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A GEOMETRIC MODEL FOR BLOCKS OF FROBENIUS
KERNELS

PRAMOD N. ACHAR AND SIMON RICHE

ABSTRACT. Building on a geometric counterpart of Steinberg’s tensor product
formula for simple representations of a connected reductive algebraic group
G over a field of positive characteristic proved in [AR3], and following an
idea of Arkhipov—Bezrukavnikov—Braverman—Gaitsgory—Mirkovié¢, we define
and initiate the study of some categories of _perverse sheaves on the affine
Grassmannian of the Langlands dual group to G that should pr0v1de geometrlc
models for blocks of representations of the Frobenius kernel G1 of &. In
particular, we show that these categories admit enough projective and injective
objects, which are closely related to some tilting perverse sheaves, and that
they are highest weight categories in an appropriate generalized sense.
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1. INTRODUCTION

1.1. Overview. Let k be an algebraically closed field of characteristic ¢ > 0, and
let G be a connected reductive algebraic group over k. We also let G be a con-
nected reductive algebraic group over an algebraically closed field of characteristic
p # £ such that the Langlands dual group Gy over k is the Frobenius twist G®
of G. The Finkelberg—Mirkovi¢ conjecture (which is currently open, but perhaps
not for long) [F'M] predicts that when £ is larger than the Coxeter number for Cv},
the category of (étale) Iwahori-constructible perverse k-sheaves on the affine Grass-
mannian Gr of G, denoted by Pervy, (Gr, k), should be equivalent to the (extended)
principal block of G. See [AR3, §1.2] for a precise statement and further discussion.

P.A. was supported by NSF Grant No. DMS-1802241. This project has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 101002592).
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2 PRAMOD N. ACHAR AND SIMON RICHE

In anticipation of this conjecture, one might look for “representation-theoretic phe-
nomena” in Pervy (Gr, k), which might hold with milder assumptions on ¢. The
present paper and its companion paper | ] (where we established a formula for
convolution products of certain simple perverse sheaves, modeled on the Steinberg
tensor product formula for group representations, without any restriction on ¢) both
pursue this idea.

More specifically, the motivation for the present paper is as follows. Let él
denote the first Frobenius kernel of G. The representation theory of Cv}l is, of
course, closely related to that of G: indeed, as illustrated in, say, [Ja, Chap. IL.3],
it is essential to study G1 modules even if one is prlmarlly mterested in provmg
results about G. It is often convenient to also study G T—modules where T c G
is a maximal torus. Our goal in this paper is to construct and study two new
abelian categories, to be denoted by mody, (R) and mod}z (R), that are related to
Pervy, (Gr, k) in the same way that (v}l—representations and él’f—representations,
respectively, are related to é-representations.

1.2. Main results. In our geometric study, the fact that k has positive charac-
teristic is not required. We therefore denote by k either a finite extension or an
algebraic closure of Qy, or a finite extension or an algebraic closure of F,. We will
fix a maximal torus T" and a Borel subgroup B in G such that T' C B. For technical
reasons, we will assume that the quotient of the character lattice of T' by the root
lattice is torsion-free! and that k contains a nontrivial p-th root of unity.

Let Y be the cocharacter lattice of 7. The category mod}: (R) consists of cer-
tain Y-graded ind-objects in Pervy (Gr,k) equipped with an action of an alge-
bra ind-object denoted by R. The precise definition will be given in Section 5.
For now, we remark that there is an easy way to take an ordinary perverse sheaf
F € Pervy, (Gr, k) and produce an ind-perverse sheaf ®(F) € mod}: (R) by taking
the “free R-module on F.” This construction yields a functor

® : Pervy, (Gr, k) — mod}i (R).

Let W be the Weyl group of GG, and let Wy := W x Y be the extended affine
Weyl group. The following statement gathers some of the main results of this paper
(see Theorems 5.6 and 7.9 and Propositions 7.7, 9.5, 9.7 and 9.21). (The partial
order < appearing below is Lusztig’s “periodic order” on Weys, whose definition is
recalled in §2.5. The definition of restricted elements in Weyt can be found in | ,
§2.4].)

Theorem 1.1. (1) The category mod}i (R) is a finite-length abelian category.
(2) For each w € Wey, there is a simple object L, € modIYu(R), and the
assignment w Zw yields a bijection

West — {isomorphism classes of simple objects in mod}z (R)}.

If w is restricted then Ew is the image under ® of the simple object in

Pervy, (Gr, k) labeled by w.
(3) In the Serre subcategory of modI (R) generated by the objects L, with y #
w, Ew admits a projective cover Z and an injective hull Z' .

IThis assumption is satisfied e.g. if G is semisimple of adjoint type.



A GEOMETRIC MODEL FOR BLOCKS OF FROBENIUS KERNELS 3

(4) For each w € Wey, there is an object @w n mod}i (R) that is both the

injective hull and projective cover of Eu,. Moreover, @w admits a filtration
with subquotients of the form Z,, and a filtration with subgquotients of the
form Z,.

The objects éw and 2{0 appearing in this statement are geometric incarnations of
baby Verma and baby co-Verma G T-modules. All of these properties are geomet-
ric counterparts of standard results on él'f‘—modules using the dictionary explained
in §1.4 below. For instance, see [Ja, Proposition 11.9.6] for (2) and [Ja, Proposi-
tion I1.11.4 and §II.11.5] for (4). (Note that we do not impose any restriction on
£ in this theorem, although the conjectural translation to Representation Theory
requires £ to be larger than the Coxeter number.)

We will also prove similar results for the category mod;, (R) that we do not state
here, see Section 8.

1.3. Some comments on Theorem 1.1. To be more precise, in the body of
the paper we will define two different versions of the category mod}i (R), that
translate into geometry two different perspectives on the property of being finitely
generated. Proving that these two definitions in fact give rise to the same category
(see Theorem 7.9(1)) is what will require most of our efforts. The construction and
study of projective and injective objects is essential to our approach to this question.
This study also proves in passing that mod}i (R) is a highest weight category in a
generalized sense recently formulated by Brundan—Stroppel [3S], which implies the
second sentence in part (4).

In the body of the paper, we will actually prove a more general version of Theo-
rem 1.1 that accommodates “Whittaker perverse sheaves” on Gr, rather than just
Iwahori-constructible perverse sheaves. The Whittaker versions of this theorem are
not merely generalizations for their own sake: our proof of Theorem 1.1, even in
the simplified case stated above, makes crucial use of functors that allow us to pass
to and from various Whittaker versions.

Another key tool in the proof of part (4) is the “Iwahori-Whittaker model for

the Satake category” of | ]. The counterpart of mod}i (R) in the setting
of | ] turns out to be equivalent to the category of finite-dimensional rep-

resentations of the torus T in particular, it is a semisimple category, and thus has
a rich supply of projective and injective objects, which give rise to projective and
injective objects in our other categories via appropriate averaging functors.

Remark 1.2. (1) In the case k = Qq, parts (1)—(3) of Theorem 1.1 were pre-
viously obtained by Arkhipov—Bezrukavnikov—Braverman—Gaitsgory—Mir-
kovié | . (Indeed, our definitions of the category mod) (R) and of

the objects L., ZA{U and Z,, are essentially copied from | ].) Thus,
for k = ¢, the main new contribution of the present paper is the study of
projective/injective objects in modz (R).

(2) Let us mention in passing that, in case k has characteristic 0, our methods
also provide a geometric proof that the abelian category Pervy, (Gr,k) has
enough projectives and injectives, and that these two classes of objects co-
incide: see §7.1. (In contrast, for k of positive characteristic, Pervy, (Gr,k)
has no nonzero projective or injective objects unless G is a torus.) This fact
was previously known: it can be deduced from a representation-theoretic
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result of Andersen—Polo-Wen | | via intermediaries discussed in Re-
mark 1.4 below. The problem of finding a geometric proof of this property
was in fact the starting point of this work. It finally allows to answer a
question the authors asked themselves (and a few colleagues) more than
ten years ago.

1.4. A Finkelberg—Mirkovi¢ conjecture for the Frobenius kernel. In this
subsection, we make precise the conjectural relationship between mod}i (R) and the
category of él’i‘—representations. (These considerations have obvious analogues
relating the “Whittaker” variants of mod}i (R) considered in the body of the paper
to singular blocks of Cv}l’i‘—representations; we leave it to the reader to formulate
these variants.) This subsection is for motivation only; it does not play any logical
role in the rest of the paper.

We assume in this subsection that k is an algebraic closure of F,. Let Rep((v}),
resp. Rep(él’\f), be the category of finite-dimensional rational é—, resp. Cv-‘q’i‘—,
representations. Then there is a forgetful functor

For : Rep(G) — Rep(G;T).

Here is a brief review of the representation theory of él’f‘, following, for in-
stance [Ja, Chap. I1.9-11]. For each A € Y, there is a baby Verma module Z(A)
and a baby co-Verma module ?(A), both with highest weight A. The socle of 2’(A)
can be identified with the head of 2()\), and this irreducible module is denoted by
E(/\) Every simple G T-module is of this form (for a unique A € Y). The module
E(/\) admits an injective hull (3()\) that is also its projective cover. Moreover, (5()\)
admits filtrations by both baby Verma modules and baby co-Verma modules.

Assume now that £ > h, where h is the Coxeter number for (v}, and that the
quotient of the cocharacter lattice of T by the coroot lattice has no /-torsion.? Let
Rep[o](Cv-‘w) C Rep(G) and Rep[O](él’f) C Rep(G1T) be the extended principal blocks
of G and of él’i‘, respectively, i.e. the Serre subcategories generated by simple
modules whose highest weights lie in Wy ¢ 0, where -4y denotes the “/-dilated dot
action.” The Steinberg tensor product formula implies that the forgetful functor
For : Rep(G) — Rep(G;T) restricts to a functor

Fory : Rep[o](é) — Rep[o](él'i‘).

Recall that the Finkelberg—Mirkovié conjecture asserts the existence of an equiv-
alence of categories

FM : Pervy, (Gr, k) = Repyg)(G)

together with a natural isomorphism
FM(F +£7¢ G) = Fr*(Sat(sw(G))),

where Fr* is pullback along the Frobenius morphism Fr : G — é(l), Sat is the geo-
metric Satake equivalence, and sw is a certain autoequivalence of Perv,+q(Gr, k).
We refer the reader to | , §1.2] for precise definitions of the notation, and further
discussion of this statement.

The following statement is a consequence of the results of this paper.

2See | , Remark 1.2(2)] for a discussion of this assumption.



A GEOMETRIC MODEL FOR BLOCKS OF FROBENIUS KERNELS 5

Proposition 1.3. Assume that that the Finkelberg—Mirkovi¢ conjecture holds for
G. Then there exists an equivalence of categories

FMgrob : mod) (R) 5 Repyg (G1T)

such that
FMFrob od=FMo FOI‘(),

which satisfies

~

FMpron(La) = Lw™ 00),  FMeop(Qu) = Q(w™ - 0),
FMrron (Z0) = Z(w™ ' 4 0),  FMpon(ZL) 2 Z
for any w € Wy, and such that
FMpvon (F 57 € G) 22 FMpyo (F) © Forg o Fr* (Sat(sw*G))
functorially for any F in mod}: (R) and G in Pervp+g(Gr, k).

Remark 1.4. For k of characteristic 0, the categories Pervy, (Gr, k) and mod}i (R)

are not related to representations of G or (VS‘q7 but rather to their quantum ana-
logues. Specifically, the quantum counterpart of the Finkelberg—Mirkovi¢ conjecture
is a theorem of Arkhipov—Bezrukavnikov—Ginzburg | ] relating Pervy, (Gr, k) to
the principal block of a quantum group Uc(g) at a root of unity. As observed
in | ], a quantum analogue of Proposition 1.3 holds in this setting: for
k = Q, the category mod}: (R) is equivalent to the principal block of graded rep-
resentations of the small quantum group u¢(g).

Note that in | | the authors provide a third incarnation of the same
category, in terms of perverse sheaves on a semi-infinite affine flag variety. It is likely
that a similar description can be obtained in our setting of positive-characteristic
coeflicients; this question will be the subject of future work.

1.5. Tilting G-modules and projective él’f-modules. In view of the discus-
sion in §1.4, the second sentence in Theorem 1.1(2) is a geometric counterpart of
the fact that simple G-modules with restricted highest weight remain simple as
él’f—modules. There is another class of G-modules whose behaviour upon restric-
tion to élrf is remarkable, namely the tilting modules. The geometric counterpart
of tilting modules in the principal block of G are the tilting perverse sheaves in
Pervy, (Gr, k).

In Propositions 7.11 and 9.26 we determine which indecomposable tilting per-
verse sheaves are sent to projective/injective R-modules by the functor @, providing
a geometric counterpart of [Ja, Lemma E.8]. Another very interesting property of
this operation is that (under the assumption that p > 2h — 2, and conjecturally in
broader generality) some of these indecomposable tilting modules remain indecom-
posable as G T-modules. It is one of our motivations for developing this theory to
provide new tools to understand this property. We study this question in §8.3, but
we must admit that our progress towards solving this question is very modest so
far.

1.6. Contents of the paper. In Section 2 we prove a number of combinatorial
results on the affine Weyl group attached to a connected reductive algebraic group
G. In Section 3 we collect some facts on various categories of perverse sheaves on
the affine Grassmannian Gr and the affine flag variety F1 of G. Most of these results
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are known to some extent, but many proofs are not available in the literature in
the generality we require. In Section 4 we explain some constructions that allow
us to describe modules over the Frobenius kernel (or some variants) of a connected
reductive algebraic group G in terms of representations of the whole group. These
constructions will serve as guiding principles for many constructions in the rest of
the paper, and justify Proposition 1.3.

In Section 5 we introduce our main object of study, the category mod}i (R),
together with a variant Mod}i (R)fen, We show that the second of these categories
is a finite-length abelian category, in which we classify the simple objects, and
define some geometric incarnations of baby co-Verma modules. (We also treat
some “Whittaker-type” analogues in parallel.) In Section 6, exploiting results
from [ | we study some perverse sheaves on Gr arising from the “big tilt-
ing perverse sheaf” on the flag variety of G, and derive some first applications to
the study of (geometric) baby co-Verma modules. In Section 7 we prove that the
categories mod}i (R) and Mod}i (R)fen coincide, that these categories have enough
injectives and enough projectives, and also that these classes of objects coincide and
are closely related to tilting perverse sheaves on Gr. (Again, all of these results are
proved also in the Whittaker setting). In the course of the proof of these results,
we show that these categories satisfy some form of “generalized highest weight”
formalism recently studied by Brundan—Stroppel [BS].

In Section 8 we study a variant of our formalism that omits part of the structure.
Finally, in Section 9 we define a duality functor on mod}i (R), and use this functor
to define geometric counterparts of baby Verma modules. We also prove a number
of results regarding the combinatorics of the category mod{ (R) that are analogues
of known results on representations of Frobenius kernels.

2. COMBINATORICS OF THE AFFINE WEYL GROUP

2.1. The extended affine affine Weyl group. Let F be an algebraically closed
field, and G be a connected reductive algebraic group over F. We fix a Borel
subgroup B C G and a maximal torus 7' C B. We will denote by X := X*(T) the
character lattice of T, by R C X the root system of (G,T), by Y := X,(T) the
coweight lattice, and by RV C Y the coroot system; the natural bijection from R
to RY will be denoted o — " as usual.

We will denote by 31 C R the system of positive roots consisting of the T-
weights in Lie(G)/Lie(B), and by Ry the associated basis of . The corresponding
sets of dominant coweights and strictly dominant coweights will be denoted Y 4 and
Y.+ respectively. We will denote by W the Weyl group of (G,T). If we denote
by S C W the subset consisting of the reflections s,v for a € MR, then it is well
known that (W,S) is a Coxeter system. The longest element in this group will be
denoted w,.

We will assume that X /ZR has no torsion, or in other words that the restriction
morphism

Y — Homgz(ZR, Z)
is surjective. (This is equivalent to requiring that the scheme-theoretic center of G

be a torus.) In particular, this condition ensures that there exists ¢ € Y such that
(o, 6) =1 for all a € Rg; we fix such an element once and for all.
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The affine Weyl group associated with G is the semidirect product
Waf}“ =W x va,

where ZRY C Y is the lattice generated by RY. For A € ZRY, we will write t)
for the corresponding element of W,g. It is a standard fact that if we denote by
Saf C Wag the subset consisting of S together with the elements tgvsgv where
BY € RY is a maximal short coroot, then the pair (Wag, Sag) is a Coxeter system.
Moreover, classical results of Iwahori-Matsumoto [[M] show that the associated
length function on W,g can be described by the following formula for w € W and
A€ ZRV:

(2.1) fwty= S (nal+ S [+l
a€m+ aGD‘Lr
w(a)ER4 w(a)eE—NR4
The formula on the right-hand side of (2.1) makes sense more generally for
A €Y, which lets one to extend the function £ to the larger group

cht =W x Ya

in such a way that {(ww’) < l(w) + ¢(w') for any w,w’ € Wex. The subgroup
Wage C Wext is normal, and if we set

Q= {w € Wy | £(w) = 0}

then Q is a finitely generated abelian group acting on W,g (via conjugation) by
Coxeter group automorphisms. Multiplication induces a group isomorphism

Q x Waff — Wexta

and f(ww) = l(ww) = L(w) for any w € Weyx and w € Q. We can also “extend” the
Bruhat order < on Wag to Wey by declaring that for w,w’ € Q and w,w’ € W,g we
have ww < w'w’ iff w =w’ and w < w’. (The same rule will then also apply when
switching the order of w and w.) We define a reduced expression for an element
w € Weyt to be an expression of the form w = s1---s,w or w = wsy --- 8, with
w €N, s; €S, for any i € {1,...,r}, and r = f(w).

Given a subset A C S, , we will denote by W4 the subgroup of W,g generated
by A. We will say that A is finitary if W4 is finite; in this case we will denote
by wa the longest element in Wy4. If A is finitary, the theory of Coxeter systems
guarantees that for any w € Wey, the coset Waw, resp. wWy, admits a unique
maximal, resp. minimal, element with respect to the Bruhat order. In particular,
for A = S, we will denote by W, C Wex the subset consisting of elements w which
are minimal in wW. The basic properties of minimal coset representatives recalled
above guarantee that the composition Wgct — Wext = Wext/W is a bijection.

2.2. Geometry of alcoves and restricted elements. Consider the vector space
V : =Y ®z R, and the action of Wy given by

(trw) -v=wv) + A

for w € W and A € Y, where W acts on V via its natural action on Y. In V we
have the affine hyperplanes defined by

Hpi={v eV | (8,v) =n})
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for 8 € R and n € Z, which are permuted by the action of Wey. The connected
components of the complement of the union of these hyperplanes are called alcoves;
if we set

Wtung :={v €V | VB € Ry, 0 < (B,v) < 1},

then 2Agung is an alcove (called the fundamental alcove), and the assignment w
w(™Aguna) induces a bijection from Wey/Q (where Q is as in §2.1) to the set of
alcoves. If

C={veV|VBeR,, (B,v) >0},
then it is a standard fact that

(2.2) WS, ={w e Wee | w(Hguna) € C.

ext
For p €'Y we set
I, :={veV|VaeR, (a,pn —1<(a,v) < {(a,p}

our assumption on X/ZMR ensures that each alcove is contained in a subset of this
form (sometimes called a box). Of particular importance is the set

II. ={v eV |Va e R, 0 < (a,v) < 1}.

This set (which is evidently independent of the choice of ¢) contains gnq and is
sometimes called the fundamental box. We define the subset of restricted elements
in Weyt by setting

West = {w € Wy | W (Apuna) C I }.

Since any alcove belongs to a subset 11, any element w of Wey, can be written as
a product w = yty with y € WiF and A € Y. It is easy to see that

(2.3) WS, ={aty :x e WS A -Y,},
see | , §2.4] for details.
Let us also record the following property, proved in | , Lemma 2.7], which

shows in particular that lengths always add in a decomposition given by (2.3).
Lemma 2.1. For any w € W5, and A € =Y we have {(wty) = £(w) + £(ty).

As explained above, given w € Wy there exists u € Y such that w = (ung) C

IT,,. We then set

w® = Wty wol .
(Here p is unique only up to addition of a coweight v orthogonal to all roots; however
the product ¢,wot_, is independent of the choice of y, so that this definition makes

sense.) This definition is chosen in such a way that w” (ung) = w(zl;d), where
the operation on alcoves A — A is as in [So, p. 98] (see also [RW, §2.2]). It is easily
seen from the definition that if w € W3, then w® € W2, and that for w € Wy
and A € Y we have

(24) (wt,\)A = ’U}At).

Note that (w”)™!(Ugyna) C H,4c. Using this observation, we can write down
the inverse of the map w — w?: it is given by

(2.5) V= Vb, Wty where ’Ufl(mfund) c II,.
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2.3. A length computation.
Lemma 2.2. If z € WIS and y = tewo,x ™1, then we have
U(z) + L(y) = L(tsw,).

Proof. Using (2.1) we see that {(tcwo) = (2p,<) — €(w,). On the other hand, write
z = wty with A € Y and w € W. Then we have

lo)= > NN+ D [T+l

(Xem+ (Xem+
w(a)ER4 w(o)E—R4
By | , Lemma 2.6], on the right-hand side we have (o, A) < 0 for any a €

R;. Moreover, if w(a) € —9R,, then at least one simple root v appearing in the
decomposition of o as a sum of simple roots must satisfy w(vy) € —9,; we therefore
have (a, A) < —1 in this case. We deduce that

Uz) = —(2p, ) — L(w).
Similarly we have y = t.w,x ™! = tg_wo()\)wow’l = (wwotwo(k)_g)’l, and hence

)= D Naewe) =+ D L4 {aw(h) —q)l.

aERy a€ERy
wwe () ER 4 wwe () E—Ry

Setting 8 = —w,(«) we obtain that
)= D 1BA-we()+ D 1= (BA—we(s))].

BER BER
w(B)e—Ry w(B)ER

For the same reason as before, we have (8, A — w,(s)) > 0 for any 5 € R, and
By A —wo(s)) > 1if w(p) € Ry. It follows that

Uy) = (2p,6) + 2p, \) = #{B e R, |w(B) e Ry} =
(2p,6) + (20, A) — L(wow) = L(tcwo) — (),

as stated in the lemma. O

2.4. Coset representatives. Let A C S,g be a finitary subset. We will denote
by AWS, C Wey the subset consisting of the elements w such that £(waww,) =
L wap)+l(w) + £(w,). Other characterizations of these elements are given in | ,

Lemma 2.4]; in particular we have
(2.6) we Wi,
(Of course, this shows that AW5, C WS,.) We set

AW = AWE N W
Then as explained in | , §2.5] we have
(2.7) AWS, ={wty :w e WS Ne Y, }.

e ext?

& wis minimal in Waw and vw € W23, for any v € Wa.

We now set
AW = {wity - w € WIS, X e Y}
We emphasize that 4Wey is not the set of elements w which are minimal in their
coset Waw. However, this subset is also a set of representatives for the quotient

Wa\Wext, as stated in the following lemma.
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Lemma 2.3. The composition
AWext — Wext — WA\Wext
is a bijection.

Proof. We first prove surjectivity. Let w € Wext. Then there exists A € Y such
that txw ™ v(Usuna) C C for any v € Wy. If we fix such a A, by definition all the
elements vwt_y (v € Wa) belong to W5,. If v € W is such that vwt_y is minimal

ext
in Wwt_y, then vwt_ belongs to AW, by (2.6). By (2.7), there exist y € AW

ext

and p € =Y such that vwt_, = yt,. Then w = v~ yty4,, proving surjectivity.
As for injectivity, we consider y,y’ € AW and A\, \' € Y such that

ext
Wayty = Way'ty.

Multiplying on the right by an antidominant element we can assume that A\, \' €
~Y . Then yt, and y'ty belong to AWz, by (2.7); in particular these elements
are minimal in their respective cosets Wayty and Way'ty/, see (2.6). Since these

cosets coincide, this implies that yty = y'ty/, as desired. (Il

2.5. The periodic order. In this subsection we introduce an order on W, which
is different from the Bruhat order, and which will play a crucial role in our con-
structions. Recall that any w € Wey can be written as yt, for some y € Wigt
and p € Y, see §2.2; in particular, in view of (2.3), there exists A € Y such that
wty € W5, More generally, given any finite collection wy, ..., w, of elements of
Woext, there exists A € Y such that w;t, belongs to W3, for any i € {1,...,7}.

ext
Lemma 2.4. Let y,y’ € Wey. The following conditions are equivalent:

(1) there emists A € Y such that yty and y'ty belong to W, and yty < y'ty in
the Bruhat order;

(2) for any A € Y such that ytx and y'ty belong to W5, we have yty < y'ty in
the Bruhat order.

Proof. Of course (2) implies (1), since as explained above there exists A € Y such
that yty and y'ty belong to W5,. Conversely, suppose that (1) holds, and fix some
A € Y which satisfies this condition. Let 4 € Y be such that yt, and y't, belong
to W&, and choose v € Y such that v — A and v — y are antidominant. Using
a standard compatibility property of the Bruhat order with multiplication when
lengths add (see | , Lemma 2.1]) and Lemma 2.1, from the fact that yt\ < y'ty,

we deduce that yt, < y't,, and then that yt, < y't,, as desired. O

We define the periodic order < on Wey by saying that y < ¢ iff y and 3’ satisfy
the equivalent conditions of Lemma 2.4. In other words, if A € Y is any element
such that yty and y'ty belong to W2, we have y < o/ iff yty < y'ty.

The following lemma gathers some easy properties of the periodic order.

Lemma 2.5. (1) If w € Wext and s € Sag, then we have either sw < w or
w = sw.
2) If y,y € Wexy and p € Y we have y <y iff yt, < y't,.

Ify,y € W5, we havey <5/ iff y < y'.

If y,y' € Wexe satisfy y <y, and if s € Sag satisfies sy <y, then we have
sy Xy and sy <X sy’.

(5) Ify,y' € Wext satisfyy <y, and if s € Sag satisfies y' < sy, then we have

y =< sy’ and sy < sy'.

A~~~
R
~ =



A GEOMETRIC MODEL FOR BLOCKS OF FROBENIUS KERNELS 11

Proof. (1) Fix A € Y such that yt) and syty belong to W3,. Then we have either
ytx < syty or syty < yta. In the first case we have y < sy, and in the second case
we have sy < y.

(2) If A € Y is such that yt, and y't, belong to W25, then by definition we have
y 2y iff yty < y'tx. On the other hand we have (yt,)tn—, = ytx and similarly for
y', so that this condition holds iff yt,, < y't,.

(3) This property is obvious from the definition (taking A = 0).

(4) Of course we have sy <y <y, and if ¢’ < sy’ then sy <y <y < sy’. Now
assume y' > sy’, and choose A € Y such that yty, y'tx, syty and sy'ty all belong
to W2,. Then we have syty < ytx < y'tx and sy'ty < y'ty. By the last inequality,
there exists a reduced expression 'ty = ss1 -« s,w with each s; in S,g and w € Q.
Then yt) admits a reduced expression obtained by omitting some of the simple
reflections in this expression. If s is not among the omitted simple reflections, then
clearly syty < s1---s,.w = sy'ty. If s is omitted then we also have syty < sy’ty by
the exchange condition. Hence sy < sy’ in all cases.

(5) Of course we have y < ¢y’ =< sy, and if sy < y then sy <y < ¢y =< sy
Now assume sy = y, and choose A € Y such that yty, y'ty, syty and sy'ty all
belong to W3,. Then we have yty < y't, ytn < sytx and y'ty < sy'ty. Fixing
a reduced expression for y'ty, an expression for yt) can be obtained by omitting
some reflections. Adding s on the left we obtain a reduced expression for sy'ty,
from which an expression for syty can be obtained by omitting the same reflections.
This shows that syt) < sy’ty, and hence that sy < sy’, as desired. O

Remark 2.6. Now that we have introduced the order <X, we can reinterpret Lem-
ma 2.3 (and its proof) as saying that AW consists of the elements w € Wiy
which are minimal for the order < in the coset W,w (and that each such coset
contains a unique minimal element).

Lemma 2.7. Let y,y' € “Wex. Then y <y’ if and only if way < way'.

Proof. In view of (2.7), there exists A € Y such that yt, and y'ty belong to AW=3, .
Then by definition y < ¢ if and only if yt\ < y'tx. By (2.6) the elements yt) and
y't) are minimal in their respective cosets Wayty and Way'ty, which implies that

Lwayty) = (wa) + L(yty), L way'ty) = L(wa) + L(y'ty).

