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A GEOMETRIC MODEL FOR BLOCKS OF FROBENIUS

KERNELS

PRAMOD N. ACHAR AND SIMON RICHE

Abstract. Building on a geometric counterpart of Steinberg’s tensor product

formula for simple representations of a connected reductive algebraic group
qG over a field of positive characteristic proved in [AR3], and following an

idea of Arkhipov–Bezrukavnikov–Braverman–Gaitsgory–Mirković, we define
and initiate the study of some categories of perverse sheaves on the affine

Grassmannian of the Langlands dual group to qG that should provide geometric

models for blocks of representations of the Frobenius kernel qG1 of qG. In

particular, we show that these categories admit enough projective and injective

objects, which are closely related to some tilting perverse sheaves, and that
they are highest weight categories in an appropriate generalized sense.
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1. Introduction

1.1. Overview. Let k be an algebraically closed field of characteristic ` > 0, and

let qG be a connected reductive algebraic group over k. We also let G be a con-
nected reductive algebraic group over an algebraically closed field of characteristic

p 6= ` such that the Langlands dual group G∨k over k is the Frobenius twist qG(1)

of qG. The Finkelberg–Mirković conjecture (which is currently open, but perhaps

not for long) [FM] predicts that when ` is larger than the Coxeter number for qG,
the category of (étale) Iwahori-constructible perverse k-sheaves on the affine Grass-
mannian Gr of G, denoted by PervIu(Gr,k), should be equivalent to the (extended)

principal block of qG. See [AR3, §1.2] for a precise statement and further discussion.

P.A. was supported by NSF Grant No. DMS-1802241. This project has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 101002592).
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2 PRAMOD N. ACHAR AND SIMON RICHE

In anticipation of this conjecture, one might look for “representation-theoretic phe-
nomena” in PervIu(Gr,k), which might hold with milder assumptions on `. The
present paper and its companion paper [AR3] (where we established a formula for
convolution products of certain simple perverse sheaves, modeled on the Steinberg
tensor product formula for group representations, without any restriction on `) both
pursue this idea.

More specifically, the motivation for the present paper is as follows. Let qG1

denote the first Frobenius kernel of qG. The representation theory of qG1 is, of

course, closely related to that of qG: indeed, as illustrated in, say, [Ja, Chap. II.3],

it is essential to study qG1-modules even if one is primarily interested in proving

results about qG. It is often convenient to also study qG1
qT-modules, where qT ⊂ qG

is a maximal torus. Our goal in this paper is to construct and study two new
abelian categories, to be denoted by modIu(R) and modY

Iu(R), that are related to

PervIu(Gr,k) in the same way that qG1-representations and qG1
qT-representations,

respectively, are related to qG-representations.

1.2. Main results. In our geometric study, the fact that k has positive charac-
teristic is not required. We therefore denote by k either a finite extension or an
algebraic closure of Q`, or a finite extension or an algebraic closure of F`. We will
fix a maximal torus T and a Borel subgroup B in G such that T ⊂ B. For technical
reasons, we will assume that the quotient of the character lattice of T by the root
lattice is torsion-free1 and that k contains a nontrivial p-th root of unity.

Let Y be the cocharacter lattice of T . The category modY
Iu(R) consists of cer-

tain Y-graded ind-objects in PervIu(Gr,k) equipped with an action of an alge-
bra ind-object denoted by R. The precise definition will be given in Section 5.
For now, we remark that there is an easy way to take an ordinary perverse sheaf
F ∈ PervIu(Gr,k) and produce an ind-perverse sheaf Φ(F) ∈ modY

Iu(R) by taking
the “free R-module on F .” This construction yields a functor

Φ : PervIu(Gr,k)→ modY
Iu(R).

Let W be the Weyl group of G, and let Wext := W n Y be the extended affine
Weyl group. The following statement gathers some of the main results of this paper
(see Theorems 5.6 and 7.9 and Propositions 7.7, 9.5, 9.7 and 9.21). (The partial
order � appearing below is Lusztig’s “periodic order” on Wext, whose definition is
recalled in §2.5. The definition of restricted elements in Wext can be found in [AR3,
§2.4].)

Theorem 1.1. (1) The category modY
Iu(R) is a finite-length abelian category.

(2) For each w ∈ Wext, there is a simple object L̂w ∈ modY
Iu(R), and the

assignment w 7→ L̂w yields a bijection

Wext
∼→ {isomorphism classes of simple objects in modY

Iu(R)}.

If w is restricted then L̂w is the image under Φ of the simple object in
PervIu(Gr,k) labeled by w.

(3) In the Serre subcategory of modY
Iu(R) generated by the objects L̂y with y 6�

w, L̂w admits a projective cover Ẑw and an injective hull Ẑ ′w.

1This assumption is satisfied e.g. if G is semisimple of adjoint type.
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(4) For each w ∈ Wext, there is an object Q̂w in modY
Iu(R) that is both the

injective hull and projective cover of L̂w. Moreover, Q̂w admits a filtration

with subquotients of the form Ẑy, and a filtration with subquotients of the

form Ẑ ′y.

The objects Ẑw and Ẑ ′w appearing in this statement are geometric incarnations of

baby Verma and baby co-Verma qG1
qT-modules. All of these properties are geomet-

ric counterparts of standard results on qG1
qT-modules using the dictionary explained

in §1.4 below. For instance, see [Ja, Proposition II.9.6] for (2) and [Ja, Proposi-
tion II.11.4 and §II.11.5] for (4). (Note that we do not impose any restriction on
` in this theorem, although the conjectural translation to Representation Theory
requires ` to be larger than the Coxeter number.)

We will also prove similar results for the category modIu(R) that we do not state
here, see Section 8.

1.3. Some comments on Theorem 1.1. To be more precise, in the body of
the paper we will define two different versions of the category modY

Iu(R), that
translate into geometry two different perspectives on the property of being finitely
generated. Proving that these two definitions in fact give rise to the same category
(see Theorem 7.9(1)) is what will require most of our efforts. The construction and
study of projective and injective objects is essential to our approach to this question.
This study also proves in passing that modY

Iu(R) is a highest weight category in a
generalized sense recently formulated by Brundan–Stroppel [BS], which implies the
second sentence in part (4).

In the body of the paper, we will actually prove a more general version of Theo-
rem 1.1 that accommodates “Whittaker perverse sheaves” on Gr, rather than just
Iwahori-constructible perverse sheaves. The Whittaker versions of this theorem are
not merely generalizations for their own sake: our proof of Theorem 1.1, even in
the simplified case stated above, makes crucial use of functors that allow us to pass
to and from various Whittaker versions.

Another key tool in the proof of part (4) is the “Iwahori–Whittaker model for

the Satake category” of [BGMRR]. The counterpart of modY
Iu(R) in the setting

of [BGMRR] turns out to be equivalent to the category of finite-dimensional rep-

resentations of the torus qT: in particular, it is a semisimple category, and thus has
a rich supply of projective and injective objects, which give rise to projective and
injective objects in our other categories via appropriate averaging functors.

Remark 1.2. (1) In the case k = Q`, parts (1)–(3) of Theorem 1.1 were pre-
viously obtained by Arkhipov–Bezrukavnikov–Braverman–Gaitsgory–Mir-
ković [ABBGM]. (Indeed, our definitions of the category modY

Iu(R) and of

the objects L̂w, Ẑ ′w and Ẑw are essentially copied from [ABBGM].) Thus,
for k = Q`, the main new contribution of the present paper is the study of
projective/injective objects in modY

Iu(R).
(2) Let us mention in passing that, in case k has characteristic 0, our methods

also provide a geometric proof that the abelian category PervIu(Gr,k) has
enough projectives and injectives, and that these two classes of objects co-
incide: see §7.1. (In contrast, for k of positive characteristic, PervIu(Gr,k)
has no nonzero projective or injective objects unless G is a torus.) This fact
was previously known: it can be deduced from a representation-theoretic
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result of Andersen–Polo–Wen [APW] via intermediaries discussed in Re-
mark 1.4 below. The problem of finding a geometric proof of this property
was in fact the starting point of this work. It finally allows to answer a
question the authors asked themselves (and a few colleagues) more than
ten years ago.

1.4. A Finkelberg–Mirković conjecture for the Frobenius kernel. In this
subsection, we make precise the conjectural relationship between modY

Iu(R) and the

category of qG1
qT-representations. (These considerations have obvious analogues

relating the “Whittaker” variants of modY
Iu(R) considered in the body of the paper

to singular blocks of qG1
qT-representations; we leave it to the reader to formulate

these variants.) This subsection is for motivation only; it does not play any logical
role in the rest of the paper.

We assume in this subsection that k is an algebraic closure of F`. Let Rep( qG),

resp. Rep( qG1
qT), be the category of finite-dimensional rational qG-, resp. qG1

qT-,
representations. Then there is a forgetful functor

For : Rep( qG)→ Rep( qG1
qT).

Here is a brief review of the representation theory of qG1
qT, following, for in-

stance [Ja, Chap. II.9–11]. For each λ ∈ Y, there is a baby Verma module Ẑ(λ)

and a baby co-Verma module Ẑ′(λ), both with highest weight λ. The socle of Ẑ′(λ)

can be identified with the head of Ẑ(λ), and this irreducible module is denoted by

L̂(λ). Every simple qG1
qT-module is of this form (for a unique λ ∈ Y). The module

L̂(λ) admits an injective hull Q̂(λ) that is also its projective cover. Moreover, Q̂(λ)
admits filtrations by both baby Verma modules and baby co-Verma modules.

Assume now that ` ≥ h, where h is the Coxeter number for qG, and that the
quotient of the cocharacter lattice of T by the coroot lattice has no `-torsion.2 Let

Rep[0](
qG) ⊂ Rep( qG) and Rep[0](

qG1
qT) ⊂ Rep( qG1

qT) be the extended principal blocks

of qG and of qG1
qT, respectively, i.e. the Serre subcategories generated by simple

modules whose highest weights lie in Wext ·` 0, where ·` denotes the “`-dilated dot
action.” The Steinberg tensor product formula implies that the forgetful functor

For : Rep( qG)→ Rep( qG1
qT) restricts to a functor

For0 : Rep[0](
qG)→ Rep[0](

qG1
qT).

Recall that the Finkelberg–Mirković conjecture asserts the existence of an equiv-
alence of categories

FM : PervIu(Gr,k)
∼→ Rep[0](

qG)

together with a natural isomorphism

FM(F ?L
+G G) ∼= Fr∗

(
Sat(sw(G))

)
,

where Fr∗ is pullback along the Frobenius morphism Fr : qG→ qG(1), Sat is the geo-
metric Satake equivalence, and sw is a certain autoequivalence of PervL+G(Gr,k).
We refer the reader to [AR3, §1.2] for precise definitions of the notation, and further
discussion of this statement.

The following statement is a consequence of the results of this paper.

2See [AR3, Remark 1.2(2)] for a discussion of this assumption.
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Proposition 1.3. Assume that that the Finkelberg–Mirković conjecture holds for
qG. Then there exists an equivalence of categories

FMFrob : modY
Iu(R)

∼→ Rep[0](
qG1

qT)

such that
FMFrob ◦ Φ ∼= FM ◦ For0,

which satisfies

FMFrob(L̂w) ∼= L̂(w−1 ·` 0), FMFrob(Q̂w) ∼= Q̂(w−1 ·` 0),

FMFrob(Ẑw) ∼= Ẑ(w−1 ·` 0), FMFrob(Ẑ ′w) ∼= Ẑ′(w−1 ·` 0)

for any w ∈Wext, and such that

FMFrob(F ?L
+G G) ∼= FMFrob(F)⊗ For0 ◦ Fr∗

(
Sat(sw∗G)

)
functorially for any F in modY

Iu(R) and G in PervL+G(Gr,k).

Remark 1.4. For k of characteristic 0, the categories PervIu(Gr,k) and modY
Iu(R)

are not related to representations of qG or qG1, but rather to their quantum ana-
logues. Specifically, the quantum counterpart of the Finkelberg–Mirković conjecture
is a theorem of Arkhipov–Bezrukavnikov–Ginzburg [ABG] relating PervIu(Gr,k) to
the principal block of a quantum group Uζ(qg) at a root of unity. As observed
in [ABBGM], a quantum analogue of Proposition 1.3 holds in this setting: for

k = Q`, the category modY
Iu(R) is equivalent to the principal block of graded rep-

resentations of the small quantum group uζ(qg).
Note that in [ABBGM] the authors provide a third incarnation of the same

category, in terms of perverse sheaves on a semi-infinite affine flag variety. It is likely
that a similar description can be obtained in our setting of positive-characteristic
coefficients; this question will be the subject of future work.

1.5. Tilting qG-modules and projective qG1
qT-modules. In view of the discus-

sion in §1.4, the second sentence in Theorem 1.1(2) is a geometric counterpart of

the fact that simple qG-modules with restricted highest weight remain simple as
qG1

qT-modules. There is another class of qG-modules whose behaviour upon restric-

tion to qG1
qT is remarkable, namely the tilting modules. The geometric counterpart

of tilting modules in the principal block of qG are the tilting perverse sheaves in
PervIu(Gr,k).

In Propositions 7.11 and 9.26 we determine which indecomposable tilting per-
verse sheaves are sent to projective/injectiveR-modules by the functor Φ, providing
a geometric counterpart of [Ja, Lemma E.8]. Another very interesting property of
this operation is that (under the assumption that p ≥ 2h− 2, and conjecturally in
broader generality) some of these indecomposable tilting modules remain indecom-

posable as qG1
qT-modules. It is one of our motivations for developing this theory to

provide new tools to understand this property. We study this question in §8.3, but
we must admit that our progress towards solving this question is very modest so
far.

1.6. Contents of the paper. In Section 2 we prove a number of combinatorial
results on the affine Weyl group attached to a connected reductive algebraic group
G. In Section 3 we collect some facts on various categories of perverse sheaves on
the affine Grassmannian Gr and the affine flag variety Fl of G. Most of these results
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are known to some extent, but many proofs are not available in the literature in
the generality we require. In Section 4 we explain some constructions that allow
us to describe modules over the Frobenius kernel (or some variants) of a connected

reductive algebraic group qG in terms of representations of the whole group. These
constructions will serve as guiding principles for many constructions in the rest of
the paper, and justify Proposition 1.3.

In Section 5 we introduce our main object of study, the category modY
Iu(R),

together with a variant ModY
Iu(R)flen. We show that the second of these categories

is a finite-length abelian category, in which we classify the simple objects, and
define some geometric incarnations of baby co-Verma modules. (We also treat
some “Whittaker-type” analogues in parallel.) In Section 6, exploiting results
from [BGMRR] we study some perverse sheaves on Gr arising from the “big tilt-
ing perverse sheaf” on the flag variety of G, and derive some first applications to
the study of (geometric) baby co-Verma modules. In Section 7 we prove that the

categories modY
Iu(R) and ModY

Iu(R)flen coincide, that these categories have enough
injectives and enough projectives, and also that these classes of objects coincide and
are closely related to tilting perverse sheaves on Gr. (Again, all of these results are
proved also in the Whittaker setting). In the course of the proof of these results,
we show that these categories satisfy some form of “generalized highest weight”
formalism recently studied by Brundan–Stroppel [BS].

In Section 8 we study a variant of our formalism that omits part of the structure.
Finally, in Section 9 we define a duality functor on modY

Iu(R), and use this functor
to define geometric counterparts of baby Verma modules. We also prove a number
of results regarding the combinatorics of the category modY

Iu(R) that are analogues
of known results on representations of Frobenius kernels.

2. Combinatorics of the affine Weyl group

2.1. The extended affine affine Weyl group. Let F be an algebraically closed
field, and G be a connected reductive algebraic group over F. We fix a Borel
subgroup B ⊂ G and a maximal torus T ⊂ B. We will denote by X := X∗(T ) the
character lattice of T , by R ⊂ X the root system of (G,T ), by Y := X∗(T ) the
coweight lattice, and by R∨ ⊂ Y the coroot system; the natural bijection from R
to R∨ will be denoted α 7→ α∨ as usual.

We will denote by R+ ⊂ R the system of positive roots consisting of the T -
weights in Lie(G)/Lie(B), and by Rs the associated basis of R. The corresponding
sets of dominant coweights and strictly dominant coweights will be denoted Y+ and
Y++ respectively. We will denote by W the Weyl group of (G,T ). If we denote
by S ⊂ W the subset consisting of the reflections sα∨ for α ∈ Rs, then it is well
known that (W,S) is a Coxeter system. The longest element in this group will be
denoted w◦.

We will assume that X/ZR has no torsion, or in other words that the restriction
morphism

Y → HomZ(ZR,Z)

is surjective. (This is equivalent to requiring that the scheme-theoretic center of G
be a torus.) In particular, this condition ensures that there exists ς ∈ Y such that
〈α, ς〉 = 1 for all α ∈ Rs; we fix such an element once and for all.
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The affine Weyl group associated with G is the semidirect product

Waff := W n ZR∨,

where ZR∨ ⊂ Y is the lattice generated by R∨. For λ ∈ ZR∨, we will write tλ
for the corresponding element of Waff . It is a standard fact that if we denote by
Saff ⊂ Waff the subset consisting of S together with the elements tβ∨sβ∨ where
β∨ ∈ R∨ is a maximal short coroot, then the pair (Waff , Saff) is a Coxeter system.
Moreover, classical results of Iwahori–Matsumoto [IM] show that the associated
length function on Waff can be described by the following formula for w ∈ W and
λ ∈ ZR∨:

(2.1) `(wtλ) =
∑
α∈R+

w(α)∈R+

|〈λ, α〉|+
∑
α∈R+

w(α)∈−R+

|1 + 〈λ, α〉|.

The formula on the right-hand side of (2.1) makes sense more generally for
λ ∈ Y, which lets one to extend the function ` to the larger group

Wext := W n Y,

in such a way that `(ww′) ≤ `(w) + `(w′) for any w,w′ ∈ Wext. The subgroup
Waff ⊂Wext is normal, and if we set

Ω := {w ∈Wext | `(w) = 0}

then Ω is a finitely generated abelian group acting on Waff (via conjugation) by
Coxeter group automorphisms. Multiplication induces a group isomorphism

Ω nWaff
∼→Wext,

and `(ωw) = `(wω) = `(w) for any w ∈Wext and ω ∈ Ω. We can also “extend” the
Bruhat order ≤ on Waff to Wext by declaring that for ω, ω′ ∈ Ω and w,w′ ∈Waff we
have ωw ≤ ω′w′ iff ω = ω′ and w ≤ w′. (The same rule will then also apply when
switching the order of ω and w.) We define a reduced expression for an element
w ∈ Wext to be an expression of the form w = s1 · · · srω or w = ωs1 · · · sr with
ω ∈ Ω, si ∈ Saff for any i ∈ {1, . . . , r}, and r = `(w).

Given a subset A ⊂ Saff , we will denote by WA the subgroup of Waff generated
by A. We will say that A is finitary if WA is finite; in this case we will denote
by wA the longest element in WA. If A is finitary, the theory of Coxeter systems
guarantees that for any w ∈ Wext, the coset WAw, resp. wWA, admits a unique
maximal, resp. minimal, element with respect to the Bruhat order. In particular,
for A = S, we will denote by WS

ext ⊂Wext the subset consisting of elements w which
are minimal in wW . The basic properties of minimal coset representatives recalled
above guarantee that the composition WS

ext ↪→Wext →Wext/W is a bijection.

2.2. Geometry of alcoves and restricted elements. Consider the vector space
V := Y ⊗Z R, and the action of Wext given by

(tλw) · v = w(v) + λ

for w ∈ W and λ ∈ Y, where W acts on V via its natural action on Y. In V we
have the affine hyperplanes defined by

Hβ,n := {v ∈ V | 〈β, v〉 = n}
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for β ∈ R and n ∈ Z, which are permuted by the action of Wext. The connected
components of the complement of the union of these hyperplanes are called alcoves;
if we set

Afund := {v ∈ V | ∀β ∈ R+, 0 < 〈β, v〉 < 1},
then Afund is an alcove (called the fundamental alcove), and the assignment w 7→
w(Afund) induces a bijection from Wext/Ω (where Ω is as in §2.1) to the set of
alcoves. If

C = {v ∈ V | ∀β ∈ R+, 〈β, v〉 > 0},
then it is a standard fact that

(2.2) WS
ext = {w ∈Wext | w−1(Afund) ⊂ C}.

For µ ∈ Y we set

Πµ := {v ∈ V | ∀α ∈ Rs, 〈α, µ〉 − 1 < 〈α, v〉 < 〈α, µ〉};

our assumption on X/ZR ensures that each alcove is contained in a subset of this
form (sometimes called a box ). Of particular importance is the set

Πς = {v ∈ V | ∀α ∈ Rs, 0 < 〈α, v〉 < 1}.

This set (which is evidently independent of the choice of ς) contains Afund and is
sometimes called the fundamental box. We define the subset of restricted elements
in Wext by setting

W res
ext := {w ∈Wext | w−1(Afund) ⊂ Πς}.

Since any alcove belongs to a subset Πµ, any element w of Wext can be written as
a product w = ytλ with y ∈W res

ext and λ ∈ Y. It is easy to see that

(2.3) WS
ext = {xtλ : x ∈W res

ext , λ ∈ −Y+},

see [AR3, §2.4] for details.
Let us also record the following property, proved in [AR3, Lemma 2.7], which

shows in particular that lengths always add in a decomposition given by (2.3).

Lemma 2.1. For any w ∈WS
ext and λ ∈ −Y+ we have `(wtλ) = `(w) + `(tλ).

As explained above, given w ∈Wext there exists µ ∈ Y such that w−1(Afund) ⊂
Πµ. We then set

w4 = wtµw◦t−µ.

(Here µ is unique only up to addition of a coweight ν orthogonal to all roots; however
the product tµw◦t−µ is independent of the choice of µ, so that this definition makes

sense.) This definition is chosen in such a way that w4(Afund) = ̂w(Afund), where

the operation on alcoves A 7→ Â is as in [So, p. 98] (see also [RW, §2.2]). It is easily
seen from the definition that if w ∈ WS

ext then w4 ∈ WS
ext, and that for w ∈ Wext

and λ ∈ Y we have

(2.4) (wtλ)4 = w4tλ.

Note that (w4)−1(Afund) ⊂ Πµ+ς . Using this observation, we can write down
the inverse of the map w 7→ w4: it is given by

(2.5) v 7→ vtν−ςw◦tς−ν where v−1(Afund) ⊂ Πν .
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2.3. A length computation.

Lemma 2.2. If x ∈W res
ext and y = tςw◦x

−1, then we have

`(x) + `(y) = `(tςw◦).

Proof. Using (2.1) we see that `(tςw◦) = 〈2ρ, ς〉 − `(w◦). On the other hand, write
x = wtλ with λ ∈ Y and w ∈W . Then we have

`(x) =
∑
α∈R+

w(α)∈R+

|〈α, λ〉|+
∑
α∈R+

w(α)∈−R+

|1 + 〈α, λ〉|.

By [AR3, Lemma 2.6], on the right-hand side we have 〈α, λ〉 ≤ 0 for any α ∈
R+. Moreover, if w(α) ∈ −R+, then at least one simple root γ appearing in the
decomposition of α as a sum of simple roots must satisfy w(γ) ∈ −R+; we therefore
have 〈α, λ〉 ≤ −1 in this case. We deduce that

`(x) = −〈2ρ, λ〉 − `(w).

Similarly we have y = tςw◦x
−1 = tς−w◦(λ)w◦w

−1 = (ww◦tw◦(λ)−ς)
−1, and hence

`(y) =
∑
α∈R+

ww◦(α)∈R+

|〈α,w◦(λ)− ς〉|+
∑
α∈R+

ww◦(α)∈−R+

|1 + 〈α,w◦(λ)− ς〉|.

Setting β = −w◦(α) we obtain that

`(y) =
∑
β∈R+

w(β)∈−R+

|〈β, λ− w◦(ς)〉|+
∑
β∈R+

w(β)∈R+

|1− 〈β, λ− w◦(ς)〉|.

For the same reason as before, we have 〈β, λ − w◦(ς)〉 ≥ 0 for any β ∈ R+, and
〈β, λ− w◦(ς)〉 ≥ 1 if w(β) ∈ R+. It follows that

`(y) = 〈2ρ, ς〉+ 〈2ρ, λ〉 −#{β ∈ R+ | w(β) ∈ R+} =

〈2ρ, ς〉+ 〈2ρ, λ〉 − `(w◦w) = `(tςw◦)− `(x),

as stated in the lemma. �

2.4. Coset representatives. Let A ⊂ Saff be a finitary subset. We will denote
by AWS

ext ⊂ Wext the subset consisting of the elements w such that `(wAww◦) =
`(wA) + `(w) + `(w◦). Other characterizations of these elements are given in [AR3,
Lemma 2.4]; in particular we have

(2.6) w ∈ AWS
ext ⇔ w is minimal in WAw and vw ∈WS

ext for any v ∈WA.

(Of course, this shows that AWS
ext ⊂WS

ext.) We set

AW res
ext := AWS

ext ∩W res
ext .

Then as explained in [AR3, §2.5] we have

(2.7) AWS
ext = {wtλ : w ∈ AW res

ext , λ ∈ −Y+}.
We now set

AWext = {wtλ : w ∈ AW res
ext , λ ∈ Y}.

We emphasize that AWext is not the set of elements w which are minimal in their
coset WAw. However, this subset is also a set of representatives for the quotient
WA\Wext, as stated in the following lemma.
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Lemma 2.3. The composition
AWext →Wext →WA\Wext

is a bijection.

Proof. We first prove surjectivity. Let w ∈ Wext. Then there exists λ ∈ Y+ such
that tλw

−1v(Afund) ⊂ C for any v ∈ WA. If we fix such a λ, by definition all the
elements vwt−λ (v ∈WA) belong to WS

ext. If v ∈WA is such that vwt−λ is minimal
in WAwt−λ, then vwt−λ belongs to AWS

ext by (2.6). By (2.7), there exist y ∈ AW res
ext

and µ ∈ −Y+ such that vwt−λ = ytµ. Then w = v−1ytλ+µ, proving surjectivity.
As for injectivity, we consider y, y′ ∈ AW res

ext and λ, λ′ ∈ Y such that

WAytλ = WAy
′tλ′ .

Multiplying on the right by an antidominant element we can assume that λ, λ′ ∈
−Y+. Then ytλ and y′tλ′ belong to AWS

ext by (2.7); in particular these elements
are minimal in their respective cosets WAytλ and WAy

′tλ′ , see (2.6). Since these
cosets coincide, this implies that ytλ = y′tλ′ , as desired. �

2.5. The periodic order. In this subsection we introduce an order on Wext which
is different from the Bruhat order, and which will play a crucial role in our con-
structions. Recall that any w ∈ Wext can be written as ytµ for some y ∈ W res

ext

and µ ∈ Y, see §2.2; in particular, in view of (2.3), there exists λ ∈ Y such that
wtλ ∈ WS

ext. More generally, given any finite collection w1, . . . , wr of elements of
Wext, there exists λ ∈ Y such that witλ belongs to WS

ext for any i ∈ {1, . . . , r}.

Lemma 2.4. Let y, y′ ∈Wext. The following conditions are equivalent:

(1) there exists λ ∈ Y such that ytλ and y′tλ belong to WS
ext and ytλ ≤ y′tλ in

the Bruhat order;
(2) for any λ ∈ Y such that ytλ and y′tλ belong to WS

ext we have ytλ ≤ y′tλ in
the Bruhat order.

Proof. Of course (2) implies (1), since as explained above there exists λ ∈ Y such
that ytλ and y′tλ belong to WS

ext. Conversely, suppose that (1) holds, and fix some
λ ∈ Y which satisfies this condition. Let µ ∈ Y be such that ytµ and y′tµ belong
to WS

ext, and choose ν ∈ Y such that ν − λ and ν − µ are antidominant. Using
a standard compatibility property of the Bruhat order with multiplication when
lengths add (see [AR3, Lemma 2.1]) and Lemma 2.1, from the fact that ytλ ≤ y′tλ,
we deduce that ytν ≤ y′tν , and then that ytµ ≤ y′tµ, as desired. �

We define the periodic order � on Wext by saying that y � y′ iff y and y′ satisfy
the equivalent conditions of Lemma 2.4. In other words, if λ ∈ Y is any element
such that ytλ and y′tλ belong to WS

ext, we have y � y′ iff ytλ ≤ y′tλ.
The following lemma gathers some easy properties of the periodic order.

Lemma 2.5. (1) If w ∈ Wext and s ∈ Saff , then we have either sw � w or
w � sw.

(2) If y, y′ ∈Wext and µ ∈ Y we have y � y′ iff ytµ � y′tµ.
(3) If y, y′ ∈WS

ext we have y � y′ iff y ≤ y′.
(4) If y, y′ ∈ Wext satisfy y � y′, and if s ∈ Saff satisfies sy � y, then we have

sy � y′ and sy � sy′.
(5) If y, y′ ∈Wext satisfy y � y′, and if s ∈ Saff satisfies y′ � sy′, then we have

y � sy′ and sy � sy′.
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Proof. (1) Fix λ ∈ Y such that ytλ and sytλ belong to WS
ext. Then we have either

ytλ ≤ sytλ or sytλ ≤ ytλ. In the first case we have y � sy, and in the second case
we have sy � y.

(2) If λ ∈ Y is such that ytλ and y′tλ belong to WS
ext, then by definition we have

y � y′ iff ytλ ≤ y′tλ. On the other hand we have (ytµ)tλ−µ = ytλ and similarly for
y′, so that this condition holds iff ytµ � y′tµ.

(3) This property is obvious from the definition (taking λ = 0).
(4) Of course we have sy � y � y′, and if y′ � sy′ then sy � y � y′ � sy′. Now

assume y′ � sy′, and choose λ ∈ Y such that ytλ, y′tλ, sytλ and sy′tλ all belong
to WS

ext. Then we have sytλ ≤ ytλ ≤ y′tλ and sy′tλ ≤ y′tλ. By the last inequality,
there exists a reduced expression y′tλ = ss1 · · · srω with each si in Saff and ω ∈ Ω.
Then ytλ admits a reduced expression obtained by omitting some of the simple
reflections in this expression. If s is not among the omitted simple reflections, then
clearly sytλ ≤ s1 · · · srω = sy′tλ. If s is omitted then we also have sytλ ≤ sy′tλ by
the exchange condition. Hence sy � sy′ in all cases.

(5) Of course we have y � y′ � sy′, and if sy � y then sy � y � y′ � sy′.
Now assume sy � y, and choose λ ∈ Y such that ytλ, y′tλ, sytλ and sy′tλ all
belong to WS

ext. Then we have ytλ ≤ y′tλ, ytλ ≤ sytλ and y′tλ ≤ sy′tλ. Fixing
a reduced expression for y′tλ, an expression for ytλ can be obtained by omitting
some reflections. Adding s on the left we obtain a reduced expression for sy′tλ,
from which an expression for sytλ can be obtained by omitting the same reflections.
This shows that sytλ ≤ sy′tλ, and hence that sy � sy′, as desired. �

Remark 2.6. Now that we have introduced the order �, we can reinterpret Lem-
ma 2.3 (and its proof) as saying that AWext consists of the elements w ∈ Wext

which are minimal for the order � in the coset WAw (and that each such coset
contains a unique minimal element).

Lemma 2.7. Let y, y′ ∈ AWext. Then y � y′ if and only if wAy � wAy′.

Proof. In view of (2.7), there exists λ ∈ Y such that ytλ and y′tλ belong to AWS
ext.

Then by definition y � y′ if and only if ytλ ≤ y′tλ. By (2.6) the elements ytλ and
y′tλ are minimal in their respective cosets WAytλ and WAy

′tλ, which implies that

`(wAytλ) = `(wA) + `(ytλ), `(wAy
′tλ) = `(wA) + `(y′tλ).

By the compatibility property of the Bruhat order with multiplication when lengths
add (as used in the proof of Lemma 2.4; cf. [AR3, Lemma 2.1]), this implies that
ytλ ≤ y′tλ if and only if wAytλ ≤ wAy

′tλ. Finally, by (2.6) the elements wAytλ
and wAy

′tλ belong to WS
ext; we therefore have wAytλ ≤ wAy

′tλ if and only if
wAy � wAy′, and the lemma follows. �

2.6. The Hecke algebra and the left spherical module. Let v be an inde-
terminate, and let Hext be the Hecke algebra of Wext over Z[v, v−1]. Recall that
this is a Z[v, v−1]-algebra that is free as a Z[v, v−1]-module, with a basis (called
the standard basis) (Hw : w ∈ Wext), and with multiplication determined by the
following rules:

HxHy = Hxy if `(xy) = `(x) + `(y),

H2
s = He + (v−1 − v)Hs for all s ∈ Saff .
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(Here and below we will follow the notational conventions of [So].) The algebra
Hext is also equipped with a canonical basis [KL1], denoted by

(Hw : w ∈Wext),

and uniquely characterized as follows: Hw is fixed by a certain involution of Hext

(called the bar involution), and

Hx ∈ Hx +
∑
y<x

vZ[v]Hy.

Let us write each of these basis elements in terms of the standard basis:

Hx =
∑

y∈Wext

hy,xHy;

the polynomials hy,x ∈ Z[v] are then known as the Kazhdan–Lusztig polynomials.
Their geometric interpretation (in terms of perverse sheaves) will be recalled in §3.5
below.

We will denote by M the left Hext-module obtained by taking the quotient

M = Hext/Hext · {Hs − v−1 : s ∈ S}.

