The two formulations read:

min
ξ1,ξ2

W(ξ1, ξ2)

Wref
, subject to :



K̂û = f̂ ,

g1(ξ1, ξ2) ≤ 0,

ξ1τ ∈ [ρmin, ρmax], ξ2τ ∈ [ωmin, ωmax],

k = 1, ..., nCP,

(36)

min
ξ1,ξ2

C(ξ1, ξ2)
Cref

, subject to :



K̂û = f̂ ,

g1(ξ1, ξ2) ≤ 0,

ξ1τ ∈ [ρmin, ρmax], ξ2τ ∈ [ωmin, ωmax],

k = 1, ..., nCP.

(37)

In Eqs. (36) and (37), Wref and Cref are the reference value of the WAFD and of the
compliance of the structure, respectively, whilst ρmin and ρmax are lower and upper bounds
of the pseudo-density at each CP, and ωmin and ωmax are the bounds on the weights. Of
course, the lower bound of the pseudo-density must be strictly positive to prevent any
singularity for the solution of the equilibrium problem. The overall number of design
variables of problems (36) and (37) is equal to nvar = 2nCP.

4. Numerical results

The effectiveness of the proposed method is illustrated on 2D and 3D benchmark
problems taken from the literature [25, 27]. For each case, the pseudo-density field and
the optimum topology are shown. The results presented here are obtained through the code
SANTO (SIMP and NURBS for topology optimisation) developed at the I2M laboratory
in Bordeaux [13, 14]. SANTO is coded in the Python® environment and can be interfaced
with any FE code. In this study, the FE code ANSYS® is used to generate the FE model
of each benchmark problem and to assess the structural responses, i.e. the WAFD and
the generalised compliance.

Moreover, the globally-convergent method of moving asymptotes (GCMMA) algorithm
[29] is employed to carry out the solution search for the CNLPPs of Eqs. (36) and (37).
The parameters governing its behaviour are listed in Table 1.

Regarding the campaign of numerical simulations, the following aspects are investi-
gated:

1. The influence of the geometric entity, i.e., basis spline (B-spline) or NURBS, used
to describe the TV on the optimised solution (only for 2D problems for the sake of
brevity);
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Table 1: GCMMA algorithm parameters

Parameter Value

move 0.1
albefa 0.1

Stop Criterion Value

Maximum n. of function evaluations 100× nvar
Maximum n. of iterations 500

Tolerance on objective function 10−6

Tolerance on constraints 10−6

Tolerance on input variables change 10−6

Tolerance on Karush–Kuhn–Tucker norm 10−6

2. The influence of mixed non-zero BC on the optimised topology (for 2D and 3D
problems);

3. The influence of the elastic symmetry group on the optimised solution (for both 2D
and 3D problems);

4. The influence of the constraint on the volume fraction on the optimised solution
(only for 2D problems for the sake of brevity).

Remark 4.1. The reference values of both WAFD and generalised compliance, i.e., Wref

and Cref , respectively, are those characterising the starting guess. Moreover, the reference
volume Vref is the volume of the overall design domain of dimension D = 2, 3.

Remark 4.2. For each CNLPP, lower and upper bounds of design variables are set as:
ρmin = 10−3, ρmax = 1; ωmin = 0.5, ωmax = 10. It is noteworthy that the non-trivial
components of the knot-vectors in Eq. (7) are evenly distributed in the interval [0, 1] for
each benchmark problem.

Remark 4.3. All the analyses presented in the following of this document have been
performed on a work-station with an Intel Xeon E5-2697v2 processor (2.70–3.50 GHz)
and four cores dedicated to the optimisation calculations. The highest computational time
occurs in the 3D case, which required about 1h to find the local feasible minimiser.

4.1. 2D benchmark problems

The first 2D benchmark problem (BK1-2D), taken from [25], deals with the well-known
Messerschmitt Bölkow Blohm (MBB) beam submitted to mixed non-zero BCs, as shown
in Fig. 1a. The geometrical parameters defining the design domain are: L1 = 300 mm
and L2 = 100 mm. The FE model is made of Ne = 120 × 40 PLANE182 elements (i.e.
plane elements, with four nodes and two DOFs per node, plane stress hypothesis with unit
thickness) and it subjected to the following BCs:

� The node located (x1, x2) = (0, 0) is clamped (u1 = u2 = 0);

� u1 = δ1 and u2 = 0 are set on the node located (x1, x2) = (L1, 0); the displacement
δ1 varies in the interval [−40, 40] mm with a step of 10 mm;

� F2 = −1 N is applied at the node located at (x1, x2) = (L1
2 , 0).

