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A database of polarimetric and multispectral images in
the visible and NIR regions

Pierre-Jean Lapraya, Luc Gendrea, Alban Foulonneaua, and Laurent Biguéa

aIRIMAS, EA7499, Université de Haute-Alsace, Mulhouse, France

ABSTRACT

Multi-band polarization imaging, by mean of analyzing spectral and polarimetric data simultaneously, is
a good way to improve the quantity and quality of information recovered from a scene. Therefore, it can
enhance computer vision algorithms as it permits to recover more statistical information about a surface
than color imaging. This work presents a database of polarimetric and multispectral images that combine
visible and near-infrared (NIR) information. An experimental setup is built around a dual-sensor camera.
Multispectral images are reconstructed from the dual-RGB method. The polarimetric feature is achieved
using rotating linear polarization filters in front of the camera at four different angles (0, 45, 90 and 135
degrees). The resulting imaging system outputs 6 spectral/polarimetric channels. We demonstrate 10
different scenes composed of several materials like color checker, high reflecting metallic object, plastic,
painting, liquid, fabric and food. Our database of images is provided online as supplementary material
for further simulation and data analysis. This work also discusses several issues about the multi-band
imaging technique described.

Keywords: Polarimetric imaging, spectral imaging, image database

1. INTRODUCTION

Polarimetry is the analysis of the wave oscillation of the electric field of light beams. The light could be
unpolarized or polarized (fully or partially) under a given direction. Several animals like fishes, insects,
reptiles or birds are capable to perceive polarized light,1 whereas humans can not. Thanks to specific
photoreceptors, the polarized light vision helps the survival of animals by reacting according to their light
environment. Additionally, some animals need accurate color vision, e.g. the honeybees to search for
flowers as nectar or pollen sources. Polarimetric imaging techniques use this polarization phenomenon,
for example, in computer vision applications like specular and diffuse separation,2 target detection,3

shape estimation4 or material classification.5

Multispectral imaging has been found to be of great interest in the last few decades. It is a mode
commonly reported in the literature for the enhancement of the color reproduction,6 background sub-
traction,7 shadow detection8 or illuminant estimation.9 In most of natural scenes, even in presence of
manufactured objects, reflectance spectra are relatively smooth functions across wavelengths. Neverthe-
less, three-channel camera appears to be insufficient to estimate accurately the spectral reflectance of a
surface: there are several different spectra power distributions that could correspond to the same RGB
digital camera values. Thus, spectral ambiguity can be reduced by increasing the number of spectral
channels. It has been found that spectral reconstruction images using few bands could have a perfor-
mance close to that of hyperspectral imagery, but with higher spatial resolution, lower acquisition time,
cost and complexity.10 In the literature, the discrimination between hyperspectral and multispectral
imaging systems seems to be not well defined. The difference lies mainly in the number of bands used
to capture the information distributed in a given wavelength range. Thus, multispectral imaging has
generally less spectral sensors than hyperspectral for the same sensed spectrum, with wider band sen-
sitivities. But the band-pass filter design with extremely narrow or wide responses per band could not
reach to a satisfactory result in term of spectral reconstruction.11 Typically, examples in the literature
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show that multispectral imaging in the visible could be achieved by using six channels with good spectral
estimation.12

Methods for multispectral imaging in the visible domain could also be extended to near-infrared
spectrum. Measuring intensities in both the visible and Near-InfraRed (NIR) spectra has gained in
interest in recent years. NIR light is material dependent. For example, several paints with the same green
colorization pigment, but composed by different binding agents, will reflect differently NIR light. NIR
light can also penetrate deeper in materials than visible wavelength. New emerging imaging applications
exploit the joint acquisition of visible and NIR for image dehazing,13 semantic segmentation,14 plant
analysis or image denoising.15

Recently, mixing spectral and polarimetric information into a multi-band bio-inspired acquisition
system has become an emerging research subject.16–19 Some recent advances in designing new sensor
technologies enable the acquisition of spectropolarimetric information in a snapshot way.20 Like for
Bayer sensors, micro-polarizer filters can be attached directly in front of the pixel array, so that each
photo-diode senses a different direction of the linearly polarized incoming light. Few works exploit the
correlations between reflectance and degree of polarization of a polarized light beam reflected onto a
surface.21 It appears that the spectral and polarimetric signatures of objects seem correlated.

We thought that data coming from spectropolarimetric imaging systems are still under-exploited,
sample of multi-band images are not available, and dedicated imaging pipeline is still an open subject.

This paper tries to deal with these statements. The contributions of this work are:

� A practical imaging pipeline, including a calibration procedure, and recovering of spatial, spectral
and polarimetric data from a set of photographs,

� A database of multispectral and polarimetric images of various materials in the visible and near-
infrared part of the spectrum,

� Analysis and discussion of joint reflectance and polarimetric estimations.