This module is known as the left spherical module. (Note that much of the relevant
literature, including [So, RW], treats a similarly defined right Hext-module instead;
however, the left version is better suited to the purposes of this paper. These two
modules can e.g. be related using the anti-involution of Wext given by w 7→ w−1.)
This module remains free over Z[v, v−1]; specifically, if for w ∈ WS

ext we let Mw

denote the image of Hw in M, then

(Mw : w ∈WS
ext)

is a basis for M. This module also admits a canonical basis

(Mw : w ∈WS
ext)

characterized similarly to the canonical basis of Hext. In fact, the map h 7→ hHw◦
factors through a morphism of left Hext-modules

ζ :M→Hext,

and this module satisfies

ζ(Mw) = Hww◦

for any w ∈ WS
ext, see [So]. Equivalently, if we define the polynomials my,w by

setting

Mw =
∑

y∈WS
ext

my,wMy,

then for y, w ∈WS
ext we have

(2.8) my,w = hy′,ww◦ for any y′ ∈ yW .

We also introduce notation for the “inverse matrix” of (my,w)y,w∈WS
ext

, again

following [So]. Namely, we define the polynomials (my,w : y, w ∈ WS
ext) by the

condition that

(2.9) Mx =
∑

y∈WS
ext

(−1)`(y)+`(x)mx,yMy for any x ∈WS
ext.
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The only property of Kazhdan–Lusztig polynomials that will be used below and
for which we do not have a geometric proof is the following.

Lemma 2.8. For any w ∈WS
ext we have mw4,w = v`(w◦).

Proof. This equality can be obtained by translating [So, Theorem 5.1] (in the special

case B = Â) in our present conventions. �

3. Perverse sheaves on affine Grassmannians

3.1. The affine Grassmannian and the affine flag variety. We now denote
by z an indeterminate, and consider the functor LG, resp. L+G, from F-algebras
to groups, which sends R to G(R((z))), resp. G(R[[z]]). It is well known that LG is
represented by a group ind-scheme over F, and that L+G is represented by a group
scheme over F. Moreover, the fppf quotient (LG/L+G)fppf is represented by an
ind-projective ind-scheme, which is denoted Gr and called the affine Grassmannian
of G.

There is an obvious morphism of group schemes L+G → G induced by the
assignment z 7→ 0. Let I ⊂ L+G and Iu ⊂ I be the preimages of the Borel
subgroup B ⊂ G and its unipotent radical U ⊂ B, respectively, under this map.
These are both subgroup schemes of L+G. The group I is known as an Iwahori
subgroup, and Iu as its pro-unipotent radical.

We will consider also the affine flag variety Fl of G, defined as the fppf quotient
(LG/I)fppf . Again Fl is represented by an ind-projective ind-scheme, and the natu-
ral morphism π : Fl→ Gr is a Zariski locally trivial fibration with fibers isomorphic
to G/B.

Let NG(T ) be the normalizer of the maximal torus T ⊂ G, so that NG(T )/T =
W . For each w ∈ W , choose a representative ẇ ∈ NG(T ). More generally, if
w ∈Wext, say w = vtλ with v ∈W and λ ∈ Y, we set

ẇ = v̇zλ ∈ LG(k).

For w ∈Wext we will denote by Flw the I-orbit of the image of ẇ; then it is well
known that Flw is also the Iu-orbit of ẇ, and is isomorphic to an affine space of
dimension `(w). Moreover we have

Flred =
⊔

w∈Wext

Flw, and
(
Flw ⊂ Fly ⇔ w ≤ y

)
.

Similarly, for w ∈WS
ext we will denote by Grw the I-orbit of the image of ẇ in Gr.

It is well known that Grw is also the Iu-orbit of the image of ẇ, that it is isomorphic
to an affine space of dimension `(w), and that we have

Grred =
⊔

w∈Wext

Grw and
(
Grw ⊂ Gry ⇔ w ≤ y

)
.

3.2. Iu-equivariant perverse sheaves. We now consider a prime number ` which
is invertible in F. We will consider fields k which fall into one of the following two
classes:

(1) k is either a finite extension or an algebraic closure of Q`;
(2) k is either a finite extension or an algebraic closure of F`.
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(When we need to distinguish these two cases, we will loosely say that k has char-
acteristic 0 or k has positive characteristic.) In these settings we can consider
the Iu-equivariant derived categories Db

Iu
(Fl,k) and Db

Iu
(Gr,k) of étale k-sheaves

on Fl and Gr; see [AR3, §3.2] for details. These categories have natural perverse
t-structures, whose hearts will be denoted PervIu(Gr,k) and PervIu(Fl,k) respec-
tively.

For any w ∈ Wext we have a “standard perverse sheaf” Dw in PervIu(Fl,k), de-
fined as the !-pushforward of the complex kFlw

[`(w)] under the embedding Flw → Fl,
and a “costandard perverse sheaf” Nw in PervIu(Fl,k), defined as the ∗-pushforward
of the complex kFlw

[`(w)] under the embedding Flw → Fl. (These complexes are
indeed perverse sheaves since this embedding is affine.) The image of the unique
(up to scalar) nonzero morphism Dw → Nw is simple, and will be denoted Lw; it
is the intersection cohomology complex associated with the constant local system
on Flw. Then the objects (Lw : w ∈Wext) are representatives for the isomorphism
classes of simple objects in the abelian category PervIu(Fl,k).

Similarly, for w ∈WS
ext we have a “standard perverse sheaf” ∆w in PervIu(Gr,k),

defined as the !-pushforward of the complex kGrw [`(w)] under the embedding Grw →
Gr, and a “costandard perverse sheaf” ∇w in PervIu(Gr,k), defined as the ∗-
pushforward of the complex kGrw

[`(w)] under the embedding Grw → Gr. (Once
again these complexes are indeed perverse sheaves since the embedding Grw → Gr
is affine.) The image of the unique (up to scalar) nonzero morphism ∆w → ∇w is
simple, and will be denoted Lw; it is the intersection cohomology complex associ-
ated with the constant local system on Grw. Then the objects (Lw : w ∈WS

ext) are
representatives for the isomorphism classes of simple objects in the abelian category
PervIu(Gr,k).

Since the morphism π : Fl→ Gr is smooth with connected fibers, the functor

π† := π∗[dim(G/B)] ∼= π![−dim(G/B)] : Db
Iu(Gr,k)→ Db

Iu(Fl,k)

is t-exact for the perverse t-structures, its restriction to perverse sheaves is fully
faithful, and it sends simple perverse sheaves to simple perverse sheaves, see [BBDG,
Proposition 4.2.5]; more explicitly, in this case we have

(3.1) π†Lw ∼= Lww◦

for any w ∈WS
ext.

The results of [BGS, §3.3] show that the category PervIu(Gr,k) admits a natural
structure of a highest weight category (in the sense of [Ri, §7]) with weight poset
(WS

ext,≤); the standard objects are the standard perverse sheaves (∆w : w ∈WS
ext)

and the costandard objects are the costandard perverse sheaves (∇w : w ∈ WS
ext).

In particular, it makes sense to consider the tilting objects in this category, i.e. the
objects which admit both a filtration with standard subquotients and a filtration
with costandard subquotients. The indecomposable tilting objects are parametrized
by WS

ext; the indecomposable object associated with w will be denoted Tw. Similar
comments apply to the category the category PervIu(Fl,k) (for the weight poset
(Wext,≤)). The indecomposable tilting object attached to w will be denoted Tw.

We will also occasionally consider the I-equivariant derived categories Db
I (Fl,k)

and Db
I (Gr,k). We have forgetful functors

ForIIu : Db
I (Fl,k)→ Db

Iu(Fl,k), ForIIu : Db
I (Gr,k)→ Db

Iu(Gr,k),
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and the objects Dw,Nw and ∆w,∇w naturally “lift” to objects of Db
I (Fl,k) and

Db
I (Gr,k) respectively (and will be denoted by the same symbol in the equivariant

context). We also have “convolution” bifunctors

Db
I (Fl,k)×Db

I (Fl,k)→ Db
I (Fl,k), Db

I (Fl,k)×Db
I (Gr,k)→ Db

I (Gr,k),

Db
Iu(Fl,k)×Db

I (Fl,k)→ Db
Iu(Fl,k), Db

Iu(Fl,k)×Db
I (Gr,k)→ Db

Iu(Gr,k),

which will all be denoted ?I , and are compatible with one another in the expected
ways.

The following lemma gathers some standard properties of convolutions of stan-
dard and costandard objects (see e.g. [ABG, §8.2]).

Lemma 3.1. (1) For w, y ∈ Wext such that `(wy) = `(w) + `(y), there exist
canonical isomorphisms

Dw ?
I Dy

∼→ Dwy, Nw ?
I Ny

∼→ Nwy.

(2) For w ∈Wext, there exist canonical isomorphisms

Dw ?
I Nw−1

∼= De
∼= Nw−1 ?I Dw.

(3) For w, y ∈Wext, the objects Nw ?
I Dy and Dw ?

I Ny are perverse.
(4) For w, y ∈Wext such that `(wy) = `(w) + `(y) and both wy and y belong to

WS
ext, there exist canonical isomorphisms

Dw ?
I ∆y

∼→ ∆wy, Nw ?
I ∇y

∼→ ∇wy.
(5) For w ∈ Wext and y ∈ WS

ext, the objects Nw ?I ∆y and Dw ?I ∇y are
perverse.

3.3. Relation with the Satake category. Below we will also consider the L+G-
equivariant derived category Db

L+G(Gr,k). Once again this category has a natural
perverse t-structure, whose heart will be denoted PervL+G(Gr,k). For λ ∈ Y+ we

will denote by Lλ the image of zλ in Gr, and by Grλ its L+G-orbit; then Grλ is
the union of the Iu-orbits labeled by the minimal representatives of the elements
(tµ : µ ∈W (λ)), and

Grred =
⊔

λ∈Y+

Grλ.

We will consider these orbits in particular when λ ∈ Y++. It is a classical fact
that, in this case, there exists a smooth L+G-equivariant morphism

pλ : Grλ → G/B

sending Lλ to the base point B/B, where L+G acts on G/B through the natural
morphism L+G → G. Here G/B has the Bruhat stratification by orbits of B,

parametrized by W ; its pullback to Grλ identifies with the decomposition into the
I-orbits given by

Grλ =
⊔
w∈W

Grwtλw◦ .

In particular, the unique open I-orbit in Grλ is Grtw◦(λ) .

The simple objects in the category PervL+G(Gr,k) are in natural bijection with

Y+, via the operation sending λ to the intersection cohomology complex ICλ as-

sociated with the constant local system on Grλ. The forgetful functor

ForL
+G

Iu : Db
L+G(Gr,k)→ Db

Iu(Gr,k)
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is t-exact, and restricts to a fully faithful functor on perverse sheaves; moreover we
have

ForL
+G

Iu (ICλ) = Ltw◦(λ)
for any λ ∈ Y+.

To each λ ∈ Y+ one can also associate the “standard” and “costandard” objects
defined respectively by

Iµ! = pτ≥0(jµ! kGrµ [〈2ρ, µ〉]), Iµ∗ = pτ≤0(jµ∗ kGrµ [〈2ρ, µ〉]),
where jµ : Grµ ↪→ Gr is the inclusion and pτ≥0, pτ≤0 are the perverse truncation
functors. (Note that jµ is not an affine morphism in general, so unlike in the
Iu-equivariant case, if we omit the perverse truncation functors, the resulting ob-
jects are not in general perverse.) With this notation there exists (up to scalar) a
unique nonzero morphism Iµ! → I

µ
∗ , and its image is ICµ. Once again the cate-

gory PervL+G(Gr,k) has a natural highest weight structure with standard objects
the perverse sheaves (Iµ! : µ ∈ Y+) and costandard objects the perverse sheaves
(Iµ∗ : µ ∈ Y+), see [BaR, Proposition 1.12.4]. In particular one can consider the tilt-
ing objects in this category, and the indecomposable such objects are parametrized
by Y+. For any λ ∈ Y+ we will denote by T λ the corresponding indecomposable
tilting object.

As in the I-equivariant setting (see §3.2), we also have a canonical convolution
product

(3.2) ?L
+G : Db

L+G(Gr,k)×Db
L+G(Gr,k)→ Db

L+G(Gr,k)

which equips Db
L+G(Gr,k) with the structure of a monoidal category. In this case

it is known that this product is t-exact (in the sense that a product of perverse
sheaves is perverse), and hence induces a monoidal structure on the abelian category
PervL+G(Gr,k); see [BaR, §1.6.3] for details. The geometric Satake equivalence

describes the monoidal category (PervL+G(Gr,k), ?L
+G) in representation-theoretic

terms: more explicitly, in [MV] the authors construct a canonical affine k-group
scheme G∨k equipped with a split maximal torus T∨k whose group of characters is
Y and a canonical equivalence of monoidal categories

Sat : (PervL+G(Gr,k), ?L
+G)

∼→ (Rep(G∨k ),⊗).

They also show that G∨k is a split connected reductive group, and that the root
datum of (G∨k , T

∨
k ) is dual to that of (G,T ). Under this equivalence, Iµ! corresponds

to the Weyl module of highest weight µ, and I∗µ to the induced module of highest
weight µ.

Below we will use the fact that the monoidal category

(PervL+G(Gr,k), ?L
+G)

is rigid: every object F has a left and right dual F∨. (This fact can either be
checked directly or deduced from the geometric Satake equivalence.) We will not
need an explicit description of this operation, but only that for µ ∈ Y+ we have

(3.3) (Iµ! )∨ ∼= I−w◦(µ)
∗ , (Iµ∗ )∨ ∼= I−w◦(µ)

! , (ICµ)∨ ∼= IC−w◦(µ)
∗ .

Using the geometry of spherical orbits we prove the following property of the
periodic order, which will be required later.

Lemma 3.2. Let µ, ν ∈ Y be such that µ − ν is a sum of positive roots, and let
y ∈W res

ext. Then ytw◦(ν) � ytw◦(µ).
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Proof. Choose η ∈ Y such that η + ν and η + µ are strictly dominant. Then it is

well known that our assumption implies that Grη+ν ⊂ Grη+µ, i.e. that Grtw◦(η+ν) ⊂
Grtw◦(η+µ) , and hence that tw◦(η+ν) ≤ tw◦(η+µ) in the Bruhat order. By [AR3,

Lemmas 2.1 and 2.7], this implies that ytw◦(η+ν) ≤ ytw◦(η+µ). Since these elements

belong to WS
ext, by Lemma 2.5(3) this implies that ytw◦(η+ν) � ytw◦(η+µ). Using

Lemma 2.5(2) we deduce that ytw◦(ν) � ytw◦(µ), as desired. �

3.4. Whittaker categories. From now on we assume that F has characteristic
p > 0, and that k contains a nontrivial p-th root of unity (which we fix once and for
all). Let A ⊂ Saff be a finitary subset, and let IAu := ẇAIuẇ

−1
A . In [AR3, §3.4] we

have explained the construction of a “generic” character ψA : IAu → Ga; as in [AR3,
§3.5] one can then consider the categories

Db
(IAu ,XA)(Fl,k) and Db

(IAu ,XA)(Gr,k)

of (IAu ,XA)-equivariant k-sheaves on Fl and Gr, where XA is the pullback along ψA
of an Artin–Schreier local system on Ga. In the case where A = ∅, these categories
are just the ordinary Iu-equivariant derived categories considered in §3.2; in this
case we will omit “A” from all notations introduced below.

These categories have natural perverse t-structures, whose hearts are denoted
Perv(IAu ,XA)(Fl,k) and Perv(IAu ,XA)(Gr,k) respectively. The isomorphism classes
of simple objects in Perv(IAu ,XA)(Fl,k) are in canonical bijection with the subset
of Wext consisting of elements w minimal in WAw; for such w the correspond-
ing simple object is denoted by L A

w . For any w ∈ Wext minimal in WAw we
have a “standard” perverse sheaf DA

w and a “costandard” perverse sheaf N A
w in

Perv(IAu ,XA)(Fl,k), obtained by !- and ∗-pushforward respectively of a local system

on the IAu -orbit of the image of ẇ in Fl. There exists a unique (up to scalar)
nonzero morphism DA

w → N A
w , whose image is L A

w , and these objects equip
Perv(IAu ,XA)(Fl,k) with the structure of a highest weight category with weight poset
{w ∈Wext | w minimal in WAw}, endowed with the restriction of the Bruhat order.

Similarly, the isomorphism classes of simple objects in Perv(IAu ,XA)(Gr,k) are in

canonical bijection with AWS
ext; for w ∈ AWS

ext the corresponding simple object
is denoted by LAw. For any w ∈ AWS

ext we have a “standard” perverse sheaf ∆A
w

and a “costandard” perverse sheaf ∇Aw in Perv(IAu ,XA)(Gr,k), obtained by !- and

∗-pushforward respectively of a local system on the IAu -orbit of the image of ẇ in
Gr. There exists a unique (up to scalar) nonzero morphism ∆A

w → ∇Aw, whose
image is LAw, and these objects equip Perv(IAu ,XA)(Gr,k) with the structure of a

highest weight category with weight poset AWS
ext, endowed with the restriction of

the Bruhat order. The indecomposable tilting objects in this category are then also
parametrized by AWS

ext; the object associated with w will be denoted TAw. Below
we will also use the fact that for w ∈ AWS

ext we have

(3.4) π∗D
A
w
∼= ∆A

w, π∗N
A
w
∼= ∇Aw,

see e.g. [ACR, Lemma A.1] for similar considerations.
The same construction as in (3.2) yields a canonical bifunctor

?L
+G : Db

(IAu ,XA)(Gr,k)×Db
L+G(Gr,k)→ Db

(IAu ,XA)(Gr,k)
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which defines a right action of the monoidal category (Db
L+G(Gr,k), ?L

+G) on

Db
(IAu ,XA)(Gr,k). This bifunctor is t-exact in the sense that if F ∈ Perv(IAu ,XA)(Gr,k)

and G ∈ PervL+G(Gr,k) then F ?L+G G is perverse; see [AR3, §4.1] for references.

Remark 3.3. In order to use Verdier duality arguments, we will also have to consider
the local system X−1

A on IAu (i.e. the local system defined by the inverse of the p-
th root of unity fixed above); namely, Verdier duality induces anti-equivalences of
categories

Db
(IAu ,XA)(Fl,k)

∼→ Db
(IAu ,X

−1
A )

(Fl,k) and Db
(IAu ,XA)(Gr,k)

∼→ Db
(IAu ,X

−1
A )

(Gr,k),

which will both be denoted D. None of our considerations below will depend on the
choice of root of unity; in particular, they are equally valid in both the (IAu ,XA)- and
(IAu ,X−1

A )-equivariant settings. For this reason, we may write ∆A
w to indicate either

the (IAu ,XA)-equivariant standard perverse sheaf, or the (IAu ,X−1
A )-equivariant one:

this minor abuse of notation should not lead to any confusion.
With the comments above in mind, the behavior of D on the various objects

introduced above can be summarized as follows: for any w ∈ AWS
ext we have

D(∆A
w) ∼= ∇Aw, D(∇Aw) ∼= ∆A

w, D(LAw) ∼= LAw, D(TAw) ∼= TAw,

and similarly for the corresponding objects on Fl.

3.5. Combinatorics of perverse sheaves. As explained in §3.4 the category
Perv(IAu ,XA)(Gr,k) has a natural structure of a highest weight category. There are
two kinds of numerical quantities one can compute in this setting. First, given a
perverse sheaf F in Perv(IAu ,XA)(Gr,k), one can consider the multiplicity of a simple

object LAw as a composition factor of F ; this number is denoted

[F : LAw].

Next, if we assume that F admits a standard filtration (i.e. a filtration whose
subquotients are standard perverse sheaves), one can consider the number of oc-
currences of a given standard object ∆A

w, which is denoted

(F : ∆A
w).

It is a standard fact that this number is well defined (i.e. does not depend on the
choice of filtration) and additive with respect to direct sums; in fact we have

(F : ∆A
w) = dimk Hom(F ,∇Aw).

Similar comments apply to the multiplicity of a given costandard object in a co-
standard filtration of an object F (assumed to admit such a filtration), which will
be denoted

(F : ∇Aw).

Let us now consider a triple (K,O,k) where K is a finite extension of Q` con-
taining a nontrivial p-th root of unity, O is its ring of integers, and k is the residue
field of O. In this setting we can consider the categories Perv(IAu ,XA)(Gr,k) and
Perv(IAu ,XA)(Gr,K). In both of these categories the indecomposable tilting perverse

sheaves are parametrized by WS
ext; to distinguish the two cases the objects asso-

ciated with w will be denoted TA,kw and TA,Kw respectively. We will use similar
conventions for standard objects.
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Lemma 3.4. For any w, y ∈ AWS
ext we have

(TA,kw : ∆A,k
y ) ≥ (TA,Kw : ∆A,K

y ).

Proof. In addition to the categories Perv(IAu ,XA)(Gr,k) and Perv(IAu ,XA)(Gr,K), we

can also consider the category Perv(IAu ,XA)(Gr,O) of (IAu ,XA)-equivariant O-perver-
se sheaves on Gr. In this category we also have standard and costandard objects,
denoted ∆A,O

y and ∇A,Oy , respectively, and we can speak of tilting perverse sheaves.
As explained in [AR1, Appendix B], the indecomposable tilting objects are again
classified by AWS

ext. More specifically, given w ∈ AWS
ext there exists an indecom-

posable tilting perverse sheaf TA,Ow such that

k
L
⊗O TA,Ow

∼= TA,kw ,

where

k
L
⊗O (−) : Db

(IAu ,XA)(Gr,O)→ Db
(IAu ,XA)(Gr,k)

is the “modular reduction” functor. In particular, for any y ∈ AWS
ext the multiplic-

ity of ∆A,O
y in a standard filtration of TA,Ow is (TA,kw : ∆A,k

y ). We can also consider
the tensor product functor

K
L
⊗O (−) : Db

(IAu ,XA)(Gr,O)→ Db
(IAu ,XA)(Gr,K);

the perverse sheaf K ⊗LO TA,Ow is tilting, supported on Grw, and satisfies (K ⊗LO
TA,Ow : ∆A,K

w ) = 1; it therefore admits TA,Kw as a direct summand. We deduce that
(TA,Kw : ∆A,K

y ) is at most the multiplicity of ∆A,O
y in a standard filtration of TA,Ow ,

which proves the desired inequality. �

For the rest of this subsection we assume that A = ∅ and k has characteristic
0. It is a classical fact going back to [KL2] that the Kazhdan–Lusztig polynomials
(hy,x : y ∈ Wext) encode the dimensions of stalks of the simple perverse sheaf Lx.
Explicitly, we have

(3.5) hy,x =
∑
i∈Z

rk
(
H −`(y)−i(Lx|Fly )

)
· vi =

∑
i∈Z

dim Hom(Lx,Ny[i]) · vi.

Similarly, the spherical Kazhdan–Lusztig polynomials describe stalks of simple per-
verse sheaves on Gr: we have

my,x =
∑
i∈Z

rk
(
H −`(y)−i(Lx|Gry )

)
· vi =

∑
i∈Z

dim Hom(Lx,∇y[i]) · vi.

(In fact, this equality easily follows from (3.5), comparing (2.8) and (3.1).)
Let us now work in the Grothendieck group [Db

Iu
(Gr,k)] of the triangulated

category Db
Iu

(Gr,k). Since the basis ([∆w] : w ∈ WS
ext) is dual to the basis ([∇w] :

w ∈WS
ext) for the natural Euler pairing, the preceding equality means that

[Lw] =
∑
y

my,w|v=−1[∆w]

for any w ∈ WS
ext. As a consequence, the polynomials (my,w : y, w ∈ WS

ext)
from (2.9) have the following interpretation:

[∆w] =
∑

(−1)`(y)+`(w)mw,y
|v=−1[Ly] for any w ∈WS

ext;
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in other words, for any y, w ∈WS
ext we have

[∆w : Ly] = (−1)`(y)+`(w)mw,y
|v=−1.

In particular, from Lemma 2.8 we deduce that for any w, y ∈Wext we have

(3.6) [∆w4 : Lw] = 1.

(Here we know a priori that the left-hand side is nonnegative; but the fact that
`(w) + `(w4) + `(w◦) is even can also be seen directly from the computations
in §6.3 below.)

3.6. Averaging functors. We continue to consider a finitary subset A ⊂ Saff . As
explained in [AR3, §3.6–3.8], there is a t-exact “averaging functor”

AvAψ : Db
Iu(Gr,k)→ Db

(IAu ,XA)(Gr,k)

with t-exact left and right adjoints, denoted by

AvA! ,AvA∗ : Db
(IAu ,XA)(Gr,k)→ Db

Iu(Gr,k),

respectively. By [AR3, Lemma 3.3(3)] the functor AvAψ sends each standard object
either to 0 or to a standard object, and each costandard object either to 0 or
to a costandard object. As a consequence, it sends objects admitting a standard
filtration, resp. a costandard filtration, to objects admitting a standard filtration,
resp. a costandard filtration.

Remark 3.5. The functors AvA! and AvA∗ do not kill any nonzero perverse sheaf. In
fact, if F is a nonzero object in Perv(IAu ,XA)(Gr,k) and w ∈ AWS

ext is such that LAw is

a quotient of F , then by adjunction and [AR3, Lemma 3.3(4)] the object AvA! (F)
admits a nonzero morphism to Lw, hence is nonzero. A dual argument applies to
AvA∗ .

Lemma 3.6. (1) The functor

AvA! : Perv(IAu ,XA)(Gr,k)→ PervIu(Gr,k)

sends objects admitting a standard filtration to objects admitting a standard
filtration. More explicitly, for any w ∈ AWS

ext and y ∈WS
ext we have

(AvA! (∆A
w) : ∆y) =

{
1 if y ∈WAw;

0 otherwise.

(2) The functor

AvA∗ : Perv(IAu ,XA)(Gr,k)→ PervIu(Gr,k)

sends objects admitting a costandard filtration to objects admitting a co-
standard filtration. More explicitly, for any w ∈ AWS

ext and y ∈ WS
ext we

have

(AvA! (∇Aw) : ∇y) =

{
1 if y ∈WAw;

0 otherwise.

Proof. (1) Recall that an object X in a highest-weight category has a standard
filtration if and only if Ext1(X,−) vanishes on all costandard objects, see [Ri,
Proposition 7.12]. Let us apply this criterion to the categories Perv(IAu ,XA)(Gr,k)

and PervIu(Gr,k). Since AvAψ is exact and sends costandard objects to objects
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admitting a costandard filtration, its exact left adjoint AvA! preserves the prop-
erty of having a standard filtration. The description of multiplicities also follows
from adjunction, together with the explicit description of images under AvAψ of the
standard objects in [AR3, Lemma 3.3(3)].

(2) The proof is similar to that of (1). �

Remark 3.7. The functor AvAψ also has ∗- and !-versions, which turn out to be

canonically isomorphic, see [AR3, Lemma 3.2]. (By definition, AvAψ is identified
with these two versions.) Similarly there exists a canonical morphism of functors

AvA! → AvA∗ ,

but this map is not an isomorphism in general. For instance, when A is a singleton
{s}, it is known that both AvA! (DA

e ) and AvA∗ (DA
e ) are isomorphic to Ts, but

one can check by direct calculation that the image of AvA! (DA
e ) → AvA∗ (De) is

isomorphic to Le.
Nevertheless, the philosophy of Koszul duality suggests that there should exist

some natural isomorphism AvA!
∼= AvA∗ . In more detail, the functor AvAψ is the

counterpart under Koszul duality of push-forward along the projection πA : Fl →
FlA, where FlA is a partial affine flag variety (depending on A). This map is
proper and smooth, so the left and right adjoints of (πA)∗—namely, π∗A and π!

A—

are isomorphic up to a shift. Similarly, AvA! and AvA∗ should be isomorphic (up
to a Tate twist in the setting of mixed sheaves). However, we were unable to find
a direct proof of this claim. (See Lemma 3.8 and Remark 3.11 below for related
results.)

3.7. Wall-crossing functors. For a finitary subset A ⊂ Saff , we consider the
functors

ξ!
A, ξ
∗
A : Db

Iu(Gr,k)→ Db
Iu(Gr,k) defined by

ξ!
A = AvA! ◦AvAψ ,

ξ∗A = AvA∗ ◦AvAψ .

The results recalled in §3.6 imply that:

• each of these functors is t-exact with respect to the perverse t-structure;
• ξ!

A sends perverse sheaves admitting a standard filtration to perverse sheaves
admitting a standard filtration;

• ξ∗A sends perverse sheaves admitting a costandard filtration to perverse
sheaves admitting a costandard filtration;

• ξ!
A is left-adjoint to ξ∗A.

Lemma 3.8. There exists an isomorphism of functors ξ!
A
∼= ξ∗A. As a consequence,

these functors send objects admitting a standard filtration to objects admitting a
standard filtration, and objects admitting a costandard filtration to objects admitting
a costandard filtration; in particular, they send tilting objects to tilting objects.

Proof sketch. The proof requires a different realization of the functors ξ!
A and ξ∗A.

Namely, following Yun (see [BY, Appendix A]; see also [BR] for a review of this
construction, which explicitly allows more general coefficients) one can consider
the “free-monodromic completion” D∧ of the Iu-equivariant derived category of
sheaves on LG/Iu, constructible with respect to the stratification by I-orbits. In
this category we have a perverse t-structure, and a notion of tilting perverse sheaves,
see [BY, §A.7] or [BR, §5.4]; the indecomposable tilting objects are parametrized
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(in terms of their support) by Wext. This category also has a monoidal structure,
and this monoidal category acts in a natural way on the category Db

Iu
(Gr,k). Now

it follows from [BR, Lemma 10.1] that both ξ!
A and ξ∗A are both isomorphic to the

functor given by convolution with the indecomposable tilting object associated with
the element wA. These functors are therefore isomorphic.

The second claim of the lemma is a consequence of this isomorphism and the
properties of ξ!

A and ξ∗A listed above. �

Remark 3.9. The considerations in the proof of Lemma 3.8 simplify in case we
apply the functors ξ∗A and ξ!

A to an object of the form ForIIu(F) for some F in

Db
I (Gr,k). In this case we have

ξ!
A(ForIIu(F)) ∼= TwA ?

I F ∼= ξ∗A(ForIIu(F))

where the convolution bifunctor ?I is as in §3.2.

Thanks to Lemma 3.8, we will write ξA for ξ!
A
∼= ξ∗A when the choice among

these functors does not matter. In case A = {s} for some s ∈ Saff , we will simplify
this notation even further and write ξs for ξ{s}.

Corollary 3.10. The functors

AvA! ,AvA∗ : Perv(IAu ,XA)(Gr,k)→ PervIu(Gr,k)

send objects admitting a standard filtration to objects admitting a standard filtration,
and similarly for costandard filtrations. In particular, these functors send tilting
objects to tilting objects.

Proof. We write the proof for AvA! ; the other case is similar. What we have to prove

is that AvA! (∆A
w) admits a standard filtration and AvA! (∇Aw) admits a costandard

filtration for any w ∈ AWS
ext. The case of standard filtrations has already been

proved in Lemma 3.6. For costandard filtrations, we observe that

AvA! (∇Aw) ∼= AvA! AvAψ (∇w) = ξ!
A(∇w) ∼= ξ∗A(∇w) ∼= AvA∗ AvAψ (∇w) = AvA∗ (∇Aw)

by [AR3, Lemma 3.3(3)] and Lemma 3.8. The right-hand side admits a costandard
filtration by Lemma 3.6, so we are done. �

Remark 3.11. If we denote by [Perv(IAu ,XA)(Gr,k)] and [PervIu(Gr,k)] the Grothen-
dieck groups of the categories Perv(IAu ,XA)(Gr,k) and PervIu(Gr,k) respectively,

and by [AvA! ] and [AvA∗ ] the morphisms induced by AvA! and AvA∗ on Grothendieck
groups, then we have

[AvA! ] = [AvA∗ ].

Indeed, this follows from the observation that for any w ∈ AWS
ext we have

AvA! (LAw) ∼= AvA∗ (LAw),

by the same considerations as in the proof of Corollary 3.10.

We can in fact be more precise regarding the effect of the functors AvA! and

AvA∗ on indecomposable tilting perverse sheaves by adapting the proof of a “Koszul
dual” statement in [Wi, Proposition 3.5], as follows.

Proposition 3.12. For any w ∈ AWS
ext we have

AvA! (TAw) ∼= TwAw
∼= AvA∗ (TAw),

AvAψ (TwAw) ∼= (TAw)⊕#WA .
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Proof. We will prove the first isomorphism on the first line above, and the isomor-
phism on the second line; the second isomorphism on the first line can be obtained
by similar arguments, or deduced using Verdier duality.

First, we note that

(3.7) AvAψ (AvA! (TAw)) ∼= (TAw)⊕#WA .

Indeed, by the comments in §3.6 and Corollary 3.10 the left-hand side is tilting. A
closer look at [AR3, Lemma 3.3(3)] and Lemma 3.6(1) shows that for any y ∈ AWS

ext

we have

(AvAψ (AvA! (TAw)) : ∆A
y ) = (#WA)× (TAw : ∆A

y ) =
(
(TAw)⊕#WA : ∆A

y

)
.

Since a tilting object is determined (up to isomorphism) by its standard multiplic-
ities, this implies the desired isomorphism.

Now, as justified above AvA! (TAw) is tilting. From the description of multiplicities
in Lemma 3.6 one sees that wAw is maximal among the labels of standard objects
appearing in a standard filtration of this object; it follows that TwAw is a direct
summand in it. Let us write

AvA! (TAw) = TwAw ⊕ T .