The second 2D benchmark problem (BK2-2D), taken from [27] and illustrated in Fig.
1b, is characterised by the same geometrical parameters and the same mesh of BK1-2D.
The applied BCs are:

12



� The nodes located at (x1, x2) = (0, 0) and (x1, x2) = (L1, 0) are clamped (u1 = u2 =
0);

� u2 = δ2 = −8 mm is set on the node located (x1, x2) = (23L1, 0);

� F2 = −1 N is applied at the node located at (x1, x2) = (L1
3 , 0).

(a) BK1-2D (b) BK2-2D

Figure 1: FE model and BCs of benchmark problems (a) BK1-2D and (b)BK2-2D

Three different materials are used for both BK1-2D and BK2-2D. Their properties are
listed in Tab. 2 in terms of engineering constants. In particular, M1 is a linear elastic
isotropic material, M2 is characterised by a square symmetry behaviour, whilst M3 is an
orthotropic material.

Remark 4.4. The material properties used in this work are expressed either in the form of
engineering constants or in the form of the Cartesian components of the elasticity tensor
in the material frame. In each case, the standard Voigt’s notation is used [30]. The
passage from tensor notation to Voigt’s one can be easily expressed by the following two-
way relationship among indices:

{11, 22, 33, 32, 31, 21} ⇔ {1, 2, 3, 4, 5, 6}. (38)

Material ID Symmetry type E1 [MPa] E2 [MPa] G12 [MPa] ν12
M01 Isotropy 1.0 1.0 0.3846 0.3

M02 Square symmetry 1.0 1.0 0.0507 0.27

M03 Orthotropy 1.0 0.0725 0.0507 0.27

Table 2: Elastic properties of the materials used for BK1-2D and BK2-2D

4.1.1. BK1-2D: sensitivity of the optimised topology to the applied displacement and to the
elastic symmetry group

A campaign of numerical analyses has been conducted on BK1-2D, with the aim of
studying the influence of both the applied displacement and the elastic symmetry group
on the optimised topology. These sensitivity analyses are carried out only for problem
(37) by considering a volume fraction γ = 0.4 and the three materials listed in Tab. 2. As
discussed in the above subsection, the applied displacement δ1 takes values in the interval
[−40, 40] mm with a step of 10 mm.
The minimum dimension, which can be fabricated through the considered manufacturing
process appearing in Eq. (35), has been set as dMP = 2.5 mm. As discussed in [16],
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this requirement can be satisfied by choosing an appropriate number of CPs and blending
functions degree. Therefore, these parameters have been set as nCP = 100×36 and pj = 2
(j = 1, 2), respectively, according to the methodology described in [16]. Moreover, to
analyse the influence of the geometric entity on the optimised topology, both B-spline and
NURBS surfaces have been used to solve the CNLPP of Eq. (37).
An initial guess characterised by a uniform pseudo-density field ρ(ζ1, ζ2) = γ has been
considered for each analysis. The reference value of the generalised compliance Cref of
the starting guess is reported in Tab. 3 for each combination of material and applied
displacement.

Material ID δ1 [mm] =
-40 -30 -20 -10 0 10 20 30 40

M01 137.7 147.9 157.7 167.0 175.8 184.8 192.1 199.5 206.5
M02 482.5 490.4 497.9 505.2 512.1 518.7 525.0 531.0 536.7
M03 1177.1 1189.4 1201.4 1213.2 1224.7 1235.9 1246.9 1257.6 1268.1

Table 3: BK1-2D: reference value of the generalised compliance Cref [Nmm] used in problem (37) for each
combination of material and BCs

The trend of the generalised compliance vs. the applied displacement is illustrated in
Figs. 2 - 7. In each figure, the optimised topology and the number of iterations to achieve
convergence (Niter), for each value of the applied displacement, are also illustrated. The
trend of the generalised compliance vs. the applied displacement has been plotted for both
B-spline and NURBS solutions for each material listed in Tab. 2: Figs. 2 and 3 refer to
material M01, Figs. 4 and 5 refer to material M02, and Figs. 6 and 7 refer to material
M03.

The following remarks can be inferred from the analysis of these results.

1. For each material considered in this study, optimised topologies obtained using
NURBS surfaces are characterised by values of the objective function lower than
or equal to those resulting from B-spline surfaces. Furthermore, from the analysis of
2 - 7, one can notice that NURBS topologies have a boundary smoother than the one
of B-spline solutions. This last aspect is related to the ability of NURBS entities to
better approximate quadric hyper-surfaces as widely known in the CAD community.