By the compatibility property of the Bruhat order with multiplication when lengths
add (as used in the proof of Lemma 2.4; cf. | , Lemma 2.1]), this implies that
ytx < y'ty if and only if wayty < way'ty. Finally, by (2.6) the elements wayty
and way'ty belong to W2.: we therefore have wayty < way'ty if and only if

way = way', and the lemma follows. O

2.6. The Hecke algebra and the left spherical module. Let v be an inde-
terminate, and let Hcy; be the Hecke algebra of Wey over Z[v,v~1]. Recall that
this is a Z[v,v~!]-algebra that is free as a Z[v,v~!]-module, with a basis (called
the standard basis) (Hy : w € Weyt), and with multiplication determined by the
following rules:

HyHy = Hyy if £(zy) = £(x) + £(y),
H2=H,+ (v ! —v)H, for all s € Syg.
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(Here and below we will follow the notational conventions of [So].) The algebra
Hext is also equipped with a canonical basis | ], denoted by

(ﬂw TWE Wext)a

and uniquely characterized as follows: H,, is fixed by a certain involution of Hext
(called the bar involution), and

H, e H,+ Z’UZ[U]Hy.
y<zx
Let us write each of these basis elements in terms of the standard basis:
H, = Z hyaHy;
YEWexe

the polynomials h,, , € Z[v] are then known as the Kazhdan—Lusztig polynomials.
Their geometric interpretation (in terms of perverse sheaves) will be recalled in §3.5
below.

We will denote by M the left Hexi-module obtained by taking the quotient

M = Hewi/Heoxt - {Hs —v~ ' 15 € S}

This module is known as the left spherical module. (Note that much of the relevant
literature, including [So, ], treats a similarly defined right Hext-module instead;
however, the left version is better suited to the purposes of this paper. These two
modules can e.g. be related using the anti-involution of Wey given by w +— w™1.)
This module remains free over Z[v,v~]; specifically, if for w € W5, we let M,
denote the image of H,, in M, then

(M, :weW5,)
is a basis for M. This module also admits a canonical basis
(M, :weWs

w ext)
characterized similarly to the canonical basis of Heyt. In fact, the map h — hH,,
factors through a morphism of left Heyxi-modules

C: M = Hexs,
and this module satisfies
C(M.,) = H,p,
for any w € Wg,, see [So]. Equivalently, if we define the polynomials m,, ., by

setting
M, = Z My 0 My,
WS

ext

then for y,w € WS, we have
(2.8) Myw = Py ww, for any y' € yW.

We also introduce notation for the “inverse matrix” of (my,uw), wews,. again
following [S0]. Namely, we define the polynomials (m¥" : y,w € WZ,) by the
condition that
(2.9) M, = Z (fl)e(y)ﬁ(r)m‘”’yMy for any z € W5,.

yews

ext
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The only property of Kazhdan—Lusztig polynomials that will be used below and
for which we do not have a geometric proof is the following.

AN
Lemma 2.8. For any w € W23, we have m""™ % = v*(wo),

Proof. This equality can be obtained by translating [So, Theorem 5.1] (in the special
case B = A) in our present conventions. |

3. PERVERSE SHEAVES ON AFFINE GRASSMANNIANS

3.1. The affine Grassmannian and the affine flag variety. We now denote
by z an indeterminate, and consider the functor LG, resp. LG, from F-algebras
to groups, which sends R to G(R((2))), resp. G(R][z])). It is well known that LG is
represented by a group ind-scheme over I, and that £ G is represented by a group
scheme over F. Moreover, the fppf quotient (LG/LTG)gpe is represented by an
ind-projective ind-scheme, which is denoted Gr and called the affine Grassmannian
of G.

There is an obvious morphism of group schemes £t¥G — G induced by the
assignment z +— 0. Let I C £YG and I, C I be the preimages of the Borel
subgroup B C G and its unipotent radical U C B, respectively, under this map.
These are both subgroup schemes of £L*G. The group I is known as an Twahori
subgroup, and I, as its pro-unipotent radical.

We will consider also the affine flag variety FI of G, defined as the fppf quotient
(LG/I)gpps. Again Flis represented by an ind-projective ind-scheme, and the natu-
ral morphism 7 : F1 — Gr is a Zariski locally trivial fibration with fibers isomorphic
to G/B.

Let Ng(T') be the normalizer of the maximal torus T’ C G, so that Ng(T)/T =
W. For each w € W, choose a representative w € Ng(T'). More generally, if
W E Wext, say w = vty with v € W and A € Y, we set

=102 € LG(k).

For w € Wy we will denote by Fl,, the I-orbit of the image of w; then it is well
known that Fl,, is also the I,-orbit of w, and is isomorphic to an affine space of
dimension ¢(w). Moreover we have

Flea= || Fly, and (FI, CFl, < w<y).
wWE Wext

Similarly, for w € W25, we will denote by Gr,, the I-orbit of the image of w in Gr.
It is well known that Gr,, is also the I;-orbit of the image of w, that it is isomorphic

to an affine space of dimension ¢(w), and that we have

Grreq = |_| Gr, and (GierGiry & wgy).
WEWext

3.2. I -equivariant perverse sheaves. We now consider a prime number £ which
is invertible in F. We will consider fields k which fall into one of the following two
classes:

(1) k is either a finite extension or an algebraic closure of Qy;
(2) k is either a finite extension or an algebraic closure of Fy.
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(When we need to distinguish these two cases, we will loosely say that k has char-
acteristic 0 or k has positive characteristic.) In these settings we can consider
the I,-equivariant derived categories D}OU (F1,k) and D}’u(Gr,k) of étale k-sheaves
on Fl and Gr; see | , §3.2] for details. These categories have natural perverse
t-structures, whose hearts will be denoted Pervy, (Gr,k) and Pervy (F1,k) respec-
tively.

For any w € Wy we have a “standard perverse sheaf” 2, in Pervy, (F1, k), de-
fined as the !-pushforward of the complex kg, [¢(w)] under the embedding Fl,, — FI,
and a “costandard perverse sheaf” 4, in Perv; (F1 k), defined as the *-pushforward
of the complex kg [¢(w)] under the embedding Fl, — Fl. (These complexes are
indeed perverse sheaves since this embedding is affine.) The image of the unique
(up to scalar) nonzero morphism %,, — .4, is simple, and will be denoted .Z,,; it
is the intersection cohomology complex associated with the constant local system
on Fl,,. Then the objects (£, : w € Weyt) are representatives for the isomorphism
classes of simple objects in the abelian category Pervy, (Fl, k).

Similarly, for w € W5, we have a “standard perverse sheaf” A,, in Perv;, (Gr,k),
defined as the !-pushforward of the complex kg, [¢(w)] under the embedding Gr,, —
Gr, and a “costandard perverse sheaf” V,, in Pervy (Gr, k), defined as the x-
pushforward of the complex kg, [¢(w)] under the embedding Gr,, — Gr. (Once
again these complexes are indeed perverse sheaves since the embedding Gr,, — Gr
is affine.) The image of the unique (up to scalar) nonzero morphism A,, — V,, is
simple, and will be denoted L,,; it is the intersection cohomology complex associ-
ated with the constant local system on Gr,,. Then the objects (L, : w € WS,) are
representatives for the isomorphism classes of simple objects in the abelian category
Pervy, (Gr, k).

Since the morphism 7 : F1 — Gr is smooth with connected fibers, the functor

! = n*[dim(G/B)] = «'[— dim(G/B)] : D} (Gr,k) — D} (FLk)

is t-exact for the perverse t-structures, its restriction to perverse sheaves is fully
faithful, and it sends simple perverse sheaves to simple perverse sheaves, see | ,
Proposition 4.2.5]; more explicitly, in this case we have

(3.1) T L & Lo,

for any w € W5,.
The results of | , §3.3] show that the category Pervy, (Gr, k) admits a natural
structure of a highest weight category (in the sense of [Ri, §7]) with weight poset
(W5, <); the standard objects are the standard perverse sheaves (A, : w € W5,)
and the costandard objects are the costandard perverse sheaves (V,, : w € W5,).
In particular, it makes sense to consider the tilting objects in this category, i.e. the
objects which admit both a filtration with standard subquotients and a filtration
with costandard subquotients. The indecomposable tilting objects are parametrized
by Wg(t; the indecomposable object associated with w will be denoted T,,. Similar
comments apply to the category the category Pervy, (F1 k) (for the weight poset
(Wext, <)). The indecomposable tilting object attached to w will be denoted .7,.
We will also occasionally consider the I-equivariant derived categories D (F1, k)

and D?(Gr, k). We have forgetful functors

Forj : D}(FLk) — D? (FLk), Forj :D}(Gr,k) — D} (Gr,k),
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and the objects Z,,, 4, and Ay, V,, naturally “lift” to objects of D‘I’(Fl,k) and
DY (Gr, k) respectively (and will be denoted by the same symbol in the equivariant
context). We also have “convolution” bifunctors

DY(F1,k) x DY(F1,k) — D®(FL, k), DP(Fl,k) x D?(Gr,k) — D®(Gr,k),
D} (FLk) x DY(FLk) — D} (FLk), D} (FLk)x D}(Gr,k) — D} (Gr,k),

which will all be denoted +!, and are compatible with one another in the expected

ways.
The following lemma gathers some standard properties of convolutions of stan-
dard and costandard objects (see e.g. | , §8.2]).

Lemma 3.1. (1) For w,y € Wext such that £(wy) = {(w) + £(y), there exist
canonical isomorphisms
D * Dy S Dy, Ny K Ny 5 Ny
(2) For w € Wy, there exist canonical isomorphisms
Dy % Niy1 =2 Dy 22 N1 %L D

(3) For w,y € Wey, the objects Ny, x Dy and Dy, *1 Ny are perverse.
(4) For w,y € Wy such that £(wy) = (w) +£(y) and both wy and y belong to
W5, there exist canonical isomorphisms

Dk Dy S Dy N ¥V 5 Vi
(5) For w € We and y € W5, the objects Ny *! Ay and Dy *1 V, are

ext’
perverse.

3.3. Relation with the Satake category. Below we will also consider the £ G-
equivariant derived category DEJr (Gr, k). Once again this category has a natural
perverse t-structure, whose heart will be denoted Perv,+5(Gr, k). For A € Y we
will denote by Ly the image of z* in Gr, and by Gr* its £ G-orbit; then Gr* is
the union of the I,-orbits labeled by the minimal representatives of the elements
(ty:p e W(N)), and
Grred = |_| GI")\.
AEY 4
We will consider these orbits in particular when A € Y . It is a classical fact
that, in this case, there exists a smooth £ G-equivariant morphism
px: Gt — G/B
sending Ly to the base point B/B, where L*G acts on G/B through the natural
morphism £TG — G. Here G/B has the Bruhat stratification by orbits of B,
parametrized by W its pullback to Gr* identifies with the decomposition into the
I-orbits given by
Grt = |_| Gyt w, -
weWw

In particular, the unique open I-orbit in Gr™ is Gre,,, -

The simple objects in the category Perv,+s(Gr,k) are in natural bijection with
Y, via the operation sending A to the intersection cohomology complex IC* as-
sociated with the constant local system on Gr*. The forgetful functor

Forf ¢ : Db, ,(Cr,k) — Db (Gr,k)
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is t-exact, and restricts to a fully faithful functor on perverse sheaves; moreover we
have .
Forf, “(ZC*) =L,
for any A € Y.
To each A € Y, one can also associate the “standard” and “costandard” objects

defined respectively by

I!“ = pTZO(j!MkGr“ [<2pa /J/>])7 Iil = pTSO(jkar“ [<2p7 /’L>])’

where j# : Gr* < Gr is the inclusion and PrZ% Pr=0 are the perverse truncation

functors. (Note that j# is not an affine morphism in general, so unlike in the
I-equivariant case, if we omit the perverse truncation functors, the resulting ob-
jects are not in general perverse.) With this notation there exists (up to scalar) a
unique nonzero morphism Z{* — ZJ', and its image is ZC". Once again the cate-
gory Perv,+g(Gr,k) has a natural highest weight structure with standard objects
the perverse sheaves (Z{' : 1 € Y ) and costandard objects the perverse sheaves
(Z¢ e Yy), see | , Proposition 1.12.4]. In particular one can consider the tilt-
ing objects in this category, and the indecomposable such objects are parametrized
by Y. For any A € Y, we will denote by 7 the corresponding indecomposable
tilting object.

As in the I-equivariant setting (see §3.2), we also have a canonical convolution
product

(3.2) #£7G Db, (Gr, k) x D%, o(Gr,k) — D%, .(Gr,k)

which equips D2+G(Gr, k) with the structure of a monoidal category. In this case
it is known that this product is t-exact (in the sense that a product of perverse
sheaves is perverse), and hence induces a monoidal structure on the abelian category
Perv o+ (Gr,k); see | , §1.6.3] for details. The geometric Satake equivalence
describes the monoidal category (Perv,+q(Gr, k), *£+G) in representation-theoretic
terms: more explicitly, in [MV] the authors construct a canonical affine k-group
scheme G} equipped with a split maximal torus 7,/ whose group of characters is

Y and a canonical equivalence of monoidal categories
Sat : (Pervo+c(Gr, k), £ ¢) 53 (Rep(GY), ®).

They also show that G}/ is a split connected reductive group, and that the root
datum of (GY,T}) is dual to that of (G, T'). Under this equivalence, Z{" corresponds
to the Weyl module of highest weight x, and Z to the induced module of highest
weight .

Below we will use the fact that the monoidal category

(Perv,+q(Gr, ]k),*£+G)

is rigid: every object F has a left and right dual FV. (This fact can either be
checked directly or deduced from the geometric Satake equivalence.) We will not
need an explicit description of this operation, but only that for 4 € Y, we have

(3.3) (I!u)v ~ I*—’UJO(N)7 (Ifj)v ) I!—wo(u)’ (Icﬂ)v ~ IC;“’"(“).

Using the geometry of spherical orbits we prove the following property of the
periodic order, which will be required later.

Lemma 3.2. Let p,v € Y be such that u — v is a sum of positive roots, and let
res

Y € ext * Then ytwo(l/) j ytwo (1) -
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Proof. Choose n € Y such that n 4+ v and 1 + p are strictly dominant. Then it is
o(n+v) C
Tt (i and hence that ¢, (y40) < tw,(n+u) in the Bruhat order. By [ ,
Lemmas 2.1 and 2.7], this implies that yt.,, (;41) < Ytw, (4. Since these elements
belong to W5, by Lemma 2.5(3) this implies that Ylwo (1) = Yhwo(ntp)- Using
O

well known that our assumption implies that Gt C Gr"™** i.e. that Gry,,

ext’

Lemma 2.5(2) we deduce that yt,, () < yty, (), as desired.

3.4. Whittaker categories. From now on we assume that F has characteristic
p > 0, and that k contains a nontrivial p-th root of unity (which we fix once and for
all). Let A C Sag be a finitary subset, and let [ := wAfuwgl. In | , §3.4] we
have explained the construction of a “generic” character ¢4 : I4 — G,; as in | ,
§3.5] one can then consider the categories

D}}é’m(m,k) and D‘(DI&XA)(Gr,k)

of (I, X4)-equivariant k-sheaves on Fl and Gr, where X4 is the pullback along 4
of an Artin—Schreier local system on G,. In the case where A = @, these categories
are just the ordinary Iy-equivariant derived categories considered in §3.2; in this
case we will omit “A” from all notations introduced below.

These categories have natural perverse t-structures, whose hearts are denoted
Perv(za x,)(Fl, k) and Perv(;a x,)(Gr, k) respectively. The isomorphism classes
of simple objects in Perv(;a x,)(Fl,k) are in canonical bijection with the subset
of Weyt consisting of elements w minimal in Ww; for such w the correspond-
ing simple object is denoted by 92”“’}4. For any w € Wy minimal in Waw we
have a “standard” perverse sheaf 2/ and a “costandard” perverse sheaf 4,2 in
Perv(a x ) (FLk), obtained by !- and *-pushforward respectively of a local system
on the IA-orbit of the image of w in Fl. There exists a unique (up to scalar)
nonzero morphism 22 — A whose image is .Z2, and these objects equip
Perv(I\fx)XA)(Fl, k) with the structure of a highest weight category with weight poset
{w € Wext | w minimal in W4w}, endowed with the restriction of the Bruhat order.

Similarly, the isomorphism classes of simple objects in Perv(1§7XA)(Gr, k) are in
canonical bijection with AWS5; for w € AW, the corresponding simple object
is denoted by L2, For any w € AWz, we have a “standard” perverse sheaf A2
and a “costandard” perverse sheaf V# in Perv(ra x ) (Gr, k), obtained by !- and
-pushforward respectively of a local system on the I-orbit of the image of  in
Gr. There exists a unique (up to scalar) nonzero morphism A2 — V2 whose
image is L2, and these objects equip Perv(I‘,?yXA)(Gr,lk) with the structure of a
highest weight category with weight poset AW, endowed with the restriction of
the Bruhat order. The indecomposable tilting objects in this category are then also
parametrized by AW<,; the object associated with w will be denoted T2. Below

€

we will also use the fact that for w € AW, we have
(3.4) T D =2 AL TN A 2 VA
see e.g. | , Lemma A.1] for similar considerations.

The same construction as in (3.2) yields a canonical bifunctor

G DY e (Gr k) X DRy (Gr k) = Dy, (Gr, k)
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which defines a right action of the monoidal category (D, (Gr,k),«% %) on
D?IA ) (Gr, k). This bifunctor is t-exact in the sense that if 7 € Perv(a x,)(Gr,k)

and G € Perv,+(Gr,k) then F «£7C G is perverse; see [AR3, §4.1] for references.

Remark 3.3. In order to use Verdier duality arguments, we will also have to consider
the local system X;l on I (i.e. the local system defined by the inverse of the p-
th root of unity fixed above); namely, Verdier duality induces anti-equivalences of
categories

D‘(}‘?’XA)(FI,]]«) %D‘EI:,’X;)(FI,H&) and DE}:"XA)(Gr,]k) QD'&S,)X;)(

Gr, k),

which will both be denoted D. None of our considerations below will depend on the
choice of root of unity; in particular, they are equally valid in both the (I}, X4)- and
(I, Xgl)—equivariant settings. For this reason, we may write A# to indicate either
the (I2, X4)-equivariant standard perverse sheaf, or the (I, X;l)—equivariant one:
this minor abuse of notation should not lead to any confusion.

With the comments above in mind, the behavior of D on the various objects

introduced above can be summarized as follows: for any w € AW, we have

DAY =VA DV AL DL =LA, DTA=TA
and similarly for the corresponding objects on F1.

3.5. Combinatorics of perverse sheaves. As explained in §3.4 the category
Perv(ra x ) (Gr,k) has a natural structure of a highest weight category. There are
two kinds of numerical quantities one can compute in this setting. First, given a
perverse sheaf F in Perv(;a x,)(Gr, k), one can consider the multiplicity of a simple
object Lf}) as a composition factor of F; this number is denoted

[F:LA.

Next, if we assume that F admits a standard filtration (i.e. a filtration whose
subquotients are standard perverse sheaves), one can consider the number of oc-
currences of a given standard object A2 which is denoted

(F:AD).

It is a standard fact that this number is well defined (i.e. does not depend on the
choice of filtration) and additive with respect to direct sums; in fact we have

(F : A2) = dimy Hom(F, V%),

Similar comments apply to the multiplicity of a given costandard object in a co-
standard filtration of an object F (assumed to admit such a filtration), which will
be denoted

(F: V.

Let us now consider a triple (K, Q,k) where K is a finite extension of Q, con-
taining a nontrivial p-th root of unity, O is its ring of integers, and k is the residue
field of @. In this setting we can consider the categories Perv(IL/‘a_’XA)(Gr, k) and
Perv(ra x . (Gr,K). In both of these categories the indecomposable tilting perverse
sheaves are parametrized by W2, ; to distinguish the two cases the objects asso-
ciated with w will be denoted TA* and TAX respectively. We will use similar
conventions for standard objects.
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Lemma 3.4. For any w,y € AWS, we have
A A A A

Proof. In addition to the categories Perv(sa x,)(Gr, k) and Perv(;a x,)(Gr,K), we
can also consider the category Perv(a x,)(Gr, Q) of (I, X 4)-equivariant O-perver-
se sheaves on Gr. In this category we also have standard and costandard objects,
denoted A;v@ and VyA’(O’, respectively, and we can speak of tilting perverse sheaves.
As explained in | , Appendix B], the indecomposable tilting objects are again
classified by AW3,. More specifically, given w € AWz, there exists an indecom-

posable tilting perverse sheaf Tﬁ@ such that
L
ko Ty® = THF,
where
L
k®o () : D?[\f,XA)(Grv@) - D?Jf,XA)(GTa k)

is the “modular reduction” functor. In particular, for any y € AWe*it the multiplic-
ity of A4? in a standard filtration of T4@ is (T4* : A2F). We can also consider
the tensor product functor

L
K @0 (=) : D{ra x,)(Gr,0) = D{ra ) (Gr, K);

the perverse sheaf K ®(€D TA40 is tilting, supported on Gr,, and satisfies (K ®é

T40  A4KY = 1; it therefore admits TAX as a direct summand. We deduce that
(TAK . Aﬁ’K) is at most the multiplicity of Aﬁ’@ in a standard filtration of TAC,
which proves the desired inequality. O

For the rest of this subsection we assume that A = @ and k has characteristic
0. Tt is a classical fact going back to | ] that the Kazhdan-Lusztig polynomials
(hy,z : Yy € Wext) encode the dimensions of stalks of the simple perverse sheaf %
Explicitly, we have

(35)  hy. = 1k (jf*f@)*i(zxmy)) o' =3 dim Hom (%, A;i]) - o'.

icZ i€z
Similarly, the spherical Kazhdan—Lusztig polynomials describe stalks of simple per-
verse sheaves on Gr: we have

My o = Z rk (jf_é(y)_i(L“Gry)) b= Z dim Hom(L,, V,,[i]) - v*.
= i€Z
(In fact, this equality easily follows from (3.5), comparing (2.8) and (3.1).)
Let us now work in the Grothendieck group [D} (Gr,k)] of the triangulated
category DY} (Gr,k). Since the basis ([A,] : w € WE,;) is dual to the basis ([V,] :
w € W23,) for the natural Euler pairing, the preceding equality means that

[Lw] = Z My wlv=—1 [Aw]

S.. As a consequence, the polynomials (m¥% : y,w € WZ,)
from (2.9) have the following interpretation:

[Ay] = Z(—l)é(y)H(w)mw’yw:_l[Ly] for any w € W2, ;

for any w € W5
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in other words, for any y,w € W2, we have

[Aw i Ly] = (71)€(y)+f(w)mw,y|v:_1.
In particular, from Lemma 2.8 we deduce that for any w,y € Wy we have
(3.6) [Aya i Ly =1.

(Here we know a priori that the left-hand side is nonnegative; but the fact that
(w) + L(w?) + £(w,) is even can also be seen directly from the computations
in §6.3 below.)

3.6. Averaging functors. We continue to consider a finitary subset A C S,g. As
explained in [ , §3.6-3.8], there is a t-exact “averaging functor”

Avy : D} (Gr,k) = Dfya y,(Gr,k)
with t-exact left and right adjoints, denoted by
Avit AvZ D](DI:\’XA)(Gr,]k) — D})U(Gr,]k),

respectively. By [ , Lemma 3.3(3)] the functor AV;?; sends each standard object
either to 0 or to a standard object, and each costandard object either to O or
to a costandard object. As a consequence, it sends objects admitting a standard
filtration, resp. a costandard filtration, to objects admitting a standard filtration,
resp. a costandard filtration.

Remark 3.5. The functors AV{4 and Avf do not kill any nonzero perverse sheaf. In
fact, if  is a nonzero object in Perv(za x,)(Gr, k) and w € AW5, is such that L) is
a quotient of F, then by adjunction and | , Lemma 3.3(4)] the object Av{*(F)
adrgits a nonzero morphism to L,,, hence is nonzero. A dual argument applies to
Av

Lemma 3.6. (1) The functor
Avit Perv(za x,)(Gr, k) — Pervr, (Gr, k)

sends objects admitting a standard filtration to objects admitting a standard
filtration. More explicitly, for any w € AW23, and y € W5, we have

X

1 ifye Wuaw;

(AviT(AL) : Ay) {0 otherwise.

(2) The functor
Avh: Perv(za x,)(Gr, k) — Pervy, (Gr, k)

sends objects admitting a costandard filtration to objects admitting a co-
standard filtration. More explicitly, for any w € W5, and y € W23, we
have

1 ify e Waw;s

0 otherwise.

(AVH (V) : Vy) = {

Proof. (1) Recall that an object X in a highest-weight category has a standard
filtration if and only if Ext'(X,—) vanishes on all costandard objects, see [Ri,
Proposition 7.12]. Let us apply this criterion to the categories Perv(;a x,)(Gr, k)
and Pervy (Gr,k). Since AV;Zx is exact and sends costandard objects to objects
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admitting a costandard filtration, its exact left adjoint Avf4 preserves the prop-
erty of having a standard filtration. The description of multiplicities also follows
from adjunction, together with the explicit description of images under Av$ of the
standard objects in | , Lemma 3.3(3)].

(2) The proof is similar to that of (1). O

Remark 3.7. The functor AV$ also has *- and !-versions, which turn out to be

canonically isomorphic, see | , Lemma 3.2]. (By definition, AV;/L} is identified
with these two versions.) Similarly there exists a canonical morphism of functors

AV!A — AvZ,

but this map is not an isomorphism in general. For instance, when A is a singleton
{s}, it is known that both Avi'(22) and AvZ?(27) are isomorphic to 7., but
one can check by direct calculation that the image of Av{*(24) — Av}(Z.) is
isomorphic to .Z,.

Nevertheless, the philosophy of Koszul duality suggests that there should exist
some natural isomorphism AVIA = Avf. In more detail, the functor Avq‘z is the
counterpart under Koszul duality of push-forward along the projection w4 : F1 —
Fla, where Fly is a partial affine flag variety (depending on A). This map is
proper and smooth, so the left and right adjoints of (74).,—namely, 7% and 7Tf4—
are isomorphic up to a shift. Similarly, AV!A and AV;4 should be isomorphic (up
to a Tate twist in the setting of mixed sheaves). However, we were unable to find
a direct proof of this claim. (See Lemma 3.8 and Remark 3.11 below for related
results.)

3.7. Wall-crossing functors. For a finitary subset A C S.g, we consider the
functors

E!A = Avj4 o Avﬁ,

! * b b
&4+ D} (Gr, k) — D7 (Gr,k defined b
fA §A Iu( ) Iu( ) y fj:AvfoAvﬁ.

The results recalled in §3.6 imply that:

e each of these functors is t-exact with respect to the perverse t-structure;

o 554 sends perverse sheaves admitting a standard filtration to perverse sheaves
admitting a standard filtration;

o & sends perverse sheaves admitting a costandard filtration to perverse
sheaves admitting a costandard filtration;

o &' is left-adjoint to &£%.

Lemma 3.8. There exists an isomorphism of functors E'A = £%. As a consequence,
these functors send objects admitting a standard filtration to objects admitting a
standard filtration, and objects admitting a costandard filtration to objects admitting
a costandard filtration; in particular, they send tilting objects to tilting objects.

Proof sketch. The proof requires a different realization of the functors §f4 and &%.
Namely, following Yun (see [BY, Appendix A]; see also [BR] for a review of this
construction, which explicitly allows more general coefficients) one can consider
the “free-monodromic completion” D” of the I,-equivariant derived category of
sheaves on LG/I,, constructible with respect to the stratification by I-orbits. In
this category we have a perverse t-structure, and a notion of tilting perverse sheaves,
see [BY, §A.7] or [BR, §5.4]; the indecomposable tilting objects are parametrized
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(in terms of their support) by Wey. This category also has a monoidal structure,
and this monoidal category acts in a natural way on the category D'})u (Gr,k). Now
it follows from [BR, Lemma 10.1] that both 554 and &% are both isomorphic to the
functor given by convolution with the indecomposable tilting object associated with
the element w4. These functors are therefore isomorphic.

The second claim of the lemma is a consequence of this isomorphism and the
properties of ¢, and £ listed above. O

Remark 3.9. The considerations in the proof of Lemma 3.8 simplify in case we
apply the functors &% and &', to an object of the form Forﬁu (F) for some F in
DY(Gr,k). In this case we have

Ea(Fory, (F)) = T, +' F 2 €4 (Fory (F))
where the convolution bifunctor +! is as in §3.2.
Thanks to Lemma 3.8, we will write {4 for E’A = ¢ when the choice among

these functors does not matter. In case A = {s} for some s € Sag, we will simplify
this notation even further and write &, for £,y.

Corollary 3.10. The functors
Avit, AvA Perv(ra x,)(Gr, k) — Pervy, (Gr,k)

send objects admitting a standard filtration to objects admitting a standard filtration,
and similarly for costandard filtrations. In particular, these functors send tilting
objects to tilting objects.