Then T is tilting, and the standard objects appearing in a standard filtration of
this object are of the form xy with x ∈ WA and y ∈ AWS

ext (because this property

holds true for AvA! (TAw)). We will show that AvAψ (T ) = 0, which will imply that

T = 0 (by exactness of AvAψ and its effect on standard objects as described in [AR3,
Lemma 3.3(3)]), and thereby conclude the proof.

Using (3.7) we obtain that

(TAw)⊕#WA ∼= AvAψ (TwAw)⊕AvAψ (T ).

By the Krull–Schmidt property, this implies that AvAψ (TwAw) and AvAψ (T ) are both

direct sums of copies of TAw. To determine the number of copies in AvAψ (TwAw) it

suffices to compute (AvAψ (TwAw) : ∆A
w); we will show that this number is at least

#WA, which will imply that AvAψ (T ) = 0, as desired. For that, using once again

the exactness of AvAψ and [AR3, Lemma 3.3(3)], it suffices to prove that for any
x ∈WA we have

(3.8) (TwAw : ∆xw) ≥ 1.

However, the union ⊔
x∈WA

Grxw

is open in GrwAw, and is an affine space bundle over MA/BA where MA is the
reductive group attached to A as in [AR3, §3.4] and BA is its natural (negative)
Borel subgroup. The restriction of TwAw to this union is again tilting, and it must
admit the indecomposable tilting object with label wAw (i.e the pullback of the
indecomposable tilting object on MA/BA attached to wA) as a direct summand. It
is a standard fact that the standard object with label xw appears with multiplicity
1 in the latter object for any x (see e.g. [BR]), which implies (3.8) and finishes the
proof. �
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Remark 3.13. (1) From the philosophy of the Finkelberg–Mirković conjecture
and its “singular” variants, Proposition 3.12 can be considered a geometric
counterpart to [Ja, Proposition E.11].

(2) Alternatively, to prove (3.8) one can reduce the proof to the characteristic-
0 setting using Lemma 3.4, and then use the formula for multiplicities of
tilting perverse sheaves in terms of Kazhdan–Lusztig polynomials in this
case proved in [Yu].

Below we will also consider some easier “wall-crossing functors” associated with
elements of Ω. Note that if ω ∈ Ω we have ω̇Iuω̇

−1 = Iu; as a consequence, left
multiplication by ω̇ induces an autoequivalence

ξω : PervIu(Gr,k)
∼→ PervIu(Gr,k)

which satisfies

(3.9) ξω(∆y) ∼= ∆ωy, ξω(∇y) ∼= ∇ωy

for any y ∈WS
ext. From this we deduce that we also have

(3.10) ξω(Ly) ∼= Lωy, ξω(Ty) ∼= Tωy,

again for any y ∈WS
ext.

3.8. A support computation. The following two lemmas, which describe the
effect of wall-crossing functors on the support of perverse sheaves, will be needed
in §6.2 below.

Lemma 3.14. Let y ∈WS
ext and s ∈ Saff .

(1) If sy < y, or if sy > y and sy /∈WS
ext, then ξs(Ly) = 0.

(2) If sy > y and sy ∈ WS
ext then ξs(Ly) is supported on Grsy, and admits Lsy

as a composition factor with multiplicity 1.

Proof. (1) According to (2.6), the condition that sy < y implies that y /∈ {s}WS
ext.

Similarly, if sy > y and sy /∈WS
ext, then again we have y /∈ {s}WS

ext. In view of [AR3,

Lemma 3.3(4)], either of these conditions therefore implies that Av
{s}
ψ (Ly) = 0, and

hence a fortiori that ξs(Ly) = 0.
(2) By Remark 3.9, there exists a perverse sheaf F in PervIu(Fl,k), supported

on Fls and satisfying F|Fls
∼= kFls

[1], such that ξs(Ly) ∼= F ?I Ly. It is easily seen

that the right-hand side is supported on Grsy, and that its restriction to Grsy is
k[`(sy)]; the multiplicity of Lsy in this perverse sheaf is therefore 1. �

Lemma 3.15. Let w ∈Wext, ω ∈ Ω and s1, . . . , sr ∈ Saff be such that

`(ωs1 · · · srw) = `(w) + r

and ωs1 · · · srw belongs to WS
ext. Then:

(1) w belongs to WS
ext;

(2) for any perverse sheaf F supported on Grw, ξωξs1 · · · ξsr (F) is supported on
Grωs1···srw; moreover we have

[ξωξs1 · · · ξsr (F) : Lωs1···srw] = [F : Lw].
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Proof. In view of (3.10), and since WS
ext is stable under left multiplication by el-

ements of Ω, we can assume that ω = e. Then we proceed by induction on r,
the case r = 0 being obvious. If r ≥ 1, then [AR3, Lemma 2.2] ensures that
s2 · · · srw ∈WS

ext, so that by induction w ∈WS
ext (establishing (1)).

Now let F be a perverse sheaf supported on Grw. By induction, ξs2 · · · ξsr (F)
is supported on Grs2···srw, so that its composition factors are of the form Ly with
y ∈WS

ext satisfying y ≤ s2 · · · srw, and in case y = s2 · · · srw we have

[ξs2 · · · ξsr (F) : Ls2···srw] = [F : Lw].

By exactness of ξs1 (see §3.7) the object ξs1 · · · ξsr (F) is then an extension of per-
verse sheaves ξs1(Ly) for such y’s. If s1y < y or if s1y > y and s1y /∈ WS

ext, then
ξs1(Ly) = 0 by Lemma 3.14(1). If s1y > y and s1y ∈ WS

ext with y 6= s2 · · · srw
then by Lemma 3.14(2) ξs1(Ly) is supported on Grs1y; since s1y < s1 · · · srw this

perverse sheaf is therefore supported on Grs1···srw but does not admit Ls1···srw as a
composition factor. Finally, for y = s2 · · · srw, again by Lemma 3.14(2) the perverse
sheaf ξs1(Ls2···srw) is supported on Grs1···srw, and

[ξs1(Ls2···srw) : Ls1s2···srw] = 1.

We deduce statement (2), which finishes the induction. �

3.9. The geometric Steinberg formula. To finish this section we state the “geo-
metric Steinberg formula” proved in [AR3, Theorems 4.1 and 4.3]. This statement
will be the starting point for all the main constructions of the present paper.

Theorem 3.16. Let A ⊂ Saff be a finitary subset.

(1) For any w ∈ AW res
ext and any µ ∈ Y+ we have

LAw ?
L+G ICµ ∼= LAwtw◦(µ) .

(2) For any w ∈ AW res
ext, the functor

LAw ?
L+G (−) : PervL+G(Gr,k)→ Perv(IAu ,XA)(Gr,k)

is fully faithful.

Later we will also need the following corollary of Theorem 3.16.

Corollary 3.17. Let y, y′ ∈ AW res
ext, µ ∈ Y+ and ν ∈ −Y+.

(1) If Hom(LAy ?
L+G Iµ! ,∇Ay′tν ) 6= 0, then there exists λ ∈ Y orthogonal to all

roots such that y = y′tλ.

(2) If ν 6= w◦(µ), then Hom(LAy ?
L+G Iµ! ,∇Aytν ) = 0.

(3) The space Hom(LAy ?
L+G Iµ! ,∇Aytw◦(µ)) is 1-dimensional, and spanned by the

composition

LAy ?
L+G Iµ! � LAy ?

L+G ICµ ∼= LAytw◦(µ) ↪→ ∇
A
ytw◦(µ)

,

where the surjection is induced by the surjection Iµ! � IC
µ and the isomor-

phism is given by Theorem 3.16(1).

Proof. (1) By Theorem 3.16 and exactness of the bifunctor ?L
+G, taking a com-

position series of Iµ! we obtain a composition series of LAy ?
L+G Iµ! , all of whose
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subquotients are of the form LAytw◦(η) for η ∈ Y+. If our Hom-space is nonzero,

there exists such an η which satisfies

Hom(LAytw◦(η) ,∇
A
y′tν ) 6= 0,

i.e. such that ytw◦(η) = y′tν . By the definition of W res
ext , this implies that ν −w◦(η)

is orthogonal to all roots, and then the desired claim.
(2) By [AR3, Lemma 3.3(4)] we have AvAψ (Ly) ∼= LAy , so

AvAψ (Ly ?
L+G Iµ! ) ∼= LAy ?

L+G Iµ! .
Using adjunction, we deduce that

Hom(LAy ?
L+G Iµ! ,∇

A
ytν ) ∼= Hom(Ly ?

L+G Iµ! ,AvA∗ (∇Aytν )).

Now by [AR3, Lemma 3.3(3)] and Remark 3.9 we have

AvA∗ (∇Aytν ) ∼= TwA ?
I ∇ytν .

It is a standard fact that there exists an embedding Ne ↪→ TwA whose cokernel
admits a costandard filtration with subquotients of the form Nx with x ∈WAr{e},
each appearing once. Since ytν is minimal in WAytν (see §2.4), using Lemma 3.1(4)
we deduce an embedding ∇ytν ↪→ TwA ?

I ∇ytν whose cokernel admits a costandard
filtration with subquotients ∇xytν with x ∈ WA r {e}. Since all the composition

factors of Ly ?
L+G Iµ! have their label in AWS

ext (see the proof of (1) and (2.7)), for
any such x we have

Hom(Ly ?
L+G Iµ! ,∇xytν ) = 0.

We deduce that Hom(Ly ?
L+G Iµ! ,∇ytν ) ∼= Hom(Ly ?

L+G Iµ! ,TwA ?
I ∇ytν ), and

hence

Hom(LAy ?
L+G Iµ! ,∇

A
ytν ) ∼= Hom(Ly ?

L+G Iµ! ,∇ytν ).

Finally we have a surjection ∆y � Ly, which induces an embedding

Hom(Ly ?
L+G Iµ! ,∇ytν ) ↪→ Hom(∆y ?

L+G Iµ! ,∇ytν ).

By [AR3, Lemma 4.9] the right-hand side vanishes if ν 6= w◦(µ), which implies the
desired claim.

(3) As in (2) we have an embedding

Hom(LAy ?
L+G Iµ! ,∇

A
ytw◦(µ)

) ↪→ Hom(∆y ?
L+G Iµ! ,∇ytw◦(µ)).

By [AR3, Remark 4.10] the right-hand side is 1-dimensional, so that the left-hand
side has dimension 0 or 1. The nonzero morphism exhibited in the statement shows
that this space is nonzero; it must therefore be 1-dimensional. �

4. Background from representation theory

In the next section we will introduce our main object of study, a certain category
of ind-perverse sheaves which should be thought of as a geometric counterpart of

the category of qG1
qT-modules for a reductive group qG (with maximal torus qT)

such that qG(1) is Langlands dual to G. In order to motivate this construction, and
to justify our conventions, we explain in this section the representation-theoretic
version of this construction.

For any group scheme H over k, we will denote by Rep(H) the category of
finite-dimensional H-modules.
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4.1. Representations of Frobenius kernels as representations of reductive
groups with additional structure. We fix a split connected reductive algebraic

group qG over a perfect field k of characteristic p > 0, with a Borel subgroup qB and

a maximal torus qT ⊂ qB. (We use this notation because, in practice, we want to

use the results below in the case G and qG are related as in §1.1. But in the present

section qG can be arbitrary.) We will denote by Y the lattice of characters of qT, and

by Y+ ⊂ Y the subset of dominant weights, with the convention that the qT-weights

in Lie(qB) are the negative roots. (Of course, in general these sets might differ from
those denoted in the same way in §2.1, but they will coincide in the case we are

interested in.) We have the Frobenius morphism Fr : qG → qG(1), which restricts

to the Frobenius morphisms of qB and qT; we will identify the character lattice of
qT(1) with Y in such a way that the morphism Fr∗ : X∗(qT(1))→ Y identifies with
λ 7→ pλ.

We will be mostly interested in representations of qG1
qT := Fr−1(qT(1)). Following

the point of view of [AG], we consider the composition of equivalences

(4.1) Rep( qG1
qT) ∼= Coh

|G1
qT(pt) ∼= Coh

|G× qT(1)(
( qG× qT(1))/ qG1

qT
)
,

where qG1
qT is seen as a subgroup in qG × qT(1) via g 7→ (g,Fr(g)). Now the map

(g, t) 7→ Fr(g)t−1 induces an isomorphism

( qG× qT(1))/ qG1
qT
∼→ qG(1),

so that the category on the right-hand side of (4.1) identifies with the category

of qG × qT(1)-equivariant coherent sheaves on qG(1), or in other words with qG-

equivariant Y-graded O( qG(1))-modules which are finitely generated over O( qG(1)).

Here O( qG(1)) is endowed with the left regular representation structure, and con-
sidered as Y-graded with

O( qG(1))λ = Ind
|G(1)

qT(1) (−λ),

and the equivalence sends a qG1
qT-module M to the Y-graded module whose degree-

λ component is

Ind
|G
|G1

qT

(
M ⊗ Fr∗(k

qT(1)(−λ))
)
.

In particular, in view of the tensor identity (see [Ja, Proposition I.3.6]), under this

equivalence the restriction functor Rep( qG)→ Rep( qG1
qT) identifies with the functor

sending M to the Y-graded module whose degree-λ component is

M ⊗ Ind
|G
|G1

qT

(
Fr∗(k

qT(1)(−λ))
)

= M ⊗ Ind
|G(1)

qT(1) (−λ) = M ⊗ O( qG(1))λ.

The qG-modules considered above are typically infinite-dimensional; however the
category of all (possibly infinite-dimensional) algebraic representations of an al-
gebraic group identifies with the category of ind-objects in the category of finite-
dimensional representations. (See §5.1 below for some comments and references
on ind-objects.) From this point of view, we therefore obtain an equivalence of

categories between Rep( qG1
qT) and the category of Y-graded ind-objects in Rep( qG)

endowed with a graded action of O( qG(1)) (seen as an algebra object in the category

of Y-graded ind-objects in Rep( qG)) and which are finitely generated with respect
to this action (i.e. isomorphic to a quotient of a finite direct sum of grading shifts

of objects M ⊗ O( qG(1)) with M ∈ Rep( qG)).
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Remark 4.1. (1) The same considerations show that the category of Y-graded

ind-objects in Rep( qG(1)) endowed with a graded action of O( qG(1)) identi-
fies with the category of Y-graded k-vector spaces (i.e. algebraic—but not

necessarily finite dimensional—representations of qT(1)).

(2) One can also omit the torus qT in this construction, i.e. consider the Frobe-

nius kernel qG1 instead of qG1
qT, and deduce an equivalence of categories

between Rep( qG1) and the category of ind-objects in Rep( qG) endowed with

an action of O( qG(1)) and which are finitely generated with respect to this
action.

4.2. The left regular representation as an ind-object. In this subsection we

explain how the object Ind
|G(1)

qT(1) (−λ) can be explicitly represented as an ind-object

in Rep( qG(1)).
For λ ∈ Y+, we will denote by M(1)(λ), resp. N(1)(λ), the Weyl module, resp. in-

duced module, for qG(1) of highest weight λ; by definition we have M(1)(λ) =
N(1)(−w◦(λ))∗. It is a standard fact that for λ, µ ∈ Y+ and n ∈ Z we have

(4.2) Extn
Rep(|G(1))

(M(1)(λ),N(1)(µ)) ∼=

{
k if λ = µ and n = 0;

0 otherwise;

see [Ja, Proposition II.4.13]. Given λ, λ′ ∈ Y+ there exists a unique morphism of
qG(1)-modules

(4.3) N(1)(λ)⊗ N(1)(λ′)→ N(1)(λ+ λ′)

sending the tensor product of the highest weight vectors in the left-hand side to
the highest weight vector in the right-hand side. By duality, we deduce for any
λ, λ′ ∈ Y+ a canonical morphism

(4.4) M(1)(λ+ λ′)→ M(1)(λ)⊗M(1)(λ′).

We will assume we are given, for any λ ∈ Y+, a nonzero morphism of qG(1)-
modules

ϕλ : M(1)(λ)→ N(1)(λ),

such that for λ, λ′ ∈ Y+ the composition

M(1)(λ+ λ′)
(4.4)−−−→ M(1)(λ)⊗M(1)(λ′)

ϕλ⊗ϕλ′−−−−−→ N(1)(λ)⊗N(1)(λ′)
(4.3)−−−→ N(1)(λ+ λ′)

coincides with ϕλ+λ′ . (See Remark 4.4 below for a discussion of this condition.)
By adjunction, ϕλ determines a canonical morphism

(4.5) k→ N(1)(−w◦(λ))⊗ N(1)(λ).

Below we will consider various (formal) inductive limits parametrized by some
subsets of Y+; in each case, this subset is endowed with the restriction of the partial
order on Y+ such that λ is smaller than λ′ iff λ′ − λ is dominant. Given a weight
µ ∈ Y, we consider the ind-object

“ lim−→ ”
λ∈Y+∩(w◦(µ)+Y+)

N(1)(µ− w◦(λ))⊗ N(1)(λ)

where given η ∈ Y+ the transition morphism

N(1)(µ− w◦(λ))⊗ N(1)(λ)→ N(1)(µ− w◦(λ+ η))⊗ N(1)(λ+ η)
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is the composition

N(1)(µ−w◦(λ))⊗N(1)(λ)→ N(1)(µ−w◦(λ))⊗N(1)(−w◦(η))⊗N(1)(η)⊗N(1)(λ)

→ N(1)(µ− w◦(λ+ η))⊗ N(1)(λ+ η)

where the first map is induced by (4.5), and the second one by (4.3) (applied in the
first two and last two factors).

Lemma 4.2. For any µ ∈ Y, the functor represented by the ind-object

“ lim−→ ”
λ∈Y+∩(w◦(µ)+Y+)

N(1)(µ− w◦(λ))⊗ N(1)(λ)

is given by V 7→ Hom
|G(1)(V, Ind

|G(1)

qT(1) (µ)).

Proof. By Frobenius reciprocity [Ja, Proposition II.3.4], for any V in Rep( qG(1)) we
have

Hom
|G(1)(V, Ind

|G(1)

qT(1) (µ)) = (Vµ)∗,

where Vµ is the µ-weight space of V . Now we have a canonical morphism of
qB(1)-modules N(1)(µ − w◦(λ)) → k

qB(1)(µ − w◦(λ)), and the morphism ϕ−w◦(λ)

determines a morphism of qB(1)-modules M(1)(−w◦(λ))→ k
qB(1)(−w◦(λ)). In turn,

this morphism defines a highest weight vector in M(1)(−w◦(λ)), hence a lowest

weight vector in N(1)(λ), which determines a morphism of qT(1)-modules N(1)(λ)→
k

qT(1)(w◦(λ)). Tensoring these morphisms we obtain a morphism of qT(1)-modules

N(1)(µ− w◦(λ))⊗ N(1)(λ)→ k
qT(1)(µ), hence a morphism of qG(1)-modules

N(1)(µ− w◦(λ))⊗ N(1)(λ)→ Ind
|G(1)

qT(1) (µ),

and finally a morphism of functors

Hom
|G(1)(−,N(1)(µ− w◦(λ))⊗ N(1)(λ))→ Hom

|G(1)(−, Ind
|G(1)

qT(1) (µ)).

We deduce a morphism of functors

lim−→
λ

Hom
|G(1)(−,N(1)(µ− w◦(λ))⊗ N(1)(λ))→ Hom

|G(1)(−, Ind
|G(1)

qT(1) (µ)),

and to conclude it suffices to prove that this morphism is an isomorphism.
On the other hand, for λ ∈ Y+ ∩ (w◦(µ) + Y+) we have

(4.6) Hom
|G(1)

(
V,N(1)(µ− w◦(λ))⊗ N(1)(λ)

)
∼= Hom

|G(1)

(
M(1)(−w◦(λ)), V ∗ ⊗ N(1)(µ− w◦(λ))

)
.

Assume now that λ is large enough that ν+µ−w◦(λ) is dominant for any weight ν
of V ∗. Then, by the tensor identity [Ja, Proposition I.3.6] and Kempf’s vanishing
theorem [Ja, Proposition II.4.5], the module V ∗ ⊗ N(1)(µ − w◦(λ)) admits a finite
filtration with associated graded⊕

ν

(V ∗)ν ⊗ N(1)(µ+ ν − w◦(λ)).

In this case, in view of (4.2) the space in (4.6) identifies with

(V ∗)−µ ⊗Hom
|G(1)

(
M(1)(−w◦(λ)),N(1)(−w◦(λ))

) ∼= (Vµ)∗,

which concludes the proof. �
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Remark 4.3. (1) Below we will also require a variant of Lemma 4.2, which
follows from similar arguments (using also Frobenius reciprocity for the

induction from qB(1) to qG(1)). Consider, for a given µ ∈ Y, the ind-object

“ lim−→ ”
λ∈Y+∩(w◦(µ)+Y+)

k
qB(1)(µ− w◦(λ))⊗ N(1)(λ)

in Rep(qB(1)), where for η ∈ Y+ the transition morphism

k
qB(1)(µ− w◦(λ))⊗ N(1)(λ)→ k

qB(1)(µ− w◦(λ+ η))⊗ N(1)(λ+ η)

is the composition

k
qB(1)(µ−w◦(λ))⊗N(1)(λ)→ k

qB(1)(µ−w◦(λ))⊗N(1)(−w◦(η))⊗N(1)(η)⊗N(1)(λ)

→ k
qB(1)(µ− w◦(λ))⊗ k

qB(1)(−w◦(η))⊗ N(1)(η)⊗ N(1)(λ)

→ k
qB(1)(µ− w◦(λ+ η))⊗ N(1)(λ+ η)

where the first map is induced by (4.5), the second one by the natural mor-
phism N(1)(−w◦(η)) → k

qB(1)(−w◦(η)), and the third one by (4.3). Then
the functor represented by this ind-object is given by

V 7→ Hom
qB(1)(V, Ind

qB(1)

qT(1)(µ)).

(2) Given a property depending on a coweight λ living in a subset Λ ⊂ Y,
we will say that this property holds when λ is large enough if there exists
ν ∈ Y such that the property holds for any λ ∈ Λ ∩ (ν + Y+). The proof

of Lemma 4.2 shows that given V, V ′ in Rep( qG(1)), the vector space

Hom
|G(1)(V, V

′ ⊗ N(1)(µ− w◦(λ))⊗ N(1)(λ))

does not depend on λ (up to canonical isomorphism) if λ is large enough.

Since O( qG(1)) is an algebra, we have multiplication morphisms

Ind
|G(1)

qT(1) (µ)⊗ Ind
|G(1)

qT(1) (ν)→ Ind
|G(1)

qT(1) (µ+ ν)

for any µ, ν ∈ Y. Via the identification of Lemma 4.2, this morphism is induced
by the collection of natural morphisms

N(1)(µ− w◦(λ))⊗ N(1)(λ)⊗ N(1)(ν − w◦(λ′))⊗ N(1)(λ′)

→ N(1)(µ+ ν − w◦(λ+ λ′))⊗ N(1)(λ+ λ′)

(for λ, λ′ dominant and sufficiently large) induced by (4.3).

Remark 4.4. The datum of a collection of morphisms (ϕλ : λ ∈ Y+) as above is
equivalent to the datum of a lift of the longest element w◦ of the Weyl group of

( qG(1), qT(1)) to N
|G(1)(qT(1)).

Indeed, assume we are given a collection of morphisms as above. For any µ ∈ Y,
setting λ′ = µ− w◦(λ) we obtain an isomorphism

“ lim−→ ”
λ∈Y+∩(w◦(µ)+Y+)

N(1)(µ− w◦(λ))⊗ N(1)(λ)

= “ lim−→ ”
λ′∈Y+∩(µ+Y+)

N(1)(w◦(µ)− w◦(λ′))⊗ N(1)(λ′).
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By Lemma 4.2, this identification provides, for any V ∈ Rep( qG(1)), an isomorphism

Vµ
∼→ Vw◦(µ). One can check that these isomorphisms provide a tensor automor-

phism of the forgetful functor from Rep( qG(1)) to finite-dimensional k-vector spaces

hence, by Tannakian formalism, an element in qG(1). The behaviour of this element

with respect to weight spaces shows that this element is a lift of w◦ to N
|G(1)(qT(1)).

Conversely, recall that by construction the module N(1)(λ) comes with a canon-

ical vector of weight λ. Given a lift of w◦ to N
|G(1)(qT(1)), we obtain a canonical

vector of weight w◦(λ) in each N(1)(λ), and then a canonical vector of weight λ in

each M(1)(λ). There exists then a unique morphism of qG(1)-modules from M(1)(λ)
to N(1)(λ) sending the highest weight vector of the former to the highest weight
vector of the latter, which provides a construction of a morphism ϕλ as above.

4.3. Baby co-Verma modules as ind- qG-modules. We now consider the preim-

age qB1
qT of qT(1) under the Frobenius morphism qB→ qB(1). Following the conven-

tions of [Ja, §II.9.1], for ν ∈ Y we consider the baby co-Verma module

Ẑ′(ν) = Ind
|G1

qT
qB1

qT
(ν),

where on the right-hand side ν is seen as a character of qB, and hence of qB1
qT by re-

striction. In order to describe the image of this qG1
qT-module under the equivalence

of §4.1, we need to describe, for any λ ∈ Y, the representation

Ind
|G
|G1

qT
(Ẑ′(ν)⊗ k

qT(1)(−λ)) = Ind
|G
|G1

qT
(Ẑ′(ν − pλ)).

For any µ ∈ Y+, we will denote by N(µ) the induced qG-module with highest
weight µ. Note that given µ, µ′ ∈ Y+, there exists a canonical morphism

(4.7) N(µ′)⊗
(
Fr∗N(1)(µ)

)
→ N(pµ+ µ′)

sending the tensor product of the canonical highest weight vectors on the left-hand
side to the canonical highest weight vector on the right-hand side. Given µ ∈ Y,
we consider the ind-object

“ lim−→ ”
λ∈Y+∩ 1

p (w◦(µ)+Y+)

N(µ− pw◦(λ))⊗ Fr∗(N(1)(λ))

in Rep( qG), where the transition morphisms are given by the compositions

N(µ− pw◦(λ))⊗ Fr∗(N(1)(λ))

→ N(µ− pw◦(λ))⊗ Fr∗(N(1)(−w◦(η)))⊗ Fr∗(N(1)(η))⊗ Fr∗(N(1)(λ))

→ N(µ− pw◦(λ+ η))⊗ Fr∗(N(1)(λ+ η))

for η ∈ Y+, where the first map is induced by (4.5) and the second one by (4.3)
and (4.7).

Lemma 4.5. For any µ ∈ Y, the functor represented by the ind-object

“ lim−→ ”
λ∈Y+∩ 1

p (w◦(µ)+Y+)

N(µ− pw◦(λ))⊗ Fr∗(N(1)(λ))

is given by V 7→ Hom
|G

(V, Ind
|G
|G1

qT
(Ẑ′(µ))).
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Proof. We will consider the functor (−)
qB1

of “coinvariants” for finite-dimensional

representations of the Frobenius kernel qB1 of qB, given by

V
qB1

:= ((V ∗)
qB1)∗.

It is easily seen that this functor is left adjoint to the inclusion functor from

finite-dimensional k-vector spaces to Rep(qB1); it also induces a functor Rep(qB)→
Rep(qB(1)) which is left adjoint to the functor Fr∗ : Rep(qB(1))→ Rep(qB).

For V in Rep( qG), we observe that by the tensor identity and Frobenius reciprocity
we have

Hom
|G

(
V,N(µ−pw◦(λ))⊗Fr∗(N(1)(λ))

) ∼= Hom
qB

(
V,k

qB(µ−pw◦(λ))⊗Fr∗(N(1)(λ))
)
.

We deduce that this space identifies with

Hom
qB(1)

(
(V ⊗ k

qB(−µ))
qB1
,k

qB(1)(−w◦(λ))⊗ N(1)(λ)
)
.

Using Remark 4.3(1), we deduce an isomorphism

lim−→
λ

Hom
|G

(
V,N(µ− pw◦(λ))⊗ Fr∗(N(1)(λ))

) ∼=
Hom

qB(1)

(
(V ⊗ k

qB(−µ))
qB1
, Ind

qB(1)

qT(1)(k)
)
.

Now we have

Hom
qB(1)

(
(V ⊗ k

qB(−µ))
qB1
, Ind

qB(1)

qT(1)(k)
) ∼= Hom

qB

(
V ⊗ k

qB(−µ),Fr∗(Ind
qB(1)

qT(1)(k))
)

∼= Hom
qB

(
V,Fr∗(Ind

qB(1)

qT(1)(k))⊗ k
qB(µ)

)
,

and

Fr∗(Ind
qB(1)

qT(1)(k))⊗ k
qB(µ) ∼= Ind

qB
qB1

qT
(k)⊗ k

qB(µ) ∼= Ind
qB
qB1

qT
(µ)

by the tensor identity; using Frobenius reciprocity and transitivity of induction
(see [Ja, §II.3.5]) we deduce an isomorphism

lim−→
λ

Hom
|G

(
V,N(µ− pw◦(λ))⊗ Fr∗(N(1)(λ))

) ∼= Hom
|G

(V, Ind
|G
qB1

qT
(µ)).

Transitivity of induction also implies that Ind
|G
|G1

qT
(Ẑ′(µ)) ∼= Ind

|G
qB1

qT
(µ), so that this

provides the desired isomorphism. �

This lemma shows that for ν ∈ Y the image of Ẑ′(ν) under the equivalence
of §4.1 is the Y-graded ind-object with degree-λ component given by

“ lim−→ ”
µ

N(ν − pλ− pw◦(µ))⊗ Fr∗(N(1)(µ)),

where the transition morphisms are as above. In these terms, and using the de-

scription of Lemma 4.2, the action of O( qG(1)) is induced by the morphisms

N(ν − pλ− pw◦(µ))⊗ N(1)(µ)⊗ N(1)(−λ′ − w◦(µ′))⊗ N(1)(µ′)

→ N(ν − p(λ+ λ′)− pw◦(µ+ µ′))⊗ N(1)(µ+ µ′)

induced by (4.3) and (4.7) for λ, λ′ ∈ Y and µ, µ′ ∈ Y+ large enough (where we
omit the functor Fr∗ to lighten notation).
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5. Modules over the regular perverse sheaf

We now come back to the setting of Sections 2–3.
In this section, for any finitary subset A ⊂ Saff we will define and initiate the

study of a certain category of ind-objects in Perv(IAu ,XA)(Gr,k) equipped with ad-
ditional structures: namely, a grading indexed by Y, and the structure of a right
module over a certain algebra ind-object R in PervL+G(Gr,k). After some prelim-
inaries in Section 6, in Section 7 we will see that this category is a finite-length
abelian category with enough injectives and projectives, and that it satisfies prop-

erties similar to those of the category Rep( qG1
qT) where qG is a connected reductive

algebraic group over k (with maximal torus qT) whose Frobenius twist is G∨k . One
can also omit the Y-grading, and obtain a similar theory that is analogous to that

of qG1-modules. This theory will be reviewed in Section 8.

5.1. Ind-objects. Our constructions will make use of ind-objects in categories; for
the generalities on this construction we refer to [KS, Chap. 6].3 For simplicity, for
any category A and ind-objects X and Y in A, we will denote by HomA(X,Y )
the space of morphisms from X to Y in the category of ind-objects in A. We will
repeatedly use the fact that any functor F : C → D extends in a canonical way to
a functor Ind(C) → Ind(D), which will be denoted by the same symbol, see [KS,
Proposition 6.1.9]. In view of [KS, Proposition 6.1.12], a similar comment applies
to bifunctors. Recall also that the category of ind-objects in an abelian category is
abelian, see [KS, Theorem 8.6.5], and that the functor on ind-objects induced by
an exact functor is exact, see [KS, Corollary 8.6.8].

Given a category A and a set X, by an X-graded object in A we will mean a
collection A = (Ax : x ∈ X) of objects in A. We will write informally

A =
⊕
x∈X

Ax,

but the symbol “
⊕

” has no formal meaning here. In particular, we do not assume
that only finitely many objects Ax are nonzero, nor that the (possibly infinite)
direct sum exists in A.

5.2. The regular perverse sheaf. Recall the objects Iλ∗ and Iλ! (λ ∈ Y+) intro-
duced in §3.3. For any λ ∈ Y+, the natural morphisms for sheaf functors provide
a canonical morphism

Iλ! → Iλ∗ .

Since Iλ! has rigid dual I−w◦(λ)
∗ (see (3.3)), this morphism induces a canonical

morphism

(5.1) IC0 → Iλ∗ ?L
+G I−w◦(λ)

∗ .

Next, for λ, µ ∈ Y+, since the perverse sheaf Iλ∗ ?L
+GIµ∗ is supported on the closure

of Grλ+µ and has restriction to Grλ+µ equal to kGrλ+µ [dim(Grλ+µ)], there exists a
canonical morphism

(5.2) Iλ∗ ?L
+G Iµ∗ → Iλ+µ

∗ .

3Here, for simplicity, and contrary to the authors of [KS], we will neglect all set-theoretic
subtleties involved in this construction, and pretend that all categories are small.
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Let us endow Y+ (and any of its subsets) with the preorder such that λ is less
or equal to λ′ iff λ′ − λ is dominant. For µ ∈ Y we consider the ind-object

(5.3) Rµ = “ lim−→ ”
λ∈Y+∩(−w◦(µ)+Y+)

Iw◦(µ)+λ
∗ ?L

+G I−w◦(λ)
∗

in PervL+G(Gr,k), where the transition maps are given by the morphisms

Iw◦(µ)+λ
∗ ?L

+G I−w◦(λ)
∗ → Iw◦(µ)+λ

∗ ?L
+G Iν∗ ?L

+G I−w◦(ν)
∗ ?L

+G I−w◦(λ)
∗

→ Iw◦(µ)+λ+ν
∗ ?L

+G I−w◦(λ+ν)
∗

for ν ∈ Y+. Here, the first map comes from (5.1), and the second one from (5.2)
(applied to the first two and last two factors).