2. One can notice that the use of NURBS entities as topological descriptors allows better
exploring the design space when compared to the case of B-spline entities. The
optimised topologies obtained through NURBS surfaces are significantly different
from those obtained through B-spline entities for some combinations of material and
applied displacement. These differencies are particularly pronounced for the optimal
solutions obtained in: a) the isotropic case (M01) for δ1 =10 mm, 20 mm (see Figs.
2 and 3); b) the square symmetry case (M02) for δ1 =-30 mm, -20 mm, 10 mm,
20 mm (see Figs. 4 and 5); c) the orthotropic case (M03) for δ1 =0 mm, 10 mm (see
Figs. 6 and 7).

3. The optimised topologies obtained in the isotropic case are characterised by the
lowest value of the generalised compliance (for each value of the applied displacement
δ1). This is due to the nature of the stress state within the structure (i.e., a multi-
axial stress field) which is better withstood by an isotropic material rather than by
a material characterised by a square symmetry or by an orthotropic behaviour.

4. The optimised topologies obtained in the orthotropic case do not fill the whole design
domain, regardless of the value of the applied displacement δ1. Conversely, the
material is essentially distributed along the x1 axis on the bottom part of the domain
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(i.e., where forces and displacement are applied). This is an expected result because
the main axis of orthotropy is aligned with x1 axis (see Tab. 2).

5. It is noteworthy that, depending on the value of the applied displacement δ1, the
generalised compliance can take negative values, meaning, thus, that this functional
is not positive definite.

6. For each solution, the minimum length scale requirement is systematically fulfilled
thanks to the local support property of the NURBS entities, which establishes an
implicit filter according to Eq. (9). In particular, the lowest thickness (which is equal
to 2.55 mm) occurs in the square symmetry case for δ1 = −30 mm for the NURBS
solution shown in Fig. 5.

Figure 2: BK1-2D: generalised compliance vs. applied displacement for material M01 - B-spline solutions

Figure 3: BK1-2D: generalised compliance vs. applied displacement for material M01 - NURBS solutions
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Figure 4: BK1-2D: generalised compliance vs. applied displacement for material M02 - B-spline solutions

Figure 5: BK1-2D: generalised compliance vs. applied displacement for material M02 - NURBS solutions
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Figure 6: BK1-2D: generalised compliance vs. applied displacement for material M03 - B-spline solutions

Figure 7: BK1-2D: generalised compliance vs. applied displacement for material M03 - NURBS solutions

4.1.2. BK2-2D: sensitivity of the optimised topology to the volume fraction and to the
elastic symmetry group

The goal of the numerical analyses performed on BK2-2D is to study the influence
of both the volume fraction and the elastic symmetry group on the optimised topology.
Moreover, these analyses are carried out for both problem formulations of Eqs. (36) and
(37). For each CNLPP, the volume fraction γ takes value in the interval [015, 0.45] with
a step of 0.1 and the TO calculation is performed for each of the three materials listed in
Tab. 2.
To analyse the influence of the geometric entity on the optimised topology, the CNLPPs
of Eqs. (36) and (37) have been solved by using both B-spline and NURBS surfaces. The
integer parameters involved in their definition have been set as follows: nCP = 100 × 36
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and pj = 2 (j = 1, 2). As explained in the above subsection, according to the methodology
discussed in [16], this choice ensures a minimum member size greater than or equal to
dMP = 2.5 mm.
An initial guess characterised by a uniform pseudo-density field ρ(ζ1, ζ2) = γ has been
considered for each analysis. The reference values of both the WAFD and the generalised
compliance of the starting guess are reported in Tabs. 4 and 5 for each combination of
volume fraction value and material considered in the analysis.

Material ID γ =
0.15 0.25 0.35 0.45

M01 2724.3 540.8 190.4 88.3
M02 7761.2 1540.6 541.9 250.2
M03 22176.1 4401.9 1548.2 714.4

Table 4: BK2-2D: reference value of the WAFD Wref [Nmm] used in problem (36) for each combination of
material and volume fraction γ

Material ID γ =
0.15 0.25 0.35 0.45

M01 2732.2 548.6 197.8 95.1
M02 7769.2 1548.5 549.7 257.8
M03 22182.8 4408.6 1555.0 721.1

Table 5: BK2-2D: reference value of the generalised compliance Cref [Nmm] used in problem (37) for each
combination of material and volume fraction γ

The trend of the objective function vs. the volume fraction for both CNLPPs of Eqs.
(36) and (37) is illustrated in Figs. 8 - 13. In each figure, the optimised topology and the
number of iterations to achieve convergence (Niter), for each value of the volume fraction,
are also illustrated. The trend of the objective function vs. the volume fraction has been
plotted for both B-spline and NURBS solutions for each material listed in Tab. 2: Figs.
8 and 9 refer to material M01, Figs. 10 and 11 refer to material M02, and Figs. 12 and
13 refer to material M03.