Proof. We write the proof for AV,A; the other case is similar. What we have to prove
is that Av{*(A#2) admits a standard filtration and Av{*(V#) admits a costandard

filtration for any w € AWS5,. The case of standard filtrations has already been

proved in Lemma 3.6. For costandard filtrations, we observe that
AV (V) = AVIPAVE (V) = €4(Va) 2 €4(Va) = AvIAVE(V.) = AvH(Vy)
by | , Lemma 3.3(3)] and Lemma 3.8. The right-hand side admits a costandard
filtration by Lemma 3.6, so we are done. (Il
Remark 3.11. If we denote by [Perv(;a x,)(Gr, k)] and [Pervy, (Gr, k)| the Grothen-
dieck groups of the categories Perv(;a x,)(Gr,k) and Pervy, (Gr,k) respectively,
and by [Av{*] and [AvZ] the morphisms induced by Avi' and AvZ on Grothendieck
groups, then we have
[Avi'] = [AVZ].
Indeed, this follows from the observation that for any w € 4Ws5, we have
AV (L) = AvALD),
by the same considerations as in the proof of Corollary 3.10.

We can in fact be more precise regarding the effect of the functors AV!A and
Av;4 on indecomposable tilting perverse sheaves by adapting the proof of a “Koszul
dual” statement in [Wi, Proposition 3.5], as follows.

Proposition 3.12. For any w € AW2, we have
AV!A(Tﬁ) = Twaw = Avf(Tﬁ),
AVE (T ) 2 (T2) #12,
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Proof. We will prove the first isomorphism on the first line above, and the isomor-
phism on the second line; the second isomorphism on the first line can be obtained
by similar arguments, or deduced using Verdier duality.

First, we note that

(3.7) AV (AVH(T2)) = (Ta)®#Wa,

Indeed, by the comments in §3.6 and Corollary 3.10 the left-hand side is tilting. A
closer look at [ , Lemma 3.3(3)] and Lemma 3.6(1) shows that for any y € AW,
we have

(AV;?(AV!A(Tﬁ)) : A;) = (#WA) X (Tﬁ : A;) — ((Tﬁ)@#WA . A;)

Since a tilting object is determined (up to isomorphism) by its standard multiplic-
ities, this implies the desired isomorphism.

Now, as justified above AV,A(Tﬁ) is tilting. From the description of multiplicities
in Lemma 3.6 one sees that waw is maximal among the labels of standard objects
appearing in a standard filtration of this object; it follows that T, ,. is a direct
summand in it. Let us write

AV (T =Tp,w® T.

Then 7T is tilting, and the standard objects appearing in a standard filtration of
this object are of the form xy with x € W4 and y € AW2, (because this property

ext

holds true for Av{*(T#)). We will show that Av,(7) = 0, which will imply that

T = 0 (by exactness of Av$ and its effect on standard objects as described in | ,
Lemma 3.3(3)]), and thereby conclude the proof.
Using (3.7) we obtain that

(T)E#FWA 2 AV (Ty,w) & AV (T).

By the Krull-Schmidt property, this implies that AVﬁ(Tw w) and Avﬁ (T) are both
direct sums of copies of T2. To determine the number of copies in AVﬁ(Tw aw) 1t
suffices to compute (Avﬁ(Tw Lw) @ A2): we will show that this number is at least
#W 4, which will imply that AV$(T> = 0, as desired. For that, using once again

the exactness of Av{? and [ , Lemma 3.3(3)], it suffices to prove that for any
xz € W4 we have
(3.8) (Twaw : Azw) > 1.

However, the union

|_| Gra

zeEW4y

is open in Gry ., and is an affine space bundle over M4 /B4 where My is the
reductive group attached to A as in | , §3.4] and By is its natural (negative)
Borel subgroup. The restriction of T, to this union is again tilting, and it must
admit the indecomposable tilting object with label waw (i.e the pullback of the
indecomposable tilting object on M4/By4 attached to w4) as a direct summand. Tt
is a standard fact that the standard object with label xw appears with multiplicity
1 in the latter object for any z (see e.g. [BR]), which implies (3.8) and finishes the
proof. [
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Remark 3.13. (1) From the philosophy of the Finkelberg—Mirkovié¢ conjecture
and its “singular” variants, Proposition 3.12 can be considered a geometric
counterpart to [Ja, Proposition E.11].

(2) Alternatively, to prove (3.8) one can reduce the proof to the characteristic-
0 setting using Lemma 3.4, and then use the formula for multiplicities of
tilting perverse sheaves in terms of Kazhdan—Lusztig polynomials in this
case proved in [Yu].

Below we will also consider some easier “wall-crossing functors” associated with
elements of Q. Note that if w € Q we have wl,w™' = I,; as a consequence, left
multiplication by w induces an autoequivalence

&, 1 Pervy, (Gr,k) = Pervy, (Gr, k)

which satisfies

(3.9) ColBy) = Aoy, EulVy) =V
for any y € W5.,. From this we deduce that we also have
(3.10) Colly) Zluy,  &u(Ty) = Tuy,

again for any y € W3,.
3.8. A support computation. The following two lemmas, which describe the
effect of wall-crossing functors on the support of perverse sheaves, will be needed
in §6.2 below.

Lemma 3.14. Lety € W,

(1) If sy <y, orif sy >y and sy ¢ WS, then &(L,) = 0.
(2) If sy >y and sy € W5, then & (L) is supported on Grg,, and admits Lg,
as a composition factor with multiplicity 1.

. and s € Syg.

Proof. (1) According to (2.6), the condition that sy < y implies that y ¢ (S}W3,.
Similarly, if sy > y and sy ¢ W2,, then again we have y ¢ (W5, . In view of | ,
Lemma 3.3(4)], either of these conditions therefore implies that Av;{;}(Ly) =0, and
hence a fortiori that &5(L,) = 0.

(2) By Remark 3.9, there exists a perverse sheaf F in Pervy, (Fl, k), supported
on Fl; and satisfying Fjpi, = kg [1], such that & (L) = F + L. It is easily seen
that the right-hand side is supported on Gr,, and that its restriction to Grs, is
k[¢(sy)]; the multiplicity of L, in this perverse sheaf is therefore 1. O

Lemma 3.15. Let w € Wey, w € Q and s1,...,8, € Sag be such that
Uwsy - spw) =L(w) + 71

and wsy -+ - spw belongs to WS, . Then:

ext*
(1) w belongs to W5, ;

(2) for any perverse sheaf F supported on Gry,, &8s, - -+ &s, (F) is supported on
Grys,...s,w; moreover we have

[gwgSl o 'fsr (F) : stl---srw} = [f : Lw]
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Proof. In view of (3.10), and since W3, is stable under left multiplication by el-
ements of 2, we can assume that w = e. Then we proceed by induction on r,
the case r = 0 being obvious. If » > 1, then | , Lemma 2.2] ensures that
9+ spw € Wy, so that by induction w € W2, (establishing (1)).

Now let F be a perverse sheaf supported on Gr,,. By induction, &, ---&, (F)
is supported on Gry,...s,.w, SO that its composition factors are of the form L, with

y € W3, satisfying y < sy---s,w, and in case y = so - - - s,w we have

[€so &5 (F) t Lsyeosow] = [F 1 L)

By exactness of &, (see §3.7) the object &, - -+ &, (F) is then an extension of per-
verse sheaves &, (L,) for such y’s. If sy < y or if sy > y and s1y ¢ W2, then
&, (L,) = 0 by Lemma 3.14(1). If sy > y and s1y € W3, with y # sy---s,w
then by Lemma 3.14(2) &, (L) is supported on Gryg,,; since s1y < s1-- - spw this
perverse sheaf is therefore supported on Grg,...s,, but does not admit Lg, .5, as a
composition factor. Finally, for y = ss - - - s,w, again by Lemma 3.14(2) the perverse
sheaf &, (Ls,...s,w) is supported on Gry,...s, 4, and

€51 (Logspw) * Layspes,w] = 1.
We deduce statement (2), which finishes the induction. O

3.9. The geometric Steinberg formula. To finish this section we state the “geo-
metric Steinberg formula” proved in | , Theorems 4.1 and 4.3]. This statement
will be the starting point for all the main constructions of the present paper.

Theorem 3.16. Let A C Sy be a finitary subset.
(1) For any w € AW and any p € Y, we have

IR (o=

wtwo(#) :

(2) For any w € AWEE | the functor

ext’
LA 276 (=) : Pervi(Gr, k) — Perv(ia v, (Gr, k)
1s fully faithful.
Later we will also need the following corollary of Theorem 3.16.

Corollary 3.17. Lety,y € AW, nc€ Yy, andv € —Y .

ext’
(1) If Hom(L;;1 x£1G I!”,Vz‘j,tu) # 0, then there exists A € Y orthogonal to all
roots such that y = y'tx.
(2) If v # wo(p), then Hom(L{ x4"C I}, V4, ) = 0.

ytu
(3) The space Hom(ng4 *£+GI{‘, Vﬁt s 1-dimensional, and spanned by the
composition

wo(ﬂ))
A L£YG 7 A LYG 7pu A A A
L, * ' - L, * ch = Lytwom = Vit
where the surjection is induced by the surjection I" — IC* and the isomor-

phism is given by Theorem 3.16(1).

Proof. (1) By Theorem 3.16 and exactness of the bifunctor *£+G, taking a com-
position series of Z{" we obtain a composition series of LZ‘;x KLTG T}, all of whose
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subquotients are of the form L o

there exists such an 7 which satisfies
A A
Hom(Ly, ~ Vi) #0,
i.e. such that yt,,, ;) = y't,. By the definition of W, this implies that v — wo(n)

ext?

is orthogonal to all roots, and then the desired claim.
(2) By [ARR3, Lemma 3.3(4)] we have Av;(L,) = L4, so

for n € Y. If our Hom-space is nonzero,

AVO(L, +57C Ty = L ETC T
Using adjunction, we deduce that
Hom(L +57C 7', V24 ) 2 Hom(L, +° ¢ 7', AvA (V2 ).
Now by [ , Lemma 3.3(3)] and Remark 3.9 we have
AVI(VE) = T ¥ Vi,

It is a standard fact that there exists an embedding A4, — 7, whose cokernel
admits a costandard filtration with subquotients of the form .4, with x € W4~ {e},
each appearing once. Since yt, is minimal in Wuyt, (see §2.4), using Lemma 3.1(4)
we deduce an embedding V;, < Z,, ¥/ V,;, whose cokernel admits a costandard
filtration with subquotients Vg, with € W4 ~\ {e}. Since all the composition
factors of L, e T!' have their label in AWS (see the proof of (1) and (2.7)), for
any such x we have

Hom(L, «°" ¢ T/, V4yr,) = 0.

We deduce that Hom(L, ¥£7C I}, Vi, ) = Hom(L, ¥£7C ' Ty ¥1 Vi, ), and
hence
+ +
Hom(Lﬁ KEE T V;;‘ty) =~ Hom(L, ¥ “Z{', Vs, ).

Finally we have a surjection A, — L,, which induces an embedding
Hom(L, +£"C !, V1, ) < Hom(A, #5 9 T¢, V. ).
By | , Lemma 4.9] the right-hand side vanishes if v # w,(u), which implies the
desired claim.
(3) As in (2) we have an embedding

Hom(Ly' < € 7', Vit ) = Hom(Ay #5 O I, V)

By [ , Remark 4.10] the right-hand side is 1-dimensional, so that the left-hand
side has dimension 0 or 1. The nonzero morphism exhibited in the statement shows
that this space is nonzero; it must therefore be 1-dimensional. O

4. BACKGROUND FROM REPRESENTATION THEORY

In the next section we will introduce our main object of study, a certain category
of ind-perverse sheaves which should be thought of as a geometric counterpart of
the category of GlT-modules for a reductive group G (with maximal torus T)
such that G is Langlands dual to G. In order to motivate this construction, and
to justify our conventions, we explain in this section the representation-theoretic
version of this construction.

For any group scheme H over k, we will denote by Rep(H) the category of
finite-dimensional H-modules.
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4.1. Representations of Frobenius kernels as representations of reductive
groups with additional structure. We fix a split connected reductive algebralc
group G over a perfect ﬁeld k of characteristic p > 0, with a Borel subgroup B and
a maximal torus T C B. (We use this notation because, in practice, we want to
use the results below in the case G and G are related as in §1.1. But in the present
section G can be arbitrary.) We will denote by Y the lattice of characters of '\I/‘, and
by Y C Y the subset of dominant weights, with the convention that the 'i‘—weights
in Lie(B) are the negative roots. (Of course, in general these sets might differ from
those denoted in the same way in §2.1, but they will coincide in the case we are
interested in.) We have the Frobenius morphism Fr : G > é(l), which restricts
to the Frobenius morphisms of B and '\I/‘; we will identify the character lattice of
T with Y in such a way that the morphism Fr* : X*(T(1)) — Y identifies with
A= pA.

We will be mostly interested in representations of G;T := Fr~*(T(®). Following
the point of view of [AG], we consider the composition of equivalences

(4.1) Rep(GyT) = Coh® T (pt) 2 Coh®*T™ (G x T /G, T),

where G T is seen as a subgroup in G x TO via g — (g,Fr(g)). Now the map
(g,t) = Fr(g)t~! induces an isomorphism

(GXT )/G1T—>G

so that the category on the right-hand side of (4.1) identifies with the category
of G x ’f(l)—equivariant coherent sheaves on Cv-‘r(l), or in other words with G-
equivariant Y-graded ¢(G())-modules which are finitely generated over ¢(G ™).
Here 0 (é(l)) is endowed with the left regular representation structure, and con-
sidered as Y-graded with

ﬁ(G(l))A = Indv(l) (=),

and the equivalence sends a élT—module M to the Y-graded module whose degree-
A component is

Indv V(M®]Z—“I' (]k (1)( )\)))
In particular, in view of the tensor identity (see [Ja, Proposition 1.3.6]), under this
equivalence the restriction functor Rep(G) — Rep(G;T) identifies with the functor
sending M to the Y-graded module whose degree-\ component is

G * G ~
M @ Indg 5 (Fr* (kpo) (—4)) = M @ IndZ, (-A) = M @ 0(GM),.

The G-modules considered above are typically infinite-dimensional; however the
category of all (possibly infinite-dimensional) algebraic representations of an al-
gebraic group identifies with the category of ind-objects in the category of finite-
dimensional representations. (See §5.1 below for some comments and references
on ind-objects.) From this point of view, we therefore obtain an equivalence of
categories between Rep(él’f) and the category of Y-graded ind-objects in Rep((v})
endowed with a graded action of ﬁ(é(l)) (seen as an algebra object in the category
of Y-graded ind-objects in Rep((v})) and which are finitely generated with respect
to this action (i.e. isomorphic to a quotient of a finite direct sum of grading shifts
of objects M ® €(GM)) with M € Rep(G)).
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Remark 4.1. (1) The same considerations show that the category of Y-graded
ind-objects in Rep(G()) endowed with a graded action of @(G™1)) identi-
fies with the category of Y-graded k-vector spaces (i.e. algebraic—but not
necessarily finite dimensional—representations of ’i‘(l)).

(2) One can also omit the torus T in this construction, i.e. consider the Frobe-
nius kernel él instead of Cv-‘q'f‘, and deduce an equivalence of categories
between Rep(G1) and the category of ind-objects in Rep(G) endowed with
an action of & (é(l)) and which are finitely generated with respect to this
action.

4.2. The left regular representation as an ind-object. In this subsection we
reIt)

1) (—)) can be explicitly represented as an ind-object

explain how the object Ind
in Rep(G™).

For A € Y, we will denote by MM (), resp. NV()), the Weyl module, resp. in-
duced module, for G of highest weight A; by definition we have M ()\) =
N (—ws(N))*. It is a standard fact that for A\, u € Yy and n € Z we have

k if \=pand n=0;
noo_ 1) (1) o~ ;
(4.2) EXtRep(Gu))(M (A), N (p)) = {0 otherwise;
see [Ja, Proposition 11.4.13]. Given A\, A’ € Y there exists a unique morphism of
G-modules
(4.3) N @ NN — NB (X + \)

sending the tensor product of the highest weight vectors in the left-hand side to
the highest weight vector in the right-hand side. By duality, we deduce for any
A, N €Y, acanonical morphism

(4.4) MO+ N) = MO (N) @ MO (X).

We will assume we are given, for any A € Y, a nonzero morphism of GO
modules

ox s MO () = NO),
such that for A\, \' € Y, the composition

MDA+ N L MO () @ MO (\) 2EA N (3) @ NO (V) L2 NO (L4 )

coincides with @yya. (See Remark 4.4 below for a discussion of this condition.)
By adjunction, ¢, determines a canonical morphism

(4.5) k — NO (—w,(A\) @ ND ().

Below we will consider various (formal) inductive limits parametrized by some
subsets of Y ; in each case, this subset is endowed with the restriction of the partial
order on Y such that A is smaller than A" iff A’ — A is dominant. Given a weight
u €Y, we consider the ind-object

" N - wo(V) @ NOM)
AEY  N(wo(pu)+Y 1)

where given n € Y the transition morphism

N (1 — wo (X)) @ NN = NO (1 — wo (A + 1)) @ NO(X+ 1)
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is the composition
N (1= w0 (A)) © N = NO (= () & NO (= ) &N () & NO)
= N (1 —wo(A+ 1)) @ NP (A+ 1)

where the first map is induced by (4.5), and the second one by (4.3) (applied in the
first two and last two factors).

Lemma 4.2. For any pu €Y, the functor represented by the ind-object

“lim”  ND(u—wo (M) @ N (N)
AEY N (wo(p)+Y 1)

is given by V +— Homg, (V, Ind\g:;; (1))-

Proof. By Frobenius reciprocity [Ja, Proposition 11.3.4], for any V in Rep(G(1) we
have )
Homg o, (V, Ind,) (1) = (Vi)

where V,, is the p-weight space of V. Now we have a canonical morphism of
B®W-modules N (1 — wo(N)) — kg (b — wo(N)), and the morphism ¢_,_ )
determines a morphism of B(-modules MDD (—wo (X)) = kg, (—wo(A)). In turn,
this morphism defines a highest weight vector in M()(—w,())), hence a lowest
weight vector in N(W(\), which determines a morphism of T()-modules NV ()\) —
ki) (wo(A)). Tensoring these morphisms we obtain a morpgism of T(M-modules
ND (1 — wo (X)) @ NO(X) = ki) (1), hence a morphism of G(V-modules

N (1 — wa(3) © NO (V) - md$e) (),
and finally a morphism of functors

Homg ) (— N® (1 — w, (1)) @ N (X)) = Homg,,

We deduce a morphism of functors

. o
lim Homgg,, (— N (2 — wo(A)) © N (3)) = Homger (— IndS,) (1)),
A

reledl
(- Ind%m (1))

and to conclude it suffices to prove that this morphism is an isomorphism.
On the other hand, for A € Y. N (wo(p) + Y+) we have

(4.6) Homg,

(V.ND (= wo(3) & NO())

= Homg ) (M(l)(—wo(x\)), V' ® N(l)(,u — wo(/\)))
Assume now that A is large enough that v+ u—wo(\) is dominant for any weight v
of V*. Then, by the tensor identity [Ja, Proposition 1.3.6] and Kempf’s vanishing
theorem [Ja, Proposition 11.4.5], the module V* @ N (1 — w,(\)) admits a finite
filtration with associated graded

BV @ ND (u+ v — we(N)).

v

In this case, in view of (4.2) the space in (4.6) identifies with
(V*)=p @ Homg, (M (—ws (X)), NV (—wo (A))) = (V)"
which concludes the proof. [
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Remark 4.3. (1) Below we will also require a variant of Lemma 4.2, which
follows from similar arguments (using also Frobenius reciprocity for the

induction from B® to GM). Consider, for a given y € Y, the ind-object
Uy g (4 — we(N) © NOQY)
AEY 1 N(wo(p)+Y4)

in Rep(]§(1)), where for n € Y, the transition morphism
ko (1 — wo(N) @ N (A) = kg (1 — wo (A + 1)) @ NU (A + 1)

is the composition

kg (1= wo(A) @ND (X) = kg (1 —wo (A) © ND (= () @ NO () @ N (X
— kg (14— wo(N) @ kigy (—ws (1)) © N () @ N(N)
= kg (1 — wo(A + 1)) @ ND (X + 1)

where the first map is induced by (4.5), the second one by the natural mor-
phism N(l)(—wo(n)) — ké(l)(—wo(n)), and the third one by (4.3). Then
the functor represented by this ind-object is given by

B(1)
V — Homg, (V, Ind2 ) (1)).

(2) Given a property depending on a coweight A\ living in a subset A C Y,
we will say that this property holds when X is large enough if there exists
v € Y such that the property holds for any A € AN (v + Y, ). The proof
of Lemma 4.2 shows that given V, V' in Rep(é(l)), the vector space

Homg ) (V, V' @ N (1 — we(A)) @ N (N))
does not depend on A (up to canonical isomorphism) if A is large enough.

Since O ((v}(l)) is an algebra, we have multiplication morphisms

am Peiedl Peisdl
IndZo, (1) @ Indg) (v) = Indg,) (1 +v)
for any p,v € Y. Via the identification of Lemma 4.2, this morphism is induced

by the collection of natural morphisms

N® (1 = wo (X)) @ NV (N) @ NV (1 — wo (X)) @ N (X)
S ND (4 v —we A+ X)) @ND XN+
(for A, ) dominant and sufficiently large) induced by (4.3).

Remark 4.4. The datum of a collection of morphisms (py : A € Y1) as above is
equivalent to the datum of a lift of the longest element w, of the Weyl group of
(GO, TM) to N, (TD).

Indeed, assume we are given a collection of morphisms as above. For any u € Y,
setting X' = p — wo(\) we obtain an isomorphism

“lim” NG (= we(\) @ N
AEY N (wo () +Y )

= clim” NO(we(p) —we (X)) @ N,
MNEY N(p+Y4)
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By Lemma 4.2, this identification provides, for any V € Rep(é(l)), an isomorphism
Vi = Viwe(n)- One can check that these isomorphisms provide a tensor automor-
phism of the forgetful functor from Rep((v}(l)) to finite-dimensional k-vector spaces
hence, by Tannakian formalism, an element in G®). The behaviour of this element
with respect to weight spaces shows that this element is a lift of w, to Ng ) (’i‘(l)).
Conversely, recall that by construction the module N() (M) comes with a canon-
ical vector of weight A. Given a lift of w, to Ném(’i‘(l)), we obtain a canonical
vector of weight w,(\) in each N(Y'()), and then a canonical vector of weight X in
each M) (X). There exists then a unique morphism of G®-modules from M®)())
to N(()) sending the highest weight vector of the former to the highest weight
vector of the latter, which provides a construction of a morphism ¢, as above.

4.3. Baby co-Verma modules as ind-G-modules. We now consider the preim-
age B1T of T under the Frobenius morphism B — B(). Following the conven-
tions of [Ja, §11.9.1], for v € Y we consider the baby co-Verma module

Z'(v) = Indgllg(l/)7

where on the right-hand side v is seen as a character of ]§, and hence of ]§1’i‘ by re-
striction. In order to describe the image of this G;T-module under the equivalence
of §4.1, we need to describe, for any A € Y, the representation

Indg{f(zl(y) @kia (—A)) = Indglrf(z/(l/ —pA)).

For any u € Y4, we will denote by N(u) the induced G-module with highest
weight p. Note that given u, 4’ € Y, there exists a canonical morphism

(47) NG) @ (FrNO () = Nippa+ 1)

sending the tensor product of the canonical highest weight vectors on the left-hand
side to the canonical highest weight vector on the right-hand side. Given p € Y,
we consider the ind-object

“lig”  N(u— pws(A) @ B (NI (3)
AEY 4 N2 (wo (w)+Y )

in Rep(é), where the transition morphisms are given by the compositions
N(i = pws(A)) @ Fr* (N ()
= N(p = pws(N) @ Fr* (N (—wo (1)) @ B (ND () @ B (N (V)
— N(i = pwo(A + 1)) @ Fr* (N (A + )

for n € Y4, where the first map is induced by (4.5) and the second one by (4.3)
and (4.7).

Lemma 4.5. For any u € Y, the functor represented by the ind-object

“hm”  N(p—pwo(A) @ Fr* (N (V)
AEY 4 N2 (wo (w)+Y )

is given by V +— Homg(V, Indgl,f(/z\’(u))).
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Proof. We will consider the functor (—)gz of “coinvariants” for finite-dimensional

representations of the Frobenius kernel B, of ]§, given by
Vi, = ((V9)PY)~.

It is easily seen that this functor is left adjoint to the inclusion functor from
finite-dimensional k-vector spaces to Rep(B1); it also induces a functor Rep(B) —
Rep(B(M) which is left adjoint to the functor Fr* : Rep(B()) — Rep(B).

For V in Rep(G), we observe that by the tensor identity and Frobenius reciprocity
we have
Homg (V, N(u—pwo (X)) ©Fr* (N (A))) = Homg (V, kg (n—pws(A)) @Fr* (N (N))).
We deduce that this space identifies with

Homg, (V@ kg(—1)g,. ko (—wo(V) ® N ).

Using Remark 4.3(1), we deduce an isomorphism

limy Homigg (V, N1 — pwo (V) @ Fr* (N (1)) =
A
5L
Hom]é(l) ((V Y ké(_ﬂ))él s Indgu) (k))
Now we have

B " B
Homg ) (V @ kg(—p))g,, IndZ ) (k)) = Homg (V @ kg (—p), Fr* (Ind2 ;) (k)))

" B
= Homg (V, Fr*(Ind2, ) (k) @ kg (1)),

and
. 5(1) - B ~ B
Fr*(Indg ;) (k) ® ki (1) = Indg 5(k) ® k(1) = Indg 5(n)

by the tensor identity; using Frobenius reciprocity and transitivity of induction
(see [Ja, §11.3.5]) we deduce an isomorphism

ling Homgg (V, N(s — pus (M) © Fr* (N (1)) 2 Homgg (V. Ind$ 4 ().
A

Transitivity of induction also implies that Indg1 ,I,(Z’ (1) = Indg1 < (), so that this
provides the desired isomorphism. |

This lemma shows that for » € Y the image of Z'(v) under the equivalence
of §4.1 is the Y-graded ind-object with degree-\ component given by

“lim "N(v — pA — puo(42)) © Fr* (NO (1)),

where the transition morphisms are as above. In these terms, and using the de-
scription of Lemma 4.2, the action of @(G™) is induced by the morphisms

N(v — pA — pwo (1)) © N (1) @ NV (=X — we (i) @ N (')
= N = p(A + X) = pwo(u+ 1)) @ N (u+ 1)

induced by (4.3) and (4.7) for A, N € Y and pu, /' € Y, large enough (where we
omit the functor Fr* to lighten notation).
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5. MODULES OVER THE REGULAR PERVERSE SHEAF

We now come back to the setting of Sections 2-3.

In this section, for any finitary subset A C S,z we will define and initiate the
study of a certain category of ind-objects in Perv(1§7XA)(Gr, k) equipped with ad-
ditional structures: namely, a grading indexed by Y, and the structure of a right
module over a certain algebra ind-object R in Perv,+o(Gr, k). After some prelim-
inaries in Section 6, in Section 7 we will see that this category is a finite-length
abelian category with enough injectives and projectives, and that it satisfies prop-
erties similar to those of the category Rep(éli‘) where G is a connected reductive
algebraic group over k (with maximal torus ’i‘) whose Frobenius twist is G. One
can also omit the Y-grading, and obtain a similar theory that is analogous to that
of Gy-modules. This theory will be reviewed in Section 8.

5.1. Ind-objects. Our constructions will make use of ind-objects in categories; for
the generalities on this construction we refer to [IXS, Chap. 6].> For simplicity, for
any category A and ind-objects X and Y in A, we will denote by Homa(X,Y)
the space of morphisms from X to Y in the category of ind-objects in A. We will
repeatedly use the fact that any functor F' : C — D extends in a canonical way to
a functor Ind(C) — Ind(D), which will be denoted by the same symbol, see [I<S,

Proposition 6.1.9]. In view of [[XS, Proposition 6.1.12], a similar comment applies
to bifunctors. Recall also that the category of ind-objects in an abelian category is
abelian, see [I{S, Theorem 8.6.5], and that the functor on ind-objects induced by
an exact functor is exact, see [I{S, Corollary 8.6.8].

Given a category A and a set X, by an X-graded object in A we will mean a
collection A = (A, : z € X) of objects in A. We will write informally

A= P 4.
zeX
but the symbol “@” has no formal meaning here. In particular, we do not assume

that only finitely many objects A, are nonzero, nor that the (possibly infinite)
direct sum exists in A.