We have an obvious “unit map”

(5.4) η : IC0 → R0,

and for µ, µ′ ∈ Y we have a “multiplication map”

(5.5) Rµ ?L
+G Rµ′ → Rµ+µ′

obtained as the limit (over suitable λ, λ′) of the maps

(
Iw◦(µ)+λ
∗ ?L

+G I−w◦(λ)
∗

)
?L

+G
(
Iw◦(µ

′)+λ′

∗ ?L
+G I−w◦(λ

′)
∗

)
→ Iw◦(µ+µ′)+λ+λ′

∗ ?L
+G I−w◦(λ+λ′)

∗

provided by (5.2) and the commutativity constraint on the monoidal category
PervL+G(Gr,k). The map (5.5) satisfies an obvious associativity property, as well as
an appropriate compatibility property with (5.4). Therefore, (5.4) and (5.5) make
the Y-graded ind-object

R :=
⊕
µ∈Y

Rµ

into an algebra object in the category of Y-graded ind-perverse sheaves. We call
R the regular perverse sheaf.

Recall the autoequivalence sw of the category PervL+G(Gr,k) considered in [AR3,

§1.2]. Then for any λ ∈ Y+ we have a canonical isomorphism sw(Iλ∗ ) ∼= I−w◦(λ)
∗ .

These isomorphisms and Lemma 4.24 show that sw(Rµ) corresponds, under (the

extension to ind-objects of) the equivalence Sat, to Ind
G∨k
T∨k

(−µ), seen as an ind-object

in Rep(G∨k ). (In this case, we choose as morphism ϕλ from §4.2 the one induced by
the canonical morphism Iλ! → Iλ∗ .) This justifies our choice of convention for the
definition of R, in view of the formulation of the Finkelberg–Mirković conjecture
in [AR3, Conjecture 1.1].

4In Section 4 we have assumed that k has positive characteristic; however Lemma 4.2 also

holds in characteristic 0, if qG(1) is interpreted as an abstract reductive group, without reference

to another group qG.
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5.3. Splitting the unit map in characteristic 0. For later use (in §9.6), in this
subsection we show that when k has characteristic 0, the unit map (5.4) admits a
left inverse, and hence that IC0 is a direct summand of R0. Recall that in this
case the category PervL+G(Gr,k) is semisimple, and that the canonical morphism
Iµ! → I

µ
∗ is an isomorphism (and both objects can be identified with ICµ). We can

therefore rewrite the definition of R0 from (5.3) as

(5.6) R0 = “ lim−→ ”
λ∈Y+

ICλ ?L
+G IC−w◦(λ).

Next, dual to (5.1), we have a “counit map” ελ : ICλ ?L+G IC−w◦(λ) → IC0. These
maps are not compatible with the transition maps in (5.6), so they do not define a
map R0 → IC0.

However, in the present setting that char(k) = 0 we can correct this failure of
compatibility by introducing the maps

ε̄λ = 1
dim Sat(ICλ)

ελ = 1
dim Sat(IC−w◦(λ))ελ : ICλ ?L+G IC−w◦(λ) → IC0.

Let ηλ : IC0 → ICλ ?L+G IC−w◦(λ) be the map defined in (5.1). The composition

εληλ : IC0 → IC0 is given by multiplication by dim Sat(ICλ) (this can easily be
seen by consider the analogous unit and counit maps in the category Rep(G∨k )), so
ε̄ληλ = id.

We claim that the maps ε̄λ are compatible with the transition maps in (5.6), i.e.,
that the bottom square in the following diagram commutes:

IC0

ICλ ?L+G IC−w◦(λ) ICλ+ν ?L
+G IC−w◦(λ+ν)

IC0 IC0

ηλ
ηλ+ν

ε̄λ ε̄λ+ν

Since dim Hom(ICλ ?L+G IC−w◦(λ), IC0) = 1, the commutativity of the bottom
square can be checked after composition with the unit maps in the top part of the
diagram. Commutativity follows from the observation that ε̄ληλ = ε̄λ+νηλ+ν = id.
Together, the collection of maps ε̄λ define a map of ind-perverse sheaves

ε̄ : R0 → IC0

satisfying ε̄ ◦ η = id.

5.4. Graded R-modules. A Y-graded right R-module is, by definition, a Y-
graded ind-object

F =
⊕
λ∈Y

Fλ

in Perv(IAu ,XA)(Gr,k), along with a collection of maps

Fλ ?L
+G Rµ → Fλ+µ

for λ, µ ∈ Y, satisfying obvious unit and associativity axioms. Let

ModY
(IAu ,XA)(R)
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denote the category of Y-graded right R-modules. This is an abelian category. In
the special case where A = ∅, we simplify this notation to ModY

Iu(R).

For any ν ∈ Y, there is a shift-of-grading functor on ModY
(IAu ,XA)(R), denoted

by F 7→ F〈ν〉 and defined by

(F〈ν〉)µ = Fµ−ν ,
with the R-module structure unchanged. Of course we have 〈ν〉 ◦ 〈ν′〉 = 〈ν + ν′〉;
in particular, 〈ν〉 is an autoequivalence with inverse 〈−ν〉.

Given a perverse sheaf F ∈ Perv(IAu ,XA)(Gr,k), we can construct a graded R-
module by the formula

ΦA(F) =
⊕
µ∈Y

F ?L
+G Rµ,

called the free R-module on F . This construction defines an exact functor

ΦA : Perv(IAu ,XA)(Gr,k)→ ModY
(IAu ,XA)(R).

In the case where A = ∅, we usually omit it from the notation and write

Φ : PervIu(Gr,k)→ ModY
Iu(R).

More generally, a free graded R-module of finite type is, by definition, a finite
direct sum of objects of the form ΦA(F)〈ν〉, where F ∈ Perv(IAu ,XA)(Gr,k) and

ν ∈ Y. Note that ΦA is faithful; in fact by exactness this follows from the fact
that it kills no nonzero object, which itself follows from the observation that the
morphism G → ΦA(G)0 induced by the unit morphism η (see (5.4)) is injective,

since η is injective and the functor G ?L+G (−) is exact.
Morphisms from free modules can be easily computed using the following lemma.

Lemma 5.1. For F ∈ Perv(IAu ,XA)(Gr,k) and M ∈ ModY
(IAu ,XA)(R), there is a

natural isomorphism

HomModY
(IAu ,XA)

(R)(Φ
A(F),M) ∼= HomPerv(IAu ,XA)(Gr,k)(F ,M0).

Proof. Consider the unit map η : IC0 → R0. Composition with

id ?L
+G η : F → F ?L

+G R0 = Φ(F)0

defines a map

HomModY
(IAu ,XA)

(R)(Φ(F),M)→ HomPerv(IAu ,XA)(Gr,k)(F ,M0).

On the other hand, given a map φ : F → M0 of (ind-)perverse sheaves, one can
consider for any µ the following composition, which defines a map of graded R-
modules:

(ΦA(F))µ = F ?L
+G Rµ

φ?L
+Gid−−−−−−→M0 ?

L+G Rµ →Mµ.

(Here, the second map comes from the R-module structure on M.) It is straight-
forward to check that these two constructions are inverse to each other. �

An object of ModY
(IAu ,XA)(R) is said to be finitely generated if it is a quotient of

a free graded R-module of finite type. Let

modY
(IAu ,XA)(R) =

the full subcategory of ModY
(IAu ,XA)(R) consisting

of finitely generated modules.
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At the moment, it is not clear that modY
(IAu ,XA)(R) is an abelian category. This will

be established later: see Theorem 7.9.
For any G∨k -module V and λ ∈ Y = X∗(T∨k ), we will denote by Vλ the λ-weight

space in V .

Lemma 5.2. For any F ∈ Perv(IAu ,XA)(Gr,k) and G ∈ PervL+G(Gr,k), the object

ΦA(F ?L+G G) is isomorphic to a finite direct sum of objects of the form ΦA(F)〈ν〉.
More specifically, we have a canonical isomorphism

ΦA(F ?L
+G G) ∼=

⊕
ν∈Y

Sat(G)w◦(ν) ⊗ ΦA(F)〈−ν〉.

Proof. To prove the lemma it suffices to provide canonical isomorphisms

G ?L
+G Rµ ∼=

⊕
ν

Sat(G)w◦(ν) ⊗Rµ+ν

for any µ ∈ Y. Now if V = Sat(sw(G)), we have

V ⊗ Ind
G∨k
T∨k

(−µ) ∼= Ind
G∨k
T∨k

(V ⊗ kT∨k (−µ)) ∼=
⊕
ν

Vν ⊗ Ind
G∨k
T∨k

(−µ+ ν),

where on the right-hand side the action of G∨k is on each Ind
G∨k
T∨k

(−µ+ ν). Applying

sw ◦ Sat−1, we deduce an isomorphism

G ?L
+G Rµ ∼=

⊕
ν

Vν ⊗Rµ−ν .

Finally, by [FS, Proposition VI.12.1] we have Vν = Sat(G)−w◦(ν) for any ν ∈ Y,
which finishes the proof. �

5.5. Simple R-modules. Recall the subset AW res
ext ⊂ AWext introduced in §2.4,

and that (by definition) for any w ∈ AWext there exist y ∈ AW res
ext and λ ∈ Y

such that w = ytλ. Choosing such y and λ we define a graded R-module L̂Aw ∈
ModY

(IAu ,XA)(R) by

L̂Aw := ΦA(LAy )〈−λ〉.
Here the elements y and λ are not unique, but if ytλ = y′tλ′ , then the pairs (y, λ)
and (y′, λ′) are related by the relations y′ = ytν , λ′ = λ − ν, for some ν ∈ Y
orthogonal to all roots. Using the “componentwise” description

(L̂Aw)µ = LAy ?
L+G Rλ+µ for any µ ∈ Y,

along with the fact that for ν as above ICν is the sky-scraper sheaf at Lν , so that

we have LAytν
∼= LAy ?

L+G ICν and ICν ?L+G Rµ ∼= Rν+µ, we see that L̂Aw is well
defined. To remedy this non-uniqueness issue, it is sometimes convenient to choose
a subset (AW res

ext)
′ ⊂ AW res

ext of representatives for the (free) action of the subgroup
of Y consisting of elements orthogonal to all roots; then any element of AWext can
be written uniquely as a product ytλ with y ∈ (AW res

ext)
′ and λ ∈ Y. It is clear from

the definition that for w ∈ AWext and λ ∈ Y we have

(5.7) L̂Awtλ = L̂Aw〈−λ〉.

We will see in Theorem 5.6 below that these are the simple objects in the abelian
category ModY

(IAu ,XA)(R). Anticipating this, we define the category of R-modules
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of finite length to be

ModY
(IAu ,XA)(R)flen :=

the full subcategory of ModY
(IAu ,XA)(R)

consisting of objects that admit a finite

filtration with subquotients of the form L̂Aw.

Lemma 5.3. For any (ordinary) perverse sheaf F ∈ Perv(IAu ,XA)(Gr,k), the free

module ΦA(F) lies in ModY
(IAu ,XA)(R)flen.

Proof. Any composition series for F gives rise to a filtration of ΦA(F) whose sub-
quotients are of the form ΦA(LAx ) with x ∈ AWS

ext. By (2.7), Theorem 3.16(1)
and Lemma 5.2, each such ΦA(LAx ) is a finite direct sum of objects of the form
ΦA(LAy )〈ν〉 with y ∈ AW res

ext and ν ∈ Y. �

Lemma 5.4. Let w, v ∈ AWext. We have

dim HomModY
(IAu ,XA)

(R)(L̂Aw, L̂Av ) =

{
1 if w = v;

0 otherwise.

In particular, any nonzero endomorphism of L̂Aw is an automorphism.

Proof. Let us choose a subset (AW res
ext)
′ ⊂ AW res

ext as above. By unwinding the
definitions and using Lemma 5.1, we see that this lemma is equivalent to the claim
that for x, y ∈ (AW res

ext)
′ and µ ∈ Y, we have

dim HomPerv(IAu ,XA)(Gr,k)(L
A
x , L

A
y ?
L+G Rµ) =

{
1 if x = y and µ = 0;

0 otherwise.

To compute this Hom-group, we must study

lim−→
λ

Hom(LAx , L
A
y ?
L+G Iw◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ ) ∼=

lim−→
λ

Hom(LAx ?
L+G Iλ! , LAy ?L

+G Iw◦(µ)+λ
∗ ),

where the isomorphism uses (3.3). Here, by Theorem 3.16(1) and exactness of

?L
+G, we can obtain a composition series of LAx ?

L+G Iλ! by choosing a composition

series of Iλ! and then convolving with LAx , and likewise for LAy ?
L+G Iw◦(µ)+λ

∗ . From

this description we see that if x 6= y, the objects LAx ?
L+G Iλ! and LAy ?

L+G Iw◦(µ)+λ
∗

have no composition factor in common, so that

Hom(LAx ?
L+G Iλ! , LAy ?L

+G Iw◦(µ)+λ
∗ ) = 0

for any λ. Assume now that x = y. Then, by Theorem 3.16(2), the Hom-groups
above can be identified with

lim−→
λ

Hom(Iλ! , I
w◦(µ)+λ
∗ ).

It is easily seen that this Hom-group is 1-dimensional if µ = 0, and vanishes other-
wise. �

Corollary 5.5. Suppose M ∈ ModY
(IAu ,XA)(R)flen. For any w ∈ AWext, any

nonzero morphism M→ L̂Aw is surjective.
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Proof. This follows from Lemma 5.4 by induction on the length of the given filtra-
tion of M. �

We can now prove the properties of the objects L̂Aw announced above.

Theorem 5.6. For w ∈ AWext, the object L̂Aw is a simple object in the abelian

category ModY
(IAu ,XA)(R). Moreover, the assignment w 7→ L̂Aw gives a bijection

AWext
∼→
{

isomorphism classes of simple

objects in ModY
(IAu ,XA)(R)

}
.

Proof. We begin by showing that any objectM∈ ModY
(IAu ,XA)(R) admits a nonzero

morphism from a free R-module. Choose some nonzero graded component Mµ in
M. As an ind-perverse sheaf,Mµ is an inductive limit of ordinary perverse sheaves,
sayMµ

∼= “ lim−→i
”Fi. Choose some term Fi in this limit such that the natural map

Fi →Mµ is nonzero. Via Lemma 5.1, we obtain a nonzero map

(5.8) φ : ΦA(Fi)〈µ〉 →M.

We will now show that each L̂Aw is simple. If not, there is some nonzero proper

subobject M ⊂ L̂Aw. Composing with a nonzero map as in (5.8), we obtain a

nonzero, nonsurjective map ΦA(Fi)〈µ〉 → L̂Aw. In view of Lemma 5.3, this contra-
dicts Corollary 5.5.

Next, we will show that every simple object in ModY
(IAu ,XA)(R) is isomorphic

to some L̂w. Let M ∈ ModY
(IAu ,XA)(R) be simple, and choose a nonzero map as

in (5.8); this map is necessarily surjective. But by Lemma 5.3, we already know

that ΦA(Fi)〈µ〉 has a composition series whose terms are of the form L̂Aw with
w ∈ AWext, so M must be isomorphic to one of these composition factors, proving
the desired claim.

Finally, the fact that L̂Aw 6∼= L̂Ay if w 6= y is immediate from Lemma 5.4. �

As a consequence of Theorem 5.6, we see that ModY
(IAu ,XA)(R)flen is stable under

subquotients in ModY
(IAu ,XA)(R). In particular, this category is abelian, and by

construction every object in this category has finite length. Using Lemma 5.3 we
also see that

(5.9) modY
(IAu ,XA)(R) ⊂ ModY

(IAu ,XA)(R)flen,

but we reiterate that for the moment, we do not yet know whether modY
(IAu ,XA)(R)

is an abelian category, with one exception: when A = S, we have the following
result.

Proposition 5.7. The category ModY
(ISu ,XS)(R) is canonically equivalent to the

category of (all) algebraic T∨k -modules; in particular, it is semisimple. The sub-

categories modY
(ISu ,XS)(R) and ModY

(ISu ,XS)(R)flen coincide, and are equivalent (via

the equivalence for ModY
(ISu ,XS)(R)) to the category of finite-dimensional algebraic

T∨k -modules, i.e. to the category of finite-dimensional Y-graded k-vector spaces.

Proof. By the main result of [BGMRR], the category Perv(ISu ,XS)(Gr,k) is equiva-
lent to the Satake category PervL+G(Gr,k), which is itself equivalent to the category
Rep(G∨k ) via the geometric Satake equivalence, see §3.3. Via the latter equivalence,
R corresponds by definition to (the ind-object represented by) the algebra O(G∨k )
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(for the left regular representation structure), with the Y-grading coming from the
action of T∨k induced by multiplication on the right. In view of Remark 4.1(1),

the category ModY
(ISu ,XS)(R) therefore identifies with the category of (all) algebraic

T∨k -modules, and both modY
(ISu ,XS)(R) and ModY

(ISu ,XS)(R)flen identify with the sub-
category of finite-dimensional modules. �

We conclude this subsection with a few technical consequences of the results
above that will be required later.

Lemma 5.8. Let w ∈ AWS
ext. If z ∈ AWext is such that L̂Az is a composition factor

of ΦA(LAw), then z � w.

Proof. Write w as w = xtw◦(µ) with x ∈ AW res
ext and µ ∈ Y+. By Theorem 3.16(1),

Lemma 5.2 and (5.7), ΦA(LAw) is a direct sum of objects L̂Axtν where ν is a weight
of Sat(ICµ). These weights are such that µ − w◦(ν) is a sum of positive roots, so
that by Lemma 3.2 we have xtν � xtw◦(µ), i.e. xtν � w, as desired. �

Lemma 5.9. For F ,G ∈ ModY
(IAu ,XA)(R)flen, we have

dim HomModY
(IAu ,XA)

(R)(F ,G) <∞.

In particular, ModY
(IAu ,XA)(R)flen is Krull–Schmidt in the sense of [CYZ, §A.1].

Proof. The first claim follows from Lemma 5.4. The second claim follows by [CYZ,
Remark A.2]. �

In the following statement we use the terminology introduced in Remark 4.3(2).

Lemma 5.10. Let F ,G ∈ Perv(IAu ,XA)(Gr,k), and let µ ∈ Y. If λ ∈ Y+∩(−w◦(µ)+
Y+) is large enough, the natural map

(5.10) HomPerv(IAu ,XA)(Gr,k)(F ,G ?L
+G Iw◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ )

→ HomModY
(IAu ,XA)

(R)(Φ
A(F)〈µ〉,ΦA(G))

is an isomorphism.

The map in this lemma comes from the identification of the right-hand side with

Hom(F ,G ?L+G Rµ) (see Lemma 5.1), which in turn is identified with

lim−→
λ∈Y+∩(−w◦(µ)+Y+)

Hom(F ,G ?L
+G Iw◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ ).

Proof. Any element of Hom(ΦA(F)〈µ〉,ΦA(G)) lies in the image of (5.10) for suffi-
ciently large λ. Since Hom(ΦA(F)〈µ〉,ΦA(G)) is finite-dimensional by Lemma 5.9,
we deduce that (5.10) is surjective for sufficiently large λ (depending on F and
G). Suppose now that 0 → F ′ → F → F ′′ → 0 is a short exact sequence in
Perv(IAu ,XA)(Gr,k), and consider the diagram

0
Hom(F ′′,G ?
Iw◦(µ)+λ∗ ? I−w◦(λ)∗ )

Hom(F ,G ?
Iw◦(µ)+λ∗ ? I−w◦(λ)∗ )

Hom(F ′,G ?
Iw◦(µ)+λ∗ ? I−w◦(λ)∗ )

0 Hom(ΦA(F ′′)〈µ〉,ΦA(G)) Hom(ΦA(F)〈µ〉,ΦA(G)) Hom(ΦA(F ′)〈µ〉,ΦA(G))
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If the first and last columns are isomorphisms and the middle column is surjective,
then the four lemma implies that the middle column is in fact also an isomorphism.
Thus, by induction on the length of F , we may reduce to the case where F is simple.
A similar argument applies to G. It therefore suffices to prove the claim in case F
and G are simple, which we assume from now on.

Choose a subset (AW res
ext)
′ ⊂ AWext as in the discussion above (5.7). Then we

may assume that

F = LAx1tw◦(ν1)

∼= LAx1
?L

+G ICν1 , F = LAx2tw◦(ν2)

∼= LAx2
?L

+G ICν2 ,

where x1, x2 ∈ (AW res
ext)
′ and ν1, ν2 ∈ Y+. As in the proof of Lemma 5.4, if x1 6= x2,

then Theorem 3.16(1) implies that F has no composition factors in common with

any G ?L+G Iw◦(µ)+λ
∗ ?L

+G I−w◦(λ)
∗ , so the left-hand side of (5.10) vanishes for all

λ, and hence so does the right-hand side.
On the other hand, if x1 = x2, then Theorem 3.16(2) lets us identify the left-hand

side of (5.10) with

HomPervL+G(Gr,k)(ICν1 , ICν2 ?L
+G Iw◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ ).

By the geometric Satake equivalence, this is isomorphic to

HomG∨k
(Sat(ICν1),Sat(ICν2)⊗ N(1)(w◦(µ) + λ)⊗ N(1)(−w◦(λ)))

where N(1)(ν) is the induced G∨k -module of highest weight ν. As explained in
Remark 4.3(2), this group is independent of λ for λ large enough, as desired. �

Remark 5.11. If λ, λ′ ∈ Y are such that λ′ − λ ∈ Y+, the morphism (5.10) factors
as a composition

HomPerv(IAu ,XA)(Gr,k)(F ,G ?L
+G Iw◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ )

→ HomPerv(IAu ,XA)(Gr,k)(F ,G ?L
+G Iw◦(µ)+λ′

∗ ?L
+G I−w◦(λ

′)
∗ )

→ HomModY
(IAu ,XA)

(R)(Φ
A(F)〈µ〉,ΦA(G))

where the second morphism is the analogue of (5.10) for λ′. If λ is large enough, this
composition and its second member are isomorphisms, hence so is its first member.

5.6. Baby co-Verma modules: definition and first properties. We now in-
troduce geometric counterparts of the objects studied in §4.3.

For any µ ∈ Y+, since Grtw◦(µ) is open in Grµ, by adjunction there exists a
canonical map

(5.11) Iµ∗ → ∇tw◦(µ) .

Now let w ∈ AWS
ext. Then `(w) + `(tw◦(µ)) = `(wtw◦(µ)) by Lemma 2.1, which

by Lemma 3.1(4) implies that we have a canonical isomorphism Nw ?
I ∇tw◦(µ) ∼=

∇wtw◦(µ) . Applying AvAψ and using [AR3, Lemma 3.3(1)–(3)] we deduce that

(5.12) N A
w ?I ∇tw◦(µ) ∼= ∇

A
wtw◦(µ)

.

Also, for any F ∈ Db
L+G(Gr,k), we have canonical isomorphisms

N A
w ?I F ∼= (π∗N

A
w ) ?L

+G F ∼= ∇Aw ?L
+G F ,
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see [BGMRR, Lemma 2.5] and (3.4). Thus, applying N A
w ?I (−) to (5.11), we

obtain a canonical morphism

(5.13) ∇Aw ?L
+G Iµ∗ → ∇Awtw◦(µ) .

For w ∈ AWext and µ ∈ Y we set

(Ẑ ′Aw )µ = “ lim−→ ”
λ

∇Awtµ+w◦(λ) ?
L+G I−w◦(λ)

∗ ,

where λ runs over the elements of Y+ such that wtµ+w◦(λ) belongs to WS
ext (which

is automatic if λ is sufficiently large, see §2.5) and where the transition morphisms
in the inductive limit are given by the compositions

∇Awtµ+w◦(λ) ?
L+G I−w◦(λ)

∗ → ∇Awtµ+w◦(λ) ?
L+G Iν∗ ?L

+G I−w◦(ν)
∗ ?L

+G I−w◦(λ)
∗

→ ∇Awtµ+w◦(λ+ν) ?
L+G I−w◦(λ+ν)

∗

for ν ∈ Y+, where the first morphism is induced by (5.1) and the second one is
induced by (5.13) (applied to the first two factors) and (5.2) (applied to the last
two factors). We endow the Y-graded ind-perverse sheaf

Ẑ ′Aw :=
⊕
µ∈Y

(Ẑ ′Aw )µ

with the structure of a graded R-module by defining the action morphism

(Ẑ ′Aw )µ ?
L+G Rν → (Ẑ ′Aw )µ+ν

(for µ, ν ∈ Y) as induced by the morphisms(
∇Awtµ+w◦(λ) ?

L+G I−w◦(λ)
∗

)
?L

+G
(
Iw◦(ν)+λ′

∗ ?L
+G I−w◦(λ

′)
∗

)
→ ∇Awtµ+ν+w◦(λ+λ′) ?

L+G I−w◦(λ+λ′)
∗

induced by (5.13) and (5.2) (after application of the commutativity constraint for

?L
+G to the second and third factors), for λ, λ′ sufficiently dominant.
It is clear from definition that for any w ∈ AWext and ν ∈ Y we have

(5.14) Ẑ ′Awtν = Ẑ ′Aw 〈−ν〉.

Lemma 5.12. For w, y ∈ AWext, we have

dim HomModY
(IAu ,XA)

(R)(L̂Ay , Ẑ ′Aw ) =

{
1 if w = y;

0 otherwise.

Proof. Write y = ztν , w = z′tν′ with z, z′ ∈ AW res
ext and ν, ν′ ∈ Y. From the

definition of L̂Ay and Lemma 5.1 we see that

HomModY
(IAu ,XA)

(R)(L̂Ay , Ẑ ′Aw ) ∼= HomPerv(IAu ,XA)(Gr,k)(L
A
z′ , (Ẑ ′Az′ )ν′−ν).

It follows that

HomModY
(IAu ,XA)

(R)(L̂Ay , Ẑ ′Aw ) ∼= lim−→
λ

Hom(LAz ,∇Az′tν′−ν+w◦(λ) ?
L+G I−w◦(λ)

∗ )

∼= lim−→
λ

Hom(LAz ?
L+G Iλ! ,∇Az′tν′−ν+w◦(λ))
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where the second step uses (3.3). By Corollary 3.17(1) the rightmost term vanishes
unless z and z′ differ by multiplication by tη for some coweight η orthogonal to all
roots. In this case we can assume that z = z′; then by Corollary 3.17(2) the Hom
spaces vanish unless ν = ν′. Finally, if z = z′ and ν = ν′, by Corollary 3.17(3)

each space Hom(LAz ?
L+G Iλ! ,∇Aztw◦(λ)) is 1-dimensional. It is easily seen that all

transition morphisms are isomorphisms, so that our inductive limit is isomorphic
to k. �

6. Averaging and wall-crossing functors

6.1. Averaging functors for R-modules. The averaging and wall-crossing func-
tors defined in §§3.6–3.7 extend to exact functors on ind-perverse sheaves. More-
over, for graded R-modules, these functors respect the R-module structure, and
the induced functors commute in the obvious way with the functors Φ and ΦA,
and with the shift-of-grading functors. The properties of the functors constructed
in this way, which follow directly from the results of §§3.6–3.7, are recorded in the
following lemma.

Lemma 6.1. The functors

AvA! ,AvA∗ : ModY
(IAu ,XA)(R)→ ModY

Iu(R),

AvAψ : ModY
Iu(R)→ ModY

(IAu ,XA)(R),

ξ!
A, ξ
∗
A : ModY

Iu(R)→ ModY
Iu(R)

are exact, and send finitely generated, resp. finite-length, R-modules to finitely gen-
erated, resp. finite-length, R-modules. Moreover, we have adjoint pairs

(AvAψ ,AvA∗ ), (AvA! ,AvAψ ), and (ξ!
A, ξ
∗
A),

and an isomorphism ξ!
A
∼= ξ∗A.

In view of the last claim in this lemma, we will sometimes write ξA for ξ!
A or ξ∗A,

and will write ξs for ξ{s} (s ∈ Saff).

Remark 6.2. As in Remark 3.7, it is likely that the functors AvA! and AvA∗ are
isomorphic. At least, as in Remark 3.11, for any w ∈ AWext we have

AvA! (L̂Aw) ∼= AvA∗ (L̂Aw).

As a consequence, if we denote by [ModY
(IAu ,XA)(R)flen] and [ModY

Iu(R)flen] the

Grothendieck groups of the (abelian, finite length) categories ModY
(IAu ,XA)(R)flen

and ModY
Iu(R)flen, and by

[AvA! ], [AvA∗ ] : [ModY
(IAu ,XA)(R)flen]→ [ModY

Iu(R)flen]

the maps induced by AvA! and AvA∗ on Grothendieck groups, we have [AvA! ] =

[AvA∗ ].

Lemma 6.3. (1) For any w ∈Wext, we have

AvAψ (L̂w) ∼=

{
L̂Aw if w ∈ AWext,

0 otherwise.

(2) For any w ∈ AWext and any v ∈WA, we have

AvAψ (Ẑ ′vw) ∼= Ẑ ′Aw .
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(3) Choose an enumeration x1, . . . , xr of WA which refines the Bruhat order (so

that necessarily x1 = e and xr = wA). For w ∈ AWext, the object AvA∗ (Ẑ ′Aw )

admits a filtration with successive subquotients Ẑ ′x1w, Ẑ
′
x2w, . . . , Ẑ

′
xrw.

Proof. The claims are consequences of the behavior of the functors AvAψ and AvA∗
on simple and costandard perverse sheaves (see [AR3, Lemma 3.3] and the proof
of Corollary 3.17(2)) and the fact that for any λ large enough, wtµ−λ is the unique
minimal element (for the Bruhat order) in WAwtµ−λ (see Remark 2.6). �

6.2. Some perverse sheaves arising from the big tilting object on the
finite-dimensional flag variety. The considerations in this subsection are closely
related to those in [BGMRR, §4.1]; however, for the reader’s convenience we will
repeat the required proofs.

The “big tilting object,” denoted by S, is defined to be the unique indecompos-
able tilting perverse sheaf in PervU (G/B) with full support. (Here, “S” stands for
Soergel, who studied a representation-theoretic incarnation of this object.) We will
review one approach to constructing S (following [BY] in a characteristic-0 setting,
and [AR1] or [BR, Lemma 10.1] for general coefficients) that shows that this ob-
ject is both the projective cover and the injective hull of the skyscraper sheaf at
B/B ∈ G/B. Recall that ψS factors as a composition

ISu → U+ ψ+−−→ Ga,

where U+ is the “positive” unipotent subgroup of G (see [AR3, §3.4]). We can then
set X+ = ψ∗+AS, and consider the equivariant derived category Db

(U+,X+)(G/B, k).

The ∗- and !-pushforwards of the unique (U+,X+)-equivariant rank-1 local system
on the orbit U+B/B ⊂ G/B are canonically isomorphic, and will be denoted ∆+.
We then have functors

AvU! : Db
(U+,X+)(G/B, k)→ Db

U (G/B, k),

AvU∗ : Db
(U+,X+)(G/B, k)→ Db

U (G/B, k)

defined as for AvS! and AvS∗ , and we have

S ∼= AvU! (∆+) ∼= AvU∗ (∆+).

Recall from [AR3, Lemma 2.5] that the elements w ∈ WS
ext such that ww◦ has

minimal length in Www◦ are those of the form tλw◦ with λ ∈ Y++. For such

λ, we have described the geometry of Grλ in §3.3, and in particular considered a
morphism pλ : Grλ → G/B. We set

Sλ := p∗λS[dim(Grλ)− dim(G/B)].

This is an Iu-equivariant perverse sheaf on Grλ. The following proposition describes
some calculations one can carry out with Sλ.

Proposition 6.4. Let λ ∈ Y++.

(1) We have

jλ! Sλ ∼= (jς! Sς) ?
L+G Iλ−ς! .

Moreover, this object has a standard filtration and a simple head, isomorphic
to Ltλw◦ .
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(2) We have

jλ∗Sλ ∼= (jς∗Sς) ?L
+G Iλ−ς∗ .

Moreover, this object has a costandard filtration and a simple socle, isomor-
phic to Ltλw◦ .

(3) We have

jς! Sς ∼= jς!∗Sς ∼= jς∗Sς .
As a consequence, if Iλ−ς!

∼= Iλ−ς∗ , then

jλ! Sλ ∼= jλ∗Sλ,

and this object is an indecomposable tilting object, isomorphic to Ttw◦(λ) .

In view of (3), the isomorphisms in (1) and (2) can also be written as

(6.1) jλ! Sλ ∼= Ttw◦(ς) ?
L+G Iλ−ς! and jλ∗Sλ ∼= Ttw◦(ς) ?

L+G Iλ−ς∗ .

Note that if k has characteristic 0, then the condition in part (3) applies to all
λ ∈ Y++ (by semisimplicity of the Satake category in this case).

Proof. (1) The functors AvU! and AvS! have a counterpart for sheaves on Grλ, which

will also be denoted AvS! ; then we have

AvS! ◦ jλ! ∼= jλ! ◦AvS! , AvS! ◦ p∗λ ∼= p∗λ ◦AvU! .

Now consider the object ∆S
tλw◦

∈ Perv(ISu ,XS)(Gr,k). From the definition we see
that

∆S
tλw◦

= jλ! p
∗
λ∆+[dim(Grλ)− dim(G/B)];

we deduce that

(6.2) AvS! (∆S
tλw◦

) ∼= jλ! p
∗
λAvU! (∆+)[dim(Grλ)− dim(G/B)] ∼= jλ! Sλ.