From the analysis of these results, one can infer the following remarks.

1. As in the case of BK1-2D, for each material considered in this study, optimised
topologies obtained using NURBS surfaces are characterised by values of the objec-
tive function lower than or equal to those resulting from B-spline surfaces. Further-
more, as expected, NURBS topologies have a boundary smoother than the one of
B-spline solutions. However, the greater the volume fraction the lower the difference
between the values of the objective function obtained through B-spline and NURBS
surfaces, respectively.

2. As illustrated in Figs. 8 and 9 for B-spline and NURBS solutions, respectively, in the
isotropic case (material M01) the optimised topologies resulting from the two prob-
lem formulations are quite different. In particular, the higher the volume fraction
the more important the difference, especially in the right-bottom part of the domain,
i.e, for the region located on the right of the nodes where the vertical displacement
δ2 is applied. Moreover, regarding the optimal solution of problem (37) obtained for
γ = 0.35, there is a fundamental difference between B-spline and NURBS surfaces:
the topology obtained when a NURBS entity is used as a topological descriptor is
characterised by a vertical branch, a feature which does not appear in the B-spline
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counterpart. Although this difference, both optimised topologies constitute “equiv-
alent” local minima (the value of the generalised compliance is almost the same),
meaning that the CNLPP of Eq. (37) is highly non-convex.

3. Remarkably, the optimised topologies resulting from the two problem formulations of
Eqs. (36) and (37) are the same for materials M02 (square symmetry behaviour, see
Figs. 10 and 11, for B-spline and NURBS entities, respectively) and M03 (orthotropic
behaviour, see Figs. 12 and 13, for B-spline and NURBS entities, respectively). This
is an unexpected result: it seems that the elastic symmetry of the material acts as
a filter against the sensitivity of the topology to the objective function, regardless
of the value of the volume fraction. Probably, in the considered design domain
and under the imposed BCs, the merit functions Wref and Cref are characterised by
a similar trend and share the same local minima. A deeper investigation on the
mathematical nature of these functions and of problems (36) and (37) is needed to
clarify this point, but this task is outside the scopes of the present study.

4. Thanks to the geometrical properties of the NURBS blending functions, the require-
ment on the minimum length scale is always satisfied. In particular, it is noteworthy
that the lowest thickness (which is equal to 2.6 mm) occurs in the isotropic case for
γ = 0.15 and for the NURBS solution of problem (37) (as shown in Fig. 9b).

(a) W vs. γ (b) C vs. γ

Figure 8: BK2-2D: objective function vs. volume fraction for a) problem (36) and b) problem (37); material
M01 - B-spline solutions.

(a) W vs. γ (b) C vs. γ

Figure 9: BK2-2D: objective function vs. volume fraction for a) problem (36) and b) problem (37); material
M01 - NURBS solutions.
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(a) W vs. γ (b) C vs. γ

Figure 10: BK2-2D: objective function vs. volume fraction for a) problem (36) and b) problem (37);
material M02 - B-spline solutions.

(a) W vs. γ (b) C vs. γ

Figure 11: BK2-2D: objective function vs. volume fraction for a) problem (36) and b) problem (37);
material M02 - NURBS solutions.

(a) W vs. γ (b) C vs. γ

Figure 12: BK2-2D: objective function vs. volume fraction for a) problem (36) and b) problem (37);
material M03 - B-spline solutions.
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(a) W vs. γ (b) C vs. γ

Figure 13: BK2-2D: objective function vs. volume fraction for a) problem (36) and b) problem (37);
material M03 - NURBS solutions.