5.2. The regular perverse sheaf. Recall the objects 7} and Z} (A € Y ) intro-
duced in §3.3. For any A € Y., the natural morphisms for sheaf functors provide
a canonical morphism

- 1)
Since Z} has rigid dual 7™ (see (3.3)), this morphism induces a canonical
morphism

(5.1) ICO — T KLTC g7,

Next, for \, 4 € Y, since the perverse sheaf T} KL T i supported on the closure
of Gr*™ and has restriction to Gr*™ equal to kg,a+x [dim(Gr )], there exists a
canonical morphism

4
(5.2) TG T o T
3Here, for simplicity, and contrary to the authors of [XS], we will neglect all set-theoretic

subtleties involved in this construction, and pretend that all categories are small.
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Let us endow Y (and any of its subsets) with the preorder such that A is less
or equal to A" iff A — X is dominant. For u € Y we consider the ind-object

(5.3) Ry = “limg 7 LI LTG e
NEY N (= wo (1) +Y 4)

in Perv o+ (Gr, k), where the transition maps are given by the morphisms

I;vo(u)Jr/\ age wa"(’\) N If’"(“)“ age TV WLta I;wo(l’) age I;wo(A)

N Iwo () +A+v *L+G I*wo (Av)
for v € Y. Here, the first map comes from (5.1), and the second one from (5.2)
(applied to the first two and last two factors).

We have an obvious “unit map”

(5.4) n:IC° = Ry,

and for u, u’ € Y we have a “multiplication map”
(5.5) Ry %5 G Ry = Ry
obtained as the limit (over suitable A, \’) of the maps

A ) E i AR s sl

. Iwo(u+u’)+/\+/\’ Lra I*wo(A*i’/\/)
provided by (5.2) and the commutativity constraint on the monoidal category
Perv,.+q(Gr, k). The map (5.5) satisfies an obvious associativity property, as well as
an appropriate compatibility property with (5.4). Therefore, (5.4) and (5.5) make
the Y-graded ind-object

R:=EP Ry

HeEY

into an algebra object in the category of Y-graded ind-perverse sheaves. We call
R the regular perverse sheaf.

Recall the autoequivalence sw of the category Perv .+ (Gr, k) considered in | ,
§1.2]. Then for any A € Y, we have a canonical isomorphism sw(Z}) = oW,
These isomorphisms and Lemma 4.2* show that sw(R,) corresponds, under (the

extension to ind-objects of ) the equivalence Sat, to Ind%“g (—p), seen as an ind-object
in Rep(G}/). (In this case, we choose as morphism ¢, from §4.2 the one induced by
the canonical morphism Z — Z2.) This justifies our choice of convention for the
definition of R, in view of the formulation of the Finkelberg—Mirkovi¢ conjecture
in [ , Conjecture 1.1].

4In Section 4 we have assumed that k has positive characteristic; however Lemma 4.2 also
holds in characteristic 0, if G is interpreted as an abstract reductive group, without reference
to another group G.
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5.3. Splitting the unit map in characteristic 0. For later use (in §9.6), in this
subsection we show that when k has characteristic 0, the unit map (5.4) admits a
left inverse, and hence that ZC° is a direct summand of Ro. Recall that in this
case the category Perv +5(Gr, k) is semisimple, and that the canonical morphism
I}" — I is an isomorphism (and both objects can be identified with ZC*). We can
therefore rewrite the definition of Ry from (5.3) as

(56) RO _ u@w Ick *£+G Ic—’wo()\).
AEY

Next, dual to (5.1), we have a “counit map” € : ZC* *£ ¢ 7€~ — 7¢°. These
maps are not compatible with the transition maps in (5.6), so they do not define a
map Rg — ZCy.

However, in the present setting that char(k) = 0 we can correct this failure of
compatibility by introducing the maps

€\ = 1 €\ = 1 €
AT dimSat(Ze*) A T dim Sat(ZC—wo (M) €A

Let ny : ZC° — ZC* +£7¢ 7¢~"*™ be the map defined in (5.1). The composition
exna : ZC° — ZC° is given by multiplication by dim Sat(ZC*) (this can easily be
seen by consider the analogous unit and counit maps in the category Rep(GY/)), so
Exny = id.

We claim that the maps €, are compatible with the transition maps in (5.6), i.e.,
that the bottom square in the following diagram commutes:

CTCM KETG 7o we (N Ly 700,

zC°

M +v
TIx

IC)\ *L+G ZC—wO(A) IC)\—H/ *L+G Ic—quo()\+y)

E)\J/ J/€>\+V

zc° zc°

Since dim Hom(ICA KLra IwaO()‘),ICO) = 1, the commutativity of the bottom
square can be checked after composition with the unit maps in the top part of the
diagram. Commutativity follows from the observation that €\xny = €x1,na4, = id.
Together, the collection of maps €, define a map of ind-perverse sheaves

€: Ry — IC°
satisfying € o n = id.
5.4. Graded R-modules. A Y-graded right R-module is, by definition, a Y-
graded ind-object

- @

A€Y
in Perv(sa x,)(Gr, k), along with a collection of maps

i
Fax™ R, = Fapu
for A, u € Y, satisfying obvious unit and associativity axioms. Let

Mod {7 x,)(R)
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denote the category of Y-graded right R-modules. This is an abelian category. In
the special case where A = &, we simplify this notation to Mod}i (R).

For any v € Y, there is a shift-of-grading functor on Mod?§§7XA)(R), denoted
by F — F(v) and defined by

(FDu = Fuvs

with the R-module structure unchanged. Of course we have (v) o (V') = (v + V/');
in particular, (v) is an autoequivalence with inverse (—v).

Given a perverse sheaf F € Perv(ja y ) (Gr,k), we can construct a graded R-
module by the formula

oA(F) = P FCR,,
HEY

called the free R-module on F. This construction defines an exact functor

@4 : Perv(za x,)(CGr,k) = Mod{7a x,)(R).
In the case where A = &, we usually omit it from the notation and write
® : Pervy, (Gr,k) — Mod) (R).

More generally, a free graded R-module of finite type is, by definition, a finite
direct sum of objects of the form ®4(F)(v), where F € Perv(ra x,)(Gr,k) and
v € Y. Note that ®* is faithful; in fact by exactness this follows from the fact
that it kills no nonzero object, which itself follows from the observation that the

morphism G — ®4(G)y induced by the unit morphism 7 (see (5.4)) is injective,

since 7 is injective and the functor G #£7 ¢ (=) is exact.

Morphisms from free modules can be easily computed using the following lemma.

Lemma 5.1. For F € Perv(;a x,)(Gr,k) and M € MOd?;(:‘,XA)(R)’ there is a
natural isomorphism

I—IOHlModY (R)((I)A(‘F)7M) = HomPerv(Ié,XA)(Gr,]k) (-FvMO)

(g xa)
Proof. Consider the unit map 7 : ZC° — Ry. Composition with
id*E Gy F o FLTORy = B(F),
defines a map

I—IOHIModY (R) ((I)(-F)vM) — HomPerv(IfﬁxA)(Gr,]k) (‘FuMO)'

(g, X )
On the other hand, given a map ¢ : F — M, of (ind-)perverse sheaves, one can
consider for any p the following composition, which defines a map of graded R-
modules:
cta.
((I)A(]:))M _ ]_-*LJrG RM u Mo *£+G RM - MM'
(Here, the second map comes from the R-module structure on M.) It is straight-
forward to check that these two constructions are inverse to each other. (]

An object of MOd?;(“‘,XA)(R) is said to be finitely generated if it is a quotient of
a free graded R-module of finite type. Let

the full subcategory of Mod?;é;’ x,4)(R) consisting

Y —
mOd(If’XA)(R) N of finitely generated modules.
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At the moment, it is not clear that modEA’ x,4)(R) is an abelian category. This will
be established later: see Theorem 7.9.

For any G)/-module V and A € Y = X*(T}), we will denote by V) the A\-weight
space in V.

Lemma 5.2. For any F € Perv(ja x,)(Gr,k) and G € Pervo+q(Gr, k), the object
DA(F+L"CG) is isomorphic to a finite direct sum of objects of the form ®(F)(v).
More specifically, we have a canonical isomorphism
<I>A(]:*L+Gg @Sat )ewe ,,)®<I>A(]:)< v).
veY

Proof. To prove the lemma it suffices to provide canonical isomorphisms

e R, = @Sat wo (1) @ Ryt

for any € Y. Now if V = Sat(sw(G)), we have
V @ Indgs (—pr) 2 Ind§ (V @ key (- @ V, @ Indgs (—p +v),

where on the right-hand side the action of G}/ is on each Ind?@ (—p+v). Applying
k

1 . .
sw o Sat™ ", we deduce an isomorphism

G+~TCR, NEBV DRy

Finally, by [I'S, Proposition VI.12.1] we have V,, = Sat(G)_,, () for any v € Y,
which finishes the proof. O

5.5. Simple R-modules. Recall the subset AWref C Wyt introduced in §2.4,
and that (by definition) for any w € AW, there exist y € AW and A € Y
such that w = yty. Choosing such y and A we define a graded R-module Eﬁ
Mod {74 x,)(R) by

FA L gA A

L = o%(L)(=N).
Here the elements y and A\ are not unique, but if yty = y't,s, then the pairs (y, \)

and (y',)\') are related by the relations y' = yt,, N = A — v, for some v € Y
orthogonal to all roots. Using the “componentwise” description

(L) = Ly G Ry, forany pey,

along with the fact that for v as above ZC” is the sky-scraper sheaf at L,, so that
we have L, = L3 #£TCICY and ICY +£7C R, = Ry, we see that L2 is well
defined. To remedy this non-uniqueness issue, it is sometimes convenient to choose
a subset (AWI) C AWIS of representatives for the (free) action of the subgroup
of Y consisting of elements orthogonal to all roots; then any element of AWy can
be written uniquely as a product yty with y € (AWerfji) and A € Y. It is clear from

the definition that for w € AWy and A € Y we have
(5.7) LA, =LA\,

wtx
We will see in Theorem 5.6 below that these are the simple objects in the abelian
category MOd(IA7XA)(R). Anticipating this, we define the category of R-modules
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of finite length to be

the full subcategory of Mod??;;’ x4 (R)
MOd(Y}A XA)(R)ﬂen :=  consisting of objects that admit a finite

u’

filtration with subquotients of the form Eﬁ

Lemma 5.3. For any (ordinary) perverse sheaf F € Perv(ja x,)(Gr,k), the free
module ®4(F) lies in Mod?iAﬂA)(R)ﬂe“.

Proof. Any composition series for F gives rise to a filtration of ®4(F) whose sub-
quotients are of the form ®4(L2) with 2 € AWS,. By (2.7), Theorem 3.16(1)

ext*

and Lemma 5.2, each such ®4(L2) is a finite direct sum of objects of the form
AL ) (v) withy € AWE and v € Y. O

ext

Lemma 5.4. Let w,v € AWeyy. We have

a4 1 ifw=w;
dim Hom LA L4 = ’
MOdP(I.’,"XM(R)( w L) {0 otherwise.

In particular, any nonzero endomorphism of L2 is an automorphism.

Proof. Let us choose a subset (AW[S) C AWIS as above. By unwinding the

ext
definitions and using Lemma 5.1, we see that this lemma is equivalent to the claim

that for 2,y € (AWI%) and p € Y, we have

ext

dim Hompery 4 , 1 (Grk) (L

A1 A rcta 1 ifz=yand pu=0;
JLo Ru) =
vy “) {O otherwise.

To compute this Hom-group, we must study

@Hom(L?, L;;‘ *£+G I:Ja(ﬂ)"r)\ *mc I*—wo(,\)) ~
A
ling Hom(Li! #7622, Lt 276 710742,
A

where the isomorphism uses (3.3). Here, by Theorem 3.16(1) and exactness of
«Lra LA xLra I(\ by choosing a composition
L;;x KLHG e (k) +A

, we can obtain a composition series of

. From
+ . A
LA*ET G Ty (0)+

series of If‘ and then convolving with L4, and likewise for

this description we see that if x # y, the objects L4 *LJrGI!)‘ and

have no composition factor in common, so that
Hom(Lf Lra I,)‘, Lﬁ e If;”°(“)+/\) =0

for any A. Assume now that x = y. Then, by Theorem 3.16(2), the Hom-groups
above can be identified with

lig Hom(Z7, Z2°19*2).
A
It is easily seen that this Hom-group is 1-dimensional if y = 0, and vanishes other-
wise. 0

Corollary 5.5. Suppose M € Modgé’XA)(R)ﬁen. For any w € “Wey, any

nonzero morphism M — L2 is surjective.
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Proof. This follows from Lemma 5.4 by induction on the length of the given filtra-
tion of M. O

We can now prove the properties of the objects Ef) announced above.

Theorem 5.6. For w € AWy, the object Eﬁ is a simple object in the abelian
category Mod?gA’XA)(’R). Moreover, the assignment w — LA gives a bijection

Ay~ isomorphism classes of simple
ext = objects in Mod?;§7XA)(R)

Proof. We begin by showing that any object M € Mod?;f,XA) (R) admits a nonzero
morphism from a free R-module. Choose some nonzero graded component M,, in
M. As an ind-perverse sheaf, M, is an inductive limit of ordinary perverse sheaves,
say M, = “li Z,”]-',». Choose some term F; in this limit such that the natural map
Fi — M, is nonzero. Via Lemma 5.1, we obtain a nonzero map

(5.8) ¢ @ (F;) () = M.

We will now show that each Eﬁ is simple. If not, there is some nonzero proper
subobject M C Eﬁ, Composing with a nonzero map as in (5.8), we obtain a
nonzero, nonsurjective map ®4(F;)(u) — £2. In view of Lemma 5.3, this contra-
dicts Corollary 5.5.

Next, we will show that every simple object in Mod??;;’ x4)(R) is isomorphic
to some L. Let M € Modzfy x A)(R) be simple, and choose a nonzero map as
n (5.8); this map is necessarily surjective. But by Lemma 5.3, we already know
that ®4(F;)(u) has a composition series whose terms are of the form £ with
w € AWext, 50 M must be isomorphic to one of these composition factors, proving
the desired claim.

Finally, the fact that Ef 2 E‘y“ if w # y is immediate from Lemma 5.4. O

)

flen

As a consequence of Theorem 5.6, we see that MOd(YIA’ x4)(R)"" is stable under

subquotients in ModEA’ x4)(R). In particular, this category is abelian, and by
construction every object in this category has finite length. Using Lemma 5.3 we
also see that

(5.9) mod (74 x,)(R) C Mod{7a x,)(R)"",

but we reiterate that for the moment, we do not yet know whether modg 4.x,)(R)
is an abelian category, with one exception: when A = S, we have the following
result.

Proposition 5.7. The category MOdES,XS)(R) is canonically equivalent to the
category of (all) algebraic T, -modules; in particular, it is semisimple. The sub-
categories modgs’xs)(R) and MOd(Y;stS)(R)ﬁen coincide, and are equivalent (via
the equivalence for Mod?;ijs)(R)) to the category of finite-dimensional algebraic
T, -modules, i.e. to the category of finite-dimensional Y -graded k-vector spaces.

Proof. By the main result of | ], the category Perv(;s x¢)(Gr,k) is equiva-
lent to the Satake category Perv,+q(Gr, k), which is itself equivalent to the category
Rep(GY) via the geometric Satake equivalence, see §3.3. Via the latter equivalence,
R corresponds by definition to (the ind-object represented by) the algebra &(G)/)
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(for the left regular representation structure), with the Y-grading coming from the
action of T,/ induced by multiplication on the right. In view of Remark 4.1(1),
the category Modgs’ x5)(R) therefore identifies with the category of (all) algebraic

T,Y-modules, and both mOdZE,Xs)(R) and Modzixs)(R)ﬂe“ identify with the sub-
category of finite-dimensional modules. O

We conclude this subsection with a few technical consequences of the results
above that will be required later.

Lemma 5.8. Let w € AW?3

S If 2 € AWexy is such that E‘z“ s a composition factor
of ®4(LA), then z < w.

L) With z € AW and 1 € Y. By Theorem 3.16(1),

Lemma 5.2 and (5.7), ®4(L#) is a direct sum of objects Eﬁtu where v is a weight
of Sat(ZC"). These weights are such that u — w,(v) is a sum of positive roots, so
that by Lemma 3.2 we have xt, < xt,, (), i.e. zt, < w, as desired. ([l

Proof. Write w as w = xt,,

Lemma 5.9. For F,G € Mod?if)XA)(’R)ﬁen’ we have

dim Homygoqy | () (F,G) < oo
(Iu »XA)

In particular, ModEL?’XA)(R)ﬁ"n is Krull-Schmidt in the sense of | , §AL1].

Proof. The first claim follows from Lemma 5.4. The second claim follows by | ,
Remark A.2]. 0

In the following statement we use the terminology introduced in Remark 4.3(2).

Lemma 5.10. Let F,G € Perv(a x,)(Gr,k), andlet p € Y. If A € Y N(—wo(p)+
Y. ) is large enough, the natural map

(5.10) HomPeNuA 2y (G (F.G KLTG qwoli+A L £rG I;’ll)o()\))
u A

— HOInMOdY (R) ((I)A(F) <,LL>, (I)A(g))

g, xn)

is an isomorphism.

The map in this lemma comes from the identification of the right-hand side with
Hom(F,G +£"¢ R,) (see Lemma 5.1), which in turn is identified with

lim Hom(F, G £ G 7ot +A (£7G 7wy

AEY 1 N(—wo(p)+Y4)
Proof. Any element of Hom(®(F){u), ®4(G)) lies in the image of (5.10) for suffi-
ciently large A. Since Hom(®4(F){u), ®4(G)) is finite-dimensional by Lemma 5.9,
we deduce that (5.10) is surjective for sufficiently large A (depending on F and
G). Suppose now that 0 - F — F — F” — 0 is a short exact sequence in
Perv(If’XA)(GL k), and consider the diagram

Hom(F",G % Hom(F, G Hom(F',G %
Iiﬂo(.u)"')\*z*—wo(A)) - I}fc(#)"w\*z*—wo(z\)) - Igo(u)M*L—wo(A))

| | |

0 » Hom(®*(F") (), ®*(G)) —» Hom (@ (F)(u), ®*(G)) — Hom (@ (F')(n), 2*(G))
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If the first and last columns are isomorphisms and the middle column is surjective,
then the four lemma implies that the middle column is in fact also an isomorphism.
Thus, by induction on the length of F, we may reduce to the case where F is simple.
A similar argument applies to G. It therefore suffices to prove the claim in case F
and G are simple, which we assume from now on.

Choose a subset (AWIS) C AW,y as in the discussion above (5.7). Then we
may assume that

F=L >4 LG en, F=Ld

T1two (vq) Lot (vgy)

~1A ctG Vo
S IGER

where 21,25 € (AW!) and vy, v, € Y. As in the proof of Lemma 5.4, if 21 # xo,

then Theorem 3.16(1) implies that F has no composition factors in common with
any G #£7 G 7oA L7 77weN) o4 the left-hand side of (5.10) vanishes for all
A, and hence so does the right-hand side.

On the other hand, if z; = x5, then Theorem 3.16(2) lets us identify the left-hand
side of (5.10) with

HomPerv (Gr,k) (ICVI ,ICV2 *£+G I}kuo ()42 *£’+G I*_w"o\))'

cta

By the geometric Satake equivalence, this is isomorphic to
Homgy (Sat(ZC"), Sat(ZC"*) @ N (wo (1) + A) ® NV (—wo(A)))

where N (v) is the induced GY-module of highest weight v. As explained in
Remark 4.3(2), this group is independent of A for A large enough, as desired. O

Remark 5.11. If A\, N € Y are such that X' — X € Y, the morphism (5.10) factors
as a composition

HOmperv(IA NCES (F.G KLHG quelm A LG I;wo()\))

LYG qwo(p)+N  £HG 7—wo(N)
- HomPerv(IA XA)(Gr,lk) (-7:3 G * Z, * Z. )

— HOHIMOdY (R) ((I)A (]:) <,Uf>7 (I)A (g)>

g xa)

where the second morphism is the analogue of (5.10) for X'. If X is large enough, this
composition and its second member are isomorphisms, hence so is its first member.

5.6. Baby co-Verma modules: definition and first properties. We now in-
troduce geometric counterparts of the objects studied in §4.3.

For any p € Y, since Gr, is open in Gr”, by adjunction there exists a
canonical map

(5.11) I — Vi

wo (1)

wo (1) *

Now let w € AWg. Then £(w) + €(ty, (u) = U(wty, () by Lemma 2.1, which
by Lemma 3.1(4) implies that we have a canonical isomorphism .4, I V,

wo (k)

Vaut,, - Applying Av;2 and using | , Lemma 3.3(1)—(3)] we deduce that
(5.12) N, =V

Also, for any F € D2+ (Gr, k), we have canonical isomorphisms

NAH F 2 (mo ) +ETC F2 VAL O F,
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see [ , Lemma 2.5] and (3.4). Thus, applying 4,2+ (=) to (5.11), we
obtain a canonical morphism
(5.13) VasET eI 5V,

For w € AWy and weY we set
SIAN s vA LTG 7—wo(A)
(Zn = “h%177 Whytwo(x) = ’

S+ (which
is automatic if A is sufficiently large, see §2.5) and where the transition morphisms
in the inductive limit are given by the compositions

where A runs over the elements of Y such that wt, ., (1) belongs to ws

A LTG 7—wo(N) A LTG qv LTG 7—wo(V)  LTG 7—wo(N)
Wty o (X) * L. - VU)tp,-Huo()\) * I* * . * .

A LYG +—wo (A V)
- thﬂ+1lro(>\+'/) * L.

for v € Y, where the first morphism is induced by (5.1) and the second one is
induced by (5.13) (applied to the first two factors) and (5.2) (applied to the last
two factors). We endow the Y-graded ind-perverse sheaf

ZTI,UA = @ (Zz/uA)u
neyY

with the structure of a graded R-module by defining the action morphism

(z\{uA)M *£+G R,, — (ZA/A)/H-V

w

for u,v € Y) as induced by the morphisms
I
A LYG 7—wo(N)) L LTG (Fwo(W)+N  £YG 7—wo(N)
( Wty 4 (N) * L. ) * (I* * 1. )

+ —wo (AN
_)vAt £ GI*wo(+ )
Wy vtwo (A+X)

induced by (5.13) and (5.2) (after application of the commutativity constraint for

*£7G 1o the second and third factors), for A, A" sufficiently dominant.
It is clear from definition that for any w € AW,y and v € Y we have

(5.14) ZIA = ZIA ().

wt,

Lemma 5.12. For w,y € AW ext, we have

1 ifw=y;

dim Hom EA,Z\'A =
MOdE(IuA=XA)(R)( v Zu) 0 otherwise.

Proof. Write y = zt,, w = 2't,, with 2,2/ € AW!® and v,/ € Y. From the
definition of L‘y“ and Lemma 5.1 we see that
PA ZIAN ~ A (514
HomMOdEA XA)(R)(’CZJ ) Z{U ) = Homperv(l(j‘,xm(Gr’k)(l‘z“ (Z;’ )V’*V)'

It follows that

TA S ~ 1 + —wo (A
HomMOd(YIfXA)(R)(E;ﬁZ{UA) o~ h%Hom(Lf,Vf,tv_ KEFG gTwe ()

v+wo (N)

PV 2y fwe (N

= lim Hom (L +° ¢ 7}, V2 )
A
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where the second step uses (3.3). By Corollary 3.17(1) the rightmost term vanishes
unless z and 2’ differ by multiplication by ¢, for some coweight 1 orthogonal to all
roots. In this case we can assume that z = z’; then by Corollary 3.17(2) the Hom
spaces vanish unless v = v/. Finally, if z = 2/ and v = v/, by Corollary 3.17(3)
each space Hom(LA «£7C ), Vftw()(k))
transition morphisms are isomorphisms, so that our inductive limit is isomorphic
to k. (]

is 1-dimensional. It is easily seen that all

6. AVERAGING AND WALL-CROSSING FUNCTORS

6.1. Averaging functors for R-modules. The averaging and wall-crossing func-
tors defined in §§3.6-3.7 extend to exact functors on ind-perverse sheaves. More-
over, for graded R-modules, these functors respect the R-module structure, and
the induced functors commute in the obvious way with the functors ® and &4,
and with the shift-of-grading functors. The properties of the functors constructed
in this way, which follow directly from the results of §§3.6-3.7, are recorded in the
following lemma.

Lemma 6.1. The functors
Avit, AvE . Mod&M)(R) — Mody (R),
Avyy i Mod] (R) = Mod(7a x,)(R),
€4,€4 : Mod] (R) — ModJ (R)

are ezxact, and send finitely generated, resp. finite-length, R-modules to finitely gen-
erated, resp. finite-length, R-modules. Moreover, we have adjoint pairs

(Avi, AvE), AV AVE), and  (€4,€4),
and an isomorphism &\ = €.

In view of the last claim in this lemma, we will sometimes write £4 for @1 or &%,
and will write & for {5} (s € Sag)-

Remark 6.2. As in Remark 3.7, it is likely that the functors AV!A and AV*A are
isomorphic. At least, as in Remark 3.11, for any w € 4Wey we have

AV (L) = AVA(LD).
As a consequence, if we denote by [Modgf) Py A)(R)ﬂcn] and [Mod}i (R)fen] the
Grothendieck groups of the (abelian, finite length) categories Modzf, ¥ A)(R)ﬂe“
and Mod} (R)%, and by

[AV{], [AV] = [Mod(7a ) (R)™"] — [Mod], (R)""]

the maps induced by Av{* and Av? on Grothendieck groups, we have [Av{'] =
[AvZ].
Lemma 6.3. (1) For any w € Wexs, we have
~ LA if w € AWexs
AVA E ~ w ext,
w( w) {0 otherwise.

(2) For any w € Wy and any v € Wa, we have
AV)(Z],) = 22
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(3) Choose an enumeration 1, . ..,z of Wa which refines the Bruhat order (so
that necessarily x1 = e and x, = w4 ). Forw € AWy, the object Av;4 (Z{UA)
2l 2l

. - . . - A/
admits a filtration with successive subquotients Zj. .., Z;. s

Proof. The claims are consequences of the behavior of the functors Avﬁ and Av2
on simple and costandard perverse sheaves (see | , Lemma 3.3] and the proof
of Corollary 3.17(2)) and the fact that for any X large enough, wt,_ is the unique
minimal element (for the Bruhat order) in Wawt,_» (see Remark 2.6). O

6.2. Some perverse sheaves arising from the big tilting object on the
finite-dimensional flag variety. The considerations in this subsection are closely
related to those in | , §4.1]; however, for the reader’s convenience we will
repeat the required proofs.

The “big tilting object,” denoted by S, is defined to be the unique indecompos-
able tilting perverse sheaf in Pervy (G/B) with full support. (Here, “S” stands for
Soergel, who studied a representation-theoretic incarnation of this object.) We will
review one approach to constructing S (following [BY] in a characteristic-0 setting,
and [AR1] or [BR, Lemma 10.1] for general coefficients) that shows that this ob-
ject is both the projective cover and the injective hull of the skyscraper sheaf at
B/B € G/B. Recall that g factors as a composition

55Ut 256,
where U™ is the “positive” unipotent subgroup of G (see | , §3.4]). We can then
set Xy = ¥1 AS, and consider the equivariant derived category DE’UJr X+)(G /B, k).
The *- and !-pushforwards of the unique (U™, X )-equivariant rank-1 local system

on the orbit Ut B/B C G/B are canonically isomorphic, and will be denoted A*.
We then have functors

AV : Dy »,(G/B,k) = Dp(G/B, k),
Av{: Diyi x,)(G/B,k) = Dy (G/B,k)
defined as for Av{ and Av?, and we have
S~ AvVV (A1) 2 AVY (AT,

Recall from | , Lemma 2.5] that the elements w € WS, such that ww, has
minimal length in Www, are those of the form tyw, with A € Y .. For such
A, we have described the geometry of Gr in §3.3, and in particular considered a
morphism py : Gr* — G/B. We set

Sy := piS[dim(Gr*) — dim(G/B)].
This is an I -equivariant perverse sheaf on Gr. The following proposition describes
some calculations one can carry out with Sy.
Proposition 6.4. Let A€ Y.
(1) We have
. . + _c
SN = (G S) 5 C TN

Moreover, this object has a standard filtration and a simple head, isomorphic
to Lt)\wo .



A GEOMETRIC MODEL FOR BLOCKS OF FROBENIUS KERNELS 45

(2) We have
. ~ c + .
JASK & (jiSo) #5TC T
Moreover, this object has a costandard filtration and a simple socle, isomor-
phic to L, 4, -
(3) We have
JrSe = JiSc = JiSs.
As a consequence, sz,A S T2, then

S)\ = j* S)m

and this object is an indecomposable tilting object, isomorphic to Ty, .