The claim that jλ! Sλ admits a standard filtration is immediate from the fact that Sλ
admits a standard filtration. Alternatively, it is a consequence of the isomorphism
above and Lemma 3.6(1).

Next, for any F in PervIu(Gr,k), by adjunction we have

(6.3) HomPervIu (Gr,k)(AvS! (∆S
tλw◦

),F) ∼= HomPerv(ISu ,XS)(Gr,k)(∆
S
tλw◦

,AvSψ(F)).

In case F is simple, the explicit description of AvSψ(F) given in [AR3, Lemma 3.3(4)]
shows that

HomPervIu (Gr,k)(AvS! (∆S
tλw◦

),F) = 0

unless F ∼= Ltλw◦ , in which case this space is 1-dimensional. We deduce that

AvS! (∆S
tλw◦

) ∼= jλ! Sλ has a simple head, isomorphic to Ltλw◦ .
Finally, recall from [BGMRR, p. 723] that we have

∆S
tλw◦

∼= ∆S
tςw◦ ?

L+G Iλ−ς! .

Since AvS! commutes with convolution on the right by objects of PervL+G(Gr,k),
we see that

jλ! Sλ ∼= AvS! (∆S
tςw◦) ?

L+G Iλ−ς!
∼= jς! Sς ?

L+G Iλ−ς! ,

which finishes the proof.
(2) The proof is very similar and will be omitted.
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(3) Since tςw◦ is minimal in SWS
ext, we have ∆S

tςw◦
∼= LStςw◦ . Using [AR3,

Lemma 3.3(4)] again, we deduce that

∆S
tςw◦

∼= AvSψ(Ltςw◦).

In view of (6.2), it follows that

jς! Sς ∼= AvS! (∆S
tςw◦)

∼= ξS(Ltςw◦).

Similar (dual) considerations show that jς∗Sς ∼= AvS∗ (∇Stςw◦) ∼= ξS(Ltςw◦), and hence
that

jς! Sς ∼= jς∗Sς .
It is then clear that these objects are also isomorphic to jς!∗Sς .

Finally, let us assume that Iλ−ς!
∼= Iλ−ς∗ . Then from parts (1) and (2) we

deduce that jλ! Sλ ∼= jλ∗Sλ, and that this object is tilting. Its support is clearly

Grλ = Grtw◦(λ) , and it is indecomposable because it has a simple head (and a

simple socle). It must therefore be isomorphic to Ttw◦(λ) . �

We extract the following observations from the calculations in the preceding
proof.

Proposition 6.5. Let λ ∈ Y++.

(1) If k has characteristic 0, then in PervIu(Gr,k), the object

jλ! Sλ ∼= jλ∗Sλ ∼= Ttw◦(λ)

is both projective and injective.
(2) In ModY

Iu(R), the object Φ(jλ! Sλ) is projective, and the object Φ(jλ∗Sλ) is
injective.

Proof. (1) Under our assumption the category Perv(ISu ,XS)(Gr,k) is semisimple

by [BGMRR, Corollary 3.6]. Then, since AvSψ is exact, so is the right-hand side
of (6.3) (as a functor of F). The left-hand side is therefore also exact, which shows

that AvS! (∆S
tλw◦

) ∼= jλ! Sλ is projective. Dual arguments show that this object is
also injective.

(2) The proof is similar to that of (1), using the following R-module analogue
of (6.3):

HomModY
Iu

(R)(Φ(AvS! (∆S
tλw◦

)),F) ∼= HomModY
Iu

(R)(AvS! (ΦS(∆S
tλw◦

)),F)

∼= HomModY
(ISu ,XS)

(R)(Φ
S(∆S

tλw◦
),AvSψ(F)).

By Lemma 6.1 and Proposition 5.7 the right-hand side is an exact functor of F , so
that the object Φ(AvS! (∆S

tλw◦
)) ∼= Φ(jλ! Sλ) is projective. Dual arguments apply to

Φ(jλ∗Sλ). �

6.3. Wall-crossing functors and objects arising from S. In the statement of
the following lemma we use the fact that any element in WS

ext can be written as a
product xt−µ where x ∈W res

ext and µ ∈ Y+, see (2.3).

Lemma 6.6. Let w ∈WS
ext, and write w = xtw◦(µ−ς) with x ∈W res

ext and µ ∈ Y++.

Let y = tςw◦x
−1, and choose a reduced expression y = ωs1 · · · sr with ω ∈ Ω and

s1, . . . , sr ∈ Saff .
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(1) We have yw = tµw◦ and yw4 = tw◦(µ), and moreover

`(yw) = `(y) + `(w), `(yw4) = `(w4)− `(y).

(2) The object ξsr · · · ξs1ξω−1(jµ! Sµ) is supported on Grw4 , and admits Lw4
as a composition factor with multiplicity 1. Moreover, this object admits
a standard filtration in which ∆w occurs with multiplicity 1, and Lw is a
direct summand of its head with multiplicity 1.

(3) The object ξsr · · · ξs1ξω−1(jµ∗ Sµ) is supported on Grw4 , and admits Lw4 as
a composition factor with multiplicity 1. Moreover, this object admits a
costandard filtration in which ∇w occurs with multiplicity 1, and Lw is a
direct summand of its socle with multiplicity 1.

(4) If jµ! Sµ ∼= jµ∗ Sµ, then ξsr · · · ξs1ξω−1(jµ! Sµ) is tilting, and contains Tw4 as
a direct summand with multiplicity 1.

Proof. (1) The fact that yw = tµw◦ is immediate from the definitions, and then

y−1tw◦(µ) = xw◦t−ςtw◦(µ) = wtw◦(ς−µ)w◦t−ςtw◦(µ) = wt−w◦(µ)w◦tw◦(µ) = w4.

(Observe that w−1(Afund) ⊂ Π−w◦(µ).) Using (2.1) for the first two equalities, then
Lemma 2.2, and finally [AR3, Lemma 2.7] and the fact that `(tµ−ς) = `(tw◦(µ−ς)),
we see that

`(yw) = `(tµ)− `(w◦) = `(tµ−ς) + `(tςw◦) = `(tµ−ς) + `(x) + `(y) = `(w) + `(y).

Finally, we have

`(w4) = `(xw◦t−ςtw◦(µ)) = `(xw◦t−ς) + `(tw◦(µ)) = `(y) + `(tw◦(µ)),

where we use [AR3, Lemma 2.7] for the second equality, after noticing that xw◦t−ς ∈
W res

ext since tςw◦x
−1(Afund) ⊂ tςw◦(Πς) = Πς .

(2) Note that yw ∈ WS
ext (see e.g. [AR3, Lemma 2.5]). By Lemma 3.15, the

objects
ξωξs1 · · · ξsr (Lw) and ξωξs1 · · · ξsr (∇w)

are supported on Grtµw◦ and have Ltµw◦ as a composition factor with multiplicity 1.
Now, Grtµw◦ in the unique closed I-orbit in Grµ; it follows that

ξωξs1 · · · ξsr (Lw)|Grµ
∼= ξωξs1 · · · ξsr (∇w)|Grµ

∼= kGrtµw◦
[`(tµw◦)].

By definition of Sµ and full faithfulness of p∗µ(−)[dim(Grλ)−dim(G/B)] on perverse
sheaves (since pµ is smooth with connected fibers), we deduce that

(6.4) dim Hom(jµ! Sµ, ξωξs1 · · · ξsr (Lw)) =

dim Hom(jµ! Sµ, ξωξs1 · · · ξsr (∇w)) = 1.

By adjunction, it follows that

(6.5) dim Hom(ξsr · · · ξs1ξω−1(jµ! Sµ), Lw) =

dim Hom(ξsr · · · ξs1ξω−1(jµ! Sµ),∇w) = 1.

Thus, Lw occurs in the head of ξsr · · · ξs1ξω−1(jµ! Sµ) with multiplicity 1. By Propo-
sition 6.4(1), jµ! Sµ admits a standard filtration; in view of Lemma 3.8 and (3.9) this
implies that ξsr · · · ξs1ξω−1(jµ! Sµ) admits a standard filtration. The dimension cal-
culation above shows that ∆w occurs in this standard filtration with multiplicity 1.
Finally, invoke Lemma 3.15 again to conclude that our perverse sheaf is supported
on Grw4 and admits Lw4 as a composition factor with multiplicity 1.
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(3) The proof is similar (more specifically, dual) to that of part (2).
(4) If jµ! Sµ ∼= jµ∗ Sµ, then (2) and (3) imply that ξsr · · · ξs1ξω−1(jµ! Sµ) is tilting,

and that this perverse sheaf is supported on Grw4 and admits Lw4 as a composition
factor with multiplicity 1. It follows that ξsr · · · ξs1ξω−1(jµ! Sµ) admits Tw4 as a
direct summand, with multiplicity 1. �

For later use we note the following corollary of Lemma 6.6.

Lemma 6.7. Let w ∈ W res
ext, and let µ ∈ Y+. The object Tw4 ?

L+G Iµ! admits a

standard filtration, and the object Tw4 ?
L+G Iµ∗ admits a costandard filtration.

Proof. We will prove the claim for Iµ! ; the other case is similar. Let y = tςw◦w
−1,

and choose a reduced expression y = ωs1 · · · sr as in Lemma 6.6. Let λ = µ + ς ∈
Y++. By Proposition 6.4(3) and Lemma 6.6(4) (applied with µ = ς), Tw4 is a
direct summand of ξsr · · · ξs1ξω−1(Ttw◦(ς)); hence to prove the claim it is enough to
show that the object

ξsr · · · ξs1ξω−1(Ttw◦(ς)) ?
L+G Iµ! ∼= ξsr · · · ξs1ξω−1(Ttw◦(ς) ?

L+G Iλ−ς! )

(6.1)∼= ξsr · · · ξs1ξω−1(jλ! Sλ).

admits a standard filtration. This claim holds by Proposition 6.4(1) together with
Lemma 3.8 and (3.9). �

6.4. Baby co-Verma modules are finitely generated. Our next task is to

prove that each Ẑ ′Aw is finitely generated, as stated in the following proposition.

Proposition 6.8. The object Ẑ ′Aw belongs to modY
(IAu ,XA)(R).

Proof. By Lemma 6.3(2) and Lemma 6.1, it is enough prove this proposition in the
special case where A = ∅. We assume this from now on. Furthermore, in view
of (5.14), we may assume that w ∈W . Using the formalism of the free-monodromic
completion from [BY, BR] one can construct a canonical triangulated functor

Dw ?̃ (−) : Db
Iu(Gr,k)→ Db

Iu(Gr,k)

such that the diagram

Db
I (Gr,k) Db

I (Gr,k)

Db
Iu

(Gr,k) Db
Iu

(Gr,k)

Dw?
I(−)

ForIIu ForIIu

Dw ?̃ (−)

commutes. We consider the complex Dw ?̃ j
ς
!∗Sς . Here jς!∗Sς admits a costandard

filtration (see Proposition 6.4). By Lemma 3.1 the convolution of a standard and
a costandard perverse sheaf is perverse; our complex is therefore a perverse sheaf.
We will construct a surjection

(6.6) Φ(Dw ?̃ j
ς
!∗Sς)〈w◦(ς)〉 → Ẑ

′
w,

which will prove the proposition.
By Lemma 5.1 we have

HomModY
Iu

(R)(Φ(Dw ?̃ j
ς
!∗Sς)〈w◦(ς)〉, Ẑ

′
w) ∼= Hom(Dw ?̃ j

ς
!∗Sς , (Ẑ

′
w)w◦(ς)).
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Now since jς!∗Sς is tilting and supported on Grtw◦(ς) there is a canonical surjection

jς!∗Sς → ∇tw◦(ς)
whose kernel admits a costandard filtration, and which therefore induces a surjec-
tion

Dw ?̃ j
ς
!∗Sς → Dw ?̃∇tw◦(ς) ∼= Dw ?

I ∇tw◦(ς) ∼= ∇wtw◦(ς)
in view of Lemma 3.1. (Note that `(wtw◦(ς)) = `(tw◦(ς)) − `(w).) There is also a
canonical morphism

∇wtw◦(ς) → “ lim−→ ”
λ

∇wtw◦(ς)+w◦(λ) ?
L+G I−w◦(λ)

∗ = (Ẑ ′w)w◦(ς),

which provides the desired map (6.6).
Now for any µ ∈ Y we have(
Φ(Dw ?̃ j

ς
!∗Sς)〈w◦(ς)〉

)
µ

= (Dw ?̃ j
ς
!∗Sς) ?

L+G Rµ−w◦(ς)

= “ lim−→ ”
λ

Dw ?̃
(
jς!∗Sς ?

L+G Iw◦(µ)+λ−ς
∗

)
?L

+G I−w◦(λ)
∗

∼= “ lim−→ ”
λ

Dw ?̃ j
w◦(µ)+λ
∗ Sw◦(µ)+λ ?

L+G I−w◦(λ)
∗

by Proposition 6.4. As in the case of jς!∗Sς , for any λ ∈ −w◦(µ) + Y++ we have a
canonical surjection

(6.7) Dw ?̃ j
w◦(µ)+λ
∗ Sw◦(µ)+λ � Dw ?̃∇tµ+w◦(λ) ∼= ∇wtµ+w◦(λ) ,

and these morphisms induce (6.6). It follows that this morphism is surjective, as
desired. �

Corollary 6.9. For any w ∈ AWext the object Ẑ ′Aw has finite length and a simple

socle, isomorphic to L̂Aw. In particular, Ẑ ′Aw is indecomposable.

Proof. The finite-length property is immediate from Proposition 6.8 and (5.9). The
description of its socle follows from Lemma 5.12. �

6.5. Baby co-Verma filtrations. We will say that an object F in modY
(IAu ,XA)(R)

admits a baby co-Verma filtration if it admits a finite filtration whose subquotients
are isomorphic to baby co-Verma modules.

Lemma 6.10. The object Φ(jς!∗Sς) admits a baby co-Verma filtration with Ẑ ′w◦tw◦(ς)
at the bottom, Ẑ ′tw◦(ς) at the top, and other subquotients of the form Ẑ ′wtw◦(ς) with

w ∈W r {e, w◦}, each appearing once.

Proof. As in the proof of Proposition 6.8, for any µ ∈ Y we have

Φ(jς!∗Sς)µ = “ lim−→ ”
λ

jς!∗Sς ?
L+G Iw◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗

∼= “ lim−→ ”
λ

j
w◦(µ)+λ+ς
∗ Sw◦(µ)+λ+ς ?

L+G I−w◦(λ)
∗ .

Now the perverse sheaf j
w◦(µ)+λ+ς
∗ Sw◦(µ)+λ+ς admits a filtration with subquotients

of the form ∇wtµ+w◦(λ)+w◦(ς) with w ∈ W , each appearing once, with the case

w = w◦ (corresponding to the closed stratum on G/B) at the bottom and the case
w = e (corresponding to the open stratum on G/B) at the top. These filtrations are
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compatible in a natural way with the transition morphisms in the inductive system,
and therefore provide a filtration of Φ(jς!∗Sς)µ whose subquotients are isomorphic
to

“ lim−→ ”
λ

∇wtµ+w◦(λ)+w◦(ς) ?
L+G I−w◦(λ)

∗ = (Ẑ ′wtw◦(ς))µ

(for w ∈ W ). One can check that this collection of filtrations is also compatible
with theR-actions, and therefore provides a filtration of Φ(jς!∗Sς) with subquotients

Ẑ ′wtw◦(ς) for w ∈W ; in particular, this object admits a baby co-Verma filtration. �

Lemma 6.11. For any w ∈Wext, we have

dim HommodY
Iu

(R)(Φ(jς!∗Sς), Ẑ
′
w) =

{
1 if w = ytςw◦ for some y ∈W ;

0 otherwise.

Proof. By Lemma 5.1 we have

HommodY
Iu

(R)(Φ(jς!∗Sς), Ẑ
′
w) ∼= lim−→

λ

HomPervIu (Gr,k)(j
ς
!∗Sς ,∇wtw◦(λ) ?

L+G I−w◦(λ)
∗ ).

Now by (3.3) and Proposition 6.4, for any λ ∈ Y+ such that wtw◦(λ) ∈ WS
ext we

have

HomPervIu (Gr,k)(j
ς
!∗Sς ,∇wtw◦(λ) ?

L+G I−w◦(λ)
∗ )

∼= HomPervIu (Gr,k)

(
(jς!∗Sς) ?

L+G Iλ! ,∇wtw◦(λ)
)

∼= HomPervIu (Gr,k)(j
ς+λ
! Sς+λ,∇wtw◦(λ)).

Here jς+λ! Sς+λ admits a standard filtration, with subquotients ∆ytς+λw◦ for y ∈W
(each appearing once). Hence our space is 1-dimensional if w is of the form ytςw◦
for some y ∈ W , and vanishes otherwise. All the transition morphisms in our
inductive limit are isomorphisms. The lemma follows. �

We now study the behavior of wall-crossing functors with respect to baby co-
Verma filtrations.

Lemma 6.12. (1) For any s ∈ Saff , the functor

ξs : modY
Iu(R)→ modY

Iu(R)

sends objects admitting baby co-Verma filtrations to objects admitting baby
co-Verma filtrations. More specifically, if w ∈ Wext, then if sw � w we
have an exact sequence

Ẑ ′sw ↪→ ξs(Ẑ ′w)� Ẑ ′w,

and if w � sw we have an exact sequence

Ẑ ′w ↪→ ξs(Ẑ ′w)� Ẑ ′sw.

(2) For any ω ∈ Ω, the functor

ξω : modY
Iu(R)→ modY

Iu(R)

sends objects admitting baby co-Verma filtrations to objects admitting baby
co-Verma filtrations. More specifically, if w ∈Wext, then

ξω(Ẑ ′w) ∼= Ẑ ′ωw.
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Proof. (1) By Lemma 2.5(1) and exactness of ξs (see Lemma 6.1) it suffices to prove
the second claim, which follows from Lemma 6.3(2)–(3).

(2) The proof is similar to that of (1), using (3.9). �

7. Projectives and injectives

In this section, we will prove that modY
(IAu ,XA)(R) is an abelian category with

enough projectives and injectives, that the projective and injective objects coincide
and arise as direct summands of free R-modules associated with certain tilting per-
verse sheaves, and finally that the embedding modY

(IAu ,XA)(R) ⊂ ModY
(IAu ,XA)(R)flen

is an equality.
In the special case where k has characteristic 0, we will see (by nearly identical

arguments) that Perv(IAu ,XA)(Gr,k) also has enough projectives and injectives, and
that these coincide with certain tilting objects.

7.1. Projective and injective perverse sheaves. We start with the case of
Perv(IAu ,XA)(Gr,k) (for characteristic-0 coefficients).

Theorem 7.1. Assume that k has characteristic 0. The category Perv(IAu ,XA)(Gr,k)

has enough projectives and enough injectives. Specifically, for any w ∈ AWS
ext, we

have wAw
4 ∈ AWS

ext, and the projective cover and the injective hull of LAw in
Perv(IAu ,XA)(Gr,k) are both isomorphic to the tilting object TAwAw4 .

Note that this statement implies that all projective objects in Perv(IAu ,XA)(Gr,k)
are also injective and tilting. Dually, all injective objects are projective and tilting.
(However, there may be tilting objects that are not projective nor injective.)

Proof. We break the proof up into two cases as follows.
Case 1. A = ∅. We wish to show that for w ∈ WS

ext, the object Tw4 is
both the projective cover and the injective envelope of Lw. Write w = xtw◦(µ−ς)
as in Lemma 6.6. By Proposition 6.5(1), Ttw◦(µ) is both projective and injec-
tive. Since they have exact left and right adjoints, the functors ξs1 , . . . , ξsr , ξω send
projectives to projectives, and injectives to injectives. Thus, the perverse sheaf
ξsr · · · ξs1ξω−1(Ttw◦(µ)) is both projective and injective. Lemma 6.6 then implies

that PervIu(Gr,k) has enough projectives and injectives.
More specifically, let Pw be the projective cover of Lw. By the construction

described above, this object is a direct summand of ξsr · · · ξs1ξω−1(Ttw◦(µ)). The

latter object is tilting by Lemma 3.8 and (3.10), and its support is contained in
Grw4 by Lemma 6.6. Hence Pw is isomorphic to Ty for some y ∈ WS

ext such that
y ≤ w4, and to show that Pw ∼= Tw4 it is enough to show that (Pw)|Gr

w4
6= 0,

which in turn is equivalent to the claim that

Hom(Pw,∇w4) 6= 0.

However the left-hand side has dimension [∇w4 : Lw] = [∆w4 : Lw], which is equal
to 1 by (3.6); this proves that Pw ∼= Tw4 .

Finally, the injective hull of Lw is the Verdier dual of Pw, which is isomorphic to
Tw4 since every tilting object is Verdier self-dual.

Case 2. A 6= ∅. For any w ∈ AWS
ext we have AvAψ (Lw) ∼= LAw by [AR3,

Lemma 3.3(4)], and the functor AvAψ is exact (see §3.6). Hence from the sur-
jection Tw4 � Lw and the embedding Lw ↪→ Tw4 obtained in Case 1 we deduce a
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surjection and an embedding

AvAψ (Tw4)� LAw, LAw ↪→ AvAψ (Tw4).

Since AvAψ has exact left and right adjoints (see §3.6), it sends projective, resp. in-
jective, objects to projective, resp. injective, objects. This already implies that
Perv(IAu ,XA)(Gr,k) has enough projectives and enough injectives, and that an ob-
ject is projective if and only if it is injective; these objects are therefore tilting.
Using Verdier duality (see Remark 3.3) we see that for any w ∈ AWS

ext the projec-
tive cover of LAw is also its injective envelope. We now need to determine the label
of this object (as an indecomposable tilting object). Fix w ∈ AWS

ext, and denote
this label by y.

By adjunction and [AR3, Lemma 3.3(4)], the object AvA! (TAy ) is the projective
cover of Lw, so that we have

AvA! (TAy ) ∼= Tw4

by Case 1. Now, by Proposition 3.12 the left-hand side is isomorphic to TwAy, so
that wAy = w4, which finishes the proof. �

Remark 7.2. (1) In the course of the proof of Theorem 7.1 we have proved
that for any w ∈ AWS

ext, we have wAw
4 ∈ AWS

ext. By definition of AWext

(see §2.4) and (2.4), it then follows that for any w ∈ AWext we have wAw
4 ∈

AWext.
(2) In case char(k) > 0, and if G is not a torus, the category Perv(IAu ,XA)(Gr,k)

does not have any nonzero projective or injective object. In fact, us-
ing Verdier duality it suffices to prove this claim for projective objects,
and using Remark 3.5 one can assume A = ∅. In this case, if P is a
nonzero projective object and if Lw is a simple quotient of P, if ω, s1, . . . , sr
are as in Lemma 6.6, then P ′ := ξωξs1 · · · ξsr (P) is a projective object

surjecting to ξωξs1 · · · ξsr (Lw). Then AvSψ(P ′) is a projective object in

Perv(ISu ,XS)(Gr,k) surjecting to the object AvSψ(ξωξs1 · · · ξsr (Lw)), which is
nonzero by Lemmas 6.6(1) and 3.15 combined with [AR3, Lemmas 2.5
and 3.3(4)]. Now as explained in the proof of Proposition 5.7 we have
Perv(ISu ,XS)(Gr,k) ∼= Rep(G∨k ); the category Rep(G∨k ) therefore possesses
a nonzero projective object. Using [Ja, Lemma I.4.17] one sees that this
object is projective in the category of all algebraic G∨k -modules, which is
impossible by the main result of [D3].

We now drop the assumption that k has characteristic 0, and come back to the
setting of arbitrary coefficients.

Corollary 7.3. For any w ∈ AW res
ext, the object LAw occurs in both the head and

socle of TAwAw4 with multiplicity 1.

Proof. When k has characteristic 0, this claim is already part of Theorem 7.1. We
must now treat the case when k is finite. (This case will imply the case when k is
an algebraic closure of a finite field.)

First, assume that A = ∅, and continue with the notation from the proof
of Lemma 6.6 (for µ = ς, so that w = x). Recall that Tw4 is a direct sum-
mand of ξsr · · · ξs1ξω−1(Ttw◦(ς)). The dimension calculation in (6.5) shows that

ξsr · · · ξs1ξω−1(Ttw◦(ς)) admits exactly one direct summand admitting a nonzero
map to ∇w, and that this map is unique up to scalar and factors through the socle
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Lw of ∇w. Hence to prove that Lw occurs in the head of Tw4 it suffices to prove
that

dim Hom(Tw4 ,∇w) ≥ 1;

then we will know that the multiplicity of Lw in the head of Tw4 is exactly one, and
since Tw4 is Verdier self-dual the claim about its socle will also follow. Of course,
dim Hom(Tw4 ,∇w) is the multiplicity of ∆w in any standard filtration of Tw4 ,
denoted by (Tw4 : ∆w); the statement we wish to prove is therefore equivalent to
the claim that

(Tw4 : ∆w) ≥ 1.

Let us consider a finite extension K of Q` whose ring of integers admits k as
residue field, and adopt the notation of Lemma 3.4. By that lemma we have

(Tk
w4 : ∆k

w) ≥ (TK
w4 : ∆K

w).

By the characteristic-0 version of the corollary (which, as explained above, is already
known) the right-hand side is at least 1, which proves the desired inequality.

For a general A, one observes that

Hom(TAwAw4 , L
A
w) ∼= Hom(TAwAw4 ,AvAψ (Lw)) ∼= Hom(AvA! (TAwAw4), Lw)

by [AR3, Lemma 3.3(4)] and adjunction. Using Proposition 3.12 we deduce that

Hom(TAwAw4 , L
A
w) ∼= Hom(Tw4 , Lw),

and the right-hand side is of dimension 1 by the case A = ∅. (Note that w ∈W res
ext .)

One shows similarly that Hom(LAw,T
A
wAw4

) is 1-dimensional, which finishes the
proof. �

7.2. Projective and injective R-modules. We now study projective and injec-
tive objects in modY

(IAu ,XA)(R). In this setting, the replacement of the property of
admitting a costandard filtration will be the existence of a baby co-Verma filtration.
(The replacement for standard filtrations will be introduced later, in Section 9.) We
start by constructing an “explicit” family of projective and injective objects, in the
special case A = ∅, based on Proposition 6.5(2).

Proposition 7.4. For any x ∈ Wext, there exists an object in modY
Iu(R) with the

following properties:

(1) It is both projective and injective as an object of ModY
Iu(R)flen.

(2) It admits L̂x as both a subobject and a quotient.

(3) It admits a baby co-Verma filtration with Ẑ ′x at the bottom, Ẑ ′x4 at the top,

and all other subquotients of the form Ẑ ′z with x ≺ z ≺ x4.

Proof. By periodicity (see in particular (5.7) and (5.14)), it suffices to prove this
proposition in the case where x ∈ W res

ext . We assume this from now on. As in
Lemma 6.6, set y = tςw◦x

−1, and choose a reduced expression y = ωs1 · · · sr (with
each si in Saff , and ω ∈ Ω). Lemma 6.6(1) implies that

(7.1) x ≤ srx ≤ sr−1srx ≤ · · · ≤ s1 · · · srx = ω−1tςw◦

and

(7.2) x4 ≥ srx4 ≥ sr−1srx
4 ≥ · · · ≥ s1 · · · srx4 = ω−1tw◦(ς).
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All elements in these chains of inequalities belong to WS
ext by [AR3, Lemma 2.2],

so by Lemma 2.5(3) we also have the same chains of inequalities when the symbols
≤ and ≥ are replaced by � and �, respectively.

Since the functors ξs1 , . . . , ξsr , ξω−1 are exact and have exact left and right ad-
joints (see Lemma 6.1), they send projectives to projectives and injectives to injec-
tives. Applying Proposition 6.5(2) to

jς!∗Sς ∼= Ttw◦(ς) ,

we see that the object

ξsr · · · ξs1ξω−1(Φ(Ttw◦(ς)))
∼= Φ(ξsr · · · ξs1ξω−1(Ttw◦(ς)))

is both projective and injective. Referring to Lemma 6.6 once again, we see that the
perverse sheaf ξsr · · · ξs1ξω−1(Ttw◦(ς)) contains Lx in its head and socle, so applying

the (faithful) functor Φ (see §5.4) yields nonzero maps

L̂x → Φ(ξsr · · · ξs1ξω−1(Ttw◦(ς))), Φ(ξsr · · · ξs1ξω−1(Ttw◦(ς)))→ L̂x,

which must be injective and surjective respectively by simplicity of L̂x.
Finally, by Lemma 6.10, the object Φ(jς!∗Sς) admits a baby co-Verma filtration

with Ẑ ′tςw◦ at the bottom, Ẑ ′tw◦(ς) = Ẑ ′(tςw◦)4 at the top, and the other subquotients

of the form Ẑ ′wtw◦(ς) with w ∈Wr{e, w◦}. All the elements wtw◦(ς) belong to WS
ext,

and they satisfy tςw◦ ≤ wtw◦(ς) ≤ (tςw◦)
4, and hence

tςw◦ � wtw◦(ς) � (tςw◦)
4

by Lemma 2.5(3). Combining these observations with Lemma 6.12 and the chains
of inequalities (7.1) and (7.2), we see that ξsr · · · ξs1ξω−1(Φ(Ttw◦(ς))) admits a baby

co-Verma filtration with Ẑ ′x at the bottom, Ẑ ′x4 at the top, and with the other

subquotients of the form Ẑ ′y′wtw◦(ς) with w ∈ W and y′ ∈ Wext such that y′ ≤ y−1

and y′wtw◦(ς) /∈ {x, x4}. All these elements satisfy x � y′wtw◦(ς) by Lemma 2.5(4),

and y′wtw◦(ς) � x4 by Lemma 2.5(5), as desired. �

Corollary 7.5. If w, x ∈ AWext satisfy [Ẑ ′Aw : L̂Ax ] 6= 0, we have x � w � wAx
4.

Moreover, we have [Ẑ ′Ax : L̂Ax ] = 1 and [Ẑ ′AwAx4 : L̂x] ≤ 1.

Proof. We first treat the special case where A = ∅. In this case, we assume (by
periodicity) that x ∈ W res

ext , and we retain the notation from the proof of Proposi-

tion 7.4. Since L̂x is a quotient of the projective object ξsr · · · ξs1ξω−1(Φ(jς!∗Sς)),
we have

[Ẑ ′w : L̂x] ≤ dim Hom(ξsr · · · ξs1ξω−1(Φ(jς!∗Sς)), Ẑ
′
w).

By adjunction we have

Hom(ξsr · · · ξs1ξω−1Φ(jς!∗Sς), Ẑ
′
w) ∼= Hom(Φ(jς!∗Sς), ξωξs1 · · · ξsr (Ẑ

′
w)).

By Lemma 6.12, the object ξωξs1 · · · ξsr (Ẑ ′w) has a baby co-Verma filtration, whose

subquotients have the form Ẑ ′y′w with y′ ≤ y; moreover Ẑ ′yw appears once in this

filtration. By projectivity of Φ(jς!∗Sς) and Lemma 6.11, we deduce that the space

Hom(ξsr · · · ξs1ξω−1Φ(jς!∗Sς), Ẑ ′w) vanishes unless

(7.3) y′w = ztςw◦ for some z ∈W and y′ ∈Wext such that y′ ≤ y.
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Here, we have tςw◦ � ztςw◦ � tw◦(ς), and as in the proof of Proposition 7.4 we

obtain using Lemma 2.5(4) that w = (y′)−1ztςw◦ satisfies

x = y−1tςw◦ � w = (y′)−1ztςw◦ � y−1tw◦(ς) = x4.

We have shown that [Ẑ ′w : L̂x] 6= 0 implies that x � w � x4.
Now let us take w = x. Lemma 6.6(1) implies that y′x ≤ yx = tςw◦ for any

y′ ≤ y, so condition (7.3) is satisfied only for y′ = y and z = e. It follows that

dim Hom(ξsr · · · ξs1ξω−1Φ(jς!∗Sς), Ẑ ′x) = 1, and hence that [Ẑ ′x : L̂x] ≤ 1. Since we

know that L̂x is the socle of Ẑ ′x (see Corollary 6.9) this multiplicity is then equal
to 1.

Finally, take w = x4. In this case, Lemma 6.6(1) implies that y′w ≥ yx4 =
tw◦(ς) = w◦tςw◦ for any y′ ≤ y, so condition (7.3) is satisfied only for y′ = y and

z = w◦. As in the previous paragraph, we conclude that [Ẑ ′x4 : L̂x] ≤ 1. This
concludes the proof in the case where A = ∅.

Now suppose A 6= ∅, and let w, x ∈ AWext. By Lemma 6.3(1)–(2), we have

[Ẑ ′Aw : L̂Ax ] = [Ẑ ′w : L̂x] = [Ẑ ′wAw : L̂x].

Using the A 6= ∅ case of the corollary, we see that [Ẑ ′Aw : L̂Ax ] 6= 0 implies that
x � w and wAw � x4. Since wAx

4 lies in AWext (see Remark 7.2(1)), Lemma 2.7
tells us that the latter condition is equivalent to w � wAx

4. The claims that

[Ẑ ′Ax : L̂Ax ] = 1 and [Ẑ ′AwAx4 : L̂Ax ] ≤ 1 likewise follow from the A = ∅ case. �

Remark 7.6. (1) We will see in Proposition 9.24 below that, in fact, in the

setting of Corollary 7.5 we always have [Ẑ ′AwAx4 : L̂x] = 1.