4.2. 3D benchmark problem

The geometry and the FE model of the 3D benchmark problem (BK3D) are shown in
Fig. 14. The design domain is a cube with size Lj = 200 mm (j = 1, 2, 3). The FE model
is composed of Ne = 30×30×30 SOLID185 elements (i.e., solid elements with eight nodes
and three DOFs per node, full integration scheme). Mixed BCs are applied as follows:

� Nodes located at (x1, x2, x3) = (iL1, jL2, 0) (i, j = 0, 1) are clamped (i.e., uk = 0,
k = 1, 2, 3);

� A force F3 = 1 N is applied at the node located at (x1, x2, x3) = (L1
2 ,

L2
2 , L3);

� Displacements u1 = δ1 and u1 = −δ1 are applied at nodes located at (x1, x2, x3) =
(L1, 0, L3) and (x1, x2, x3) = (0, L2, L3), respectively, with δ1 = 1 mm;

� Displacements u2 = δ2 and u2 = −δ2 are applied at nodes located at (x1, x2, x3) =
(L1, L2, L3) and (x1, x2, x3) = (0, 0, L3), respectively, with δ2 = 1 mm.

Figure 14: FE model and BCs of benchmark problem BK3D

The influence of the elastic symmetry type on the optimised topology is investigated
by considering only the CNLPP formulation of (37), for the sake of brevity. To this end, 11
different materials characterised by various elastic symmetries are considered for BK3D:
their elastic properties (and the related symmetry group) are reported in Tab. 6 in terms
of the components of the elasticity tensor (Voigt’s notation).
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Material ID Symmetry type C0 [MPa]

M01 Isotropy


1.0 0.4286 0.4286 0 0 0

0.4286 1.0 0.4286 0 0 0
0.4286 0.4286 1.0 0 0 0

0 0 0 0.2857 0 0
0 0 0 0 0.2857 0
0 0 0 0 0 0.2857



M02 Cubic syngony


1.0 0.8400 0.8400 0 0 0

0.8400 1.0 0.8400 0 0 0
0.8400 0.8400 1.0 0 0 0

0 0 0 0.6000 0 0
0 0 0 0 0.6000 0
0 0 0 0 0 0.6000



M03 Cubic syngony


1.0 0.5363 0.5363 0 0 0

0.5363 1.0 0.5363 0 0 0
0.5363 0.5363 1.0 0 0 0

0 0 0 0.1165 0 0
0 0 0 0 0.1165 0
0 0 0 0 0 0.1165



M04 Monoclinic


0.5455 0.2000 0.2400 0 0 0.1091
0.2000 0.6327 0.2545 0 0 0.0364
0.2400 0.2545 1.0 0 0 0.0345

0 0 0 0.2527 0.0527 0
0 0 0 0.0527 0.1964 0

0.1091 0.0364 0.0345 0 0 0.2727



M05 Orthotropy


0.9610 0.2332 0.4445 0 0 0
0.2332 0.8602 0.2865 0 0 0
0.4445 0.2865 1.0 0 0 0

0 0 0 0.2396 0 0
0 0 0 0 0.2050 0
0 0 0 0 0 0.3497



M06 Hexagonal syngony


1.0 0.5843 0.3449 0 0 0

0.5843 1.0 0.3449 0 0 0
0.3449 0.3449 0.6792 0 0 0

0 0 0 0.2003 0 0
0 0 0 0 0.2003 0
0 0 0 0 0 0.2078



M07 Hexagonal syngony


0.4875 0.1371 0.3047 0 0 0
0.1371 0.4875 0.3172 0 0 0
0.3047 0.3172 1.0 0 0 0

0 0 0 0.0346 0 0
0 0 0 0 0.0346 0
0 0 0 0 0 0.1745



M08 Hexagonal syngony


0.9257 0.4662 0.3784 0 0 0
0.4662 0.9257 0.3784 0 0 0
0.3784 0.3784 1.0 0 0 0

0 0 0 0.2027 0 0
0 0 0 0 0.2027 0
0 0 0 0 0 0.2297



M09 Hexagonal syngony


1.0 0.5907 0.4643 0 0 0

0.5907 1.0 0.4643 0 0 0
0.4643 0.4643 0.6420 0 0 0

0 0 0 0.3653 0 0
0 0 0 0 0.3653 0
0 0 0 0 0 0.2047



M10 Trigonal syngony


0.8074 0.0660 0.1340 0.1600 0 0
0.0660 0.8074 0.1340 −0.1600 0 0
0.1340 0.1340 1.0 0 0 0
0.1600 −0.1600 0 0.5414 0 0

0 0 0 0 0.5414 0.1600
0 0 0 0 0.1600 0.3707



M11 Transverse isotropy


0.0446 0.0109 0.0129 0 0 0
0.0109 0.0446 0.0129 0 0 0
0.0129 0.0129 1.0 0 0 0

0 0 0 0.0743 0 0
0 0 0 0 0.0743 0
0 0 0 0 0 0.0168


Table 6: Elasticity tensor and symmetry type of the materials used for BK3D
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Remark 4.5. It is noteworthy that, with the exception of materials M01 (isotropic case),
M06 and M09 (hexagonal syngony case), the “strong” axis of the material is aligned with
x3 axis.