In view of (3), the isomorphisms in (1) and (2) can also be written as

(6.1) STy, * T and S =T, +E TN

Note that if k has characteristic 0, then the condition in part (3) applies to all
A € Y44 (by semisimplicity of the Satake category in this case).

Proof. (1) The functors Avf and Av{ have a counterpart for sheaves on Gr*, which
will also be denoted AV,S; then we have

Avi ot 2 d o AV, AvP opi 2 po AvE.

Now consider the object A?
that

taw, € Pervirs xg)(Gr k). From the definition we see

AS

taWo

= jipi AT [dim(Gr*) — dim(G/B);
we deduce that

(6.2) Avi(AY

taxwo

) 2 5 piAvY (AT)[dim(Gr?) — dim(G/B)] = 5 Sh.

The claim that j{\S \ admits a standard filtration is immediate from the fact that Sy
admits a standard filtration. Alternatively, it is a consequence of the isomorphism
above and Lemma 3.6(1).

Next, for any F in Pervy, (Gr, k), by adjunction we have

(6.3)  Homper, (Gri(Avi (A7), F) = Homper, (G (A7 4. AVE(F)).

tAWo s, xg)
In case F is simple, the explicit description of Avi (F) givenin | , Lemma 3.3(4)]
shows that
HOInPervlru (Gr,k) (AV‘ (Aiwo) ]:) =0

unless F = Ltkwo, in which case this space is 1-dimensional. We deduce that

Av? (AY ) = j?Sx has a simple head, isomorphic to Ly, -
Finally, recall from [ , D- 723] that we have
Af ~ Af Lta o
AWo wo 1 :

Since Av{ commutes with convolution on the right by objects of Perv o+ (Gr, k),
we see that
SN 2 AVE(AF ) KETC T 2 S K E TG TS,
which finishes the proof.
(2) The proof is very similar and will be omitted.
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(3) Since t.w, is minimal in WS,

Lemma 3.3(4)] again, we deduce that
AS

tewo

S ~ 1S ;
we have Ay, = Ly, . Using |

~ Avy (Lecw,)-
In view of (6.2), it follows that
JrSe & AV!S(Atsgwo) = fS(Ltgwo)-
Similar (dual) considerations show that j$S¢ = AVf(Viwo) = €9(Ltw, ), and hence
that
JrSe = JiSe.
It is then clear that these objects are also isomorphic to j;,S..

Finally, let us assume that Z,;'" = Z}~. Then from parts (1) and (2) we
deduce that j*S\ = j}S\, and that this object is tilting. Its support is clearly
Gr/\ = Grtwom,
simple socle). It must therefore be isomorphic to Ty,

and it is indecomposable because it has a simple head (and a
O

o(N)"

We extract the following observations from the calculations in the preceding
proof.

Proposition 6.5. Let A€ Y .
(1) Ifk has characteristic 0, then in Pervy (Gr, k), the object

NSNS =T,

wo (N)

is both projective and injective.
(2) In ModX (R), the object ®(ji*Sy) is projective, and the object ®(j}Sy) is
mjective.

Proof. (1) Under our assumption the category Perv(rs xg)(Gr, k) is semisimple

by | , Corollary 3.6]. Then, since Avi is exact, so is the right-hand side
of (6.3) (as a functor of F). The left-hand side is therefore also exact, which shows
that Aqu(Agiwo) >~ j)S, is projective. Dual arguments show that this object is
also injective.

(2) The proof is similar to that of (1), using the following R-module analogue

of (6.3):
HomMod}f‘(R)((I)(AV!S(Ain))?*F) = HomMod}fl(R)(AV!S(q)S(Aiwo))’]:>
=) (P (AL ), AVE(F)).

~J
= HOInMod?‘;S tawo
b

Xs)
By Lemma 6.1 and Proposition 5.7 the right-hand side is an exact functor of F, so
that the object ®(Av{ (AY , ) = ®(j}S)) is projective. Dual arguments apply to

B(j2Sn). 0

6.3. Wall-crossing functors and objects arising from S. In the statement of
the following lemma we use the fact that any element in W25, can be written as a
product xt_,, where x € Wigf and p € Y, see (2.3).

Lemma 6.6. Let w e W2

ext’

and write w = Tty (—) withx € Wi and p € Y.
Let y = tcwox ™!, and choose a reduced expression y = wsy--- s, with w € Q and

81y .++y8r € Safr-
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(1) We have yw = t,wo and yw™ =ty (), and moreover
Uyw) = Uy) + L(w),  Lyw®) = Lw™) — L(y).

(2) The object &, - E&s, Ew-1(3{'Sy) is supported on Grya, and admits L,
as a composition factor with multiplicity 1. Moreover, this object admits
a standard filtration in which A, occurs with multiplicity 1, and L, is a
direct summand of its head with multiplicity 1.

(3) The object &, -+ &s,&-1(j4S,) is supported on Gr,a, and admits L,a as
a composition factor with multiplicity 1. Moreover, this object admits a
costandard filtration in which V,, occurs with multiplicity 1, and L, is a
direct summand of its socle with multiplicity 1.

(4) If ji'S, = ji'Sy, then &, -+ &, Eu-1(41'S,) is tilting, and contains T,» as
a direct summand with multiplicity 1.

Proof. (1) The fact that yw = t,w, is immediate from the definitions, and then

Y () = PWol b (1) = W (=) Wol —hury () = Wt () Woluwg () = W
(Observe that w=! (Agung) C II_,(u)-) Using (2.1) for the first two equalities, then
Lemma 2.2, and finally | , Lemma 2.7] and the fact that £(t, ) = £(tw, (u—c))
we see that

yw) = L(t,) — L(wo) = Llty—s) + Ltcws) = L(tu—c) + £(z) + £(y) = L(w) + L(y).
Finally, we have
E(wA) = g(xwot—tho(u)) = l(zwot ) + E(two(u)) = {(y) + e(two(ﬂ))v
where we use | , Lemma 2.7] for the second equality, after noticing that zw.t_ €
WES since tewor ™ (Aguna) C tewo (1) = Tl

(2) Note that yw € W5, (see e.g. [ , Lemma 2.5]). By Lemma 3.15, the

objects

Ewlsy - 'gsr(l-w) and Ewsy =+ &s, (V)

are supported on Gry,,.,, and have Ly, as a composition factor with multiplicity 1.
Now, Gry,,4, in the unique closed I-orbit in Gr*; it follows that

€w£sl o 55,,. (I—w>\Gr“ = gwfsl e £s1v(vw)|Grﬂ = kGrt“wO [E(tuwo>]~

By definition of S, and full faithfulness of pj,(—) [dim(Gr*)—dim(G/B)] on perverse
sheaves (since p,, is smooth with connected fibers), we deduce that

(6'4) dim Hom(jlﬂsm gwgm v .gsr(Lw)) =
dim Hom(j!ltsuv §w§s1 o '537‘ (Vw)) =1
By adjunction, it follows that

(6.5) dimHom(&,, -+ &6, &1 (3{'Sp), L) =
dim Hom(gsT s gslgw_l (J'MSIL)’ VW) =1

Thus, L, occurs in the head of &, - - - &, &,-1(j{'S,,) with multiplicity 1. By Propo-
sition 6.4(1), j{'S,, admits a standard filtration; in view of Lemma 3.8 and (3.9) this
implies that &, - - - &, &,-1(j{'S,) admits a standard filtration. The dimension cal-
culation above shows that A,, occurs in this standard filtration with multiplicity 1.
Finally, invoke Lemma 3.15 again to conclude that our perverse sheaf is supported
on Gr,» and admits L,a as a composition factor with multiplicity 1.
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(3) The proof is similar (more specifically, dual) to that of part (2).

(4) It §'S, = jiS,, then (2) and (3) imply that & ---&,&,-1(j{'S,) is tilting,
and that this perverse sheaf is supported on Gr,,» and admits L~ as a composition
factor with multiplicity 1. It follows that &, - &, &,-1(j'S,) admits T,a as a
direct summand, with multiplicity 1. O

For later use we note the following corollary of Lemma 6.6.

Lemma 6.7. Let w € W, and let p € Y. The object T,,a *£TC I admits a

ext’
standard filtration, and the object T, A *£TG TP qdmits a costandard filtration.

Proof. We will prove the claim for Z}'; the other case is similar. Let y = tcwow™?,
and choose a reduced expression y = wsy --- s, as in Lemma 6.6. Let A= pu+¢ €
Y. .. By Proposition 6.4(3) and Lemma 6.6(4) (applied with p = <), T,a is a
direct summand of & --- &5, &1 (Ttwo<<) ); hence to prove the claim it is enough to
show that the object

+ + _
€y Ey €t (Toy ) *5 OTF 2, &, 601 (Th, ¥ CT)7)

(&l) A
= IR TREEE fs@w*l(J! Sh)-

admits a standard filtration. This claim holds by Proposition 6.4(1) together with
Lemma 3.8 and (3.9). O

6.4. Baby co-Verma modules are finitely generated. Our next task is to
prove that each Z!” is finitely generated, as stated in the following proposition.

Proposition 6.8. The object Z/* belongs to modES\’XA)(R).

Proof. By Lemma 6.3(2) and Lemma 6.1, it is enough prove this proposition in the
special case where A = @. We assume this from now on. Furthermore, in view
of (5.14), we may assume that w € W. Using the formalism of the free-monodromic
completion from [BY, BR] one can construct a canonical triangulated functor

P * (=) : D} (Gr,k) — D (Gr,k)
such that the diagram

T (—
Db (Gr, k) 222 pb(ar, k)

Forful lForfu

DY (Gr,k) 2225 Db (G k)

commutes. We consider the complex Z,, * j;,S;. Here j;,S; admits a costandard
filtration (see Proposition 6.4). By Lemma 3.1 the convolution of a standard and
a costandard perverse sheaf is perverse; our complex is therefore a perverse sheaf.
We will construct a surjection

(6.6) (D % 35, 8¢) (Wo (<)) — 2,

which will prove the proposition.
By Lemma 5.1 we have

Homygoay (=) ($(Zu % 53,85) (e (<)), Z1,) = Hom(Z % 35,86, (21, ) o))
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Now since j;, S; is tilting and supported on Grt , there is a canonical surjection
]!*Sg — Vt

whose kernel admits a costandard filtration, and which therefore induces a surjec-
tion

wo (s)

% i % I~ I o
D * Gy S¢ = D *Vtwo@ X~ Dy * Vtwom = thwo<<>

in view of Lemma 3.1. (Note that £(wt, () = £(ty,()) — £(w).) There is also a
canonical morphism

73 FIr D) LYG —wo(X) _ 51
thwo(c) - hﬂ V’LUtwg(()-f—wo()\) * 7, (Z )wo(c)
A

which provides the desired map (6.6).
Now for any p € Y we have

(®(Z0 % 55.5) (we(<)),, = (ZuF35.8) +* € Ry
("g S. *L+G I:Jo(u)ﬂ—c) *L+GI*—wO(A)

= “lim” 7, % (j
By

WO(H)

Il

« hm 9 @ :;j yaxe I;wa (M)

)\

A S (uy4r *

by Proposition 6.4. As in the case of j;,S;, for any A € —w.(p) + Y we have a
canonical surjection

~ wWe A ~ ~
(67) @w*]:} )+ Swo(,u)—i-)\ - @w*vt}”rwo(k) - v“’tu+'wo(>\)’
and these morphisms induce (6.6). It follows that this morphism is surjective, as
desired. (]

Corollary 6.9. For any w € “Wey the object ZA{UA has finite length and a simple
socle, isomorphic to L. In particular, Z!4 is indecomposable.

Proof. The finite-length property is immediate from Proposition 6.8 and (5.9). The
description of its socle follows from Lemma 5.12. O

6.5. Baby co-Verma filtrations. We will say that an object F in modEA’XA) (R)
admits a baby co-Verma filtration if it admits a finite filtration whose subquotients
are isomorphic to baby co-Verma modules.

Lemma 6.10. The object ®(j;,Sc) admits a baby co-Verma filtration with 2{00% o

at the bottom, Z S at the top, and other subquotients of the form ZA{Utw © with

we W~ {e,we}, each appearing once.
Proof. As in the proof of Proposition 6.8, for any p € Y we have

S. *£+G I:UO(P«)JF)\ *£+G I**UJO()‘)

(. Se)u = “lg 1S

77 wo (H)+>\+<S

LTG 7—wo(N)
wo () +A+s X 7. .

“ lg
Now the perverse sheaf ;2o AT Suwo(u)+r+¢ admits a filtration with subquotients
of the form Vot pwe nyswe ) With w € W, each appearing once, with the case
w = w, (corresponding to the closed stratum on G/B) at the bottom and the case
w = e (corresponding to the open stratum on G/ B) at the top. These filtrations are
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compatible in a natural way with the transition morphisms in the inductive system,
and therefore provide a filtration of ®(j;,S;), whose subquotients are isomorphic
to

*C+G I*_wo(k) — (2’

wt

)i

(for w € W). One can check that this collection of filtrations is also compatible
with the R-actions, and therefore provides a filtration of ®(j;,S;) with subquotients
Z!

wtwo(

wo (5)

75 PN
hﬂ thu+WQ()\)+wo(§)
A

o for w € W; in particular, this object admits a baby co-Verma filtration. [

Lemma 6.11. For any w € Wy, we have

1 if w=ytcw, for somey € W;
0 otherwise.

dimHommod};(R) (‘b(]f*sc)aziu) = {

Proof. By Lemma 5.1 we have

. NPT . + —wo (A
Hommod}:‘ (R)((I)(]'g*SC)7 leu) = h_l']>'lH0mPerVIu (Grvk) (j‘q*SU V’Wtwo()\) *L ¢ I* ( ))
A

Now by (3.3) and Proposition 6.4, for any A € Y such that wt,, (n) € W5, we
have

« @ o (A
HomPervlu(Gr,k)(]f*Scathwo(/\) *~ GI* wel ))

~ . LG 7
= Hompery,, (Gr k) (<J!<*S§) * 1 ’vaou))
~ IEDY
= HomPerwu(Gr,k) (.7!< 8§+/\7 thwO(A))

Here jf+)‘8<+,\ admits a standard filtration, with subquotients Ay;_ ., for y € W
(each appearing once). Hence our space is 1-dimensional if w is of the form yt w,
for some y € W, and vanishes otherwise. All the transition morphisms in our
inductive limit are isomorphisms. The lemma follows. ([l

We now study the behavior of wall-crossing functors with respect to baby co-
Verma filtrations.

Lemma 6.12. (1) For any s € Sag, the functor
& : mody, (R) — mod) (R)

sends objects admitting baby co-Verma filtrations to objects admitting baby
co-Verma filtrations. More specifically, if w € Wy, then if sw < w we
have an exact sequence

2, = &(2,) — 2.,
and if w = sw we have an exact sequence
Z, s £(2,) — 2,
(2) For any w € Q, the functor
&, :mod) (R) — mod}. (R)

sends objects admitting baby co-Verma filtrations to objects admitting baby
co-Verma filtrations. More specifically, if w € Wy, then

€(Zl) =2 2L,
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Proof. (1) By Lemma 2.5(1) and exactness of £, (see Lemma 6.1) it suffices to prove
the second claim, which follows from Lemma 6.3(2)—(3).
(2) The proof is similar to that of (1), using (3.9). O

7. PROJECTIVES AND INJECTIVES

In this section, we will prove that mod?§§7 x,)(R) is an abelian category with
enough projectives and injectives, that the projective and injective objects coincide
and arise as direct summands of free R-modules associated with certain tilting per-
verse sheaves, and finally that the embedding modgf’ x4 (R) C Modaq’ Py A)(R)ﬁcn
is an equality.

In the special case where k has characteristic 0, we will see (by nearly identical
arguments) that Perv(IGL\’XA)(Gr, k) also has enough projectives and injectives, and
that these coincide with certain tilting objects.

7.1. Projective and injective perverse sheaves. We start with the case of
Perv(za x,)(Gr, k) (for characteristic-0 coefficients).

Theorem 7.1. Assume thatk has characteristic 0. The category Perv(ra x,) (Gr, k)
has enough projectives and enough injectives. Specifically, for any w € AW5., , we
have waw® € AWS,, and the projective cover and the injective hull of L2 in

Perv(za x,)(Gr,k) are both isomorphic to the tilting object TA

wawd

Note that this statement implies that all projective objects in Perv(ra y,) (Gr, k)
are also injective and tilting. Dually, all injective objects are projective and tilting.
(However, there may be tilting objects that are not projective nor injective.)

Proof. We break the proof up into two cases as follows.

Case 1. A = @. We wish to show that for w € WZ,, the object T,a is
both the projective cover and the injective envelope of L. Write w = xt,, (,—q)
as in Lemma 6.6. By Proposition 6.5(1), T, ., is both projective and injec-
tive. Since they have exact left and right adjoints, the functors &, , ..., &s,., €, send
projectives to projectives, and injectives to injectives. Thus, the perverse sheaf
&s, €51 €w-1(Ty,,, () 1s both projective and injective. Lemma 6.6 then implies
that Pervy (Gr, k) has enough projectives and injectives.

More specifically, let P,, be the projective cover of L,. By the construction
described above, this object is a direct summand of &, - &s,§,-1(Ty,, (). The
latter object is tilting by Lemma 3.8 and (3.10), and its support is contained in
Gr,s by Lemma 6.6. Hence P,, is isomorphic to T, for some y € W2, such that
y < w®, and to show that P, = T, it is enough to show that (Pw)igr,n # 0,
which in turn is equivalent to the claim that

Hom(P,,, V,a) # 0.

However the left-hand side has dimension [V 4 : L,] = [A,a : Ly, which is equal
to 1 by (3.6); this proves that P, & T a.

Finally, the injective hull of L,, is the Verdier dual of P,,, which is isomorphic to
T~ since every tilting object is Verdier self-dual.

Case 2. A # @. For any w € AW, we have Avq‘z(Lw) ~ L4 by | ,
Lemma 3.3(4)], and the functor Av$ is exact (see §3.6). Hence from the sur-
jection T,o — L, and the embedding L,, < T, obtained in Case 1 we deduce a
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surjection and an embedding
AV ) (Tya) » L, L= Av)(Tya).

Since Avﬁ has exact left and right adjoints (see §3.6), it sends projective, resp. in-
jective, objects to projective, resp. injective, objects. This already implies that
Perv(ra x ) (Gr, k) has enough projectives and enough injectives, and that an ob-
ject is projective if and only if it is injective; these objects are therefore tilting.
Using Verdier duality (see Remark 3.3) we see that for any w € 4WS5, the projec-
tive cover of L4 is also its injective envelope. We now need to determine the label
of this object (as an indecomposable tilting object). Fix w € AW25,, and denote
this label by y.

By adjunction and | , Lemma 3.3(4)], the object Av{® (T{}) is the projective
cover of L,,, so that we have

AT 2 Ty
by Case 1. Now, by Proposition 3.12 the left-hand side is isomorphic to Ty ,y, so
that way = w®, which finishes the proof. ([

Remark 7.2. (1) In the course of the proof of Theorem 7.1 we have proved
that for any w € AWz, we have waw?® € AWS,. By definition of 4 Wy
(see §2.4) and (2.4), it then follows that for any w € 4 W we have w w® €
AWt

(2) In case char(k) > 0, and if G is not a torus, the category Perv(a x,)(Gr,k)
does not have any nonzero projective or injective object. In fact, us-
ing Verdier duality it suffices to prove this claim for projective objects,
and using Remark 3.5 one can assume A = @. In this case, if P is a
nonzero projective object and if L, is a simple quotient of P, if w, s1,..., s,
are as in Lemma 6.6, then P’ := £,&, ---&.(P) is a projective object
surjecting to £,&s, -+ &s,.(Ly). Then Avi(’P’) is a projective object in
Perv(rs xg)(Gr, k) surjecting to the object Avi (€w&sy -+ &, (Ly)), which is
nonzero by Lemmas 6.6(1) and 3.15 combined with [ , Lemmas 2.5
and 3.3(4)]. Now as explained in the proof of Proposition 5.7 we have
Perv(;s x4)(Gr, k) = Rep(Gy/); the category Rep(Gy/) therefore possesses
a nonzero projective object. Using [Ja, Lemma 1.4.17] one sees that this
object is projective in the category of all algebraic G}/-modules, which is
impossible by the main result of [D3].

We now drop the assumption that k has characteristic 0, and come back to the
setting of arbitrary coefficients.

Corollary 7.3. For any w € AW, the object L occurs in both the head and

ext’

socle of TﬁAwA with multiplicity 1.

Proof. When k has characteristic 0, this claim is already part of Theorem 7.1. We
must now treat the case when k is finite. (This case will imply the case when k is
an algebraic closure of a finite field.)

First, assume that A = @, and continue with the notation from the proof
of Lemma 6.6 (for p = ¢, so that w = z). Recall that T, is a direct sum-
mand of &, -+ &5, €u-1(Tt,, ,). The dimension calculation in (6.5) shows that
&, - ~551§w71(Ttw0(§)) admits exactly one direct summand admitting a nonzero
map to V,,, and that this map is unique up to scalar and factors through the socle
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L, of V,,. Hence to prove that L,, occurs in the head of T ,a it suffices to prove
that

dim Hom(T 4, Vy) > 1;

then we will know that the multiplicity of L, in the head of T, » is exactly one, and
since T,,» is Verdier self-dual the claim about its socle will also follow. Of course,
dim Hom(T 2, V,) is the multiplicity of A, in any standard filtration of T,a,
denoted by (T,a : Ay); the statement we wish to prove is therefore equivalent to
the claim that

(Typa : Ay) > 1.

Let us consider a finite extension K of Q, whose ring of integers admits k as
residue field, and adopt the notation of Lemma 3.4. By that lemma we have

(Téa: A%) > (TE, : AX).

By the characteristic-0 version of the corollary (which, as explained above, is already
known) the right-hand side is at least 1, which proves the desired inequality.
For a general A, one observes that

Hom(T4 L#) =~ Hom(T# Av)(Ly)) = Hom(Avi (T2 o), Lw)

wawd wAawd wawd

by [ , Lemma 3.3(4)] and adjunction. Using Proposition 3.12 we deduce that
Hom(T{ ,a,L5) = Hom(T,a,Ly),

and the right-hand side is of dimension 1 by the case A = @. (Note that w € W)

ext

One shows similarly that Hom(L{%,Tf)AMA) is 1-dimensional, which finishes the

proof. ([l

7.2. Projective and injective R-modules. We now study projective and injec-
tive objects in modgé’ x A)(R). In this setting, the replacement of the property of
admitting a costandard filtration will be the existence of a baby co-Verma filtration.
(The replacement for standard filtrations will be introduced later, in Section 9.) We
start by constructing an “explicit” family of projective and injective objects, in the
special case A = &, based on Proposition 6.5(2).

Proposition 7.4. For any x € Wy, there exists an object in mod}i (R) with the
following properties:

(1) It is both projective and injective as an object of Mod}; (R)fen,

(2) It admits L. as both a subobject and a quotient.

(3) It admits a baby co-Verma filtration with Z, at the bottom, 2! . at the top,

and all other subquotients of the form Z! with x < z < z°.

Proof. By periodicity (see in particular (5.7) and (5.14)), it suffices to prove this
proposition in the case where x € Wigl. We assume this from now on. As in
Lemma 6.6, set y = t.w,z~*, and choose a reduced expression y = wsy - -+ s, (with
each s; in Spg, and w € Q). Lemma 6.6(1) implies that
(7.1) < 88 < Sp 18T < oo <8180 =W Lt Wo

and

(7.2) 22 > 5,08 > 51800 > > 85,2t = wiltwo(g).
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All elements in these chains of inequalities belong to W5, by | , Lemma 2.2],
so by Lemma 2.5(3) we also have the same chains of inequalities when the symbols
< and > are replaced by < and >, respectively.

Since the functors &g, ,...,&s,,&,—1 are exact and have exact left and right ad-
joints (see Lemma 6.1), they send projectives to projectives and injectives to injec-
tives. Applying Proposition 6.5(2) to

]iS

* wo(c) ’

we see that the object

é‘sr .. -gslgw—l (‘P(Ttwo(q))) = (P(gsr U §S1£w_1 (Ttwo(<)))

is both projective and injective. Referring to Lemma 6.6 once again, we see that the
perverse sheaf £, - &, &,-1(Ty, ) contains L, in its head and socle, so applying
the (faithful) functor ® (see §5.4) yields nonzero maps

Lo— ®(E, €l (Tey ) (&, €1 (Tey, ) = Lo,

which must be injective and surjective respectively by simplicity of Ez
Finally, by Lemma 6.10, the object O (j;,Sc) admits a baby co-Verma filtration

with ZA’ _ at the bottom, Z o= ZEt we)o At the top, and the other subquotients

of the form z, o, Vithw € W\ {e,wo}. All the elements wt,, () belong to W,

and they satlsfy teWo < Wiy, (o) < (tgwo)A7 and hence

towo =X Wiy, (o) = (tws)®
by Lemma 2.5(3). Combining these observations with Lemma 6.12 and the chains
of inequalities (7.1) and (7.2), we see that &, -+ s, &1 (®(Te,, (., )) admits a baby
co-Verma filtration with Z/, at the bottom, Z;A at the top, and with the other
subquotients of the form Zy rwty, o, With w € W and 1y € Weyxe such that ¢/ < gy~ !

and y'wt,,, (o) ¢ {:L' 2}, All these elements satisfy = < y'wty, (o) by Lemma 2.5(4),
and y'wt,, ) < = by Lemma 2.5(5), as desired. O

Corollary 7.5. If w,x € “Wey satisfy [Z'A [:A] + 0 we have x < w < waz®.
Moreover, we have [Z/4 : L4] =1 and [Z’A o Ly <

Proof. We first treat the special case where A = @. In this case, we assume (by

periodicity) that € W, and we retain the notation from the proof of Proposi-

tion 7.4. Since L, is a quotient of the projective object &, € Eu—1 (P(47,50))s
we have

|27, : £a] < dimHom(&, - &, &1 (201, S0)), Z1,)-

By adjunction we have

Hom(ﬁsr o 'gslgwfl@(jf*scxé\;;) = Hom( (]u* ) ﬁwgql T gsr(é\;;))

By Lemma 6.12, the object £,&s, - - - &, (Z\{U) has a baby co-Verma filtration, whose
subquotients have the form Z/ o With ¥ < y; moreover Z\z/lw appears once in this
filtration. By projectivity of (I)(j,*S ) and Lemma 6.11, we deduce that the space
Hom(&s,. - - - &6, €1 (), S. .), Z,) vanishes unless

(7.3) y'w = ztew, for some z € W and iy’ € Wey such that ¢’ < y.
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Here, we have tcw, =X ztcwo =X 1y, (), and as in the proof of Proposition 7.4 we
obtain using Lemma 2.5(4) that w = (y) " !2tcw, satisfies

x =y o, 2w = (y) atowe 2y () = 8

We have shown that [Z/, : £,] # 0 implies that 2 < w < 2.

Now let us take w = z. Lemma 6.6(1) implies that y'z < yxr = tcw, for any
y' <y, so condition (7.3) is satisfied only for ¢y’ = y and z = e. It follows that
dim Hom(&,, - - £, &, @(j,S. ), Z1) = 1, and hence that [Z, : £,] < 1. Since we
know that L, is the socle of ZA; (see Corollary 6.9) this multiplicity is then equal
to 1.

Finally, take w = x®. In this case, Lemma 6.6(1) implies that y'w > yz® =
tw,(s) = Wotcw, for any ' <y, so condition (7.3) is satisfied only for ¥’ = y and
z = wW,. As in the previous paragraph, we conclude that [Q;A : Ew] < 1. This
concludes the proof in the case where A = @.

Now suppose A # @, and let w,z € AWy By Lemma 6.3(1)—(2), we have

20 L] = 2, La] = (2], 40 L.
Using the A # @ case of the corollary, we see that [Z/4 : £4] # 0 implies that
r < wand waw < 2. Since wax® lies in AWy (see Remark 7.2(1)), Lemma 2.7
tells us that the latter condition is equivalent to w =< w Az2. The claims that

[Z2/4: LA] =1 and [ZA{U";IA : £4] < 1 likewise follow from the A = @ case. O
Remark 7.6. (1) We will see in Proposition 9.24 below that, in fact, in the

setting of Corollary 7.5 we always have [é\q’ixA (L) =1.

(2) The information on composition factors in Corollary 7.5 implies that the
family ([Z] : w € “Wex) in the Grothendieck group [Mod?§§7XA)(R)ﬂe“]
is linearly independent. (This family is not a basis, however.) This implies
that if M € ModEA,XA) (R)fem admits a baby co-Verma filtration, then the
number (M : Z/'4) of occurrences of a given baby co-Verma module Z,
in such a filtration is independent of the choice of filtration; in fact these
numbers are determined by the equality

M= Y (M:Z))-[2)]

wE Wext

in KO(Mod?§§7XA)(R)ﬂe“). (Later, after we prove Theorem 7.9, we will be

able to apply these comments to [modgﬁ’ x4)(R)] instead.)