We begin the paper by the imaging model definition in Section 2. We then present, in Section 3, a
laboratory setup and an imaging pipeline for recovering images that span the visible and near-infrared.
We then describe the captured image database in Section 4, before to conclude in Section 5.

2. IMAGING MODEL

Most of the imaging algorithms, like spectral reconstruction or Stokes parameter estimation, consider
linear optical models plus an additive noise model to characterize the detector used. In the following
section, we will describe the linear models for both spectral and polarimetric imaging.

2.1 Spectral reflectance estimation

The output camera responses are relative to the integration of all the energy that reaches the sensor
weighted by the sensitivities of each camera band. Optical elements (i.e. the bandpass and polarimet-
ric filter transmissions) participate to the global camera sensitivity. Assuming already noise-corrected
camera responses, the camera response model spanning the visible and near-infrared wavelengths can be
described by the following equation:

ρi =

∫ λ=1000

λ=420

E(λ)R(λ)O(λ)Ci(λ)dλ, (1)

where ρi is the camera response of the i ’th channel, E(λ) is the spectral emission of the illuminant, R(λ)
is the reflectance, O(λ) is the global transmittance of all the optical elements and Ci(λ) is the spectral
sensitivity of the i ’th channel.
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We now assume that the spectral functions are sampled at n points with the same interval ∆λ in the
range [420, 1000nm]. The previous relation becomes:

ρi =

λ=1000∑
λ=420

E(λ)R(λ)O(λ)Ci(λ) (2)

The spectral behavior of elements from the factor E(λ)O(λ)Ci(λ) are often partially or inaccurately
known, or some of them may change over time. We make the assumption that spectral radiance of the
illuminant and optical transmittance are fixed, so we merge all the terms into a k × n sensor matrix
that we call M, where k is the number of channels of the imaging system. Let R be the n× 1 spectral
reflectance factors of the surface, and ρ a k × 1 matrix of sensor responses, we can simplify the model
and summarize the relationship into a matrix scalar product as follows:

ρ = MR, (3)

where M is the spectral measurement matrix, including the camera spectral sensitivity weighted by the
illuminant power distribution and the optic transmittance effects. It then defines k linear equations with
n unknowns.

Reflectance reconstruction is an inverse problem. Multiple algorithms exist to perform this task, like
Wiener estimator,22 Maloney and Wandell,23 Imai and Berns,24 polynomial25 or R matrix26 methods.
Some of the methods are specific to noise level, spectral power distribution of illuminant or require
accurate spectral sensitivities of the camera. We want to remain as general as possible, and as our
acquisition system has no accurate characterization data for camera sensitivities and spectral power
distribution of illuminant (not completely provided by the manufacturer), we choose a simple linear-
model approach. Reflectance reconstruction from multispectral images is valid if the same illumination
is used for system calibration and image acquisition. After determining M (calibration procedure will
be described in Section 3.3), any given spectral reflectance could be estimated from camera responses
using this equation:

R̂ = M−1ρ (4)

To recover reflectance data from measurements, with sampled data at each 10nm in the range of
[420, 1000nm], we typically need 59 sensors. But for reflectance recovery using multispectral acquisi-
tion system, state-of-the-art shows that a smaller number of sensors could be used.12 The practical
implementation in this paper will define a 6-band acquisition system in the Section 3.

2.2 Stokes estimation

Linear Stokes vectors are derived from irradiance measurements. They are measured by rotating a linear
polarizer in front of a radiometer. In case of ideal polarizing elements, the detected light intensities are
generally expressed by:

I = AS, (5)

where S is the input Stokes vector, I is the vector containing camera responses recovered from a set
of images taken using a linear polarizer, usually oriented at four specific angles 0°, 45°, 90° and 135°.
The vector thus contains four light intensities such as I = [ρ0,ρ45,ρ90,ρ135]T . A is the polarimetric
measurement matrix and its ideal expression is given by:

A =
1

2


1 1 0 0
1 0 1 0
1 −1 0 0
1 0 −1 0

 . (6)
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Figure 1. Practical imaging pipeline. It includes acquisition, calibration and estimation steps. Raw images are
captured using linear polarizers oriented at four polarization angles, and using the dual-RGB method described
in Section 3.1.

Estimation of any incident Stokes vector from camera responses can be done using the following
equation:

Ŝ = A+I (7)

In real cases, deviation from ideal matrix may occur, because of diattenuation, retardance and depo-
larization effects of optical elements that compose the polarimeter. A calibration step is then needed to
estimate the measurement matrix properly. A practical calibration procedure will be described later in
Section 3.3.