(2) The information on composition factors in Corollary 7.5 implies that the

family ([Ẑ ′Aw ] : w ∈ AWext) in the Grothendieck group [ModY
(IAu ,XA)(R)flen]

is linearly independent. (This family is not a basis, however.) This implies

that ifM∈ ModY
(IAu ,XA)(R)flen admits a baby co-Verma filtration, then the

number (M : Ẑ ′Aw ) of occurrences of a given baby co-Verma module Ẑ ′w
in such a filtration is independent of the choice of filtration; in fact these
numbers are determined by the equality

[M] =
∑

w∈Wext

(M : Ẑ ′w) · [Ẑ ′w]

in K0(ModY
(IAu ,XA)(R)flen). (Later, after we prove Theorem 7.9, we will be

able to apply these comments to [modY
(IAu ,XA)(R)] instead.)

Proposition 7.7. For any w ∈ AWext, Ẑ ′Aw is the injective hull of L̂Aw in the Serre

subcategory of ModY
(IAu ,XA)(R)flen generated by the simple objects of the form L̂Ay

with y 6� w.

Proof. Recall from Corollary 6.9 and Corollary 7.5 that Ẑ ′Aw is indecomposable; its

socle is L̂Aw; and it belongs to the Serre subcategory described in the statement
of the proposition. It remains to show that it is injective as an object of this
subcategory. In other words, we must show that

Ext1
ModY

(IAu ,XA)
(R)flen(L̂Ay , Ẑ ′Aw ) = 0 if y 6� w.
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Let us first treat the special case A = ∅. In this case, we can invoke Proposi-
tion 7.4 to find an injective objectM∈ ModY

Iu(R)flen such that there is an inclusion

Ẑ ′w ↪→M whose cokernelM′ admits a baby co-Verma filtration by various Ẑ ′u with

u � w. Since y 6� w by assumption, Lemma 5.12 tells us that Hom(L̂y, Ẑ ′u) = 0 for

any u � w. It follows that Hom(L̂y,M′) = 0. The exact sequence

· · · → Hom(L̂y,M′)→ Ext1(L̂y, Ẑ ′w)→ Ext1(L̂y,M)→ · · ·

then shows that Ext1
ModY

Iu
(R)flen(L̂y, Ẑ ′w) = 0.

Now suppose that A 6= ∅. By Lemma 6.3(1) and adjunction we have

Ext1(L̂Ay , Ẑ ′Aw ) ∼= Ext1(AvAψ (L̂y), Ẑ ′Aw ) ∼= Ext1(L̂y,AvA∗ (Ẑ ′Aw )).

On the right-hand side, by Lemma 6.3(3) the object AvA∗ (Ẑ ′Aw ) admits a filtration

with successive subquotients the objects Ẑ ′vw with v ∈ WA. Using the A = ∅
case proved above, we conclude that Ext1

ModY
Iu

(R)flen(L̂y,AvA∗ (Ẑ ′Aw )) vanishes unless

y � vw for such a v. Now we have w � vw (see Remark 2.6), so that this condition
implies that y � w. �

Remark 7.8. Combining the information in Corollary 7.5 and Proposition 7.7, we

obtain that Ext1(Ẑ ′Ay , Ẑ ′Aw ) = 0 unless w ≺ y. This implies that if an object M
admits a baby co-Verma filtration, and if we choose a numbering w1, . . . , wn of

the elements z such that (M : Ẑ ′z) 6= 0 (counted with multiplicities) such that
wi ≺ wj ⇒ i < j, then there exists a chain of embeddings

0 =M0 ⊂M1 ⊂ · · · ⊂ Mn−1 ⊂Mn =M

such that Mi/Mi−1
∼= Ẑ ′Awi for any i ∈ {1, . . . , n}.

We can finally state and prove the main result of this section.

Theorem 7.9. (1) The categories modY
(IAu ,XA)(R) and ModY

(IAu ,XA)(R)flen co-
incide, and this abelian category has enough projectives and enough injec-
tives; moreover, an object is injective iff it is projective.

(2) For w ∈ AWext, let Q̂Aw denote the injective hull of L̂Aw. Then Q̂Aw admits a

baby co-Verma filtration with subquotients of the form Ẑ ′Ay with y ∈ AWext

which satisfies w � y.

(3) For w ∈ AWext, we have AvA∗ (Q̂Aw) ∼= Q̂w.

Proof. (1) When A = ∅, Proposition 7.4 tells us that every simple object in

ModY
Iu(R)flen embeds in a finitely generated injective R-module that is also pro-

jective, and is a quotient of a finitely generated projective R-module that is also
injective. For general A, because AvAψ is exact and has exact left and right adjoints,

it sends projectives to projectives and injectives to injectives. Given w ∈ AWext,

apply AvAψ to a nonzero map L̂w ↪→M orM� L̂w, whereM is finitely generated,

projective, and injective; we conclude that every L̂Aw embeds in a finitely generated
injective R-module that is also projective, and is a quotient of a finitely generated
projective R-module that is also injective.

As a consequence, ModY
(IAu ,XA)(R)flen has enough projectives and injectives, and

these classes coincide and consist of finitely generated R-modules. In particular,
every object of ModY

(IAu ,XA)(R)flen is a quotient of a finitely generated module, which

implies that modY
(IAu ,XA)(R) = ModY

(IAu ,XA)(R)flen.
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(2) We will apply a kind of “highest weight” formalism developed in [BS]. (Note

that modY
(IAu ,XA)(R) is not a highest weight category in the sense considered in,

for instance, [ACR, AR1, AR2], because the poset that governs it has no minimal
element.)

All objects in modY
(IAu ,XA)(R) have finite length, and by Lemma 5.9 all morphism

spaces in this category are finite-dimensional; by [BS, Lemma 2.1], this category is
therefore a “locally finite abelian category” in their terminology. By part (1), this
category has enough injective and projective objects; hence by [BS, Corollary 2.20]
it is an “essentially finite abelian category.” Next, we define a “stratification”
on this category in the sense of [BS, §3.1] with underlying poset (AWext,�), and

with the labeling of simple objects given by w 7→ L̂Aw. (The function “ρ” of [BS,
Definition 3.1] is therefore the identity map for this stratification.) This stratifica-
tion is “essentially finite.” Comparing Corollary 7.5 and Proposition 7.7 with [BS,

Lemma 3.1] we see that for any w ∈ AWext the baby co-Verma module Ẑ ′Aw is iso-
morphic to the objects denoted∇(w) and ∇̄(w) in [BS]. In view of [BS, Lemma 3.4],
this implies that all the strata are “simple” in the terminology of [BS].

Next, we claim that condition (Î∇) of [BS, Remark 3.6] holds. Translated into
the language of the present paper, this condition says that for any w ∈ AWext,

there exists an injective object admitting a baby co-Verma filtration with Ẑ ′Aw at

the bottom, and all other subquotients of the form Ẑ ′Az with z � w. For A = ∅,
this claim is part of Proposition 7.4. For general A, it follows from Proposition 7.4
by applying AvAψ and using Lemma 6.3(2).

Applying [BS, Theorem 3.5], we see that modY
(IAu ,XA)(R) is an essentially finite

highest weight category in the sense of [BS, Definition 3.7]. In more concrete terms,

this means that the injective envelope Q̂Aw of L̂Aw admits a baby co-Verma filtration

whose subquotients Ẑ ′Ay satisfy y � w.

(3) Since AvA∗ has an exact left adjoint, it sends injectives to injectives, so

AvA∗ (Q̂Aw) is injective. To show that it is isomorphic to Q̂w, it is enough to show

that its socle is isomorphic to L̂w, or in other words that

dim Hom(L̂y,AvA∗ (Q̂Aw)) =

{
1 if y = w,

0 otherwise.

This claim holds by adjunction and Lemma 6.3(1). �

It is clear that for any w ∈ AWext and λ ∈ Y we have

(7.4) Q̂Awtλ = Q̂Aw〈−λ〉;

in particular, in order to understand all these objects it is enough to understand
those whose label belongs to AW res

ext .

Remark 7.10. (1) The proof of Theorem 7.9 provides a slightly more precise
statement than the mere existence of enough projective and injective ob-
jects: it implies that any object of modY

(IAu ,XA)(R) is a quotient (resp. a

subobject) of a direct sum of objects of the form ΦA(AvAψ (Tx))〈µ〉 with

x ∈WS
ext and µ ∈ Y, these objects being both projective and injective.
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(2) The proof of Theorem 7.9 also shows that each Q̂Aw (hence each projec-

tive object in modY
(IAu ,XA)(R)) remains projective in the larger category

ModY
(IAu ,XA)(R).

(3) Theorem 7.9 implies that the projective cover of L̂Aw is also an indecompos-
able injective object. Define a map

(7.5) ιA : AWext
∼→ AWext

by requiring that L̂AιA(w) be the socle of the projective cover of L̂Aw (equiva-

lently, Q̂AιA(w) is the projective cover of L̂Aw). We will see later (see Propo-

sition 9.21(1)) that in fact ιA is the identity map; in other words, the

projective cover and injective envelope of L̂Aw coincide.

7.3. Injective R-modules and tilting perverse sheaves. In this subsection we
study the relation between injective objects in modY

(IAu ,XA)(R) and tilting objects

in Perv(IAu ,XA)(Gr,k).

Proposition 7.11. (1) For any x ∈ AWS
ext the object ΦA(TAwAx4) is both in-

jective and projective.

(2) If x ∈ AW res
ext, then ΦA(TAwAx4) contains Q̂Ax , resp. Q̂AιA(x), as a direct

summand with multiplicity 1, and does not admit any direct summand of

the form Q̂Axtµ , resp. Q̂AιA(xtµ), with µ ∈ Y r {0}.

A converse to part (1) will be proved in Proposition 9.26.

Proof. (1) First, assume that A = ∅ and x ∈W res
ext . In the proof of Proposition 7.4

we have constructed a projective and injective object admitting L̂x both as a sub-
object and as a quotient. By Lemma 6.6(4) this object contains Φ(Tx4) as a direct
summand; the latter object is therefore also projective and injective.

Now we continue to assume that A = ∅, but take a general w ∈ WS
ext. We

can write w = ytλ for some y ∈ W res
ext and λ ∈ −Y+, see (2.3), and then we have

w4 = y4tλ, see (2.4). By Lemma 6.7 the object Ty4 ?
L+G T w◦(λ) is tilting, and

support considerations show that it contains Ty4tλ as a direct summand. On the
other hand, using the formula in Lemma 5.2 and the fact that Φ(Ty4) is projective

and injective we see that Φ(Ty4 ?
L+GT w◦(λ)) is also injective and projective. Hence

so is Φ(Tw4).
Finally we consider a general subset A, and x ∈ AWS

ext. By Theorem 7.1 we

have wAx
4 ∈ AWS

ext, and by Proposition 3.12 we know that AvA! (ΦA(TAwAx4)) ∼=
Φ(Tx4). Since the functor AvA! has an exact right adjoint, and since Φ(Tx4)
is projective (by the case already treated, and since x ∈ WS

ext), this shows that

ΦA(TAwAx4) is projective. A similar argument using AvA∗ instead of AvA! shows

that this object is also injective. (Alternatively, one can use the fact that projective
objects are automatically injective, see Theorem 7.9.)

(2) First, assume that A = ∅. Corollary 7.3 implies that Φ(Tx4) admits L̂x
as both a subobject and a quotient. It follows that both Q̂x and Q̂ι(x) are direct
summands in Φ(Tx4).

To conclude the proof in this case, we will prove that the object constructed in

the proof of Proposition 7.4 admits Q̂ι(x) as a direct summand with multiplicity 1,

and no other direct summand of the form Q̂ι(xtµ). (A similar argument will apply for
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the injective hulls; alternatively this case can be deduced using the Verdier duality
constructed in §9.1 below.) Set y = tςw◦x

−1, and consider a reduced expression
y = ωs1 · · · sr. Using adjunction, our claim will follow if we prove that

(7.6) dim HommodY
Iu

(R)(Φ(Tw◦(ς)),Φ(ξωξs1 · · · ξsr (Lx))〈µ〉) =

{
1 if µ = 0;

0 otherwise.

As a preparation, let us first prove that for ν ∈ Y+ r {0} we have

(7.7) Hom(Ttw◦(ς) , ξωξs1 · · · ξsr (Lx) ?L
+G Iν∗ ) = 0,

or equivalently (by adjunction and (3.3))

(7.8) Hom(Ttw◦(ς) ?
L+G I−w◦(ν)

! , ξωξs1 · · · ξsr (Lx)) = 0.

Proposition 6.4(1) tells us that Ttw◦(ς) ?
L+G I−w◦(ν)

! has a unique simple quotient,

isomorphic to Ltς−w◦(ν)w◦ . Now we have yx = tςw◦, and `(yx) = `(x) + r by

Lemma 2.2. By Lemma 3.15, it follows that ξωξs1 · · · ξsr (Lx) is supported on Grtςw◦ .
Now tςw◦ belongs to WS

ext, so that by [AR3, Lemma 2.7] we have

`(tς−w◦(ν)w◦) = `(tςw◦t−ν) = `(tςw◦) + `(t−ν);

if ν 6= 0 the orbit Grtς−w◦(ν)w◦ is therefore not contained in Grtςw◦ , which implies

that Ltς−w◦(ν)w◦ is not a composition factor of ξωξs1 · · · ξsr (Lx). This proves (7.8).

Now, let us prove (7.6) in case µ 6= 0. By Lemma 5.1, the space under consider-
ation equals

(7.9) Hom(Ttw◦(ς) , ξωξs1 · · · ξsr (Lx) ?L
+G R−µ) =

lim−→
λ

Hom(Ttw◦(ς) , ξωξs1 · · · ξsr (Lx) ?L
+G I−w◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ ).

For any λ the perverse sheaf I−w◦(µ)+λ
∗ ?L

+GI−w◦(λ)
∗ admits a costandard filtration,

see [AR3, Proposition 4.8]; moreover, the object IC0 = I0
∗ does not occur in such

a filtration since

Hom(I0
! , I
−w◦(µ)+λ
∗ ?L

+G I−w◦(λ)
∗ ) = Hom(Iλ! , I

−w◦(µ)+λ
∗ ) = 0.

In view of (7.7) this implies that

Hom(Ttw◦(ς) , ξωξs1 · · · ξsr (Lx) ?L
+G I−w◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ ) = 0

for any λ, which proves (7.6) in this case.
Finally, assume µ = 0. In this case the space we have to consider is

(7.10) Hom(Ttw◦(ς) , ξωξs1 · · · ξsr (Lx) ?L
+G R0) =

lim−→
λ

Hom(Ttw◦(ς) , ξωξs1 · · · ξsr (Lx) ?L
+G Iλ∗ ?L

+G I−w◦(λ)
∗ ).

Here again Iλ∗ ?L
+GI−w◦(λ)

∗ admits a costandard filtration, and in this case we have

an embedding IC0 → Iλ∗ ?L
+G I−w◦(λ)

∗ whose cokernel is an extension of objects of
the form Iν∗ with ν 6= 0. We have obtained in the course of the proof of Lemma 6.6
that

(7.11) dim HomPervIu (Gr,k)(Ttw◦(ς) , ξωξs1 · · · ξsr (Lx)) = 1,
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see (6.4). By the same considerations as above this implies that for any λ we have

dim Hom(Ttw◦(ς) , ξωξs1 · · · ξsr (Lx) ?L
+G Iλ∗ ?L

+G I−w◦(λ)
∗ ) = 1.

One can easily check that the transition morphisms in our inductive system are
nonzero, which finishes the proof of (7.6), and hence of the statement in case
A = ∅.

To treat the case of a general subset A, one simply observes that for x ∈ AW res
ext

and µ ∈ Y we have

Hom(ΦA(TAwAx4), L̂Axtµ) ∼= Hom(ΦA(TAwAx4),AvAψ (L̂xtµ))

∼= Hom(AvA! (Φ(TAwAx4)), L̂xtµ) ∼= Hom(Φ(Tx4), L̂xtµ)

by Lemma 6.3(1), adjunction and then Proposition 3.12. Then the claim follows
from the case A = ∅ since x ∈W res

ext . �

8. Ungraded R-modules

In this section we present a variant of the theory developed so far, which omits
the Y-grading. (From the representation-theoretic point of view, and using the
notation of Section 1, this means that we study a geometric model for blocks of
qG1-modules rather than qG1

qT-modules.) The only part of this section that will be
used later in the paper is the statement given in Remark 8.11(1). This statement
does not involve ungraded modules, so a reader who is willing to accept this claim
can skip this section.

8.1. Definitions. We fix a finitary subset A ⊂ Saff . Up to now we have worked
with Y-graded ind-objects in the category Perv(IAu ,XA)(Gr,k); in particular, in §5.2
we have defined R as a formal direct sum of ind-objects Rµ. But in view of [KS,
Theorem 8.6.5(v)] the category of ind-objects in Perv(IAu ,XA)(Gr,k) admits arbitrary
direct sums; in particular, the “true” direct sum (i.e. coproduct)

⊕
µRµ in this

category makes sense. For simplicity we will also denote this object R.
An ungraded R-module is, by definition, an ind-object F in Perv(IAu ,XA)(Gr,k),

together with a map

F ?L
+G R → F

equipping it with the structure of a module over the algebra object R. Let

Mod(IAu ,XA)(R)

denote the abelian category of ungraded R-modules. The theory of ungraded R-
modules is very similar to that of graded R-modules. In this subsection, we sum-
marize the main facts about them. Most proofs are essentially identical to those in
the graded case, and will be omitted.

In a minor abuse of notation, we define the functor

ΦA : Perv(IAu ,XA)(Gr,k)→ Mod(IAu ,XA)(R)

by ΦA(F) = F ?L
+G R, where F ?L

+G R is equipped with the obvious module
structure. As in the graded case, ΦA is exact and faithful. Objects in the image
of this functor are called free (ungraded) R-modules of finite type. There is an
ungraded analogue of Lemma 5.1 that says that

(8.1) HomMod(IAu ,XA)(R)(Φ
A(F),M) ∼= HomPerv(IAu ,XA)(Gr,k)(F ,M)
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for any F ∈ Perv(IAu ,XA)(Gr,k) andM∈ Mod(IAu ,XA)(R). There is also an ungraded
analogue of Lemma 5.2 that says that for any F ∈ Perv(IAu ,XA)(Gr,k) and G ∈
PervL+G(Gr,k) we have

(8.2) ΦA(F ?L
+G G) ∼= Sat(G)⊗ ΦA(F).

The classification of simple objects in Mod(IAu ,XA)(R) is given in Proposition 8.1.

In this statement, we denote by ∼ the equivalence relation on AW res
ext given by

w ∼ w′ if there is a λ ∈ Y such that w = w′tλ.

(In this case, λ is necessarily orthogonal to all roots; in particular, if G is semisimple
this equivalence relation is trivial.) For w ∈ AW res

ext we will denote by [w] its
equivalence class.

Proposition 8.1. For w ∈ AW res
ext, the object ΦA(LAw) is a simple object in the

abelian category Mod(IAu ,XA)(R). Moreover, the assignment w 7→ ΦA(LAw) induces
a bijection

AW res
ext/∼

∼→
{

isomorphism classes of simple
objects in Mod(IAu ,XA)(R)

}
.

For c ∈ AW res
ext/∼ we will denote by LAc ∈ Mod(IAu ,XA)(R) the corresponding

simple object; for any w ∈ AW res
ext we therefore have LA[w]

∼= ΦA(LAw).

The definitions of the categories

mod(IAu ,XA)(R) ⊂ Mod(IAu ,XA)(R)flen ⊂ Mod(IAu ,XA)(R)

are analogous to their graded counterparts. As in Lemma 5.9 we have

(8.3) dim HomMod(IAu ,XA)(R)(F ,G) <∞

for all F ,G ∈ Mod(IAu ,XA)(R)flen, and Mod(IAu ,XA)(R)flen is a Krull–Schmidt cate-
gory.

Theorem 8.2. The category mod(IAu ,XA)(R) coincides with Mod(IAu ,XA)(R)flen, and
this abelian category has enough projectives and enough injectives, and these classes
of objects coincide.

For c ∈ AW res
ext/ ∼ we will denote by QAc the injective hull of LAc in the category

mod(IAu ,XA)(R).
The following property is more specific to the ungraded setting.

Lemma 8.3. For any F ,G in Perv(IAu ,XA)(Gr,k), the finite-dimensional vector
space

Hommod(IAu ,XA)(R)(Φ
A(F),ΦA(G))

carries a canonical structure of an algebraic G∨k -module, which is functorial in F
and G and compatible (in the natural way) with composition, and such that the map

HomPerv(IAu ,XA)(Gr,k)(F ,G)→ Hommod(IAu ,XA)(R)(Φ
A(F),ΦA(G))

identifies the left-hand side with the G∨k -invariants in the right-hand side.

Proof. Recall that if k is a field and C is a k-linear additive category which admits
arbitrary coproducts, then given a k-vector space V and an object X in C one
defines the tensor product V ⊗k X as the object representing the functor

Y 7→ Homk(V,HomC(X,Y ));
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any choice of basis (ei : i ∈ I) in V provides an isomorphism V ⊗k X ∼= X⊕I .
This construction is functorial, in the sense that if D is another k-linear additive
category which admits arbitrary coproducts and F : C → D is a k-linear additive
functor commuting with coproducts, then for any V and X as above there exists a
canonical isomorphism F (V ⊗k X) ∼= V ⊗k F (X).

We apply this construction first in the case where C is the category of all G∨k -
modules, i.e. the category of ind-objects in Rep(G∨k ). Here the comultiplication in
the Hopf algebra O(G∨k ) composed with switching the factors provides a canonical
morphism

(8.4) O(G∨k )→ O(G∨k )⊗k O(G∨k ),

where the domain and the right-hand copy of O(G∨k ) in the codomain are equipped
with the left regular G∨k -module structure, while the left-hand copy of O(G∨k ) in the
codomain is regarded just as a vector space. Next we apply the functor induced by
Sat on ind-objects; the properties recalled above imply that we have Sat(O(G∨k )⊗k
O(G∨k )) ∼= O(G∨k )⊗k R, so that we obtain a canonical morphism

(8.5) R → O(G∨k )⊗k R.

(Here the functor on ind-objects induced by Sat commutes with coproducts by the
description of coproducts in [KS, Theorem 8.6.5(v)].) Note that we have an exact
sequence

0→ k→ O(G∨k )→ O(G∨k )⊗k O(G∨k ),

where the rightmost arrow is the difference of (8.4) and the map f 7→ 1 ⊗ f . We
deduce an exact sequence

(8.6) 0→ IC0 → R→ O(G∨k )⊗k R,

where the rightmost arrow is the difference of (8.5) and the map corresponding to
1⊗ idR under the canonical identification

Hom(R,O(G∨k )⊗k R) ∼= O(G∨k )⊗k Hom(R,R).

We can at last use these constructions in the setting of the lemma. For F ,G as
in the statement, by (8.1) we have

Hommod(IAu ,XA)(R)(Φ
A(F),ΦA(G)) ∼= HomPerv(IAu ,XA)(Gr,k)(F ,G ?L

+G R).

Applying the considerations above to the functor HomPerv(IAu ,XA)(Gr,k)(F ,G ?L
+G

(−)) (where here G ?L+G (−) means the canonical extension of the functor H 7→
G ?L+G H to ind-objects, and we consider morphisms of ind-perverse sheaves; the
compatibility with coproducts is guaranteed by [KS, Comments in Notation 8.6.1])
we obtain a canonical isomorphism

HomPerv(IAu ,XA)(Gr,k)

(
F ,G ?L

+G (O(G∨k )⊗k R)
)

∼= O(G∨k )⊗k HomPerv(IAu ,XA)(Gr,k)(F ,G ?L
+G R).

Hence, applying this functor to (8.5) we obtain a canonical morphism

Hommod(IAu ,XA)(R)(Φ
A(F),ΦA(G))→ O(G∨k )⊗k Hommod(IAu ,XA)(R)(Φ

A(F),ΦA(G))
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which defines a structure of a (right) O(G∨k )-comodule, i.e. of a G∨k -module, on
the k-vector space Hommod(IAu ,XA)(R)(Φ

A(F),ΦA(G)). Moreover, from the exact

sequence (8.6) we deduce an exact sequence

0→ HomPerv(IAu ,XA)(Gr,k)(F ,G)→ Hommod(IAu ,XA)(R)(Φ
A(F),ΦA(G))

→ O(G∨k )⊗k Hommod(IAu ,XA)(R)(Φ
A(F),ΦA(G))

which shows that HomPerv(IAu ,XA)(Gr,k)(F ,G) identifies the G∨k -invariants in the G∨k -

module Hommod(IAu ,XA)(R)(Φ
A(F),ΦA(G)). �

8.2. Forgetting the grading. We continue with the setting of §8.1. There is an
obvious exact forget-the-grading functor

(8.7) For : ModY
(IAu ,XA)(R)→ Mod(IAu ,XA)(R),

which sends the “formal” direct sum
⊕

µ Fµ to the “true” direct sum
⊕

µ Fµ in the

category of ind-objects in Perv(IAu ,XA)(Gr,k). This functor is exact; and it satisfies

For ◦ 〈λ〉 ∼= For for any λ ∈ Y, commutes with the functors ΦA, and sends simple
modules to simple modules. (In particular, it sends finitely generated modules to
finitely generated modules.) More specifically, for any w ∈ AWext, we have

(8.8) For(L̂Aw) ∼= LA[x] if w = xtλ with x ∈ AW res
ext and λ ∈ Y.

Lemma 8.4. For F ∈ modY
(IAu ,XA)(R) and G ∈ ModY

(IAu ,XA)(R), the functor For
induces an isomorphism⊕

λ∈Y

HomModY
(IAu ,XA)

(R)(F ,G〈λ〉)
∼→ HomMod(IAu ,XA)(R)(For(F),For(G)).

Proof. By definition, every finitely generated graded R-module is a quotient of a
free graded R-module of finite type; using this, a routine five-lemma argument
shows that it is enough to prove the lemma in the case that F is free. In fact, we
may even assume that F = ΦA(F ′) for some F ′ ∈ Perv(IAu ,XA)(Gr,k). In this case,
using Lemma 5.1 and its ungraded analogue (8.1), we see that the left-hand side is
given by ⊕

λ∈Y

HomPerv(IAu ,XA)(Gr,k)(F ′,Gλ),

while the right-hand side is

HomPerv(IAu ,XA)(Gr,k)

(
F ′,

⊕
λ∈Y

Gλ

)
.

The fact that these spaces coincide follows from [KS, Theorem 8.6.5(v)] and the
comments in [KS, Notation 8.6.1]. �

Remark 8.5. In case G belongs to modY
(IAu ,XA)(R), in view of (8.3) the direct sum

appearing in Lemma 8.4 only has finitely many nonzero terms.

The following statement follows from the construction of projective and injective
objects in the proof of Theorem 7.9, and the parallel construction that proves
Theorem 8.2.

Proposition 8.6. The functor (8.7) sends projective (i.e. injective) objects in

modY
(IAu ,XA)(R) to projective (i.e. injective) objects in mod(IAu ,XA)(R).
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Using (8.8) one can make the statement of Proposition 8.6 more precise: for any
w ∈ AWext, writing w = xtλ with x ∈ AW res

ext and λ ∈ Y we have

For(Q̂Aw) ∼= QA[x].

In particular the functor For sends these indecomposable objects to indecomposable
objects. In fact this property holds for general indecomposable objects, as shown
in the next statement.

Corollary 8.7. Let F ∈ modY
(IAu ,XA)(R). Then F is indecomposable (in the cate-

gory modY
(IAu ,XA)(R)) iff For(F) is indecomposable (in mod(IAu ,XA)(R)).

Proof. Since the categories modY
(IAu ,XA)(R) and mod(IAu ,XA)(R) are Krull–Schmidt

(see Lemma 5.9 and the comments after (8.3)), F , resp. For(F), is indecomposable
iff the ring

EndmodY
(IAu ,XA)

(R)(F), resp. Endmod(IAu ,XA)(R)(For(F)),

is local. Then the claim follows from Lemma 8.4 and the standard fact that a
finite-dimensional Y-graded k-algebra is local (as a nongraded ring) iff its degree-0
component is local, see e.g. [GG]. �

We conclude this subsection with a lemma relating indecomposable objects in
Perv(IAu ,XA)(Gr,k) to indecomposable ungraded R-modules. The proof is based on
arguments found in [D1, §2].

Lemma 8.8. Assume that k is algebraically closed. Let F ∈ Perv(IAu ,XA)(Gr,k)

be an indecomposable perverse sheaf such that ΦA(F) remains indecomposable in

mod(IAu ,XA)(R). If G ∈ PervL+G(Gr,k) is also indecomposable, then F ?L
+G G ∈

Perv(IAu ,XA)(Gr,k) is indecomposable.

Proof. By assumption, the object ΦA(F) is indecomposable in the Krull–Schmidt
category mod(IAu ,XA)(R); the algebra Endmod(IAu ,XA)(R)(Φ

A(F)) is therefore local.

Since this algebra is also finite-dimensional (see (8.3)), its unique maximal ideal
consists of nilpotent elements. Moreover, since k is algebraically closed, the quotient
of Endmod(IAu ,XA)(R)(Φ

A(F)) by its unique maximal ideal is identified with k. We

will denote by
q : Endmod(IAu ,XA)(R)(Φ

A(F))→ k

the quotient map. By Lemma 8.3 there exists a canonical (algebraic) action of G∨k
on Endmod(IAu ,XA)(R)(Φ

A(F)) by algebra automorphisms; the unique maximal ideal

is necessarily stable under this action, so that q is G∨k -equivariant (for the trivial
action on k).

Next, let V = Sat(G). Then V is a finite-dimensional algebraic G∨k -module, and
using (8.2) we see that

Endmod(IAu ,XA)(R)(Φ
A(F ?L

+G G)) ∼= Endmod(IAu ,XA)(R)(Φ
A(F))⊗ Endk(V ),

Endmod(IAu ,XA)(R)(Φ
A(G)) ∼= Endk(V ),

EndPervL+G(Gr,k)(G) ∼= EndG∨k (V ).

Here the first two isomorphisms are G∨k -equivariant for the actions provided by
Lemma 8.3 and the action on V .
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Define a ring homomorphism

ã : Endmod(IAu ,XA)(R)(Φ
A(F ?L

+G G))→ Endmod(IAu ,XA)(R)(Φ
A(G))

to be the map which corresponds to

q ⊗ id : Endmod(IAu ,XA)(R)(Φ
A(F))⊗ Endk(V )→ Endk(V )

under the isomorphisms above. Since the kernel of q is finite-dimensional and
consists of nilpotent elements, the kernel of ã does as well. Since q is G∨k -equivariant,
ã is also equivariant.

We claim that there is a unique ring homomorphism a that makes the following
diagram (of ring homomorphisms) commute:

(8.9)

EndPerv(IAu ,XA)(Gr,k)(F ?L
+G G) EndPervL+G(Gr,k)(G)

Endmod(IAu ,XA)(R)(Φ
A(F ?L+G G)) Endmod(IAu ,XA)(R)(Φ

A(G)).

a

ΦA ΦA

ã

In fact, this follows from the fact that ã is G∨k -equivariant, and that in each column
the domain of the map identifies with the space of G∨k -invariants in its target (see
Lemma 8.3). Since the kernel of ã consists of nilpotent elements, the same holds
for the kernel of a. In view of Lemma 8.9 below and the indecomposability of G,

this implies that the algebra EndPerv(IAu ,XA)(Gr,k)(F ?L
+G G) is local, and hence that

the object F ?L+G G is indecomposable. �

Lemma 8.9. Let k be an algebraically closed field, let A,A′ be finite-dimensional
k-algebras, and let a : A→ A′ be an algebra homomorphism. Assume that

(1) ker(a) consists of nilpotent elements;
(2) A′ is local.

Then A is local.

Proof. Let m′ ⊂ A′ be the unique maximal ideal in A′, and set m = a−1(m′). Since
ker(a) and m′ consist of nilpotent elements (in A and A′ respectively), so does m.
On the other hand, A/m is a k-algebra which embeds in A′/m′, which is isomorphic
to k since this field is algebraically closed; it follows that m is a maximal ideal and
that A = k · 1 ⊕ m. Since m consists of nilpotent elements this shows that any
element in A r m is invertible, and hence that any ideal of A is contained in m,
which finishes the proof. �

8.3. A geometric version of Donkin’s conjecture. A celebrated conjecture
of Donkin [D2] asserts that certain indecomposable tilting modules for reductive
groups should remain indecomposable upon restriction to the Frobenius kernel. (For
recent developments on this question, see [BNPS].) In this subsection we study the
analogue of this property in our geometric setting. We show in particular that the
geometric variant of this conjecture implies a “Steinberg-type” formula for tilting
perverse sheaves (as in the representation-theoretic context, see [Ja, §II.E.9]).

Theorem 8.10. Let w ∈ AW res
ext. The following conditions are equivalent:

(1) The head of TAwAw4 is simple.

(2) The socle of TAwAw4 is simple.
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(3) The object ΦA(TAwAw4) is indecomposable (in the category modY
(IAu ,XA)(R)

or in mod(IAu ,XA)(R)).

(4) For all λ ∈ Y, the object ΦA(TwAw4)〈−λ〉 is both the projective cover and

injective hull of L̂Awtλ in modY
(Iu,XA)(R).

If the conditions above hold, then we also have the following:

(5) (Donkin formula for tilting sheaves) For all µ ∈ Y+, we have

TAwAw4 ?
L+G T µ ∼= TAwAw4tw◦(µ)

.