Proposition 7.7. For any w € AWey, Z\ZUA is the injective hull of Eﬁ in the Serre
subcategory of ModEAyxA)(R)ﬂen generated by the simple objects of the form £?‘;‘
with y % w.

Proof. Recall from Corollary 6.9 and Corollary 7.5 that ZA{UA is indecomposable; its
socle is £7; and it belongs to the Serre subcategory described in the statement
of the proposition. It remains to show that it is injective as an object of this
subcategory. In other words, we must show that

Extyoqv (R)ften (E;, Z\{UA) =0 if y o w.

(T xa)
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Let us first treat the special case A = @. In this case, we can invoke Proposi-
tion 7.4 to find an injective object M € Mod}: (R)%e such that there is an inclusion
ZA’ — M whose cokernel M’ admits a baby co-Verma filtration by various 2’ with
u = w. Since y ¥ w by assumptlon Lemma 5.12 tells us that Hom(ﬁy, Z') =0 for
any u > w. It follows that Hom(ﬁy, M) = 0. The exact sequence

. — Hom(L,, M) = Ext!(L,, Z,) — Ext(L,, M) —
then shows that Ethl\/[od}‘; (Ryften (Lys Z4) = 0.
Now suppose that A # &. By Lemma 6.3(1) and adjunction we have

Ext' (L, Z[1) = Bxt' (Av{(L,), Z21) = Ext' (L, Av} (Z")).

On the right-hand side, by Lemma 6.3(3) the object AvZ (Z’A) admits a filtration
with successive subquotients the objects va with v € Wy. Using the A = &
case proved above, we conclude that Ex‘cllvI od¥ (R)flen (£ AvA ( Z’A)) vanishes unless

y > vw for such a v. Now we have w < vw (see Remark 2.6), so that this condition
implies that y > w. O

Remark 7.8. Combining the information in Corollary 7.5 and Proposition 7.7, we
obtain that Extl(é”;’/A,é’\{vA) = 0 unless w < y. This implies that if an object M
admits a baby co-Verma filtration, and if we choose a numbering w1, ..., w, of
the elements z such that (M : 2;) # 0 (counted with multiplicities) such that
w; < wj = 1 < j, then there exists a chain of embeddings

0O=MoyCcMyC---CM_1C M, =M
such that M,/ M,;_; = Z’A for any 7 € {1,...,n}.
We can finally state and prove the main result of this section.

Theorem 7.9. (1) The categories mod?if)XA)(’R) and Mod?if)XA)(’R)ﬂen co-
incide, and this abelian category has enough projectives and enough injec-
tives; moreover, an object is injective iff it is projective.

(2) For w € AWeyy, let @ﬁ denote the injective hull of Eﬁ Then Qﬁ admits a
baby co-Verma filtration with subquotients of the form ZZA with y € AWey
which satisfies w < y.

(3) For w € AWey, we have AvA(Q4) =~ Q,,.

Proof. (1) When A = &, Proposition 7.4 tells us that every simple object in
Modz (R)fen embeds in a finitely generated injective R-module that is also pro-
jective, and is a quotient of a finitely generated projective R-module that is also
injective. For general A, because Avq‘z is exact and has exact left and right adjoints,
it sends prOJectlves to prOJectlves and lIlJeCtIVGS to injectives. Given w € Wext,
apply Avw to a nonzero map Lo Mor M —» Ew, where M is finitely generated,
projective, and injective; we conclude that every /.Zﬁ embeds in a finitely generated
injective R-module that is also projective, and is a quotient of a finitely generated
projective R-module that is also injective.

As a consequence, Modz A.x4) (R)fem has enough projectives and injectives, and
these classes coincide and consist of finitely generated R-modules. In particular,
every object of Mod??;;) X4) (R)fem is a quotient of a finitely generated module, which

implies that mOdEf,XA)(R) = Mod?;‘ﬁXA)(R)ﬂen.
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(2) We will apply a kind of “highest weight” formalism developed in [BS]. (Note
that modzf’ x4)(R) is not a highest weight category in the sense considered in,
for instance, | , , ], because the poset that governs it has no minimal
element.)

All objects in mod??;;’ x,4)(R) have finite length, and by Lemma 5.9 all morphism
spaces in this category are finite-dimensional; by [BS, Lemma 2.1], this category is
therefore a “locally finite abelian category” in their terminology. By part (1), this
category has enough injective and projective objects; hence by [BS, Corollary 2.20]
it is an “essentially finite abelian category.” Next, we define a “stratification”
on this category in the sense of [35, §3.1] with underlying poset (4 Wy, <), and
with the labeling of simple objects given by w Zﬁ (The function “p” of [BS,
Definition 3.1] is therefore the identity map for this stratification.) This stratifica-
tion is “essentially finite.” Comparing Corollary 7.5 and Proposition 7.7 with [BS,
Lemma 3.1] we see that for any w € AW the baby co-Verma module Q{UA is iso-
morphic to the objects denoted V(w) and V(w) in [35]. In view of [35, Lemma 3.4],
this implies that all the strata are “simple” in the terminology of [BS].

Next, we claim that condition (ﬁ ) of [BS, Remark 3.6] holds. Translated into
the language of the present paper, this condition says that for any w € AWey,
there exists an injective object admitting a baby co-Verma filtration with ZA{UA at
the bottom, and all other subquotients of the form §;A with z = w. For A = @,
this claim is part of Proposition 7.4. For general A, it follows from Proposition 7.4
by applying Avﬁ and using Lemma 6.3(2).

Applying [BS, Theorem 3.5], we see that mod?;L?,XA)(R) is an essentially finite
highest weight category in the sense of [BS, Definition 3.7]. In more concrete terms,

this means that the injective envelope @Z‘) of 23 admits a baby co-Verma filtration
whose subquotients ZA?’JA satisfy y = w.

(3) Since Av? has an exact left adjoint, it sends injectives to injectives, so
Avf(@ﬁ) is injective. To show that it is isomorphic to @w, it is enough to show
that its socle is isomorphic to Ew, or in other words that

= PN 1 fy=w
dim Hom(L,, Av2(Q4)) = ’
im Hom(£y, A, () {() otherwise.

This claim holds by adjunction and Lemma 6.3(1). O

It is clear that for any w € AWt and X € Y we have
(7:4) Q:ﬁt)\ = Q\£<_)\>§

in particular, in order to understand all these objects it is enough to understand
those whose label belongs to ATV

ext

Remark 7.10. (1) The proof of Theorem 7.9 provides a slightly more precise
statement than the mere existence of enough projective and injective ob-
jects: it implies that any object of mod?if,XA)(R) is a quotient (resp. a
subobject) of a direct sum of objects of the form @A(Av‘é(Tm))m) with
r € W5, and p € Y, these objects being both projective and injective.
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(2) The proof of Theorem 7.9 also shows that each @;3 (hence each projec-
tive object in mod?i?’ x,)(R)) remains projective in the larger category

Y
MOd(Ilf’,XA)(R)'

(3) Theorem 7.9 implies that the projective cover of £ is also an indecompos-
able injective object. Define a map

(75) L AWext :> AWext
by requiring that /32: (w) be the socle of the projective cover of 2;3 (equiva-

lently, QL (w) is the projective cover of Eﬁ) We will see later (see Propo-
sition 9.21(1)) that in fact ¢4 is the identity map; in other words, the
projective cover and injective envelope of £} coincide.

7.3. Injective R-modules and tilting perverse sheaves. In this subsection we
study the relation between injective objects in mod?§§7XA)(R) and tilting objects
in Perv(za x,)(Gr k).

Proposition 7.11. (1) For any x € AWS, the object ®4(T# Lzo) s both in-
jective and projective.

(2) If = € AW, then <I>A(TA Lo) contains @A resp. @f‘ (x); @S a direct

summand U)Zth multzplzczty 1 and does mot admit any direct summand of

the form Qm , Tesp. QLA(M )» with p €Y ~ {0}
A converse to part (1) will be proved in Proposition 9.26.

Proof. (1) First, assume that A = @ and « € W&, In the proof of Proposition 7.4
we have constructed a projective and injective object admitting 2 both as a sub-
object and as a quotient. By Lemma 6.6(4) this object contains ®(T,a) as a direct
summand; the latter object is therefore also projective and injective.

Now we continue to assume that A = @, but take a general w € WS5,. We
can write w = yty for some y € W& and A € =Y, see (2.3), and then we have
w? = y»ty, see (2.4). By Lemma 6.7 the object T, #£7G 7wV ig tilting, and
support considerations show that it contains T,~,, as a direct summand. On the
other hand, using the formula in Lemma 5.2 and the fact that ®(T,) is projective
and injective we see that ®(T, "oy GT“"’(A)) is also injective and projective. Hence
50 is (T ).

Finally we consider a general subset A, and = € AWS5,. By Theorem 7.1 we
have waz® € AWS,, and by Proposition 3.12 we know that Avi® (TS ) =
®(T,a). Since the functor Av{® has an exact right adjoint, and since ®(T,»)
is projective (by the case already treated, and since z € W23,), this shows that
‘I’A(Tgwa) is projective. A similar argument using Av? instead of Av{4 shows
that this object is also injective. (Alternatively, one can use the fact that projective
objects are automatically injective, see Theorem 7.9.)

(2) First, assume that A = @. Corollary 7.3 implies that @(TxA) admits £,
as both a subobject and a quotient. It follows that both Qm and QL(Q:) are direct
summands in (T a).

To conclude the proof in this case, we will prove that the object constructed in
the proof of Proposition 7.4 admits @L(I) as a direct summand with multiplicity 1,

and no other direct summand of the form @L(xt“). (A similar argument will apply for
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the injective hulls; alternatively this case can be deduced using the Verdier duality
constructed in §9.1 below.) Set y = t.wo,x~!, and consider a reduced expression
Yy = ws1 -+ Sp. Using adjunction, our claim will follow if we prove that

1 if p=0;

(7.6) dim Hommod}’u(R)((I)(Two(c))7 O (&8s, gsr(Lx))<M>) = {0 otherwise.

As a preparation, let us first prove that for v € Y \ {0} we have
(7.7) Hom(Tr, s €uber &, (Le) 5 € 1Y) =0,
or equivalently (by adjunction and (3.3))

(7.8) Hom(T,, Lra I!_'wo(y), €uls, & (Ly)) = 0.

o(s)
+ — . . .
o %£7G 77w () hag a unique simple quotient,

Proposition 6.4(1) tells us that T, |
Now we have yr = tcw,, and l(yz) = ¢(x) + r by

isomorphic to L;_

—we (v)Wo *

Lemma 2.2. By Lemma 3.15, it follows that £,&s, - - - &, (Ly) is supported on Gry_y, -
Now t.w, belongs to W2, so that by | , Lemma 2.7] we have

extr
g(tc—wo(u)@UO) = U(tewot ) = L(tews) +£(t-0);

if v # 0 the orbit Gr;___ (ywo 18 therefore not contained in Gr_y,, which implies
that Li__,_ . w, is not a composition factor of §,&s, -+ s, (Ls). This proves (7.8).

Now, let us prove (7.6) in case u # 0. By Lemma 5.1, the space under consider-
ation equals

(7.9) Hom(Te,, . Eubsy s, (La) *° C R_,) =
@Hom(Ttwo@ sy - Es (Ly) WLFG prwoFA LG I*—wo(x)).
A

For any A the perverse sheaf I;w°(“)+'\*£+cl':w°(’\) admits a costandard filtration,

see | , Proposition 4.8]; moreover, the object 7c° = 70 does not occur in such
a filtration since

Hom(Z0, T, o WA (£7C 77we Ny = Hom (7, 77 W) = 0.
In view of (7.7) this implies that
Hom(TtwO(g)y&ufsl . gsr(l—'p) *£+G I*—wO(M)"rk *£+G I*—wo()\)) =0

for any A, which proves (7.6) in this case.
Finally, assume g = 0. In this case the space we have to consider is

(7.10) Hom(TtwO(g) by Es (Ly) Ware Ro) =
thom(Ttwo(g) s gwgsl - qu(I—x) *£+G I:\ *£+G Z;’LUO()\))
A

Here again T} *£TG 7o) admits a costandard filtration, and in this case we have

an embedding Z€° — 72 x£7G 7, “*™) whose cokernel is an extension of objects of
the form 72 with v # 0. We have obtained in the course of the proof of Lemma 6.6
that

(7~11) dim HomPervlu(Gr,]k) (Ttu,o(c) ) gwfsl o £ST(LI)) =1,
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see (6.4). By the same considerations as above this implies that for any A we have
dimHom(T,,_,&ubs, &, (Lo) #5 C TG TNy = 1.

One can easily check that the transition morphisms in our inductive system are
nonzero, which finishes the proof of (7.6), and hence of the statement in case
A=g.

To treat the case of a general subset A, one simply observes that for x € AWer,‘ff
and p € 'Y we have

Hom (4 (T4 A), L4 ) = Hom(®4(T4 1), Avi(Lar,))

waxd wazxd

>~ Hom(Av{*(®(TA

’lUA.',L'A

)): Lar,) = Hom(®(Ta), Low,,)
by Lemma 6.3(1), adjunction and then Proposition 3.12. Then the claim follows
from the case A = @ since x € Wl O

ext*

8. UNGRADED R-MODULES

In this section we present a variant of the theory developed so far, which omits
the Y-grading. (From the representation-theoretic point of view, and using the
notation of Section 1, this means that we study a geometric model for blocks of
G1-modules rather than éli‘—modules.) The only part of this section that will be
used later in the paper is the statement given in Remark 8.11(1). This statement
does not involve ungraded modules, so a reader who is willing to accept this claim
can skip this section.

8.1. Definitions. We fix a finitary subset A C S,g. Up to now we have worked
with Y-graded ind-objects in the category Perv(lﬁx_’XA)(Gr, k); in particular, in §5.2
we have defined R as a formal direct sum of ind-objects R,,. But in view of [IX5,
Theorem 8.6.5(v)] the category of ind-objects in Perv(;a x,)(Gr, k) admits arbitrary
direct sums; in particular, the “true” direct sum (i.e. coproduct) €, R, in this
category makes sense. For simplicity we will also denote this object R.
An ungraded R-module is, by definition, an ind-object F in Perv(Ilf’XA)(Gr,k),
together with a map
FLECRSF
equipping it with the structure of a module over the algebra object R. Let
MOd(If,XA) (R)

denote the abelian category of ungraded R-modules. The theory of ungraded R-
modules is very similar to that of graded R-modules. In this subsection, we sum-
marize the main facts about them. Most proofs are essentially identical to those in
the graded case, and will be omitted.

In a minor abuse of notation, we define the functor

4 : Perv(ra x,)(Gr,k) — Mod (14 x,)(R)

by ®4(F) = F LG R, where F TG R s equipped with the obvious module
structure. As in the graded case, ®“ is exact and faithful. Objects in the image
of this functor are called free (ungraded) R-modules of finite type. There is an
ungraded analogue of Lemma 5.1 that says that

(8.1) Homyjoq 7y (D4 (F), M) = Hompery ,, ., | (Grio (F, M)

(1
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for any F € Perv(ja x,)(Gr, k) and M € Mod (74 x,)(R). There is also an ungraded
analogue of Lemma 5.2 that says that for any F € Perv(ISx,XA)(Gr, k) and G €
Perv,+q(Gr, k) we have

(8.2) dNF 19 G) =~ Sat(G) ® DA(F).

The classification of simple objects in Mod 4 x,) (R) is given in Proposition 8.1.

In this statement, we denote by ~ the equivalence relation on AW given by

w~w if there is a A € Y such that w = w't,.

(In this case, A is necessarily orthogonal to all roots; in particular, if G is semisimple
this equivalence relation is trivial.) For w € AW we will denote by [w] its
equivalence class.

Proposition 8.1. For w € AW, the object ®*(LA) is a simple object in the

ext’
abelian category Modja x,)(R). Moreover, the assignment w — ®4(Ls) induces

a bijection
Appres /. % { isomorphism classes of simple }
ext objects in Mod1a x,)(R) ‘
For ¢ € AW/~ we will denote by £Z € Mod (4 x,)(R) the corresponding
simple object; for any w € AW we therefore have ﬁﬁ‘u} =~ A(LA).
The definitions of the categories

modra x,)(R) C Mod(za x,)(R)™" C Mod 14 x,)(R)
are analogous to their graded counterparts. As in Lemma 5.9 we have
(8.3) dim Homyjoq )(F,G) < o0

for all 7,G € Mod([‘fx,XA)(R)ﬂe“, and Mod(I‘ﬂXA)(R)ﬂe“ is a Krull-Schmidt cate-
gory.

g xR

Theorem 8.2. The category mod s x,)(R) coincides with Mod(Ié’XA)(R)ﬂe“, and
this abelian category has enough projectives and enough injectives, and these classes
of objects coincide.

For ¢ € AW/ ~ we will denote by Q4 the injective hull of £ in the category
mOd(I‘?’XA)(R).
The following property is more specific to the ungraded setting.

Lemma 8.3. For any F,G in Perv(;a x,)(Gr,k), the finite-dimensional vector
space

Hommod(I‘?)XA) (R) (q)A(}-)? (I)A (g>)

carries a canonical structure of an algebraic Gy -module, which is functorial in F
and G and compatible (in the natural way) with composition, and such that the map

Gr k) (]:7 g) — Hommod (R) ((I)A (]:)7 (bA (g))
identifies the left-hand side with the Gy -invariants in the right-hand side.

HomPerv

(I(vaA)( (14, x4)

Proof. Recall that if k is a field and C is a k-linear additive category which admits
arbitrary coproducts, then given a k-vector space V and an object X in C one
defines the tensor product V ®; X as the object representing the functor

Y — Homy(V,Homc (X, Y));
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any choice of basis (e; : i € I) in V provides an isomorphism V ®; X = X®I,
This construction is functorial, in the sense that if D is another k-linear additive
category which admits arbitrary coproducts and F' : C — D is a k-linear additive
functor commuting with coproducts, then for any V and X as above there exists a
canonical isomorphism F(V ®; X) 2V @ F(X).

We apply this construction first in the case where C is the category of all G-
modules, i.e. the category of ind-objects in Rep(GY). Here the comultiplication in
the Hopf algebra ¢'(G,/) composed with switching the factors provides a canonical
morphism

(8.4) O(Gy) = O(GY) @ O(Gy),

where the domain and the right-hand copy of ¢(G}) in the codomain are equipped
with the left regular G}/-module structure, while the left-hand copy of €(GY) in the
codomain is regarded just as a vector space. Next we apply the functor induced by
Sat on ind-objects; the properties recalled above imply that we have Sat(0(GY) ®k
O(GY)) =2 0(G)) @ R, so that we obtain a canonical morphism

(8.5) R — O(GY) @ R.

(Here the functor on ind-objects induced by Sat commutes with coproducts by the
description of coproducts in [I{S, Theorem 8.6.5(v)].) Note that we have an exact
sequence

0—=k— O0(GY) = O(G) 2k OGY),

where the rightmost arrow is the difference of (8.4) and the map f+— 1® f. We
deduce an exact sequence

(8.6) 0-72C" >R — OGY) @ R,

where the rightmost arrow is the difference of (8.5) and the map corresponding to
1 ® idgr under the canonical identification

Hom(R, O(GY) ®x R) = O(Gy) @k Hom(R, R).
We can at last use these constructions in the setting of the lemma. For F,G as
in the statement, by (8.1) we have
n
HommOd(Ilf‘,XA)(R) <(I)A(‘7:)’ e (9)) = Homper"ua“,XA)(Grvk) Y i R).

Applying the considerations above to the functor Hompe,\,(IA N )(Gr’k)(]_‘,g Lra
u A

(—)) (where here G "G (—) means the canonical extension of the functor #
g *£7G Y to ind-objects, and we consider morphisms of ind-perverse sheaves; the
compatibility with coproducts is guaranteed by [[XS, Comments in Notation 8.6.1])
we obtain a canonical isomorphism

HomPerv(IéYXA)(Gr,lk) (]:a g *£+G (ﬁ(GH\g/) Sk R))

= 0(Gy) ©x Homper, (@) (F, G K£TER).

g xa)

Hence, applying this functor to (8.5) we obtain a canonical morphism

Homypoq (R)(q)A(]:)v CI)A (g)) - ﬁ(Gﬂ\(/) Qi Homyyoq (R) ((I)A(]:)v CDA(g))

(g, xq) (g, xq)
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which defines a structure of a (right) €(G)/)-comodule, i.e. of a GY-module, on
the k-vector space Hommod(IA N )(R)(cI)A(f)7<I>A(g)). Moreover, from the exact
u A

sequence (8.6) we deduce an exact sequence
(=) (@(F), 24(9))
(=) (@4(F), 24(9))

which shows that Homper\,u A 20 (Gr ) (F,G) identifies the G/ -invariants in the G-
®) (@A(F), @4(G)). .

0— HomPerv(I§,XA>(Gr,]k) (]:7 g) — Hommoduf’XA)

— ﬁ(GE\(/) Rk Hommod

g xa)

module Hommoduéy“)

8.2. Forgetting the grading. We continue with the setting of §8.1. There is an
obvious exact forget-the-grading functor

(8.7) For : Modg‘f’XA)(R) — Mod (74, x,)(R),

which sends the “formal” direct sum . Fu to the “true” direct sum &b uFu in the
category of ind-objects in Perv(;a x,)(Gr, k). This functor is exact; and it satisfies
For o (\) 2 For for any A € Y, commutes with the functors ®4, and sends simple

modules to simple modules. (In particular, it sends finitely generated modules to
finitely generated modules.) More specifically, for any w € 4Wey;, we have

(8.8) For(Ef},) = Cé] if w=xty with z € AW and A € Y.

Lemma 8.4. For F € modgf’XA)(R) and G € Mod?}‘,}q’XA)(R), the functor For
induces an isomorphism

D Homypoqx,  (r)(F,G(A) = Homytea
ey (1§ X4)

(I‘]A,XA)(R) (FOI‘(]:), FOI‘(g))
Proof. By definition, every finitely generated graded R-module is a quotient of a
free graded R-module of finite type; using this, a routine five-lemma argument
shows that it is enough to prove the lemma in the case that F is free. In fact, we
may even assume that 7 = ®4(F’) for some F' € Perv(;a x,)(Gr, k). In this case,
using Lemma 5.1 and its ungraded analogue (8.1), we see that the left-hand side is
given by

@ HomPervu:\YXA)(Gr,k) (fla g))y

AEY
while the right-hand side is

HOmPerv(I(?’XA)(GL]k) <_F/7 @ gk) .

A€Y

The fact that these spaces coincide follows from [I{S, Theorem 8.6.5(v)] and the
comments in [I[{S, Notation 8.6.1]. O

Remark 8.5. In case G belongs to mod?;AﬂA)(R), in view of (8.3) the direct sum
appearing in Lemma 8.4 only has finitely many nonzero terms.

The following statement follows from the construction of projective and injective
objects in the proof of Theorem 7.9, and the parallel construction that proves
Theorem 8.2.

Proposition 8.6. The functor (8.7) sends projective (i.e. injective) objects in
modEAyxA)(’R) to projective (i.e. injective) objects in modra x,)(R).
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Using (8.8) one can make the statement of Proposition 8.6 more precise: for any
w e AWext, writing w = xt) with x € AWerféf and A € Y we have

AAY v HA
FOI‘(Qw) = Q[z]
In particular the functor For sends these indecomposable objects to indecomposable

objects. In fact this property holds for general indecomposable objects, as shown
in the next statement.

Corollary 8.7. Let F € m0d5§7XA)(R). Then F is indecomposable (in the cate-
gory modz‘f’XA)(R)) iff For(F) is indecomposable (in modra x,)(R)).

Proof. Since the categories mod??,;t x4)(R) and modza x,)(R) are Krull-Schmidt
(see Lemma 5.9 and the comments after (8.3)), F, resp. For(F), is indecomposable
iff the ring

End,  qv ®R)(F), resp. Endpeq

(18, %4) () (For(F)),
is local. Then the claim follows from Lemma 8.4 and the standard fact that a
finite-dimensional Y-graded k-algebra is local (as a nongraded ring) iff its degree-0

component is local, see e.g. [GG]. O

g xn)

We conclude this subsection with a lemma relating indecomposable objects in
Perv(za, x,)(Gr, k) to indecomposable ungraded R-modules. The proof is based on
arguments found in [D1, §2].

Lemma 8.8. Assume that k is algebraically closed. Let F € Perv(léx)XA)(Gr,k)
be an indecomposable perverse sheaf such that ®4(F) remains indecomposable in
mod(ra x,)(R). If G € Perve+g(Gr,k) is also indecomposable, then FLt6 g e
Perv(ra x,)(Gr,k) is indecomposable.

Proof. By assumption, the object ®4(F) is indecomposable in the Krull-Schmidt
category modsa x,)(R); the algebra Endnlodu;;x,xA)(R) (®A(F)) is therefore local.
Since this algebra is also finite-dimensional (see (8.3)), its unique maximal ideal
consists of nilpotent elements. Moreover, since k is algebraically closed, the quotient
of EndmOd(zg\,XA)(R)(q)A(‘F)) by its unique maximal ideal is identified with k. We
will denote by

R)(‘I’A(]: )) =k

the quotient map. By Lemma 8.3 there exists a canonical (algebraic) action of Gy
on Endmod“A (R (®4(F)) by algebra automorphisms; the unique maximal ideal
u - tA

q : Endy,oq

(1

is necessarily stable under this action, so that ¢ is G)/-equivariant (for the trivial
action on k).

Next, let V' = Sat(G). Then V is a finite-dimensional algebraic G}/-module, and
using (8.2) we see that

N
Endoa s, ,(R) (@4 (F+5 9 ) = Endyoa, , () (@4 (F)) @ Endi(V),
Endmod(lﬁq’XA)(R) (‘bA(g)) = Endk(v)a
Endpen, , . (cri)(9) = Endgy (V).

Here the first two isomorphisms are Gy -equivariant for the actions provided by
Lemma 8.3 and the action on V.
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Define a ring homomorphism
~ +
a: EndmOdu;},xA)(R)(q)A(}— axe G)) — Endmodug‘,;@A)(R)(@A(g))
to be the map which corresponds to

¢®id : Endpoq ) (@4(F)) ® Endy (V) — Endy (V)

agan(®
under the isomorphisms above. Since the kernel of ¢ is finite-dimensional and
consists of nilpotent elements, the kernel of @ does as well. Since ¢ is G}/ -equivariant,
a is also equivariant.

We claim that there is a unique ring homomorphism a that makes the following
diagram (of ring homomorphisms) commute:

+ a
EndPerv(IA X0 (Gr,k) (-F *E ¢ g) 7777777777 ” EndPerv£+G(Gr,k) (g)

(8.9) ¢Al J¢A

Endmod s . ,(R)(@4(F %% G)) —= Endmoa, s , (»)(24(9))-

In fact, this follows from the fact that a is G}/-equivariant, and that in each column
the domain of the map identifies with the space of GY-invariants in its target (see
Lemma 8.3). Since the kernel of a consists of nilpotent elements, the same holds
for the kernel of a. In view of Lemma 8.9 below and the indecomposability of G,
this implies that the algebra Endper\,u 42 (Gr ) (F *L£ra G) is local, and hence that

the object F xLra G is indecomposable. (]

Lemma 8.9. Let k be an algebraically closed field, let A, A’ be finite-dimensional
k-algebras, and let a : A — A’ be an algebra homomorphism. Assume that

(1) ker(a) consists of nilpotent elements;
(2) A’ is local.
Then A is local.

Proof. Let m’ C A’ be the unique maximal ideal in A’, and set m = a~!(m’). Since
ker(a) and m’ consist of nilpotent elements (in A and A’ respectively), so does m.
On the other hand, A/m is a k-algebra which embeds in A’ /m’, which is isomorphic
to k since this field is algebraically closed; it follows that m is a maximal ideal and
that A = k- 1@ m. Since m consists of nilpotent elements this shows that any
element in A \ m is invertible, and hence that any ideal of A is contained in m,
which finishes the proof. (I

8.3. A geometric version of Donkin’s conjecture. A celebrated conjecture
of Donkin [D2] asserts that certain indecomposable tilting modules for reductive
groups should remain indecomposable upon restriction to the Frobenius kernel. (For
recent developments on this question, see [ ].) In this subsection we study the
analogue of this property in our geometric setting. We show in particular that the
geometric variant of this conjecture implies a “Steinberg-type” formula for tilting
perverse sheaves (as in the representation-theoretic context, see [Ja, §IL.E.9]).