Remark 4.6. The number of independent elastic properties depends, of course, on the
elastic symmetry type to which the material belongs to. In the case of the materials listed
in Tab. 6 such number is equal to: 2 for M01, 3 for M02 and M03, 13 for M04, 9 for
M05, 5 for M06-M09, 6 for M10, 5 for M11.

The CNLPP formulation of (37) has been enhanced by introducing a requirement on
the minimum member size: the minimum dimension of the optimised topology should be
greater than or equal to dMP = 5.0 mm. To satisfy the minimum length scale require-
ment without introducing an explicit constraint in the problem formulation, the approach
discussed in [16] is used also in this case. Accordingly, a B-spline entity with pj = 2
(j = 1, 2, 3) and nCP = 28× 28× 28 CPs is used for these analyses.
Following the same approach used for 2D problems, an initial guess characterised by a
uniform pseudo-density field ρ(ζ1, ζ2) = γ has been considered for each analysis. The ref-
erence value of the generalised compliance Cref of the starting guess is reported in Tab. 3
for each material used in the optimisation process.

A synthesis of the results, in terms of the value of the generalised compliance C char-
acterising the optimised topology, for each material considered for BK3D, is shown in Fig.
15. The optimised topologies obtained for each material of Tab. 6 are illustrated in Fig.
16, wherein the number of iterations to achieve convergence is also reported. The following
remarks can be drawn from the analysis of these results.

1. A negative value of the generalised compliance is found only when using materials
M01 (isotropy), M02 (cubic syngony), M09 (hexagonal syngony) and M10 (trigonal
syngony).

2. The optimised topologies for materials belonging to the same elastic symmetry group
(like M02 and M03, or M06-M09) show some differences. In particular, among mate-
rials characterised by cubic syngony (M02 and M03), material M02 is characterised
by the lowest value of C, whereas among materials characterised by a hexagonal
symmetry (M06-M09), material M09 show the best behaviour in terms of structural
stiffness. Among materials M02 and M09, the latter show better performances in
terms of generalised compliance. This is an unexpected result, especially for materi-
als belonging to the hexagonal symmetry class, because the main axes of symmetry
for material M09 are oriented along x1 and x2 directions.

3. All the optimised topologies are characterised by a (geometric) axial symmetry of
order four around x3 axis (i.e., the geometry does not change when applying a
rotation of 90 deg around this axis), except the one obtained for material M10
(trigonal symmetry), which is completely asymmetric. Remarkably, the optimised
topology obtained for material M10 is also the one showing the lowest value of C,
whilst the one obtained for material M07 (hexagonal syngony) show the highest value
of C. This is an unexpected result that could be due to the strong non-convex nature
of the CNLPP of Eq. (37) when using a material with trigonal syngony behaviour.
A deeper investigation on the mathematical nature of the functional C (which is
outside the scopes of the present work) could provide a deeper understanding of this
behaviour.

4. For each solution, the minimum length scale requirement is systematically fulfilled:
the lowest thickness (which is equal to 6.7 mm) occurs in the transversely isotropic
case (M11) as illustrated in Fig. 16.
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M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11
31.8 25.9 56.3 36.4 36.3 43.7 105.2 37.9 34.9 22.0 76.9

Table 7: BK3D: reference value of the generalised compliance Cref [Nmm] used in problem (37) for each
material listed in Tab. 6

Figure 15: BK3D: generalised compliance vs. material type for the optimised topologies solution of problem
(37)
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(a) C = −0.23 Nmm, Niter = 299,
M01

(b) C = −0.25 Nmm, Niter = 299,
M02

(c) C = 0.86 Nmm, Niter = 299,
M03

(d) C = 0.20 Nmm, Niter = 299,
M04

(e) C = −0.03 Nmm, Niter = 299,
M05

(f) C = 0.36 Nmm, Niter = 162,
M06

(g) C = 2.58 Nmm, Niter = 299,
M07

(h) C = 0.16 Nmm, Niter = 299,
M08

(i) C = −0.01 Nmm, Niter = 299,
M09

(j) C = −0.79 Nmm, Niter = 299,
M10

(k) C = 2.03 Nmm, Niter = 299,
M11

Figure 16: BK3D: optimised topologies solution of problem (37) by considering different materials.