Note that if the head or socle of TAwAw4 is simple, they must be isomorphic to

LAw by Corollary 7.3. In (3), indecomposability in modY
Iu(R) or in modIu(R) are

equivalent in view of Corollary 8.7.

Proof. The equivalence of (1) and (2) follows from Verdier self-duality of TAwAw4 ,
see Remark 3.3.

Let us now prove that (1) ⇒ (3). Suppose that TAwAw4 has a simple head, but

that ΦA(TAwAw4) is decomposable. Proposition 7.11(2) and Lemma 8.4 imply that

dim Hommod(IAu ,XA)(R)(Φ
A(TAwAw4),ΦA(LAw)) = 1,

so there must be some element y ∈ AW res
ext with y 6∼ w (under the equivalence

relation considered in Proposition 8.1) such that

Hommod(IAu ,XA)(R)(Φ
A(TAwAw4),ΦA(LAy )) 6= 0.

By (8.1), both sides of the following isomorphism are then nonzero:

HomPerv(IAu ,XA)(Gr,k)(T
A
wAw4

, LAy ?
L+G R)

∼=
⊕
µ∈Y

lim−→
λ

Hom(TAwAw4 , L
A
y ?
L+G Iw◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ ).

However, by Theorem 3.16 every composition factor of LAy ?L
+G Iw◦(µ)+λ

∗ ?L
+G

I−w◦(λ)
∗ is of the form LAytν for some ν ∈ −Y+. The unique simple quotient of

TAwAw4 , namely LAw (see Corollary 7.3), is not of this form, so

Hom(TAwAw4 , L
A
y ?
L+G Iw◦(µ)+λ

∗ ?L
+G I−w◦(λ)

∗ ) = 0

for any λ, µ, a contradiction.
We now show that (3) ⇒ (4). If ΦA(TAwAw4) is indecomposable, then Proposi-

tion 7.11(2) shows that

Q̂Aw ∼= ΦA(TAwAw4) ∼= Q̂AιA(w).

The claim in (4) follows using (7.4).
We next show that (4) ⇒ (1). Assume that (4) holds, and that the head of

TAwAw4 has more than one summand. By Corollary 7.3, there exists y ∈ AWS
ext

with y 6= x such that LAy is a quotient of TAwAw4 . Applying ΦA we deduce a

surjection ΦA(TAwAw4)� ΦA(LAy ). Theorem 3.16, Lemma 5.2 and (5.7) show that

ΦA(LAy ) surjects to L̂Ay , so that ΦA(TAwAw4) has two different simple quotients. This
contradicts the fact that this object is a projective cover.
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Finally we show that (4)⇒ (5). First, note that the perverse sheaf TAwAw4 ?
L+G

T µ is tilting. In fact Tw4 ?
L+G T µ is tilting by Lemma 6.7, hence

AvAψ (Tw4 ?
L+G T µ) ∼= AvAψ (Tw4) ?L

+G T µ

is tilting too, see §3.6. By Proposition 3.12 this object is a direct sum of copies of

TAwAw4 ?
L+G T µ, so that the latter object is tilting.

Now that we know that this object is tilting, support considerations show that

TAwAw4 ?
L+G T µ admits TAwAw4tw◦(µ)

as a direct summand; we therefore only need

to show that this object is indecomposable. A routine argument (cf. [AR1, Propo-
sition B.3]) shows that this tilting perverse sheaf is indecomposable if and only if
the object obtained by extension of scalars to the algebraic closure of k is indecom-
posable. Thus, we may assume without loss of generality that k is algebraically
closed. Then the claim follows from Lemma 8.8. �

Remark 8.11. (1) In case k has characteristic 0, Theorem 7.1 says in particular
that condition (1) in Theorem 8.10 holds for any w ∈ AW res

ext . Hence in this

case the injective hulls Q̂Ay (y ∈ AWext) can be described explicitly: if

y = xtλ with x ∈ AW res
ext and λ ∈ Y then

Q̂Ay ∼= ΦA(TAwAx4)〈−λ〉.

(2) When k has positive characteristic, one instance in which the conditions
of Theorem 8.10 hold is for the element w = tςw◦ ∈ W res

ext in case A = ∅.
Indeed, by Proposition 6.4, the object jς! Sς ∼= jς∗Sς ∼= Ttw◦(ς) has a simple

head and socle. (Note that w4 = tw◦(ς).) Thus, by Theorem 8.10, for
any λ ∈ Y the object Φ(Ttw◦(ς))〈−λ〉 is both the injective hull and the

projective cover of L̂tςw◦tλ ; we thus have

Q̂tςw◦tλ = Φ(Ttw◦(ς))〈−λ〉.

9. Baby Verma and co-Verma modules

In this section we introduce objects of modY
(IAu ,XA)(R) which are geometric ana-

logues of baby Verma modules (i.e. the objects denoted Ẑ(λ) in [Ja, Chap. II.9]).
These objects will be obtained from the baby co-Verma modules of §5.6 using a
“Verdier duality” autoequivalence. (In the representation-theoretic context, such a
relation is well known, see [Ja, Equation (5) in §9.3].)

9.1. Verdier duality. We now explain how to define Verdier duality in the cate-
gories modY

(IAu ,XA)(R).
Recall the Verdier duality functor

D : Db
(IAu ,XA)(Gr)→ Db

(IAu ,X
−1
A )

(Gr)

considered in Remark 3.3. What we now want to do is to “extend” this functor to
the category modY

(IAu ,XA)(R), i.e. to define an exact anti-equivalence

D : modY
(IAu ,XA)(R)

∼→ modY
(IAu ,X

−1
A )

(R)

which satisfies

(9.1) D(ΦA(F)〈λ〉) ∼= ΦA(D(F))〈λ〉
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for any F in Perv(IAu ,XA)(Gr) and λ ∈ Y. (Here we are making an abuse of notation

similar to that of Remark 3.3, in the sense that the notation ΦA on either side of
this equation is used for two different functors: on the left-hand side the functor is
defined using the local system XA, while on the right-hand side it is defined using
X−1
A .) Note that a “naive” extension of D to ind-objects would send ind-objects

to pro-objects, and thus not give an endofunctor of R-modules. Instead, we will
use the fact that (9.1) prescribes the definition of D on free R-modules of finite

type, and that the category modY
(IAu ,XA)(R) can be described in terms of these free

modules.
We start by making formal sense of this latter idea. For this, we define the

additive k-linear category FreeY(IAu ,XA)(R) whose objects are formal direct sums⊕
j∈J

(Fj , λj)

where J is a finite set, each Fj is in Perv(IAu ,XA)(Gr,k), and each λj is in Y, and
such that the space of morphisms from

⊕
j∈J(Fj , λj) to

⊕
k∈K(Gk, µk) is

HommodY
(IAu ,XA)

(R)

⊕
j∈J

ΦA(Fj)〈λj〉,
⊕
k∈K

ΦA(Gk)〈µk〉


=
⊕
j∈J
k∈K

HommodY
(IAu ,XA)

(R)(Φ
A(Fj),ΦA(Gk)〈µk − λj〉).

By definition ΦA factors as a composition of additive k-linear functor

Perv(IAu ,XA)(Gr,k)
ΦA1−−→ FreeY(IAu ,XA)(R)

ΦA2−−→ modY
(IAu ,XA)(R),

where ΦA2 is fully faithful. Moreover, the objects in the essential image of ΦA2 are
exactly the free R-modules of finite type.

We now consider the homotopy category K(FreeY(IAu ,XA)(R)), and the triangu-

lated subcategory K(FreeY(IAu ,XA)(R))b of complexes whose image under K(ΦA2 ) has

bounded cohomology. (This subcategory is not the bounded homotopy category of

FreeY(IAu ,XA)(R).) Since DbmodY
(IAu ,XA)(R) identifies with the full subcategory of the

unbounded derived category D(modY
(IAu ,XA)(R)) whose objects have bounded coho-

mology, the composition ofK(ΦA2 ) with the canonical functorK(modY
(IAu ,XA)(R))→

D(modY
(IAu ,XA)(R)) restricts to a functor

(9.2) K(FreeY(IAu ,XA)(R))b → Db(modY
(IAu ,XA)(R)).

Next, let D(FreeY(IAu ,XA)(R))b be the Verdier quotient of K(FreeY(IAu ,XA)(R))b by

the kernel of (9.2). Then, by the universal property of the Verdier quotient, the
functor (9.2) factors through a triangulated functor

(9.3) D(ΦA2 ) : D(FreeY(IAu ,XA)(R))b → Db(modY
(IAu ,XA)(R)).

Lemma 9.1. The functor (9.3) is an equivalence of categories.

Proof. Essential surjectivity follows from Remark 7.10(1). More precisely, any

object in Db(modY
(IAu ,XA)(R)) is isomorphic to a bounded complex of objects in

modY
(IAu ,XA)(R). Given such a complex F , this remark implies that there exists a
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bounded above complex G of free R-modules of finite type which are projective and
a quasi-isomorphism G → F . Then G belongs to the essential image of our functor,
and is isomorphic to F in Db(modY

(IAu ,XA)(R)).

Next we prove that the functor is full. Fix objects F ,G in D(FreeY(IAu ,XA)(R))b.

A morphism f : D(ΦA2 )(F)→ D(ΦA2 )(G) is represented by a diagram

K(ΦA2 )(F)
g←− H h−→ K(ΦA2 )(G)

where H is a complex of objects in modY
(IAu ,XA)(R), and g, h are morphisms of

complexes with g a quasi-isomorphism (which implies that H has bounded coho-
mology). Using a truncation functor we can assume that H is bounded above.

Then, as above there exists a complex K of objects of FreeY(IAu ,XA)(R) and a quasi-

isomorphism k : K(ΦA2 )(K) → H. The object K belongs to K(FreeY(IAu ,XA)(R))b,
and f is also represented by the diagram

K(ΦA2 )(F)
g◦k←−− K(ΦA2 )(K)

h◦k−−→ K(ΦA2 )(G)

where g ◦ k is a quasi-isomorphism, and thus is the image of a morphism from F
to G in D(FreeY(IAu ,XA)(R))b.

Finally we prove faithfulness. Fix again objects F ,G in D(FreeY(IAu ,XA)(R))b, and

consider a morphism f : F → G such that D(ΦA2 )(f) = 0. Here f is represented by
a diagram

F g←− H h−→ G

where H is in K(FreeY(IAu ,XA)(R))b, g and h are morphisms of complexes, and

K(ΦA2 )(g) is a quasi-isomorphism. Once again there exists a bounded above com-
plex K of projective free R-modules of finite type and a quasi-isomorphism K →
K(ΦA2 )(H). Then there exists L in K(FreeY(IAu ,XA)(R))b and an isomorphism of

complexes K(ΦA2 )(L)
∼→ K, and f is represented by a diagram

F g′←− L h′−→ G

where K(ΦA2 )(g′) is a quasi-isomorphism, i.e. D(ΦA2 )(g′) is an isomorphism. Then
D(ΦA2 )(h′) = 0. Since K is a bounded above complex of projective objects, this
implies that K(ΦA2 )(h′) = 0, and hence that h′ is homotopic to 0, and finally that
f = 0. �

Now we address the question of defining D on free R-modules of finite type.
More precisely, we define an additive contravariant equivalence

Dfr : FreeY(IAu ,XA)(R)
∼→ FreeY

(IAu ,X
−1
A )

(R)

as follows. On objects, this functors sends
⊕

j∈J(Fj , λj) to
⊕

j∈J(D(Fj), λj). By
additivity, to define this functor on morphisms it suffices to consider the case of
objects of the form (F , λ). We therefore consider F ,G in Perv(IAu ,XA)(Gr,k), and
λ, µ ∈ Y. Then by definition

HomFreeY
(IAu ,XA)

(R)((F , λ), (G, µ)) = HommodY
(IAu ,XA)

(R)(Φ
A(F),ΦA(G)〈µ− λ〉).
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By Lemma 5.1 and the definition of ΦA, the right-hand side identifies with

HomPerv(IAu ,XA)(Gr,k)(F ,G ?L
+G Rλ−µ)

= lim−→
ν

HomPerv(IAu ,XA)(Gr,k)(F ,G ?L
+G Iw◦(λ−µ)+ν

∗ ?L
+G I−w◦(ν)

∗ ).

By (3.3), for any ν ∈ Y+ ∩ (−w◦(λ− µ) + Y+) we have

HomPerv(IAu ,XA)(Gr,k)(F ,G ?L
+G Iw◦(λ−µ)+ν

∗ ?L
+G I−w◦(ν)

∗ )

∼= HomPerv(IAu ,XA)(Gr,k)(F ?L
+G Iµ−λ−w◦(ν)

! ?L
+G Iν! ,G).

We next use the fact that D commutes with convolution and sends Iη! to Iη∗ for any
η ∈ Y+ to identify this space with

HomPerv
(IAu ,X

−1
A

)
(Gr,k)(D(G),D(F) ?L

+G Iµ−λ−w◦(ν)
∗ ?L

+G Iν∗ ).

Following this series of identifications we have constructed a natural isomorphism
from HomFreeY

(IAu ,XA)
(R)((F , λ), (G, µ)) to

lim−→
ν

HomPerv
(IAu ,X

−1
A

)
(Gr,k)(D(G),D(F) ?L

+G Iµ−λ−w◦(ν)
∗ ?L

+G Iν∗ ).

Setting ν′ = −w◦(µ− λ) + ν we see that this inductive limit identifies with

HomPerv
(IAu ,X

−1
A

)
(Gr,k)(D(G),D(F) ?L

+G Rµ−λ) ∼=

HomFreeY
(IAu ,X

−1
A

)
(R)((D(G), µ), (D(F), λ));

we have therefore completed the definition of the functor Dfr.
In order to “extend” this functor to the appropriate derived categories we will

use the following lemma.

Lemma 9.2. Let

M1
f−→M2

g−→M3

be a sequence of objects and morphisms of FreeY(IAu ,XA)(R) such that the sequence

ΦA2 (M1)
ΦA2 (f)−−−−→ ΦA2 (M2)

ΦA2 (g)−−−−→ ΦA2 (M3)

is exact at ΦA2 (M2). Then the sequence

ΦA2 (Dfr(M3))
ΦA2 (Dfr(g))−−−−−−−→ ΦA2 (Dfr(M2))

ΦA2 (Dfr(f))−−−−−−−→ ΦA2 (Dfr(M1))

is exact at ΦA2 (Dfr(M2)).

Proof. Suppose the latter sequence is not exact, or in other words that

im(ΦA2 (Dfr(g))) ( ker(ΦA2 (Dfr(f))).

By Remark 7.10(1), there exists an object P in FreeY(IAu ,XA)(R) which is a direct

sum of objects of the form (F , λ) with λ ∈ Y and F such that D(F) ∼= F and
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ΦA(F) projective and injective, and a morphism q : P → Dfr(M2) such that the
image of ΦA2 (q) is ker(ΦA2 (Dfr(f))). Then q does not factor through Dfr(g):

P

Dfr(M3) Dfr(M2) Dfr(M1).

q
Dfr(f)◦q=0does not exist

Dfr(g) Dfr(f)

The object ΦA2 (Dfr(P)) is injective. Applying Dfr to the diagram above we obtain
a diagram

M1 M2 M3

Dfr(P).

f

Dfr(q)◦f=0

g

Dfr(q)
does not exist

This diagram implies that the image under ΦA2 of the top row is not exact at M2,
a contradiction. �

Lemma 9.2 implies that the functor

K(Dfr) : K(FreeY(IAu ,XA)(R))→ K(FreeY
(IAu ,X

−1
A )

(R))

restricts to an endofunctor of K(FreeY(IAu ,XA)(R))b that preserves the kernel of (9.2)

(in the sense that it sends the kernel of the version for XA to the kernel of the
version for X−1

A ). It therefore induces a contravariant triangulated functor

D(FreeY(IAu ,XA)(R))b → D(FreeY
(IAu ,X

−1
A )

(R))b.

Conjugating this functor with the equivalence (9.3) (more precisely, the version for
XA and that for X−1

A ) we obtain a contravariant triangulated functor

D : DbmodY
(IAu ,XA)(R)→ DbmodY

(IAu ,X
−1
A )

(R).

It is clear from this construction that D is involutive, in the sense that the com-
position of the version for XA and that for X−1

A is the identity and vice versa (in
particular, D is an equivalence of categories), and that (9.1) holds for any F in
Perv(IAu ,XA)(Gr,k) and λ ∈ Y. In particular, for any w ∈ AWext we have

(9.4) D(L̂Aw) ∼= L̂Aw.

Since any simple object in modY
(IAu ,XA)(R) is of this form (see Theorem 5.6), we de-

duce that D is exact for the natural t-structures on the categories DbmodY
(IAu ,XA)(R)

and DbmodY
(IAu ,X

−1
A )

(R). The restriction of this functor toR-modules therefore pos-

sesses all the required properties.

Remark 9.3. (1) The construction of the anti-autoequivalence D given here fol-
lows the one suggested in [ABBGM, Top of p. 297]. Note however that in
loc. cit. the authors do not justify that this construction does not depend on
the choices one has to make, and defines a functor. Our study of projective
objects exactly fills this gap.

(2) Note that the isomorphisms (9.4) show that for any F in modY
(IAu ,XA)(R)

and w ∈ AWext we have

[F : L̂Aw] = [D(F) : L̂Aw].
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In particular, the endomorphism induced by D on the Grothendieck group
[modY

(IAu ,XA)(R)] is trivial.

Recall the map ιA from (7.5), which is defined so that Q̂AιA(w) is the projec-

tive cover of L̂Aw. The properties of D stated above imply that D(Q̂Aw) is also the

projective cover of L̂Aw; it follows that

(9.5) D(Q̂Aw) ∼= Q̂AιA(w) for any w ∈Wext.

9.2. Baby Verma modules. Given w ∈ AWext, we define the baby Verma module

with label w to be the R-module ẐAw given by

ẐAw := D(Ẑ ′Aw ) ∈ modY
(IAu ,XA)(R).

We will say that an object F in modY
(IAu ,XA)(R) admits a baby Verma filtration

if it admits a finite filtration whose subquotients are isomorphic to baby Verma
modules. It is clear from the definition that F admits a baby Verma filtration iff
D(F) admits a baby co-Verma filtration.

The following properties of baby Verma modules are immediate consequences of
the corresponding facts for baby co-Verma modules (see §5.6 and §7.2), together
with the properties of Verdier duality stated in §9.1.

Lemma 9.4. (1) For w ∈ AWext and λ ∈ Y we have

ẐAwtλ ∼= Ẑ
A
w 〈−λ〉.

(2) For w ∈ AWext, ẐAw has a simple head, isomorphic to L̂Aw.

(3) For w, y ∈ AWext, we have [ẐAy : L̂Aw] = [Ẑ ′Ay : L̂Aw].

Proposition 9.5. (1) If w, x ∈ AWext satisfy [ẐAw : L̂Ax ] 6= 0, we have x �
w � wAx4. Moreover, we have [ẐAx : L̂Ax ] = 1 and [ẐAwAx4 : L̂x] ≤ 1.

(2) For any w ∈ AWext, ẐAw is the projective cover of L̂Aw in the Serre subcate-

gory of modY
(IAu ,XA)(R) generated by the simple objects L̂Ay with y 6� w.

Remark 9.6. As in Remark 7.6, Proposition 9.5 implies that ifM∈ modY
(IAu ,XA)(R)

admits a baby Verma filtration, then the number (M : ẐAw ) of occurrences of a given

baby Verma module ẐAw in such a filtration is independent of the choice of filtration;
in fact these numbers are determined by the equality

[M] =
∑

w∈AWext

(M : ẐAw ) · [ẐAw ]

in [modY
(IAu ,XA)(R)].

Suppose now that M admits both a baby Verma filtration and baby co-Verma

filtration. By Remark 9.3(2), we have [ẐAw ] = [Ẑ ′Aw ] for all w ∈ AWext, so comparing
the equation above with that in Remark 7.6, we deduce that

(9.6) (M : ẐAw ) = (M : Ẑ ′Aw ) for all w ∈ AWext.

Recall that in the proof of Theorem 7.9, we showed that modY
(IAu ,XA)(R) is an

“essentially finite highest weight category” in the sense of [BS, Definition 3.7]. In
that setting, comparing Proposition 9.5 with [BS, Lemma 3.1], we see that for any

w ∈ AWext the baby Verma module ẐAw is isomorphic to the objects denoted ∆(w)
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and ∆̄(w) in [BS]. Now that these objects are identified, we can state property
“(P∆ε)” from [BS] in our setting, which does hold by [BS, Theorem 3.5].

Proposition 9.7. For any w ∈ AWext, the object Q̂Aw admits a baby Verma filtra-
tion.

The following lemma is a restatment of [BS, Theorems 3.11 and 3.14] in our
context.

Lemma 9.8. Let M∈ modY
(IAu ,XA)(R).

(1) The object M admits a baby co-Verma filtration if and only if it satisfies

Ext1
modY

(IAu ,XA)
(R)(ẐAw ,M) = 0 for any w ∈ AWext. Moreover, in this case,

for any w ∈ AWext we have

ExtnmodY
(IAu ,XA)

(R)(Ẑ
A
w ,M) = 0 for any n ≥ 1

and
dim HommodY

(IAu ,XA)
(R)(ẐAw ,M) = (M : Ẑ ′Aw ).

(2) The object M admits a baby Verma filtration if and only if it satisfies

Ext1
modY

(IAu ,XA)
(R)(M, Ẑ ′Aw ) = 0 for any w ∈ AWext. Moreover, in this case,

for any w ∈ AWext we have

ExtnmodY
(IAu ,XA)

(R)(M, Ẑ ′Aw ) for any n ≥ 1

and
dim HommodY

(IAu ,XA)
(R)(M, Ẑ ′Aw ) = (M : ẐAw ).

Lemma 9.8 implies in particular that the property of admitting a baby Verma
filtration is stable under direct summands, and similarly for baby co-Verma filtra-
tions. It also implies that we have a “reciprocity formula” (see [BS, Corollaries 3.12
and 3.15]): for w, y ∈ AWext we have

(9.7) (Q̂Aw : Ẑ ′Ay ) = [ẐAy : L̂Aw], (Q̂AιA(w) : ẐAy ) = [Ẑ ′Ay : L̂Aw],

where ιA(w) is defined in (7.5). (Here, the numbers on both sides of the first

equation are equal to dim Hom(ẐAy , Q̂Aw), and those in the second equation are

equal to dim Hom(Q̂AιA(w), Ẑ
′A
y ).)

Remark 9.9. The first equality in (9.7) and Proposition 9.5 show that (Q̂Aw : Ẑ ′Ay )
vanishes unless w � y, and is equal to 1 if y = w. In particular, given an indecom-

posable injective object Q̂ in mod(IAu ,XA)(R), to determine the socle of Q̂ (i.e. its
label) it suffices to determine the smallest element w (for the order �) such that

(Q̂ : Ẑ ′Aw ) 6= 0. Since the classes ([Ẑ ′Aw ] : w ∈ AWext) in [mod(IAu ,XA)(R)] are linearly

independent (see Remark 7.6), this also implies that the classes ([Q̂Aw] : w ∈ AWext)
are linearly independent.

Corollary 9.10. LetM,N ∈ modY
(IAu ,XA)(R). IfM admits a baby Verma filtration

and N admits a baby co-Verma filtration, then

dim HommodY
(IAu ,XA)

(R)(M,N ) =
∑

y∈AWext

(M : ẐAy )(N : Ẑ ′Ay ).
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Proof. We proceed by induction on the number of steps in a baby co-Verma fil-

tration of N . If N is itself a baby co-Verma module, say N = Ẑ ′Aw , then the

lemma reduces to the claim that dim Hom(M, Ẑ ′Aw ) = (M : ẐAw ), which is part of

Lemma 9.8. Otherwise, choose a short exact sequence 0 → Ẑ ′Aw → N → N ′ → 0,

where N ′ has a baby co-Verma filtration with fewer steps. Since Ext1(M, Ẑ ′Aw ) = 0
by Lemma 9.8, we get a short exact sequence

0→ Hom(M, Ẑ ′Aw )→ Hom(M,N )→ Hom(M,N ′)→ 0,

and hence

dim Hom(M,N ) = (M : ẐAw ) + dim Hom(M,N ′).

The lemma follows by induction. �

Corollary 9.11. Let ω ∈ Ω, and let s1, . . . , sr ∈ Saff . The integer

dim End(Φ(ξsr · · · ξs1ξω−1(jς!∗Sς)))

is independent of the field k.

Proof. As in the proof of Proposition 7.4 the object Φ(ξsr · · · ξs1ξω−1(jς!∗Sς)) is both
injective and projective, so it admits both a baby Verma filtration and a baby co-
Verma filtration (see Theorem 7.9(2) and Proposition 9.7). By Corollary 9.10, it is
therefore enough to show that the baby (co-)Verma multiplicities are independent
of the field of coefficients k. The baby co-Verma multiplicities in Φ(jς!∗Sς) are given
explicitly in Lemma 6.10 (and are manifestly independent of k). Then, the baby
co-Verma multiplicities in Φ(ξsr · · · ξs1ξω−1(jς!∗Sς)) can be computed by the com-
binatorial rules from Lemma 6.12, from which we see that these multiplicities are
again independent of k. We deduce the same property for baby Verma multiplicities
using (9.6). �

9.3. Integral R-modules. In order to prove some further properties of baby
Verma and co-Verma modules, we need to make a detour through a version of
our categories over the ring of integers O of a finite extension of Q`. (Our under-
standing of this theory is quite limited, and the results obtained below are clearly
not fully satisfactory. They will still be sufficient for the applications we have in
mind.) For clarity, in this subsection we will sometimes add the coefficients in
parentheses to various notations introduced above.

Let O be the ring of integers in a finite extension K of Q` containing a nontrivial
p-th root of unity, and let F be its residue field. Then we can consider the categories
Db

(IAu ,XA)(Gr,E) and Db
L+G(Gr,E) for any E ∈ {K,O,F}, and we have change-of-

scalars functors

K := K
L
⊗O (−) : Db

(IAu ,XA)(Gr,O)→ Db
(IAu ,XA)(Gr,K),

F := F
L
⊗O (−) : Db

(IAu ,XA)(Gr,O)→ Db
(IAu ,XA)(Gr,F),

and similarly for the L+G-equivariant categories. (Here the symbol (IAu ,XA) refers
to the Whittaker condition over O, F or K depending on the coefficients appearing
elsewhere in the notation.)
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The definition of the ind-perverse sheaf R with coefficients in O (denoted R(O)
below) can be copied verbatim from §5.2. Note that the geometric Satake equiv-
alence is also known over O; however, in that setting the definition of the convo-
lution product on PervL+G(Gr,O) involves a perverse truncation, see [MV, Equa-
tion (4.2)]. Here we continue to define the bifunctors

?L
+G : Db

L+G(Gr,O)×Db
L+G(Gr,O)→ Db

L+G(Gr,O),

?L
+G : Db

(IAu ,XA)(Gr,O)×Db
L+G(Gr,O)→ Db

(IAu ,XA)(Gr,O)

as in (3.2) or §3.4, i.e. without incorporating the perverse truncation; with this
notation, the convolution product on PervL+G(Gr,O) used in the construction of
the geometric Satake equivalence is therefore given by

(F ,G) 7→ pH0
(
F ?L

+G G
)
.

Lemma 9.12. For any F in Perv(IAu ,XA)(Gr,O) and any G ∈ PervL+G(Gr,O) such

that F(G) is perverse, the complex F ?L+G G is perverse. In particular, for any F
in Perv(IAu ,XA)(Gr,O) and λ ∈ Y+, the complex F ?L+G Iλ∗ is perverse.

Proof. To prove this lemma we will use the description of the product ?L
+G in terms

of nearby cycles first made explicit by Gaitsgory [Ga]; see [AR4, Proposition 3.3.1]
for more details. By t-exactness of nearby cycles, this description shows that to
prove the first statement in the lemma it suffices to prove that the complex F �LO G
on Gr × Gr is perverse. By right exactness of the derived tensor product, this
complex belongs to the nonpositive part of the perverse t-structure. To check that
it belongs to the nonnegative part, we have to check that for any IAu -orbit X ⊂ Gr
and any L+G-orbit Y ⊂ Gr, the corestriction of our complex F �LO G to X × Y
is concentrated in nonnegative perverse degrees. Now the embedding of X × Y in
Gr×Gr can be written as a composition

X × Y ↪→ X ×Gr
i×id−−−→ Gr×Gr,

where i : X → Gr is the embedding. It therefore suffices to show that the complex

(i× id)!(F
L

�O G) = (i!F)
L

�O G
is concentrated in nonnegative perverse degrees. Now i!F is an extension of constant
sheaves MX [n] with M a finitely generated O-module and n ≤ dim(X). Our
assumption on G ensures that each MX [n]�LO G is in nonnegative perverse degrees,
which implies our claim.

The second assertion of the lemma follows from the first one, since Iλ∗ satisfies
the required assumption by [MV, Proposition 8.1]. �

Lemma 9.12 shows that for any F in Perv(IAu ,XA)(Gr,O) and any λ, µ ∈ Y

appearing in (5.3) the convolution F ?L+G Iw◦(µ)+λ
∗ ?L

+G I−w◦(λ)
∗ is perverse. For

any ind-object F in Perv(IAu ,XA)(Gr,O) and any µ ∈ Y we can therefore consider

the ind-object F ?L+GRµ in Perv(IAu ,XA)(Gr,O), and then make sense of the abelian

category ModY
(IAu ,XA)(R(O)) as in §5.4. The functor

ΦA : Perv(IAu ,XA)(Gr,O)→ ModY
(IAu ,XA)(R(O)),

and the notions of free R(O)-module of finite type and finitely generated R(O)-
module can also be copied. Lemma 5.1 holds unchanged. The definitions of the
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various averaging functors from §6.1 carry over to this setting, and one can show
that these functors are still exact; in particular, there is an exact functor

ξA : ModY
Iu(R(O))→ ModY

Iu(R(O))

that sends finitely generated R(O)-modules to finitely generated R(O)-modules.

Remark 9.13. As with field coefficients, it is not immediately obvious that the cate-
gory of finitely generatedR(O)-modules, which one may denote modY

(IAu ,XA)(R(O)),
is abelian. We will not address this question in this paper, as working in the cate-
gory ModY

(IAu ,XA)(R(O)) will be sufficient for our purposes.

The change-of-scalars functor F induces a right-exact functor

F0 : ModY
(IAu ,XA)(R(O))→ ModY

(IAu ,XA)(R(F))

defined as follows. If M ∈ ModY
(IAu ,XA)(R(O)), the underlying graded ind-perverse

sheaf of F0(M) is pH0(F(M)), with the obvious grading. The morphisms

pH0(F(Mλ)) ?L
+G Rµ(F)→ pH0(F(Mλ+µ))

are obtained from the morphisms Mλ ?
L+GRµ(O)→Mλ+µ by application of the

functor pH0(F(−)), using the fact that for any F in Perv(IAu ,XA)(Gr,O) we have

pH0(F(F ?L
+G Iw◦(µ)+λ

∗ (O) ?L
+G I−w◦(λ)

∗ (O))) ∼=
pH0(F(F)) ?L

+G Iw◦(µ)+λ
∗ (F) ?L

+G I−w◦(λ)
∗ (F)

by commutation of F with convolution, the fact that F(Iν∗ (O)) ∼= Iν∗ (F) for any
ν (see the proof of Lemma 9.12), and exactness of convolution over F. Similar
considerations show that the functor K induces in the natural way an exact functor

K : ModY
(IAu ,XA)(R(O))→ ModY

(IAu ,XA)(R(K)).

(Here there is no perverse cohomology involved in the construction since K is t-
exact; we therefore do not add any superscript in the notation.) It is clear from
this definition that for F in Perv(IAu ,XA)(Gr,O) we have canonical isomorphisms

F0 ◦ ΦA(F) ∼= ΦA(pH0(F(F))), K ◦ ΦA(F) ∼= ΦA(K(F)).

The functors K and F0 also commute in the natural way with the averaging functors.
We will now analyze the effect of the functors K and F0 on morphisms. We start

with the much easier case of K.

Lemma 9.14. Let F ,G ∈ Perv(IAu ,XA)(Gr,O). For any ν ∈ Y, the functor K
induces an isomorphism

K⊗O HomModY
(IAu ,XA)

(R(O))(Φ(F),Φ(G)〈ν〉) ∼→

HommodY
(IAu ,XA)

(R(K))(Φ(K(F)),Φ(K(G))〈ν〉).

Proof. By (the analogue of) Lemma 5.1 we have

HomModY
(IAu ,XA)

(R(O))(Φ(F),Φ(G)〈ν〉) ∼=

lim−→
λ

HomPerv(IAu ,XA)(Gr,O)(F ,G ?L
+G Iw◦(ν)+λ

∗ (O) ?L
+G I−w◦(λ)

∗ (O)),
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and similarly over K. The claim follows, using the fact that inductive limits com-
mute with tensor product, and that for H1,H2 in Perv(IAu ,XA)(Gr,O) the morphism

(9.8) K⊗O HomPerv(IAu ,XA)(Gr,O)(H1,H2)→ HomPerv(IAu ,XA)(Gr,K)(K(H1),K(H2))

induced by K is an isomorphism. �

We now consider the more delicate case of F0. Recall that a perverse sheaf F
in Perv(IAu ,XA)(Gr,O) or PervL+G(Gr,O) is called torsion-free if multiplication by
a uniformizer of O is injective on F , or equivalently if F(F) is perverse. Using this
characterization and t-exactness of convolution over F, one easily sees that if F
in Perv(IAu ,XA)(Gr,O) or PervL+G(Gr,O) and G in PervL+G(Gr,O) are torsion-free,

then F ?L+GG is torsion-free. Recall also that the O-module of morphisms between
two torsion-free perverse sheaves is finitely generated and torsion-free, hence free
of finite rank. The following lemma comprises an analogue of Lemma 5.10 over O.