Theorem 8.10. Let w € AW, The following conditions are equivalent:

(1) The head of TiAwA is simple.
(2) The socle of T;?;AwA is simple.
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(3) The object @A(TﬁAwA) is indecomposable (in the category modgf)XA)(’R)
or in modza x,)(R)).
(4) For all A € Y, the object ®4 (T, o )(—A) is both the projective cover and

~

injective hull of LA, in modElHXA)(R)-

wt

If the conditions above hold, then we also have the following:

(5) (Donkin formula for tilting sheaves) For all i € Y 4, we have

A yaxe w o~ TA
TwAwA * T - TwAwAtwo(u)'

Note that if the head or socle of Tﬁ » is simple, they must be isomorphic to
AW

L2 by Corollary 7.3. In (3), indecomposability in mod}i (R) or in mody, (R) are
equivalent in view of Corollary 8.7.

Proof. The equivalence of (1) and (2) follows from Verdier self-duality of TZ‘)Aw ~s
see Remark 3.3.

Let us now prove that (1) = (3). Suppose that szAwA has a simple head, but
that qDA(TﬁAwA) is decomposable. Proposition 7.11(2) and Lemma 8.4 imply that

wawd

dim Hommod(IL?’XA)(R)((I)A(TA ), 24(Ly)) =1,

so there must be some element y € AW with y 4 w (under the equivalence
relation considered in Proposition 8.1) such that
(4T, wa), 4(L)) # 0.

Hom,,,oq wawd

ag xR
By (8.1), both sides of the following isomorphism are then nonzero:
HomPe'Vu;\,XA)(Gr,k) (T’lﬁAwA : L,yA Wadel R)
o~ @ hﬂHom(TﬁAwm L;‘ e If°(“)+)‘ LG I*—wo(k)).
peEY A
(1)+X e

However, by Theorem 3.16 every composition factor of L;j KLTG e

I*_w"()‘) is of the form L‘;ty for some v € =Y. The unique simple quotient of

TﬁAwA, namely L4 (see Corollary 7.3), is not of this form, so
Hom(T# o, L #£1C T WAL L76 prwe@) — ¢

for any A, i, a contradiction.
We now show that (3) = (4). If @A(TgAwA) is indecomposable, then Proposi-
tion 7.11(2) shows that
Qé = (pA(TA ) = Qi(w)'

wawd

The claim in (4) follows using (7.4).
We next show that (4) = (1). Assume that (4) holds, and that the head of

T’lﬁAwA has more than one summand. By Corollary 7.3, there exists y € 4W5,

with y # x such that L‘; is a quotient of TﬁAwA. Applying &4 we deduce a
surjection (I)A(Tfmw&) — @A(L;). Theorem 3.16, Lemma 5.2 and (5.7) show that

®4(L;}) surjects to E‘y“, so that @A(TﬁAw ~ ) has two different simple quotients. This
contradicts the fact that this object is a projective cover.
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Finally we show that (4) = (5). First, note that the perverse sheaf T A *£TG

TH is tilting. In fact T,a ¢ T# is tilting by Lemma 6.7, hence
AVH(T o 576 TH) 2 AV (T ) %57 G TH

is tilting too, see §3.6. By Proposition 3.12 this object is a direct sum of copies of
T’LI?)A’LUA «Lra TH*, so that the latter object is tilting.
Now that we know that this object is tilting, support considerations show that

+ . :
TA L *ETCTH admits TA as a direct summand; we therefore only need
wAWw WAWS by ()

to show that this object is indecomposable. A routine argument (cf. | , Propo-
sition B.3]) shows that this tilting perverse sheaf is indecomposable if and only if
the object obtained by extension of scalars to the algebraic closure of k is indecom-
posable. Thus, we may assume without loss of generality that k is algebraically
closed. Then the claim follows from Lemma 8.8. O

Remark 8.11. (1) In case k has characteristic 0, Theorem 7.1 says in particular
that condition (1) in Theorem 8.10 holds for any w € AW, Hence in this

ext

case the injective hulls @;‘ (y € AWext) can be described explicitly: if
y = oty with z € AW and A € Y then

Q; = (I)A(TgAzA)<_)‘>
(2) When k has positive characteristic, one instance in which the conditions
of Theorem 8.10 hold is for the element w = t.w, € Wiy in case A = @.
Indeed, by Proposition 6.4, the object jiS; = jiSe = Ty, ., has a simple
head and socle. (Note that w® = t,,_(;).) Thus, by Theorem 8.10, for
any A € Y the object ®(Ty,_.,)(—A) is both the injective hull and the

projective cover of Etgwotk; we thus have
Qtewots = B(Tt,, ) (=)

9. BABY VERMA AND CO-VERMA MODULES

In this section we introduce objects of mod?iA, x4)(R) which are geometric ana-

logues of baby Verma modules (i.e. the objects denoted Z(A) in [Ja, Chap. IL9)).
These objects will be obtained from the baby co-Verma modules of §5.6 using a
“Verdier duality” autoequivalence. (In the representation-theoretic context, such a
relation is well known, see [Ja, Equation (5) in §9.3].)

9.1. Verdier duality. We now explain how to define Verdier duality in the cate-
gories mOd(YIf,XA)(R)'
Recall the Verdier duality functor

D: D x,)(Gr) = DE’I&XXI)(Gr)

considered in Remark 3.3. What we now want to do is to “extend” this functor to
the category mod?%y x,4)(R), i.e. to define an exact anti-equivalence

D: mod?i;;,XA)(R) = mod5§7X;1)(R)

which satisfies

(9-1) D(@4(F)(N) = @4 (D(F))(A)
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for any F in Perv(;a x,)(Gr) and A € Y. (Here we are making an abuse of notation
similar to that of Remark 3.3, in the sense that the notation ®4 on either side of
this equation is used for two different functors: on the left-hand side the functor is
defined using the local system X4, while on the right-hand side it is defined using
X;l.) Note that a “naive” extension of D to ind-objects would send ind-objects
to pro-objects, and thus not give an endofunctor of R-modules. Instead, we will
use the fact that (9.1) prescribes the definition of I on free R-modules of finite
type, and that the category mod?§§7XA)(R) can be described in terms of these free
modules.

We start by making formal sense of this latter idea. For this, we define the
additive k-linear category Free?;f, pe A)(R) whose objects are formal direct sums

D 0)

jeJ
where J is a finite set, each F; is in Perv(1§7XA)(Gr,k), and each A; is in Y, and
such that the space of morphisms from €9, ;(Fj, Aj) to @y (G pur) 1s

Hom,oqx () | D2 (F)N), €D 4 (Gk) )

i xa) jeJ kEK
= P Hom,oax (=) (@A(F;), D (Gr) (1 — Aj))-
) (IghXa)
jeJ
kex

By definition ®4 factors as a composition of additive k-linear functor

A A
Perv(sa x,)(Gr,k) 21, Freegf,XA)(R) 22, mOd?;:‘,XA)(R)’

where ®3' is fully faithful. Moreover, the objects in the essential image of ®3' are
exactly the free R-modules of finite type.
We now consider the homotopy category K (Free?§§7 x4)(R)), and the triangu-

lated subcategory K (Freegé\y Py A)(R))b of complexes whose image under K (®4') has
bounded cohomology. (This subcategory is not the bounded homotopy category of
Freegl,‘q’XA)(R).) Since Dbmod?§§7XA) (R) identifies with the full subcategory of the
unbounded derived category D(modaq} x4)(R)) whose objects have bounded coho-
mology, the composition of K (®4') with the canonical functor K(mod?;§7XA) (R)) —
D(modzf}XA)(R)) restricts to a functor

(9.2) K(Free??;;’XA)(R))b — Db(mod??f’XA)(R)).

Next, let D(FreeEﬁXA)(R))b be the Verdier quotient of K(Free?§§7XA)(R))b by
the kernel of (9.2). Then, by the universal property of the Verdier quotient, the
functor (9.2) factors through a triangulated functor

(9.3) D(®3) : D(Freeia x,)(R))” = D*(mod{fa x,)(R)).
Lemma 9.1. The functor (9.3) is an equivalence of categories.

Proof. Essential surjectivity follows from Remark 7.10(1). More precisely, any
object in Db(modEA,XA)(R)) is isomorphic to a bounded complex of objects in

mod?%y x A)(’R). Given such a complex F, this remark implies that there exists a
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bounded above complex G of free R-modules of finite type which are projective and
a quasi-isomorphism G — F. Then G belongs to the essential image of our functor,
and is isomorphic to F in Db(modzf,){A)(R)).

Next we prove that the functor is full. Fix objects F,G in D(Freegf)XA)(R))b.
A morphism f : D(®4)(F) — D(®4)(G) is represented by a diagram

K(3)(F) < H % K(@4)(9)

where H is a complex of objects in mod?if)XA)(’R), and g, h are morphisms of
complexes with g a quasi-isomorphism (which implies that # has bounded coho-
mology). Using a truncation functor we can assume that #H is bounded above.
Then, as above there exists a complex K of objects of Free?&;) x A)(’R) and a quasi-
isomorphism k : K(®4)(K) — H. The object K belongs to K(Free?;AyxA)(R))b,
and f is also represented by the diagram !

hok

- K(23)(9)

gok

K(23)(F) < K(23)(K)

where g o k is a quasi-isomorphism, and thus is the image of a morphism from F
to G in D(Free??f_’XA)(R))b.

Finally we prove faithfulness. Fix again objects F, G in D(Freegf,XA) (R))P, and
consider a morphism f : F — G such that D(®4")(f) = 0. Here f is represented by
a diagram

FEHDLG
where # is in K(FreeEA,XA)(R))b, g and h are morphisms of complexes, and

K(®4)(g) is a quasi-isomorphism. Once again there exists a bounded above com-
plex KC of projective free R-modules of finite type and a quasi-isomorphism K —
K(®3')(H). Then there exists £ in K(FreezA,XA)(R))b and an isomorphism of

complexes K (®4)(L£) = K, and f is represented by a diagram
FLlrltg

where K (®4)(g') is a quasi-isomorphism, i.e. D(®4)(g’) is an isomorphism. Then
D(®4')(h') = 0. Since K is a bounded above complex of projective objects, this
implies that K (®4)(h') = 0, and hence that 4’ is homotopic to 0, and finally that
f=0. O

Now we address the question of defining D on free R-modules of finite type.
More precisely, we define an additive contravariant equivalence

Dy, : Free?;§7XA)(R) = Freezf,xgl)(R)

as follows. On objects, this functors sends ¢ ;(F;.Aj) to @,c;(D(F)), Aj). By
additivity, to define this functor on morphisms it suffices to consider the case of
objects of the form (F,\). We therefore consider F,G in Perv(sa x,)(Gr, k), and
A, €Y. Then by definition

Hompreey (=) ((F,A), (G, ) = Hompoqy () (D(F), @H(G) (1 — \)).

g, x ) (g, xq)
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By Lemma 5.1 and the definition of ®4, the right-hand side identifies with

+
Hompe, Ié\YXA)(Gr,Ik) (]:a g K£C R)\*M)

(

= liﬂHornPerv(IA x4)(Gr k) (]:; g *L:JrG Ifo()\_ﬂ)+u *L+G I*_wo(y)),
u A

By (3.3), for any v € Y1 N (—wo (A — p) + Y) we have

LYG qwo(A—p)+v  LTG 7—wo (V)
HomPervUA’XA)(Gr,Ik)(]:ag* e * TILT)

~ + —A—wo +
= HomPeFV(IA’XA)(Gr,]k) (F LG I!u wo(v)  L£rG 1¥,6).
We next use the fact that D commutes with convolution and sends Z,” to Z7 for any
1 € Y4 to identify this space with

HomPerv

A
(I xy

* —A—wWo (V + ”
1, (@r ) (D(G), D(F) KETG AT we W) (LG vy,

Following this series of identifications we have constructed a natural isomorphism
from Hompeex () ((F, A), (G, 1)) to
(IgXa)

u

thOmperv )(Gr,k) (]D)(g>7 D(]:) *£+G Iff)\*wo(l/) *L+G I:)

agagt
Setting 1/ = —wo(u — ) + v we see that this inductive limit identifies with
(i (D(G). D(F) 57 Ry, y) =

Homg,ex (R) ((D(g)7 :u’)v (D(-F)7 )‘))’

—1
(g xxh

Hom
Pervué’le)

we have therefore completed the definition of the functor Dy,.
In order to “extend” this functor to the appropriate derived categories we will
use the following lemma.

Lemma 9.2. Let
ML My L M

be a sequence of objects and morphisms of FreeEA’XA)(R) such that the sequence

25 (f) @5 (9)
B3 (My) === 3 (My) == &5 (M)
is exact at ®4'(My). Then the sequence

B2 (Dg, D (D (f
DA D (Ms)) 222D, 4 (D (My)) 2D,

is exact at P4 (Dg(Ms)).

@5 (Dt (M1))

Proof. Suppose the latter sequence is not exact, or in other words that

By Remark 7.10(1), there exists an object P in FreeEfVXA)(R) which is a direct
sum of objects of the form (F,\) with A € Y and F such that D(F) =2 F and
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®4(F) projective and injective, and a morphism ¢ : P — D¢ (My) such that the
image of ®4'(q) is ker(®5'(Dg(f))). Then ¢ does not factor through Dy, (g):

does not exist_ Prad Ds (f)og=0

7 q
Dfr(g

Dy (Ms) 229 D (M) 22 Dy ().

The object ®4(Dy,(P)) is injective. Applying Dy, to the diagram above we obtain
a diagram

M1*>M24>M3

Der
]D)fr(q)w\ J, ! (q)/ does not exist
Dfr

)

This diagram implies that the image under ®4' of the top row is not exact at Ma,
a contradiction. (]

Lemma 9.2 implies that the functor

K(Dg) : K(FreeEf,XA)(R)) - K(Free 2 (R)

restricts to an endofunctor of K ( Free?gA7 ) (R))P that preserves the kernel of (9.2)
(in the sense that it sends the kernel of the version for X4 to the kernel of the
version for X';*). Tt therefore induces a contravariant triangulated functor

D(FreeESxVXA)(R)) — D(Free(IA X—l)(R))b.

u7

Conjugating this functor with the equivalence (9.3) (more precisely, the version for
X4 and that for X;') we obtain a contravariant triangulated functor
. b Y Y
D:D mOd(If,XA)(R)%D mOd(IAX )(R)

It is clear from this construction that D is involutive, in the sense that the com-
position of the version for X4 and that for X;l is the identity and vice versa (in
particular, D is an equivalence of categories), and that (9.1) holds for any F in
Perv(a x,)(Gr, k) and A € Y. In particular, for any w € AWkt we have

(9.4) D(LA) = LA,
Since any simple object in modzf’ x,4)(R) is of this form (see Theorem 5.6), we de-

duce that D is exact for the natural t-structures on the categories DbmodEA, x0)(R)

and D mod%A x5

sesses all the reqmred properties.

)(R) The restriction of this functor to R-modules therefore pos-

Remark 9.3. (1) The construction of the anti-autoequivalence D given here fol-
lows the one suggested in | , Top of p. 297]. Note however that in
loc. cit. the authors do not justify that this construction does not depend on
the choices one has to make, and defines a functor. Our study of projective
objects exactly fills this gap.

(2) Note that the isomorphisms (9.4) show that for any F in mod?i;;,XA)(R)

and w € AW,y we have

[F: LA = [D(F) : £A).
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In particular, the endomorphism induced by D on the Grothendieck group
[mOdE‘A7XA) (R)] is trivial.

Recall the map ¢4 from (7.5), which is defined so that Qi‘(w) is the projec-

tive cover of Eﬁ The properties of D stated above imply that D(@ﬁ) is also the
projective cover of £L2; it follows that

(9.5) D(Q4) = @flA(w) for any w € Weyt.

9.2. Baby Verma modules. Givgn w € AWy, we define the baby Verma module
with label w to be the R-module 2 given by

Zo=D(Z;})  €modfa x,(R).

We will say that an object F in mod?{;é’XA)(R) admits a baby Verma filtration
if it admits a finite filtration whose subquotients are isomorphic to baby Verma
modules. It is clear from the definition that F admits a baby Verma filtration iff
D(F) admits a baby co-Verma filtration.

The following properties of baby Verma modules are immediate consequences of
the corresponding facts for baby co-Verma modules (see §5.6 and §7.2), together
with the properties of Verdier duality stated in §9.1.

Lemma 9.4. (1) For w € *Wey, and A € Y we have
ZA o ZA(_)).

wt;

(2) For w € AWy, §£ has a simple head, isomorphic to Eﬁ
A ZA . PA) _ [ZIA . PA
’ ext . - . .
(3) For w,y € “Wexi, we have [Z.1: L] = [Z,7 1 L]

Proposition 9.5. (1) If w,z € AWE‘E“ satisfy [Z4 . EAQ] # 0, we have v =X
w 2 war®. Moreover, we have [Z2 : L2] =1 and [ZﬁAmA L) < 1.
(2) For any w € AWy, 2{3 is the projective cover of Eﬂ in the Serre subcate-
gory of mod&,x@(m generated by the simple objects EZ‘ with y % w.

Remark 9.6. As in Remark 7.6, Proposition 9.5 implies that if M € mod?i;;,XA) (R)
admits a baby Verma filtration, then the number (M : ZA‘I;ﬁ) of occurrences of a given
baby Verma module Z in such a filtration is independent of the choice of filtration;
in fact these numbers are determined by the equality
M= Y (M:Z5)-[Z2]]
WEA Wt

in [mOd(YI(,quA)(R)]'

Suppose now that M admits both a baby Verma filtration and baby co-Verma

filtration. By Remark 9.3(2), we have [2{3] = [ZAQ’UA] for all w € AW, so comparing
the equation above with that in Remark 7.6, we deduce that

(9.6) (M:ZH=(M: 24 forall we Wey.

Recall that in the proof of Theorem 7.9, we showed that mod?§§7XA)(R) is an
“essentially finite highest weight category” in the sense of [BS, Definition 3.7]. In
that setting, comparing Proposition 9.5 with [BS, Lemma 3.1], we see that for any
w € AWy the baby Verma module 2{3 is isomorphic to the objects denoted A(w)
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and A(w) in [35]). Now that these objects are identified, we can state property
“(PA.)” from [BS] in our setting, which does hold by [BS, Theorem 3.5].

Proposition 9.7. For any w € AWy, the object @f) admits a baby Verma filtra-
tion.

The following lemma is a restatment of [BS, Theorems 3.11 and 3.14] in our
context.
Lemma 9.8. Let M € mod?;\,];’XA)(R).

(1) The object M admits a baby co-Verma filtration if and only if it satisfies
Extl v (R) (ZA M) =0 for any w € “Wey. Moreover, in this case,

g xy )
for any w € AWy we have

Ext! v (R)(ZA M)=0 foranyn>1

(IA, x4)
and
dim Hom,pqv | (R)(ZA:},M) =(M: Z{f).
(18, %)
(2) The object M admits a baby Verma filtration if and only if it satisfies
Extl v (R) (M, ZA{UA) =0 for any w € “Wex. Moreover, in this case,

(I8 Xy )
for any w € AWy, we have
1A
ExtﬁdeA ) )(R)(Mvzw ) foranyn >1

and
dim Hom, _4v (R) (M, 24 = (M: ZD).
(g xa)
Lemma 9.8 implies in particular that the property of admitting a baby Verma
filtration is stable under direct summands, and similarly for baby co-Verma filtra-

tions. It also implies that we have a “reciprocity formula” (see [3S, Corollaries 3.12
and 3.15]): for w,y € AWy we have
(9-7) (Qh: 2/ =2 L0, (9w : 2)) =2/ L),

where 14 (w) is defined in (7.5). (Here, the numbers on both sides of the first
equation are equal to dim Hom(Z,’yA7 Q7h), and those in the second equation are

equal to dim Hom(Q# Z’A) )

ta(w)?

Remark 9.9. The first equality in (9.7) and Proposition 9.5 show that (Q4 : Z/ )
vanishes unless w <y, and is equal to 1 if y = w. In particular, given an mdecom—
posable injective object Q in mod(I‘/?yXA)(R) to determine the socle of Q (i.e. its
label) it suffices to determine the smallest element w (for the order <) such that
(Q: Z/4) # 0. Since the classes ([2/4] : w € AWey) in [mod (7 x,)(R)] are linearly
independent (see Remark 7.6), this also implies that the classes ([@{2] fw € AWeyy)
are linearly independent.

Corollary 9.10. Let M, N € mod, (IA,X4) (R). If M admits a baby Verma filtration
and N admits a baby co-Verma ﬁltmtwn then
; — . ZA . ZIA
dim Homyoay (%) (MN)= Y (M:ZHWN: 2.

YEA Wexe
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Proof. We proceed by induction on the number of steps in a baby co-Verma fil-
tration of A. If N is itself a baby co-Verma module, say N = é’\L)A, then the
lemma reduces to the claim that dim Hom(M, Z/4) = (M : Z4), which is part of
Lemma 9.8. Otherwise, choose a short exact sequence 0 — Z?LJA - N =N =0,
where NV has a baby co-Verma filtration with fewer steps. Since Ext! (M, fl’UA) =0
by Lemma 9.8, we get a short exact sequence

0 — Hom(M, Z/4) — Hom(M, N') — Hom(M, N") — 0,

and hence
dim Hom(M, N) = (M : Z2) + dim Hom (M, N").

The lemma follows by induction. (I

Corollary 9.11. Let w € Q, and let s1,...,5- € Sag- The integer

dim End(®(&s, -+ &6, -1 (33,56)))
is independent of the field k.

Proof. As in the proof of Proposition 7.4 the object ®(&,,. - - - &, &,-1(Jr,Sc)) is both
injective and projective, so it admits both a baby Verma filtration and a baby co-
Verma filtration (see Theorem 7.9(2) and Proposition 9.7). By Corollary 9.10, it is
therefore enough to show that the baby (co-)Verma multiplicities are independent
of the field of coefficients k. The baby co-Verma multiplicities in ®(j;,S;) are given
explicitly in Lemma 6.10 (and are manifestly independent of k). Then, the baby
co-Verma multiplicities in ®(&s,. - - - &5, -1 (J1.Sc)) can be computed by the com-
binatorial rules from Lemma 6.12, from which we see that these multiplicities are
again independent of k. We deduce the same property for baby Verma multiplicities
using (9.6). O

9.3. Integral R-modules. In order to prove some further properties of baby
Verma and co-Verma modules, we need to make a detour through a version of
our categories over the ring of integers O of a finite extension of Qp. (Our under-
standing of this theory is quite limited, and the results obtained below are clearly
not fully satisfactory. They will still be sufficient for the applications we have in
mind.) For clarity, in this subsection we will sometimes add the coefficients in
parentheses to various notations introduced above.

Let O be the ring of integers in a finite extension K of Q, containing a nontrivial
p-th root of unity, and let IF be its residue field. Then we can consider the categories
D%’I‘f’XA)(Gr, E) and D2, ,(Gr,E) for any E € {K,O,F}, and we have change-of-
scalars functors

L
K :=K®o (=) : D x,)(Gr,0) = Dipa x,)(CGr,K),
L
F:=F Q0 (=) : D{1a x,)(Gr,0) = Di1a v, (Gr,F),
and similarly for the £+ G-equivariant categories. (Here the symbol (I, X'4) refers

to the Whittaker condition over O, F or K depending on the coefficients appearing
elsewhere in the notation.)
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The definition of the ind-perverse sheaf R with coefficients in O (denoted R(Q)
below) can be copied verbatim from §5.2. Note that the geometric Satake equiv-
alence is also known over Q; however, in that setting the definition of the convo-
lution product on Perv,+q(Gr, Q) involves a perverse truncation, see [MV, Equa-
tion (4.2)]. Here we continue to define the bifunctors

K16 Db L(Gr,0) x DY, (Gr,0) — DY, ,(Gr,0),
K£7C DBy ) (Gr,0) x D2, (Gr,0) = Dy y,(Gr, 0)

as in (3.2) or §3.4, i.e. without incorporating the perverse truncation; with this
notation, the convolution product on Perv +g(Gr,Q) used in the construction of
the geometric Satake equivalence is therefore given by

(F.G) = PHO(F££7¢ g).
Lemma 9.12. For any F in Perv(;a x,)(Gr,0) and any G € Perv,+g(Gr,0) such

that F(G) is perverse, the complex F+L79 G s perverse. In particular, for any F
in Perv(ra x,)(Gr,0) and A € Y, the complex ]-"*£+GI*)‘ 18 perverse.

Proof. To prove this lemma we will use the description of the product *£7C in terms
of nearby cycles first made explicit by Gaitsgory [Ga]; see | , Proposition 3.3.1]
for more details. By t-exactness of nearby cycles, this description shows that to
prove the first statement in the lemma it suffices to prove that the complex F @(L)} g
on Gr x Gr is perverse. By right exactness of the derived tensor product, this
complex belongs to the nonpositive part of the perverse t-structure. To check that
it belongs to the nonnegative part, we have to check that for any I/-orbit X C Gr
and any £1G-orbit Y C Gr, the corestriction of our complex F Xé Gto X xY
is concentrated in nonnegative perverse degrees. Now the embedding of X X Y in
Gr x Gr can be written as a composition
ixid

X XY — X x Gr — Gr x Gr,
where i : X — Gr is the embedding. It therefore suffices to show that the complex

(i x id)"(F é@ G) = (i'F) é@ G
is concentrated in nonnegative perverse degrees. Now i' F is an extension of constant
sheaves M y[n] with M a finitely generated O-module and n < dim(X). Our
assumption on G ensures that each M y[n] X5 G is in nonnegative perverse degrees,
which implies our claim.
The second assertion of the lemma follows from the first one, since Z7 satisfies
the required assumption by [MV, Proposition 8.1]. O

Lemma 9.12 shows that for any F in Perv(;a x,)(Gr,0Q) and any A\,u € Y
appearing in (5.3) the convolution F £ € WA (276 77we N g berverse. For
any ind-object F in Perv(l‘f’XA)(Gr, 0) and any p € Y we can therefore consider
the ind-object ]-'*LJrGRM in Perv(sa x,) (Gr, ©), and then make sense of the abelian

category MOd(X;(“‘,XA)(R(@)) as in §5.4. The functor
o4 Perv(za x,)(Gr,0) — Modg\?’XA)(R((O))),

and the notions of free R(Q)-module of finite type and finitely generated R(Q)-
module can also be copied. Lemma 5.1 holds unchanged. The definitions of the
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various averaging functors from §6.1 carry over to this setting, and one can show
that these functors are still exact; in particular, there is an exact functor

€4 : Mod) (R(0)) — Mod; (R(0))
that sends finitely generated R(0)-modules to finitely generated R(Q)-modules.

Remark 9.13. As with field coefficients, it is not immediately obvious that the cate-
gory of finitely generated R(Q)-modules, which one may denote mOd?;(},XA) (R(0)),
is abelian. We will not address this question in this paper, as working in the cate-
gory Modg‘f’ x4)(R(0)) will be sufficient for our purposes.

The change-of-scalars functor F induces a right-exact functor
FO: Mod {74 x,)(R(D)) = Mod {74 x,)(R(F))
defined as follows. If M € Mod??;;’ x4)(R(0)), the underlying graded ind-perverse
sheaf of FO(M) is PHO(F(M)), with the obvious grading. The morphisms
PHOE(M)) #79 Ry(F) = PHOF(Ma)

are obtained from the morphisms M At R,.(0) = My, by application of the
functor #H°(F(—)), using the fact that for any F in Perv(;a x,)(Gr,0) we have

PHO(F(F £7C T WA @) ££76 17V (0))) =
PHO(F(F)) +7C T W (F) 76 7,V (1)

by commutation of F with convolution, the fact that F(Z(Q)) & Z¥(F) for any
v (see the proof of Lemma 9.12), and exactness of convolution over F. Similar
considerations show that the functor K induces in the natural way an exact functor

K : Mod?§§7XA)(R(@)) - Mod?ilf,XA)(R(K)).

(Here there is no perverse cohomology involved in the construction since K is t-
exact; we therefore do not add any superscript in the notation.) It is clear from
this definition that for 7 in Perv(;a x ) (Gr,0) we have canonical isomorphisms

FO 0 @4(F) = A(PHO(F(F))), Ko ®4(F) = dA(K(F)).

The functors K and F° also commute in the natural way with the averaging functors.
We will now analyze the effect of the functors K and F® on morphisms. We start
with the much easier case of K.

Lemma 9.14. Let F,G € Perv(ja x,)(Gr,0). For any v € Y, the functor K
induces an isomorphism

~

)(R(@))(‘P(f)»@(g)<V>) -
Homy,oqv R (P(K(F)), 2(K(G))(v)).