25



5. Conclusions

In this work, three theoretical aspects of TO problems dealing with structural stiffness
maximisation of anisotropic continua under mixed non-zero ND BCs have been discussed.

Firstly, it has been shown that the most natural measure of the structural stiffness is
the so-called generalised compliance, i.e., a functional related to the TPE of the continuum,
rather than the WAFD.

Secondly, it has been proved that the WAFD is not a self-adjoint functional under
mixed non-zero ND BCs, whilst the generalised compliance is always a self-adjoint func-
tional (a proof simpler than the one available in the literature has been provided in this
study).

Thirdly, a large campaign of analyses has been conducted to study the influence of the
anisotropy, of the applied BCs and of the design requirement on the volume fraction on
the optimised topology. All the calculations have been carried out in the framework of
a topology optimisation algorithm making use of NURBS hyper-surfaces to represent the
pseudo-density field of the SIMP method.

Some features of the proposed methodology need to be highlighted.

1. Depending on the elastic symmetry type of the continuum and on the value of the
volume fraction, the optimal solutions of the two problem formulations (i.e. the one
based on the generalised compliance and the one based on the WAFD) can coincide.

2. Depending on the value of the applied displacements and on the elastic symmetry
type of the material, the generalised compliance can take negative values, confirming
thus the non-positiveness of this functional.

3. Depending on the elastic symmetry type, the optimised topologies characterised by
the best performances, in terms of structural stiffness, could be totally asymmetric.

4. For a given elastic symmetry type, a given volume fraction and given applied dis-
placements, different topologies could show the same structural response either in
terms of generalised compliance or in terms of work of WAFD. This is due to the
strong non-convexity of the optimisation problem and to the existence of equivalent
local minima.

5. The manufacturing constraint related to the minimum-length scale is correctly taken
into account, without the need of introducing an explicit optimisation constraint. In-
deed, such technological constraint is handled by controlling the value of the blending
functions degrees and the number of control points of the NURBS entity.

6. Some advantages of the NURBS formalism can be clearly identified: (a) since
the topological descriptor consists in a high-level geometric parametrisation of the
pseudo-density field in the form of a NURBS entity, the optimised topology does
not depend upon the quality of the mesh of the finite element model; (b) unlike the
classical SIMP approach, there is no need to define a further filter zone, since the
NURBS local support property establishes an implicit relationship among contigu-
ous mesh elements; (c) when compared to the classical SIMP approach, the number
of design variables is reduced; (d) since the topology is described through a NURBS
entity, the boundary of the topology is available at each iteration of the optimisation
process, thus, the integration of constraints of geometric nature (e.g., on the local
curvature of the boundary, on the local direction of the tangent vector, maximum
member size, etc.) in the problem formulation and the CAD reconstruction phase
of the boundary of the optimised topology become easy tasks; (e) of course, the
optimised topology depends upon the NURBS integer parameters, i.e., number of
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control points and degrees of Bernstein’s polynomials, which have a direct impact
on the size of the local support of the blending functions.

As far as the prospects of this work are concerned, several challenges still need to be
faced. Firstly, the formulation proposed here should be extended to the problem of the
concurrent optimisation of the local nature of the material (i.e., the optimisation of the
type of elastic symmetry and of the direction of such symmetry) and of the topology of
the structure under mixed non-zero ND BCs.
Furthermore, the effect of the elastic symmetry type on the optimised topology and the
(possible) strong coupling among anisotropy and topology should be properly investigated
by using a representation of anisotropy based on (tensor) invariants related to the elastic
symmetries of the materials. To the best of the author’s knowledge, unfortunately, such a
representation is available only in the 2D case, whilst is still missing in the most general
3D case. Indeed, a closed form representation of the elasticity tensor through invariants
related to all the possible elastic symmetries of a material is still an open problem in the
scientific community.
Research is ongoing on the above aspects.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this
time as the data also forms part of an ongoing study.

A. Gradient of the work of applied forces and displacements under mixed
boundary conditions

The proof of Prop. 3.1, provided here below, makes use of the adjoint method [31].