Lemma 9.15. Let F ,G ∈ Perv(IAu ,XA)(Gr,O) be torsion-free, and let ν ∈ Y.

(1) If λ ∈ Y+ ∩ (w◦(ν) + Y+) is sufficiently large, the natural map

Hom(F ,G ?L
+G I−w◦(ν)+λ

∗ (O) ?L
+G I−w◦(λ)

∗ (O))→ Hom(Φ(F),Φ(G)〈ν〉)
is an isomorphism. In particular, Hom(Φ(F),Φ(G)〈ν〉) is a free O-module
of finite rank.

(2) The functor F0 induces an injection

F⊗O HommodY
Iu

(R(O))(Φ(F),Φ(G)〈ν〉) ↪→ HommodY
Iu

(R(F))(Φ(F(F)),Φ(F(G))〈ν〉),

which is an isomorphism if and only if

dimK HommodY
Iu

(R(K))(Φ(K(F)),Φ(K(G))〈ν〉) =

dimF HommodY
Iu

(R(F))(Φ(F(F)),Φ(F(G))〈ν〉).

Proof. (1) Recall that if H1 and H2 are torsion-free perverse sheaves, then there is
a natural injective map

(9.9) F⊗O Hom(H1,H2) ↪→ Hom(F
L
⊗O H1,F

L
⊗O H2),

whose cokernel identifies with TorO1 (F,Ext1(H1,H2)).
Let λ ∈ Y+ ∩ (w◦(ν) + Y+), let µ ∈ Y+, and set λ′ := λ + µ. In the following

diagram, the vertical maps come from the morphisms (9.8) and (9.9), and the
horizontal maps are defined by the considerations in §5.2. Note that the second
row consists of free O-modules, while the top and bottom rows consist of K- and
F-vector spaces, respectively.

Hom(K(F),K(G) ? I−w◦(ν)+λ∗ ? I−w◦(λ)∗ ) Hom(K(F),K(G) ? I−w◦(ν)+λ
′

∗ ? I−w◦(λ
′)

∗ )

Hom(F ,G ? I−w◦(ν)+λ∗ ? I−w◦(λ)∗ ) Hom(F ,G ? I−w◦(ν)+λ
′

∗ ? I−w◦(λ
′)

∗ )

F⊗Hom(F ,G ? I−w◦(ν)+λ∗ ? I−w◦(λ)∗ ) F⊗Hom(F ,G ? I−w◦(ν)+λ
′

∗ ? I−w◦(λ
′)

∗ )

Hom(F(F),F(G) ? I−w◦(ν)+λ∗ ? I−w◦(λ)∗ ) Hom(F(F),F(G) ? I−w◦(ν)+λ
′

∗ ? I−w◦(λ
′)

∗ ).

(i)

(ii)

(iii)

(iv)



78 PRAMOD N. ACHAR AND SIMON RICHE

Our goal is to prove that when λ is large enough, arrow (ii) is an isomorphism.
Lemma 5.10 and Remark 5.11 show that when λ is large enough, arrows (i) and (iv)
are both isomorphisms. The topmost and bottommost commutative squares then
show that arrows (ii) and (iii) are both injective.

The free O-modules in the second row must have equal (finite) ranks, because
the K-vector spaces they give rise to in the first row have equal dimensions. It
then follows that the F-vector spaces in the third row also have equal dimensions.
Since arrow (iii) is an injective map between F-vector spaces of equal dimension,
it is actually an isomorphism. In view of this, Nakayama’s lemma implies that the
middle one is surjective, which finishes the proof.

(2) If λ is large enough, by (1) and Lemma 5.10 we have identifications

Hom(F ,G ?L
+G I−w◦(ν)+λ

∗ (O) ?L
+G I−w◦(λ)

∗ (O))
∼→ Hom(Φ(F),Φ(G)〈ν〉)

and

Hom(E(F),E(G) ?L
+G I−w◦(ν)+λ

∗ (E) ?L
+G I−w◦(λ)

∗ (E))
∼→ Hom(Φ(E(F)),Φ(E(G))〈ν〉)

for E = K or F. Via these identifications, the morphism under consideration iden-
tifies with the morphism

Hom(F ,G ?L
+G I−w◦(ν)+λ

∗ (O) ?L
+G I−w◦(λ)

∗ (O))→

Hom(F(F),F(G) ?L
+G I−w◦(ν)+λ

∗ (F) ?L
+G I−w◦(λ)

∗ (F))

induced by F. The latter morphism is injective, as noted in (9.9). It is an isomor-
phism if and only if these vector spaces have equal dimension, which in view of the
identifications above and the isomorphism (9.8) is equivalent to the condition in
the statement. �

Remark 9.16. For later use, let us record a special case in which the condition in
Lemma 9.15(2) is satisfied. We assume that A = ∅, and fix some simple reflections
s1, . . . , sr ∈ Saff and some ω ∈ Ω. For E ∈ {K,O,F} we set

P(E) := ξs1 · · · ξsrξω(Ttw◦(ς)(E)).

(See §3.5 for generalities on tilting O-perverse sheaves.) Here we have Ttw◦(ς)(O) ∼=
jς! Sς(O) ∼= jς∗Sς(O). In particular we have

F(Ttw◦(ς)(O)) ∼= Ttw◦(ς)(F), K(Ttw◦(ς)(O)) ∼= Ttw◦(ς)(K),

which implies that

K(P(O)) ∼= P(K) and F(P(O)) ∼= P(F).

In particular, this shows that F(P(O)) is tilting, which by standard arguments
implies that P(O) is tilting.

If F ∈ PervIu(Gr,O) is tilting, then the condition in Lemma 9.15(2) is satisfied
for the pairs of objects (F ,P(O)) and (P(O),F) and any ν ∈ Y. Indeed, for

λ ∈ Y+∩ (w◦(ν) +Y+) the object I−w◦(ν)+λ
∗ (F)?L

+G I−w◦(λ)
∗ (F) has a costandard

filtration (in PervL+G(Gr,F)) by [AR3, Proposition 4.8], hence

P(F) ?L
+G I−w◦(ν)+λ

∗ (F) ?L
+G I−w◦(λ)

∗ (F) ∼=

F(P(O) ?L
+G I−w◦(ν)+λ

∗ (O) ?L
+G I−w◦(λ)

∗ (O))
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admits a costandard filtration (in PervIu(Gr,F)) by Lemma 6.7 and the consid-
erations in §3.7. By standard arguments, this implies that the perverse sheaf

P(O) ?L
+G I−w◦(ν)+λ

∗ (O) ?L
+G I−w◦(λ)

∗ (O) admits a costandard filtration in the
category PervIu(Gr,O). We deduce the equality

dim Hom(F(F),P(F) ?L
+G I−w◦(ν)+λ

∗ (F) ?L
+G I−w◦(λ)

∗ (F)) =

dim Hom(K(F),P(K) ?L
+G I−w◦(ν)+λ

∗ (K) ?L
+G I−w◦(λ)

∗ (K))

by the usual formula calculating dimensions of morphism spaces from a standardly-
filtered object to a costandardly-filtered object in terms of multiplicities. Similar
arguments apply in the second setting, using the isomorphism

Hom(P(E),E(F) ?L
+G I−w◦(ν)+λ

∗ (E) ?L
+G I−w◦(λ)

∗ (E)) ∼=

Hom(P(E) ?L
+G Iν−w◦(λ)

! (E) ?L
+G Iλ! (E),E(F))

for E = K or F.

We finally come to the main result of this subsection.

Theorem 9.17. For each w ∈Wext, there exists an indecomposable finitely gener-

ated R(O)-module Q̂w(O) with the following properties:

(1) it is a direct summand of an object Φ(ξs1 · · · ξsrξω(Ttw◦(ς)(O)))〈ν〉 for some
s1, · · · , sr ∈ Saff , ω ∈ Ω, ν ∈ Y;

(2) we have F0(Q̂w(O)) ∼= Q̂w(F);

(3) the R(K)-module K(Q̂w(O)) is projective and injective, and contains the

indecomposable object Q̂w(K) as a direct summand with multiplicity 1.

Proof. By periodicity, it is enough to prove this claim when w ∈ W res
ext . Assume

this from now on. Choose s1, . . . , sr ∈ Saff and ω ∈ Ω as in Lemma 6.6, and for
E ∈ {K,O,F}, let

P(E) := ξsr · · · ξs1ξω−1(Ttw◦(ς)(E)).

(See Remark 9.16 for comments on this definition.)
When E = K or F, the proof of Proposition 7.4 shows that Φ(P(E)) is injective

and projective, and that it contains the injective envelope Q̂w(E) of L̂w(E) as
a direct summand. More precisely, considering the baby co-Verma multiplicities
described in that proposition and comparing with Theorem 7.9, we see that in this
case:

• Φ(P(E)) contains Q̂w(E) as a direct summand with multiplicity 1;

• for any other indecomposable injective object Q̂y(E) occuring as a direct
summand of Φ(P(E)), we have y � w.

The first item above implies that we then have

(9.10) dim Hom(Φ(Lw(E)),Φ(P(E))) = 1.

We now consider the case E = O. Let Lw(O) be the intersection cohomology
complex associated with the constant O-local system on Grw. It is well known that
K(Lw(O)) ∼= Lw(K), so that (9.10) implies that

(9.11) dim Hom(Φ(K(Lw(O))),Φ(P(K))) = 1.
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Next, let us study the analogous problem over F. The modular reduction F(Lw(O))
is a perverse sheaf which is not simple in general; instead, there is a short exact
sequence

0→ K → F(Lw(O))→ Lw(F)→ 0

whereK is a perverse sheaf with composition factors of the form Lz(F) with z ∈WS
ext

such that z < w (and hence z ≺ w by Lemma 2.5(3)). By Lemma 5.8, the R(F)-

module Φ(K) has all of its composition factors of the form L̂z′(F) with z′ ≺ w.
Apply the exact functor Hom(Φ(−),Φ(P(F))) to the exact sequence above to

get a short exact sequence

0→ Hom(Φ(Lw(F)),Φ(P(F)))→ Hom(F(Φ(Lw(O))),Φ(P(F)))

→ Hom(Φ(K),Φ(P(F)))→ 0.

By (9.10), the first term has dimension 1. The claim above on the composition

factors of Φ(K) and the description of the summands Q̂y(F) that can occur in
Φ(P(F)) imply that Hom(Φ(K),Φ(P(F))) = 0. We conclude that

(9.12) dim Hom(Φ(F(Lw(O))),P(F)) = 1.

Combining (9.11), (9.12), and Lemma 9.15, we see that the functor F0 induces
an isomorphism

(9.13) F⊗O Hom(Φ(Lw(O)),Φ(P(O)))
∼→ Hom(Φ(F(Lw(O))),Φ(P(F))).

Similarly, according to Corollary 9.11, the rings End(Φ(P(K))) and End(Φ(P(F)))
have equal dimensions, so by Lemma 9.15 again, the functor F0 induces an isomor-
phism

(9.14) F⊗O End(Φ(P(O)))
∼→ End(Φ(P(F))).

Of course, analogues of both of these isomorphisms hold if Φ(P(O)) is replaced by
some direct summand.

Let us now study the direct summands of Φ(P(O)). Because O is a complete noe-
therian local ring, the finite O-algebra End(Φ(P(O))) is a semiperfect ring by [La,
Example 23.3], and similarly for direct sums of copies of Φ(P(O)) or direct sum-
mands of such objects. Then, by [Kr, Corollary 4.4] applied to the full subcategory

of ModY
Iu(R(O)) generated by Φ(P(O)) under direct sums and direct summands,

the Krull–Schmidt theorem applies to Φ(P(O)): this object has a unique (up to
isomorphism and reordering) decomposition into indecomposable summands

Φ(P(O)) ∼=M1 ⊕ · · · ⊕Mn

where each Mi has a local endomorphism ring. As explained above, for any i we
have a natural isomorphism

F⊗O End(Mi)
∼→ End(F(Mi)).

In particular, End(F(Mi)) is again a local ring. In other words, each R(F)-module
F(Mi) is indecomposable, and these are all the indecomposable summands of

Φ(P(F)). Exactly one of these summands is isomorphic to Q̂w(F); we can therefore

assume without loss of generality that Q̂w(F) ∼= F(M1). We define

Q̂w(O) :=M1.
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Parts (1) and (2) of the theorem hold by construction. It remains to prove
part (3). This is equivalent to showing that

dim Hom(L̂w(K),K(Q̂w(O))) = 1.

To see this, observe first that since K(Lw(O)) ∼= Lw(K), by Lemmas 9.14 and 9.15

and the construction of Q̂w(O) we have

dim Hom(L̂w(K),K(Q̂w(O))) = dimF⊗O Hom(Φ(Lw(O)), Q̂w(O)).

Next, it follows from (9.13) that

dimF⊗O Hom(Φ(Lw(O)), Q̂w(O)) = dim Hom(Φ(F(Lw(O))), Q̂w(F)),

and the right-hand side is equal to 1 by (9.12). �

Remark 9.18. (1) It is possible to adapt the reasoning of Propositions 5.7, 6.5,
and 7.4 to the setting of R(O)-modules, to show that the object P(O)

appearing in the preceding proof is a projective object in ModY
Iu(R(O)).

Therefore, its direct summand Q̂w(O) is also projective. (Of course, it

would also be projective in modY
Iu(R(O)) if one knew that the latter cat-

egory was abelian: see Remark 9.13.) Note, however, that Q̂w(O) is not
injective, unlike its field counterparts: this essentially comes down to the
fact that O is not an injective O-module.

(2) For any y, w ∈ Wext, the O-module Hom(Q̂y(O), Q̂w(O)) is free of finite
rank, and the functors K and F0 induce isomorphisms

K⊗O Hom(Q̂y(O), Q̂w(O))
∼→ Hom(K(Q̂y(O)),K(Q̂w(O)))

and

F⊗O Hom(Q̂y(O), Q̂w(O))
∼→ Hom(Q̂y(F), Q̂w(F)).

In fact this follows from part (1) in Theorem 9.17, combined with Lem-
mas 9.14 and 9.15 and Remark 9.16.

Corollary 9.19. Let F be a tilting object in PervIu(Gr,O). If M is a direct
summand of Φ(F) which satisfies F0(M) = 0, we have K(M) = 0.

Proof. Let y ∈ Wext. By part (1) in Theorem 9.17 and by Lemma 9.15 and Re-

mark 9.16, the O-module Hom(M, Q̂y(O)) is free of finite rank, and the functor F0

induces an isomorphism

F⊗O Hom(M, Q̂y(O))→ Hom(F0(M), Q̂y(F)).

Since the right-hand side vanishes, this implies that we have Hom(M, Q̂y(O)) = 0.

Using Lemma 9.14 we deduce that Hom(K(M),K(Q̂y(O))) = 0, and hence that

Hom(K(M), Q̂y(K)) = 0 by part (3) in Theorem 9.17.
Since K(M) is finitely generated, what we have shown implies that this object

has no composition factor, i.e. is trivial. �

The following application of Theorem 9.17 will be needed in §9.4 (where we will
show that, in fact, the dimension in question is equal to 1).

Proposition 9.20. If k is any field, then for any w ∈ Wext the dimension of the

k-vector space HommodY
Iu

(R(k))(Q̂w(k), Q̂w4(k)) is at least 1.
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Proof. By periodicity (see (2.4)), it is enough to prove this property when w ∈W res
ext .

We assume this from now on.
Suppose first that k is a field of characteristic 0. In this case, according to

Remark 8.11(1) we have Q̂w ∼= Φ(Tw4). The object Lw4 occurs as a composition

factor of Tw4 , so Φ(Lw4) is a subquotient of Q̂w. It follows from Theorem 3.16

and Lemma 5.2 that L̂w4 is a direct summand of Φ(Lw4), and hence a composition

factor of Q̂w. The result follows.
We now consider the case where k has positive characteristic. We can assume

that k is finite. Let K be a finite extension of Q` whose ring of integers O has k as

residue field. Since K(Q̂w(O)) contains Q̂w(K) as a direct summand, and likewise
for w4 (part (3) in Theorem 9.17), the previous paragraph and Remark 9.18(2)

imply that the free O-module Hom(Q̂w(O), Q̂w4(O)) has rank ≥ 1. Using again

Remark 9.18(2), we deduce that dim Hom(Q̂w(k), Q̂w4(k)) ≥ 1 as well. �

9.4. Application: multiplicities and projective covers. We now return to the
setting of field coefficients. In the following proposition we gather the main proper-

ties of the objects Q̂Aw, some of which have already appeared in earlier statements.

Proposition 9.21. Let w, x ∈ AWext.

(1) The object Q̂Ax is both the injective envelope and the projective cover of L̂Ax .

(2) We have D(Q̂Ax ) ∼= Q̂Ax .

(3) We have AvA∗ (Q̂Ax ) ∼= Q̂x and AvA! (Q̂Ax ) ∼= Q̂x.

(4) The multiplicities in baby Verma and baby co-Verma filtrations of Q̂Ax satisfy
the following “reciprocity laws”:

(Q̂Ax : Ẑ ′Aw ) = [ẐAw : L̂Ax ] = [Ẑ ′Aw : L̂Ax ] = (Q̂Ax : ẐAw ).

Moreover, these numbers are zero unless x � w � wAx
4, and they are

equal to 1 when w = x or w = wAx
4.

Recall the map ιA defined in (7.5), characterized by the property that Q̂AιA(x) is

the projective cover of L̂Ax . In view of (9.5), parts (1) and (2) are both equivalent
to the claim that

(9.15) ιA(x) = x for all x ∈ AWext.

Proof. Let us start with part (4). The first equality has already been noted in (9.7).

The second one is part of Lemma 9.4. Finally, since Q̂Ax admits both a baby Verma
filtration and a baby co-Verma filtration (see Theorem 7.9(2) and Proposition 9.7),

the equality (Q̂Ax : Ẑ ′Aw ) = (Q̂Ax : ẐAw ) holds by Remark 9.6. Most of the last
assertion of this part has already been established in Corollary 7.5; it only remains
to show that

(9.16) [Ẑ ′AwAx4 : L̂Ax ] = 1 for all x ∈ AWext.

We will return to this later in the proof.
We will now prove parts (1) and (2). Observe that by applying D, we have

(D(Q̂Ax ) : Ẑ ′Az ) = (Q̂Ax : ẐAz )

for all z ∈ AWext. Now Remark 9.9 and the equalities from part (4) show that there
exists a unique minimal element z (with respect to �) such that the right-hand side

is nonzero, namely x. Since D(Q̂Ax ) is an indecomposable injective object, in view
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of Remark 9.9 again this implies that D(Q̂Ax ) ∼= Q̂Ax , proving part (2). As noted
above, this claim is equivalent to that in (1).

For part (3), the first isomorphism was already established in Theorem 7.9(3).
The second one follows by Verdier duality; alternatively, since we now know that

Q̂x is the projective cover of L̂x, one can repeat the argument from the proof of

Theorem 7.9(3) to show that AvA! (Q̂Ax ) ∼= Q̂x.

It remains to prove (9.16). By Corollary 7.5, we at least know that [Ẑ ′AwAx4 :

L̂Ax ] ≤ 1. Suppose in fact that this multiplicity is 0 for some x. By the portion

of part (4) that is already proved, we see that the baby co-Verma modules Ẑ ′Ay
appearing in a baby co-Verma filtration of Q̂Ax all satisfy x � y ≺ wAx

4. Using

Corollary 7.5 again, we see that the composition factors of Q̂Ax are of the form L̂Az
with z ≺ wAx4; in particular, [Q̂Ax : L̂AwAx4 ] = 0, and hence Hom(Q̂Ax , Q̂AwAx4) = 0.
If A = ∅, this contradicts Proposition 9.20, and we are done. Before passing to the

case where A 6= ∅, let us note that once we know that (Q̂x : Ẑ ′x4) = 1, then by

Remark 7.8 we know that Ẑ ′x4 is actually a quotient of Q̂x.

Let us now finish the proof of (9.16) in the case where A 6= ∅. Since L̂AwAx4 is the

socle of Ẑ ′AwAx4 , the equation [Q̂Ax : L̂AwAx4 ] = 0 implies that Hom(Q̂Ax , Ẑ ′AwAx4) = 0.
We have

0 = Hom(Q̂Ax , Ẑ ′AwAx4) = Hom(Q̂Ax ,AvAψ (Ẑ ′x4))

= Hom(AvA! (Q̂Ax ), Ẑ ′x4) = Hom(Q̂x, Ẑ ′x4),

where the second equality uses Lemma 6.3(2), the third one follows from adjunction,
and the last one uses part (3). This contradicts the previous paragraph, and thus
finishes the proof. �

9.5. Further properties of baby Verma and baby co-Verma modules. In
this subsection, we prove a number of statements exhibiting a symmetry between
baby Verma modules and baby co-Verma modules.

We start with the following corollary of Proposition 9.21.

Lemma 9.22. For any w ∈ AWext, the object Ẑ ′AwAw4 has a simple head, and the

object ẐAwAw4 has a simple socle, both isomorphic to L̂Aw.

Proof. Proposition 9.21(4) and Remark 7.8 imply that Ẑ ′AwAw4 is a quotient of Q̂Aw,

so like Q̂Aw, it has a simple head, isomorphic to L̂Aw. The claim for ẐAwAw4 follows
by Verdier duality. �

Below we will require the following combinatorial lemma.

Lemma 9.23. The map AWext → AWext given by w 7→ wAw
4 is a bijection.

Note that wAw
4 at least lies in AWext by Remark 7.2(1). This lemma may have

a purely combinatorial or alcove-geometric proof, but we will give an argument that
relies on properties of R-modules and is intertwined with the proofs of the next
two statements in the following way:

Lemma 9.23
for A = ∅ ⇒ Prop. 9.24

for A = ∅ ⇒ Prop. 9.25
for A = ∅ ⇒ Lemma 9.23

for any A
⇒ Prop. 9.24

for any A
⇒ Prop. 9.25

for any A
.

Proof of Lemma 9.23 for A = ∅. The inverse map is given by (2.5). �
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Proposition 9.24. Let w ∈ AWext.

(1) The object Ẑ ′AwAw4 is the projective cover of L̂Aw in the Serre subcategory of

modY
(IAu ,XA)(R) generated by the simple objects L̂Ay with wAy

4 6≺ wAw4.

(2) The object ẐwAw4 is the injective hull of L̂Aw in the Serre subcategory of

modY
(IAu ,XA)(R) generated by the simple objects L̂Ay with wAy

4 6≺ wAw4.

Proof assuming that Lemma 9.23 holds for A. We will prove the claims for Ẑ ′AwAw4 .

Those for ẐAwAw4 follow by Verdier duality.

We have already seen in Lemma 9.22 that Ẑ ′AwAw4 has a unique simple quotient,

isomorphic to L̂Aw. Next, we must show that Ẑ ′AwAw4 lies in the Serre subcategory
described in the statement. This is a consequence of Corollary 7.5, which tells us
that

[Ẑ ′AwAw4 : L̂Av ] 6= 0 implies wAv
4 � wAw4.

Finally, to show that Ẑ ′AwAw4 is the projective cover of L̂Aw in this Serre subcat-
egory, we must show that

Ext1(Ẑ ′AwAw4 , L̂
A
y ) = 0 if wAy

4 6≺ wAw4.

As noted in the proof of Lemma 9.22 there is a surjective map Q̂Aw � Ẑ ′AwAw4
whose kernel K admits a baby co-Verma filtration. Since Q̂Aw is projective, we have

a surjective map Hom(K, L̂Ay )→ Ext1(Ẑ ′AwAw4 , L̂
A
y ). So it is enough to show that

(9.17) Hom(K, L̂Ay ) = 0 if wAy
4 6≺ wAw4.

By Proposition 9.21(4), the baby co-Verma modules which occur in a baby co-Verma
filtration of K have their labels that lie between w and wAw

4 in the period order.
More precisely, by Lemma 9.23, the terms of the baby co-Verma filtration can be

written as Ẑ ′AwAz4 with w � wAz
4 ≺ wAw

4. By Lemma 9.22, the unique simple

quotient of Ẑ ′AwAz4 is L̂Az , so Hom(Ẑ ′AwAz4 , L̂
A
y ) = 0 if y 6= z, i.e. if wAy

4 6= wAz
4.

This implies (9.17). �

Proposition 9.25. For w,w′ ∈ AWext, we have

ExtnmodY
(IAu ,XA)

(R)(Ẑ
A
w , Ẑ ′Aw′ ) ∼= ExtnmodY

(IAu ,XA)
(R)(Ẑ

′A
w′ , ẐAw )

∼=

{
k if w = w′ and n = 0,

0 otherwise.

Proof assuming that Proposition 9.24 holds for A. The claims for Extn(ẐAw , Ẑ ′Aw′ )
are contained in Lemma 9.8. Recall that this lemma comes from the general theory
developed in [BS]; it is available here because, as shown in the proof of Theorem 7.9,

modY
(IAu ,XA)(R) is an essentially finite highest weight category with respect to the

poset (AWext,�).
Define a new order E on AWext by declaring that wEy if wAw

4 � wAy4. Using
Proposition 9.24, one can show that modY

(IAu ,XA)(R) admits a second structure as
an essentially finite highest weight category, this time with respect to the poset
(AWext,E). In this context, baby co-Verma modules are standard objects, while
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baby Verma modules are costandard objects. We omit the details, as they are very
similar to those in the proof of Theorem 7.9.

The claims in the proposition for Extn(Ẑ ′Aw′ , ẐAw ) then follow from the analogue
of Lemma 9.8 for this new highest weight structure. �

Proof of Lemma 9.23 for A 6= ∅. In view of (2.5), the rule w 7→ wAw
4 gives a

bijection Wext → Wext, so the induced map AWext → AWext (see Remark 7.2(1))
is at least injective. We must prove that it is also surjective.

Let v ∈ AWext, and choose a simple quotient of Ẑ ′Av , say L̂Aw. Since L̂Aw is the

socle of ẐAwAw4 by Lemma 9.22, the following groups are all nonzero:

Hom(Ẑ ′Av , ẐAwAw4) ∼= Hom(AvAψ (Ẑ ′v),AvAψ (ẐwAw4))

∼= Hom(ξA(Ẑ ′v), ẐwAw4) ∼= Hom(AvA∗ (Ẑ ′Av ), ẐwAw4),

where the isomorphisms follow from Lemma 6.3(2) and adjunction. The description

of the baby co-Verma filtration of AvA∗ (Ẑ ′Av ) in Lemma 6.3(3), together with the
“∅” case of Proposition 9.25, imply that

dim Hom(AvA∗ (Ẑ ′Av ), ẐwAw4) =

{
1 if wAw

4 ∈WAv,

0 otherwise.

So we must have WAv = WAw
4. Since both v and wAw

4 belong to AWext, using
Lemma 2.3 we conclude that v = wAw

4, as desired. �

9.6. More on injective R-modules and tilting perverse sheaves. We con-
clude with a complement to Proposition 7.11(1). The following statement can be
regarded as a geometric counterpart of [Ja, Lemma E.8].

Proposition 9.26. Let w ∈ AWS
ext. The object ΦA(TAw) is a projective (equiva-

lently, injective) R-module if and only if w = wAx
4 for some x ∈ AWS

ext.

Proof. The “if” direction is Proposition 7.11(1); we need only prove the “only if”
direction.

First we treat the case when k has characteristic 0. Assume that ΦA(TAw) is
injective. Then the functor

HommodY
(IAu ,XA)

(R)(Φ
A(−),ΦA(TAw)) ∼= HomPerv(IAu ,XA)(Gr,k)(−,TAw ?L

+G R0)

(where the identification follows from Lemma 5.1) is exact. As explained in §5.3,
since k has characteristic 0, the skyscraper sheaf IC0 is a direct summand of R0,

so Hom(−,TAw ?L
+G IC0) ∼= Hom(−,TAw) is an exact functor. That is, TAw is an

injective object in Perv(IAu ,XA)(Gr,k). This object is also indecomposable. From
the classification of indecomposable injective objects in Theorem 7.1, we see that
TAw
∼= TAwAx4 for some x ∈ AWS

ext; we then have w = wAx
4.

Now suppose k has positive characteristic, but that A = ∅. We may assume
that k is finite. Choose a ring O as in §9.3 that has k as its residue field, and let K
be its fraction field. Let w ∈ WS

ext, and assume that Φ(Tw(k)) ∼= Φ(k(Tw(O))) is
injective. Then there exist w1, . . . , wk ∈Wext and an isomorphism

(9.18) Φ(Tw(k)) ∼= Q̂w1
(k)⊕ Q̂w2

(k)⊕ · · · ⊕ Q̂wk(k).
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In view of part (1) in Theorem 9.17, Lemma 9.15 and Remark 9.16 imply that the
morphisms

k⊗O Hom(Φ(Tw(O)), Q̂w1
(O)⊕ · · · ⊕ Q̂wk(O))→

Hom(Φ(Tw(k)), Q̂w1(k)⊕ · · · ⊕ Q̂wk(k))

and

k⊗O Hom(Q̂w1(O)⊕ · · · ⊕ Q̂wk(O),Φ(Tw(O)))→

Hom(Q̂w1
(k)⊕ · · · ⊕ Q̂wk(k),Φ(Tw(k)))

induced by k0 are isomorphisms. Using (9.18), we deduce that there exist mor-
phisms

f : Φ(Tw(O))→ Q̂w1
(O)⊕ · · · ⊕ Q̂wk(O)

and
g : Q̂w1

(O)⊕ · · · ⊕ Q̂wk(O)→ Φ(Tw(O))

such that k0(f) and k0(g) are mutually inverse isomorphisms. Similarly, by Re-

mark 9.18(2), End(Q̂w1(O)⊕· · ·⊕ Q̂wk(O)) has finite rank over O, and the functor
k0 induces an isomorphism

k⊗O End(Q̂w1(O)⊕ · · · ⊕ Q̂wk(O))→ End(Q̂w1(k)⊕ · · · ⊕ Q̂wk(k)).

In view of Lemma 9.27 below, this implies that f ◦ g is an isomorphism, and hence

that Q̂w1(O) ⊕ · · · ⊕ Q̂wk(O) is a direct summand in Φ(Tw(O)). In other words,

there exists M in ModY
Iu(R(O)) and an isomorphism

Φ(Tw(O)) ∼=
(
Q̂w1(O)⊕ · · · ⊕ Q̂wk(O)

)
⊕M.

We have k0(M) = 0, so by Corollary 9.19 we have K(M) = 0 as well. This implies
that the object Φ(K(Tw(O))) is also injective. This object contains Φ(Tw(K)) as
a direct summand, so Φ(Tw(K)) is injective. The field K has characteristic 0, so
by the previous paragraph, we conclude that w = x4 for some x ∈ WS

ext, which
completes the proof in this case.

Finally, we consider the case where k has positive characteristic, but A 6= ∅.
Let w ∈ AWS

ext, and suppose that ΦA(TAw) is injective. Then AvA∗ (ΦA(TAw)) ∼=
Φ(AvA∗ (TAw)) is also injective. By Proposition 3.12, the latter is isomorphic to
Φ(TwAw). By the previous paragraph, we must have wAw = x4, or w = wAx

4, for
some x ∈WS

ext. On the other hand, Lemma 9.23 implies that there exists y ∈ AWext

such that w = wAy
4. The injectivity of the map z 7→ z4 implies that x = y, so

that this element belongs to WS
ext ∩ AWext = AWS

ext, which finishes the proof. �

Lemma 9.27. Let O be the ring of integers in a finite extension of Q`, let F be
its residue field and let A be a finite O-algebra. If a ∈ A is such that its image in
F⊗O A is invertible, then a is invertible.

Proof. Let $ be a uniformizer in O. Then by completeness it suffices to prove
that the image of a in each A/$nA (n ≥ 1) is invertible. This is checked by
induction, the case n = 1 being true by assumption. If we know that a is invertible
in A/$nA, and if b ∈ A has image in A/$nA the inverse of a, then ab = 1 +$nc
for some c ∈ A. If d ∈ A has image in A/$A the inverse of a, then ad ∈ 1 + $A,
hence a(b−$ndc) ∈ 1 +$n+1A, which shows that a is invertible in A/$n+1A, as
desired. �
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33, SMF, 2019.

[AR3] P. Achar and S. Riche, A geometric Steinberg formula, preprint arXiv:2109.11980.

[AR4] P. Achar and S. Riche, Central sheaves on affine flag varieties, book project, prelimi-
nary version available at https://lmbp.uca.fr/~riche/central.pdf.

[APW] H. H. Andersen, P. Polo, and K. X. Wen, Representations of quantum algebras, Invent.

Math. 104 (1991), 1–59.
[ABG] S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, Quantum groups, the loop Grass-

mannian, and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595–678.

[ABBGM] S. Arkhipov, R. Bezrukavnikov, A. Braverman, D. Gaitsgory, and I. Mirković, Modules
over the small quantum group and semi-infinite flag manifold, Transform. Groups 10

(2005), 279–362.

[AG] S. Arkhipov and D. Gaitsgory, Another realization of the category of modules over the
small quantum group, Adv. Math. 173 (2003), 114–143.

[BaR] P. Baumann and S. Riche, Notes on the geometric Satake equivalence, in Relative
aspects in representation theory, Langlands functoriality and automorphic forms, 1–

134, Lecture Notes in Math. 2221, CIRM Jean-Morlet Ser., Springer, 2018.
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