(Ig,xa)

K ®(O) HOmMOdYA
(IgXa

Proof. By (the analogue of) Lemma 5.1 we have

Homygoqv @) (2(F), 2(G)(v)) =

(g xa)

. + wo (v + —wo
lim Hompen,,, (ar0) (F: G 5 G T2 @) #£7¢ 7N (@),
A u ’
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and similarly over K. The claim follows, using the fact that inductive limits com-
mute with tensor product, and that for Hi, Ho in Perv(ra x,) (Gr, O) the morphism
(98) K Ko HomPerv Gr,0) (Hh H2) — HomPerv(IA,XA)(Gr,K) (K(Hl)a K(H2))

induced by K is an isomorphism. ([

(g

We now consider the more delicate case of FC. Recall that a perverse sheaf F
in Perv(ra x,)(Gr, 0) or Pervy+g(Gr,0) is called torsion-free if multiplication by
a uniformizer of Q is injective on F, or equivalently if F(F) is perverse. Using this
characterization and t-exactness of convolution over F, one easily sees that if F
in Perv(za x,)(Gr,0) or Perv,+g(Gr,0) and G in Perv,+g(Gr, Q) are torsion-free,

then F«£'C g is torsion-free. Recall also that the @-module of morphisms between
two torsion-free perverse sheaves is finitely generated and torsion-free, hence free
of finite rank. The following lemma comprises an analogue of Lemma 5.10 over Q.

Lemma 9.15. Let F,G € Perv(;a x,)(Gr,Q) be torsion-free, and let v € Y.
(1) If e YN (wo(v) + Y1) is sufficiently large, the natural map
Hom(F, G+~ ¢ 7. (0) +£7¢ 7. *N(0)) — Hom(®(F), B(G) ()

is an isomorphism. In particular, Hom(®(F), ®(G)(v)) is a free O-module
of finite rank.
(2) The functor FO induces an injection

F @0 Hotmyaqy (o)) (B(F), 2(G) (1) = Homyoay (rqey) (B(F(F)), B(F(9)) (),

which is an isomorphism if and only if

dimK Hommod}i‘ (R(K)) (@(K(F))v (P(K(g))<l/>) =
dimF Hommod}:‘(n(ﬁr))(q)([?(]:))) (I>(F(g))<y>)

Proof. (1) Recall that if H, and Hg are torsion-free perverse sheaves, then there is
a natural injective map

L L
(9.9) F ®g Hom(H1, H2) — Hom(F ®g H1,F Q¢ Ha),

whose cokernel identifies with Tor? (F, Ext! (1, Hz)).

Let A€ Yo N (wo(¥) +Yy), let p €Yy, and set N := A+ p. In the following
diagram, the vertical maps come from the morphisms (9.8) and (9.9), and the
horizontal maps are defined by the considerations in §5.2. Note that the second
row consists of free -modules, while the top and bottom rows consist of K- and
F-vector spaces, respectively.

Hom(K(F), K(G) x Z; “° ) % 77Ny A Hom(K(F), K(G) Iy ¥+ w7 we )

] J

Hom(]-'7 G+ T v (v)+X *I:wo()\)) L Hom(]-', G *I;wo(l,>+>\/ *I;woo\/))

| |

F @ Hom(F, G Z:“* ™« 770y 4 F g Hom(F, G # oY w1700 ))

[ [

Hom(F(F), F(G) » T o+ w 7790y B pom (F(F), F(G) + T @ s 77wy,
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Our goal is to prove that when )\ is large enough, arrow (ii) is an isomorphism.
Lemma 5.10 and Remark 5.11 show that when A is large enough, arrows (i) and (iv)
are both isomorphisms. The topmost and bottommost commutative squares then
show that arrows (ii) and (iii) are both injective.

The free @-modules in the second row must have equal (finite) ranks, because
the K-vector spaces they give rise to in the first row have equal dimensions. It
then follows that the F-vector spaces in the third row also have equal dimensions.
Since arrow (iii) is an injective map between F-vector spaces of equal dimension,
it is actually an isomorphism. In view of this, Nakayama’s lemma implies that the
middle one is surjective, which finishes the proof.

(2) If X is large enough, by (1) and Lemma 5.10 we have identifications

Hom(F,G #£" ¢ 7, @) %276 7,°N(0)) 5 Hom(®(F), ®(G) (1))
and
Hom(E(F), E(G) %7 T, W E) £7¢ 7, MN(R))
= Hom(2(E(F)), ®(E(G))(v))
for E =K or F. Via these identifications, the morphism under consideration iden-
tifies with the morphism
Hom(F, G~ ¢ 7, (0) »£ 76 7, W (0)) —
Hom(F(F), F(G) +° ¢ T, " () £ ¢ 77 (1))
induced by F. The latter morphism is injective, as noted in (9.9). It is an isomor-
phism if and only if these vector spaces have equal dimension, which in view of the

identifications above and the isomorphism (9.8) is equivalent to the condition in
the statement. O

Remark 9.16. For later use, let us record a special case in which the condition in
Lemma 9.15(2) is satisfied. We assume that A = @, and fix some simple reflections
S1y.-+y8r € Sagg and some w € Q. For E € {K,Q,F} we set

P(E) := & -+ &6, 8u(Te,, ) (B))-
(See §3.5 for generalities on tilting O-perverse sheaves.) Here we have Ty
71 S(0) = j:S.(0). In particular we have
F(T, 0) =T, F), K(T
which implies that
K(P(0)) = P(K) and F(P(0)) = P(F).

In particular, this shows that F(P(Q)) is tilting, which by standard arguments
implies that P(Q) is tilting.

If F € Pervy, (Gr,0) is tilting, then the condition in Lemma 9.15(2) is satisfied
for the pairs of objects (F,P(0)) and (P(0),F) and any v € Y. Indeed, for

A €Y, N (wo(v)+Y,) the object I*_w"(VHA(F) *£+GI*_UJ°(>‘)(IF) has a costandard
filtration (in Perv,+q(Gr,F)) by [ , Proposition 4.8], hence

(0) =

o(s)

wo (s) ( wo (5) ( L (o) (©)) = Ttwo(c) (K)’

P(F) #5C I, PN F) 576 170 (F) =
F(P(0) +£"6 I, (0) 476 77N (0))
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admits a costandard filtration (in Pervy, (Gr,F)) by Lemma 6.7 and the consid-
erations in §3.7. By standard arguments, this implies that the perverse sheaf
P(0) +£7¢ I,:w(’(”)H‘(Q) *£TC I,fw(’()‘)(@) admits a costandard filtration in the
category Pervy (Gr,0). We deduce the equality

dim Hom(F(F), P(F) «£ ¢ I, WA () £7C 17 () =
dim Hom (K(F), P(K) °" ¢ 7, "> K) #£ ¢ 7,V (K))

by the usual formula calculating dimensions of morphism spaces from a standardly-
filtered object to a costandardly-filtered object in terms of multiplicities. Similar
arguments apply in the second setting, using the isomorphism

Hom(P(E), E(F) WLa I*—wo(l/)"r)\(E) Lta I*—wo(/\)(E)) )
Hom(P(E) +*" ¢ ;" (B) £ T}(E), B(F))
for E=K or F.
We finally come to the main result of this subsection.

Theorem 9.17. For each w € Wy, there exists an indecomposable finitely gener-
ated R(OQ)-module @w(@) with the following properties:
(1) it is a direct summand of an object ® (&, - -+ &s, & (Tt
S1, 0 S €ESag, wEQ, VETY;
(2) we have IFO(@w((O))) = @w(F),'
(3) the R(K)-module K(Q,,(0)) is projective and injective, and contains the
indecomposable object @w (K) as a direct summand with multiplicity 1.

(0)))(v) for some

wo (s)

Proof. By periodicity, it is enough to prove this claim when w € Wi, Assume

this from now on. Choose s1,...,s,. € Sag and w € € as in Lemma 6.6, and for
E € {K,O,F}, let

P(E) = §S7~ e §SI§W*1 (Ttwo(q) (E))
(See Remark 9.16 for comments on this definition.)

When E = K or F, the proof of Proposition 7.4 shows that ®(P(E)) is injective
and projective, and that it contains the injective envelope Q. (E) of L, (E) as
a direct summand. More precisely, considering the baby co-Verma multiplicities
described in that proposition and comparing with Theorem 7.9, we see that in this
case:

e O(P(E)) contains O, (E) as a direct summand with multiplicity 1;
e for any other indecomposable injective object Q,(E) occuring as a direct
summand of ®(P(E)), we have y > w.

The first item above implies that we then have
(9.10) dim Hom(®(L,,(E)), ®(P(E))) = 1.

We now consider the case E = Q. Let L, (Q) be the intersection cohomology
complex associated with the constant Q-local system on Gr,,. It is well known that
K(Ly,(0)) 2 L, (K), so that (9.10) implies that

(9.11) dim Hom(®(K(L,,(0))), ®(P(K))) = 1.
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Next, let us study the analogous problem over F. The modular reduction F(L,,(Q))
is a perverse sheaf which is not simple in general; instead, there is a short exact
sequence

0— K —F(Ly,(0)) = Ly,(F)—0

where K is a perverse sheaf with composition factors of the form L, (F) with z € W3,

such that z < w (and hence z < w by Lemma 2.5(3)). By Lemma 5.8, the R(F)-

module ®(K) has all of its composition factors of the form £,/ (F) with 2z’ < w.
Apply the exact functor Hom(®(—), ®(P(F))) to the exact sequence above to
get a short exact sequence

0 — Hom(® (L (F)), ®(P(F))) — Hom(F(®(L,(0))), &(P(F)))
— Hom(®(K), B(P(F))) — 0.

By (9.10), the first term has dimension 1. The claim above on the composition

factors of ®(K) and the description of the summands @y(]F) that can occur in
O(P(F)) imply that Hom(®(K), ®(P(F))) = 0. We conclude that

(9.12) dim Hom(®(F(L,,(0))), P(F)) = 1.

Combining (9.11), (9.12), and Lemma 9.15, we see that the functor F® induces
an isomorphism

(9.13) F ®o Hom(®(L,,(0)), ®(P(Q))) = Hom(®(F(L,(0))), ®(P(F))).

Similarly, according to Corollary 9.11, the rings End(®(P(K))) and End(®(P(F)))
have equal dimensions, so by Lemma 9.15 again, the functor F° induces an isomor-
phism

(9.14) F ®o End(®(P(0))) = End(®(P(F))).

Of course, analogues of both of these isomorphisms hold if ®(P(Q)) is replaced by
some direct summand.

Let us now study the direct summands of ®(P(0)). Because O is a complete noe-
therian local ring, the finite @-algebra End(®(P(Q))) is a semiperfect ring by [La,
Example 23.3], and similarly for direct sums of copies of ®(P(0)) or direct sum-
mands of such objects. Then, by [Kr, Corollary 4.4] applied to the full subcategory
of Mod}i (R(0)) generated by ®(P(0)) under direct sums and direct summands,
the Krull-Schmidt theorem applies to ®(P(0)): this object has a unique (up to
isomorphism and reordering) decomposition into indecomposable summands

P(PO) =M@ &M,

where each M; has a local endomorphism ring. As explained above, for any i we
have a natural isomorphism

F ®0 End(M;) = End(F(M,)).

In particular, End(F(M;)) is again a local ring. In other words, each R(F)-module
F(M;) is indecomposable, and these are all the indecomposable summands of
®(P(F)). Exactly one of these summands is isomorphic to O, (F); we can therefore
assume without loss of generality that O, (F) = F(M;). We define

0.,(0) := M.
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Parts (1) and (2) of the theorem hold by construction. It remains to prove
part (3). This is equivalent to showing that

~

dim Hom(L,, (K), K(Q,,(0))) = 1.
)

To see this, observe first that since K(L,,(0)) = L,,(K), by Lemmas 9.14 and 9.15
and the construction of Q,,(0Q) we have

~

dim Hom(Z,,(K), K(Q,(0))) = dimF ®¢ Hom(®(L,,(0)), O, (0)).
Next, it follows from (9.13) that

~

dim F ®g Hom(® (L, (0)), O, (0)) = dim Hom(®(F(Ly, (0))), Qu(F)),
and the right-hand side is equal to 1 by (9.12). O

Remark 9.18. (1) Tt is possible to adapt the reasoning of Propositions 5.7, 6.5,
and 7.4 to the setting of R(Q)-modules, to show that the object P(Q)
appearing in the preceding proof is a projective object in Mod}f1 (R(0)).
Therefore, its direct summand Q,,(Q) is also projective. (Of course, it
would also be projective in mod}i (R(Q)) if one knew that the latter cat-

egory was abelian: see Remark 9.13.) Note, however, that Q,(Q) is not
injective, unlike its field counterparts: this essentially comes down to the
fact that @ is not an injective @-module.

(2) For any y,w € Wey, the @-module Hom(@y(@)), @w(@)) is free of finite
rank, and the functors K and F° induce isomorphisms

K @0 Hom(Q,(0), Qu(0)) = Hom(K(2,(0)), K(Qu(0)))
and
F ©0 Hom(Q,(0), 0w (0)) = Hom(Q, (F), O (F)).
In fact this follows from part (1) in Theorem 9.17, combined with Lem-

mas 9.14 and 9.15 and Remark 9.16.

Corollary 9.19. Let F be a tilting object in Pervy (Gr,Q). If M is a direct
summand of ®(F) which satisfies FO(M) = 0, we have K(M) = 0.
Proof. Let y € Wey. By part (1) in Theorem 9.17 and by Lemma 9.15 and Re-

mark 9.16, the @-module Hom (M, @y(@)) is free of finite rank, and the functor F°
induces an isomorphism

F ®o Hom(M, Q,(0)) — Hom(F°(M), O, (F)).

Since the right-hand side vanishes, this implies that we have Hom(M, @y(@)) =0.
Using Lemma 9.14 we deduce that Hom(K(M),K(@y(@)))) = 0, and hence that
Hom (K (M), @y(K)) = 0 by part (3) in Theorem 9.17.

Since K(M) is finitely generated, what we have shown implies that this object
has no composition factor, i.e. is trivial. ([l

The following application of Theorem 9.17 will be needed in §9.4 (where we will
show that, in fact, the dimension in question is equal to 1).

Proposition 9.20. Ifk is anyAﬁeld, then for any w € Wey the dimension of the
k-vector space Homyoqy (r(k)) (Qu(k), Qua (k)) is at least 1.



82 PRAMOD N. ACHAR AND SIMON RICHE

Proof. By periodicity (see (2.4)), it is enough to prove this property when w € WZE.
We assume this from now on.

Suppose first that k is a field of characteristic 0. In this case, according to
Remark 8.11(1) we have 0, = (Tya). The object L,a occurs as a composition
factor of T,a, so ®(L,a) is a subquotient of Qw. It follows from Theorem 3.16
and Lemma 5.2 that EwA is a direct summand of ®(L,,» ), and hence a composition
factor of @w. The result follows.

We now consider the case where k has positive characteristic. We can assume
that k is finite. Let K be a finite extension of Q; whose ring of integers O has k as
residue field. Since K(Q,,(0)) contains @w(K) as a direct summand, and likewise
for w® (part (3) in Theorem 9.17), the previous paragraph and Remark 9.18(2)
imply that the free O-module Hom(Q,,(0), O, (0)) has rank > 1. Using again
Remark 9.18(2), we deduce that dim Hom(Q,,(k), Q,a (k)) > 1 as well. O

9.4. Application: multiplicities and projective covers. We now return to the
setting of field coefficients. In the following proposition we gather the main proper-
ties of the objects Q2 some of which have already appeared in earlier statements.

Proposition 9.21. Let w,z € AWey.

(1) The object @;4 is both the injective envelope and the projective cover of Ef

(2) We have D(@f) = @f

(3) We have Avf(@f) ~ 0, and AV!A(@;?) ~Q,.

(4) The multiplicities in baby Verma and baby co-Verma filtrations of @f satisfy
the following “reciprocity laws”:

Q7 - 2y =25 : L] =23 - L) = (97 : 20)).
Moreover, these numbers are zero unless x < w =< waz®, and they are

equal to 1 when w =z or w = waz>.

A

N va(z
the projective cover of £Z'. In view of (9.5), parts (1) and (2) are both equivalent
to the claim that

(9.15) talz) =z for all € AWox.

Recall the map ¢4 defined in (7.5), characterized by the property that 9) ) is

Proof. Let us start with part (4). The first equality has already been noted in (9.7).
The second one is part of Lemma 9.4. Finally, since @;‘ admits both a baby Verma
filtration and a baby co-Verma filtration (see Theorem 7.9(2) and Proposition 9.7),
the equality (Q4 : Z/4) = (@4 : ZA) holds by Remark 9.6. Most of the last
assertion of this part has already been established in Corollary 7.5; it only remains
to show that

(9.16) [Z/A LY =1 forall 2 € " Wey.

wazd
We will return to this later in the proof.
We will now prove parts (1) and (2). Observe that by applying D, we have

(D(Q) : 214 = (97 : 22
for all 2 € AWx;. Now Remark 9.9 and the equalities from part (4) show that there

exists a unique minimal element z (with respect to <) such that the right-hand side
is nonzero, namely . Since D(Q4) is an indecomposable injective object, in view
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of Remark 9.9 again this implies that ]D)(@;?) = @;?, proving part (2). As noted
above, this claim is equivalent to that in (1).

For part (3), the first isomorphism was already established in Theorem 7.9(3).
The second one follows by Verdier duality; alternatively, since we now know that
@w is the projective cover of Ex, one can repeat the argument from the proof of
Theorem 7.9(3) to show that Avi'(Q4) = Q,.

It remains to prove (9.16). By Corollary 7.5, we at least know that [ZA’A N

waAxT
£f] < 1. Suppose in fact that this multiplicity is 0 for some z. By the portion

of part (4) that is already proved, we see that the baby co-Verma modules ZAZ’IA
appearing in a baby co-Verma filtration of @f all satisfy © < y < waz®. Using
Corollary 7.5 again, we see that the composition factors of Q4 are of the form £

o~

with z < waz®; in particular, [Q4 : /33”&] — 0, and hence Hom(Q4, @iMA) =0.
If A = @, this contradicts Proposition 9.20, and we are done. Before passing to the
case where A # @, let us note that once we know that (Q, : ZA;A) = 1, then by
Remark 7.8 we know that ZA; » is actually a quotient of Qw

Let us now finish the proof of (9.16) in the case where A # &. Since EZ‘)MA is the
socle of ZA{U‘ZJCA, the equation [O% : Z’ﬁAgEA] = 0 implies that Hom(Q%, Z:’U"}L‘IA) =0.
We have

0 = Hom(Q2, 24 .) = Hom(QZ, Avii(Z)4))
= Hom(Av{* (G4, 2/ ) = Hom(Q,, Z'..),

where the second equality uses Lemma 6.3(2), the third one follows from adjunction,
and the last one uses part (3). This contradicts the previous paragraph, and thus
finishes the proof. O

9.5. Further properties of baby Verma and baby co-Verma modules. In
this subsection, we prove a number of statements exhibiting a symmetry between
baby Verma modules and baby co-Verma modules.

We start with the following corollary of Proposition 9.21.

Lemma 9.22. For any w € “Wey, the object ZA;UﬁwA has a simple head, and the

object ZA{:‘AwA has a simple socle, both isomorphic to L2.
Proof. Proposition 9.21(4) and Remark 7.8 imply that ézluiwﬁ is a quotient of @ﬁ,
so like Q4. it has a simple head, isomorphic to £2. The claim for ZﬁAw ~ follows

by Verdier duality. ([l

Below we will require the following combinatorial lemma.

A

Lemma 9.23. The map AWt — AWt given by w — waw= s a bijection.

Note that w w? at least lies in “Wey; by Remark 7.2(1). This lemma may have
a purely combinatorial or alcove-geometric proof, but we will give an argument that
relies on properties of R-modules and is intertwined with the proofs of the next
two statements in the following way:
Lemma 9.23 Prop. 9.24 Prop. 9.25 Lemma 9.23 Prop. 9.24 Prop. 9.25
for A=@ 7 forA=@  forA=g for any A = for any A for any A °

Proof of Lemma 9.23 for A = &. The inverse map is given by (2.5). O
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Proposition 9.24. Let w € AWey.

(1) The object é\;iwA is the projective cover of Ef, in the Serre subcategory of

mod?;AKA)(R) generated by the simple objects Eﬁ with way™ A waw®.

(2) The object ZAwAwA is the injective hull of Eﬁ in the Serre subcategory of

modgAwA)(R) generated by the simple objects E;‘ with way”™ 4 waw®.

Proof assuming that Lemma 9.23 holds for A. We will prove the claims for 2{0 fi WA
Those for Z\;’j‘Aw » follow by Verdier duality.

We have already seen in Lemma 9.22 that 21’1 i‘ w4 has a unique simple quotient,

isomorphic to Eﬁ Next, we must show that 2:7\1’;: wa lies in the Serre subcategory
described in the statement. This is a consequence of Corollary 7.5, which tells us
that

[ZA{U’L;wA (LA #£0  implies  wav® = waw®.

Finally, to show that ézﬁwﬂ is the projective cover of 27‘3 in this Serre subcat-
egory, we must show that
Extl(é’\{v’iwmfﬁ) =0 ifway® Awaw®.
As noted in the proof of Lemma 9.22 there is a surjective map @\7‘3 —» gzlutwﬁ
whose kernel K admits a baby co-Verma filtration. Since Q: is projective, we have
a surjective map Hom(K, L) — Ext' (24 ., L3}). So it is enough to show that

wa
(9.17) Hom(K, E;‘) =0 ifway® Awaw”.

By Proposition 9.21(4), the baby co-Verma modules which occur in a baby co-Verma
filtration of IC have their labels that lie between w and w4w? in the period order.
More precisely, by Lemma 9.23, the terms of the baby co-Verma filtration can be

written as é\q’izﬁ with w < waz® < waw?®. By Lemma 9.22, the unique simple

quotient of ZA{U‘iZA is Ef, SO Hom(ZAq’;tzA,E‘y“) =0if y # 2, ie. if way® # waz>.
This implies (9.17). O

Proposition 9.25. For w,w’ € AWoxt, we have

ZA ZIA\ ~ ZIA ZA
EXtZlodEA XA)(R) (25, Zw/) = EXt’rnlnodzA XA)(R) (2.5, Zw)

L)k fw=w andn=0,
|0 otherwise.

Proof assuming that Proposition 9.2/ holds for A. The claims for Ext" (ZA£, ZA{U‘L})

are contained in Lemma 9.8. Recall that this lemma comes from the general theory

developed in [BS]; it is available here because, as shown in the proof of Theorem 7.9,

modaf\’ ¥ A)(R) is an essentially finite highest weight category with respect to the

poset, (A Wy, <).

Define a new order <0 on 4Wey by declaring that w <y if waw? = way®. Using
Proposition 9.24, one can show that modzf’ x,)(R) admits a second structure as
an essentially finite highest weight category, this time with respect to the poset
(A Wexs, <). In this context, baby co-Verma modules are standard objects, while
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baby Verma modules are costandard objects. We omit the details, as they are very
similar to those in the proof of Theorem 7.9.

The claims in the proposition for EX‘U"(ZA;‘L}, 2{;‘) then follow from the analogue
of Lemma 9.8 for this new highest weight structure. [

Proof of Lemma 9.23 for A# @. In view of (2.5), the rule w — waw® gives a
bijection Weyy — Wexs, so the induced map AWy, — AWeye (see Remark 7.2(1))
is at least injective. We must prove that it is also surjective.

Let v € AWy, and choose a simple quotient of Z’}A, say Eﬂ Since Eﬁ is the
socle of Z?’;‘Aw ~ by Lemma 9.22, the following groups are all nonzero:

Hom(Z/*, Z24 | ~) 2 Hom(Av(Z)), AV (2,05 )
= Hom(gA(é\zl))’ 211;A11)A) = Hom(AVf(é\LA)v é’;wAwA)a

where the isomorphisms follow from Lemma 6.3(2) and adjunction. The description
of the baby co-Verma filtration of AvZ(Z/4) in Lemma 6.3(3), together with the
“@” case of Proposition 9.25, imply that

Soas o 1 if A€ Wyv,
dim Hom(AvA(2/4), 2, wa) =4 A% AV
0 otherwise.
So we must have W4v = Ww?. Since both v and ww? belong to Acht, using
Lemma 2.3 we conclude that v = waw?, as desired. (]

9.6. More on injective R-modules and tilting perverse sheaves. We con-
clude with a complement to Proposition 7.11(1). The following statement can be
regarded as a geometric counterpart of [Ja, Lemma E.§].

Proposition 9.26. Let w € AWS5,. The object ®A(T2) is a projective (equiva-

lently, injective) R-module if and only if w = waz® for some x € AWS,.

Proof. The “if” direction is Proposition 7.11(1); we need only prove the “only if”
direction.

First we treat the case when k has characteristic 0. Assume that ®4(T4) is
injective. Then the functor

HommodEéYXA)(R)(q)A(_)v o4 (Ty)) = Hotpery 4, (G (= T %476 Ry)
(where the identification follows from Lemma 5.1) is exact. As explained in §5.3,
since k has characteristic 0, the skyscraper sheaf ZC® is a direct summand of R,
so Hom(—, T4 «£7¢ 7¢%) = Hom(—, T4) is an exact functor. That is, T4 is an
injective object in Perv(I‘fx’XA)(Gnk). This object is also indecomposable. From
the classification of indecomposable injective objects in Theorem 7.1, we see that
TA =~ TSMA for some x € AW5,; we then have w = waz?®.

Now suppose k has positive characteristic, but that A = @. We may assume
that k is finite. Choose a ring O as in §9.3 that has k as its residue field, and let K
be its fraction field. Let w € W2, , and assume that ®(T,(k)) = ®(k(T,,(0))) is
injective. Then there exist wq, ..., w; € Weyt and an isomorphism

(9.18) B(Toy (k) 2 Qu, (k) ® Oy (k) ® -+ ® Qo (K).



86 PRAMOD N. ACHAR AND SIMON RICHE

In view of part (1) in Theorem 9.17, Lemma 9.15 and Remark 9.16 imply that the
morphisms

~

k X0 HOIIl((I)(Tw (@))7 le ((O)) oD Q\wk ((O))) -
Hom(® (T, (k)), Qupy (K) & - - - & Oy (K))

and
k ®0 Hom(Qy, (0) @ - - - @ Oy, (0), ®(T4(0))) —
Hom(@wl (k) D---D @wk (k)7 (D(Tw(k)))

induced by k% are isomorphisms. Using (9.18), we deduce that there exist mor-
phisms R R
[:2(Tw(0)) = Qu, (0) ® -+ ® Qu, (0)
and R R
g: le (©) DD ka (@) - q)(Tw(@))
such that k°(f) and k°(g) are mutually inverse isomorphisms. Similarly, by Re-

mark 9.18(2), End(Q,, (0) & - - - & @wk (0)) has finite rank over O, and the functor
k° induces an isomorphism

k ®Ro End(@wl (@) b---D ka (@)) — End(@wl (k) S éwk (k))
In view of Lemma 9.27 below, this implies that f o g is an isomorphism, and hence

that Oy, (0) @ -+ ® Oy, (0) is a direct summand in ®(T,,(0)). In other words,
there exists M in Mod}i (R(0)) and an isomorphism

O(T,(0)) = (9w, (0) & -+ & O, (0)) & M.

We have k(M) = 0, so by Corollary 9.19 we have K(M) = 0 as well. This implies
that the object ®(K(T,,(Q))) is also injective. This object contains ®(T,,(K)) as
a direct summand, so ®(T,,(K)) is injective. The field K has characteristic 0, so
by the previous paragraph, we conclude that w = z* for some x € W3,, which
completes the proof in this case.

Finally, we consider the case where k has positive characteristic, but A # &.
Let w € AWS,, and suppose that ®4(T4) is injective. Then AvZ2(®4(TA)) =
®(Av2(TA)) is also injective. By Proposition 3.12, the latter is isomorphic to
®(Ty ). By the previous paragraph, we must have w w = 2, or w = wax®, for
some T € Wg(t. On the other hand, Lemma 9.23 implies that there exists y € AW ot
such that w = way®. The injectivity of the map z — 2® implies that = = vy, so
that this element belongs to W3, N AW, = AWS5,, which finishes the proof. [

ext?

Lemma 9.27. Let O be the ring of integers in a finite extension of Qq, let F be
its residue field and let A be a finite Q-algebra. If a € A is such that its image in
F ®p A is invertible, then a is invertible.

Proof. Let w be a uniformizer in @. Then by completeness it suffices to prove
that the image of a in each A/@w™A (n > 1) is invertible. This is checked by
induction, the case n = 1 being true by assumption. If we know that a is invertible
in A/w™A, and if b € A has image in A/w™A the inverse of a, then ab =1+ w"c
for some ¢ € A. If d € A has image in A/wA the inverse of a, then ad € 1 + wA,
hence a(b — w"dc) € 1 + w™ ™t A, which shows that a is invertible in A/w™ 1A, as
desired. O
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