Proof. Under the application of non-zero mixed BCs, and by considering Eq. (15), the
WAFD of Eq. (19) can be written as follows:

W = fTu + uT
BCr + ηT (Ku + KBCuBC − f) + λT

(
KT

BCu + K̃uBC − r
)
, (A.1)

where η ∈ RNDOF and λ ∈ RNBC are two arbitrary vectors. Under the hypothesis that
vectors f and uBC do not depend on the TV, i.e.,

∂f

∂ξiτ
= 0,

∂uBC

∂ξiτ
= 0, (A.2)

the derivative of Eq. (A.1) reads:

∂W
∂ξiτ

=fT
∂u

∂ξiτ
+ uT

BC

∂r

∂ξiτ
+

+ ηT

(
∂K

∂ξiτ
u + K

∂u

∂ξiτ
+
∂KBC

∂ξiτ
uBC

)
+

+ λT

(
∂KT

BC

∂ξiτ
u + KT

BC

∂u

∂ξiτ
+
∂K̃

∂ξiτ
uBC −

∂r

∂ξiτ

)
.

(A.3)
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In Eq. (A.3), vectors η and λ can be chosen such that the terms multiplying
∂u

∂ξiτ
and

∂r

∂ξiτ
vanish, i.e.

λ = uBC,

Kη = −f −KBCλ = −f −KBCuBC = Ku− 2f ,⇒ η = u− 2u0,
(A.4)

where u0 is the solution of Eq. (27). By injecting Eq. (A.4) in Eq. (A.3) one obtains:

∂W
∂ξiτ

=uT ∂K

∂ξiτ
u + 2uT∂KBC

∂ξiτ
uBC + uT

BC

∂K̃

∂ξiτ
uBC − 2uT

0

(
∂K

∂ξiτ
u +

∂KBC

∂ξiτ
uBC

)
= ûT ∂K̂

∂ξiτ
û− 2uT

0

(
∂K

∂ξiτ
u +

∂KBC

∂ξiτ
uBC

)
.

(A.5)

By considering the expression of the non-reduced stiffness matrix of the FE model of the
RVE of Eq. (17) and by taking advantage from the local support property of Eq. (9), the
first term on the right-hand side of Eq. (A.5) can be simplified as:

ûT ∂K̂

∂ξiτ
û =

∑
e∈Sτ

α

ρe

∂ρe
∂ξiτ

ραe ûTL̂T
e K0

eL̂eû

=
∑
e∈Sτ

α

ρe

∂ρe
∂ξiτ

uT
e fe =

∑
e∈Sτ

α

ρe

∂ρe
∂ξiτ

we,

(A.6)

where ue, fe ∈ RNe
DOF are the generalised nodal displacements and forces of element e,

while we is the work of internal forces of element e of Eq. (24).
The expressions of ∂K

∂ξiτ
and ∂KBC

∂ξiτ
can be derived by applying Def. 3.1 to the derivative

of Eq. (17) as follows:

∂K̂

∂ξiτ
=
∑
e∈Sk

α
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(A.7)

By taking into account for Eqs. (A.7) and (25), it is easy to check that the following
equality holds:

u0
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∂KBC

∂ξiτ
uBC
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=
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α

ρe
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e0fe.

(A.8)

Finally, by injecting Eqs. (A.6) and (A.8) into Eq. (A.5), one can easily retrieve Eq. (23)
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and this last passage concludes the proof.
�

B. Gradient of the generalised compliance under mixed boundary conditions

The proof of Prop. 3.2 is provided here below. Conceptually, it follows the same
rationale used for the proof of Prop. 3.1.

Proof. Considering Eq. (15), the generalised compliance of Eq. (22) can be written as
follows:

C = fTu− uT
BCr + ηT (Ku + KBCuBC − f) + λT

(
KT

BCu + K̃uBC − r
)
, (B.9)

where η ∈ RNDOF and λ ∈ RNBC are two arbitrary vectors. Under the hypothesis that
vectors f and uBC do not depend on the TV, the derivative of Eq. (B.9) reads:
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=fT
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∂ξiτ
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+
∂K̃
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uBC −

∂r
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)
.

(B.10)

In Eq. (B.10), vectors η and λ can be chosen such that the terms multiplying
∂u

∂ξiτ
and

∂r

∂ξiτ
vanish, i.e.

λ = −uBC,

Kη = −f −KBCλ = −f + KBCuBC = −Ku,⇒ η = −u.
(B.11)

By injecting Eq. (B.11) in Eq. (B.10) and by considering Eq. (A.6) one obtains:

∂C
∂ξiτ

= −uT ∂K

∂ξiτ
u− 2uT∂KBC

∂ξiτ
uBC − uT

BC

∂K̃
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uBC

= −ûT ∂K̂
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û = −

∑
e∈Sτ

α
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(B.12)

which ends the proof. �
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