The Stokes vector is function of wavelength and angle of light beam incidence. In typical cases where
Stokes vector is measured using coherent illumination at a single wavelength, one simple calibration
step is needed. But for broadband measurement, we have to consider independently the polarization
properties of optical elements that composes the analyzer. In case of using discrete imaging elements
(i.e. pixel), bandpass filters, and under a single angle of view, Stokes measurement is determined from an
average of irradiance measurement over area, wavelength and solid angle. If we consider a multispectral
system with relatively narrow bands, the spectral dependence of A has to be considered, so that each
channel i senses a different Stokes vector.27

From these statements, the Equation 7 becomes:

Ŝi =


ŝ0,i
ŝ1,i
ŝ2,i
0

 = A+
i Ii, (8)

where A+
i is pseudo-inverse of the measurement matrix resulting from the calibration procedure over

different spectral bands i.

2.3 Multi-band imaging pipeline

Our goal is to capture both spectral and polarimetric data. Starting from the previous model definitions,
we propose a pipeline containing all processing steps needed. The global imaging pipeline is shown in
Figure 1.

First, we start from raw images containing both spectral and polarimetric data. Spectral and polari-
metric information is recovered by acquiring multiple images, using a set of optical elements, i.e. filters,
moving in front of the camera. We use the dual-RGB method to produce 6-band images from an RGB
recombination of images taken in front of bandpass filters (blue-green and yellow filters).28 Moreover, a
linear polarization filter is used for analyzing the polarization states, using 4 polarization angles. Due to
misalignment and optics effects, a registration step is then applied. Then, digital values from the camera
have to be corrected for non-linearity and fixed-pattern noise (dark offset and spatial nonuniformity
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of the lighting), as it is done in intensity/color imaging. Then, spectral and polarimetric calibration
steps are implemented. We will describe later the calibration steps. Finally, polarimetric descriptors
estimation and then spectral reconstruction are done following the models established in Section 2.1 and
2.2.

In the following section, we will describe the practical implementation of the pipeline.

3. IMAGE ACQUISITION

3.1 Experimental setup

(a) (b)

(c) (d)

Figure 2. Dual-RGB camera response definition using the JAI camera and two absorptive filters; yellow (y) and
blue-green (bg). (a) Spectral sensitivities of the JAI camera. (b) Spectral transmission of the polarimetric (for
unpolarized light) and the pair of bandpass filters. The RGB inter-channel combinations in (c) define the final
6-band normalized sensitivity of our acquisition system in (d).

Acquisition setup is shown on Figure 3.

The main elements that compose the acquisition chain is a prism-based 2CCD camera (JAI AD-
080GE). This two-sensor system permits to simultaneously capture visible and near-infrared light with
1024 × 768 active pixels per channel. The quantization level is 12-bit for the NIR channel and 12-bit
output for raw Bayer output.

Multispectral measurements often require complex and expensive devices. A method to design a
multiple spectral band acquisition system using a conventional RGB camera was introduced by Berns et
al.28 It was originally composed by a color camera and a pair of bandpass color filters. The principle
is as follows: filters are positioned one by one in front of the RGB camera, one image is taken for each
filter, then RGB bands of the two images are recombined to emulate multispectral acquisition (a camera
with more than 3 bands). The two bandpass filters are the blue-green BG39 (bg) and the yellow GG475
(y) filters manufactured by Schott Glass Technologies, Inc. Multispectral images Ii are reconstructed
from a set of 3 different images Imbg, Imy, Imnir. Figure 2 shows the spectral response of the system
using the dual-RGB method.

Polarization data are recovered using two linear polarizing filters, one for the visible band (LPVISE100),
and one for the near-infrared band (LPNIRE100). We selected two different polarization filters instead of
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Figure 3. Experimental setup for capturing the database. The angle of incidence is set to 45° to get a sufficient
polarization component of light at the input of the imaging system.

one to get nearly-flat transmissions in the two ranges considered (visible and near-infrared). These filters
are attached to two precision motorized rotation stages (Agilis�Piezo Motor Driven Rotation Stages).
A relative alignment between the two filters was done, so that both filters share the same reference
angle. The stages are fixed to a translator stage to place accurately the polarizers in front of the camera.
Images are taken with four polarization orientations (0°, 45°, 90° and 135°). We selected two different
polarization filters instead of one to get nearly-flat transmissions in the two ranges considered (visible
and near-infrared).

The lighting system is a tungsten-filament lamp. This light source is positioned at approximately
100cm from the target. The distance between the scene and the camera is approximately 50cm.

Scenes are all acquired with the same incident angle of 45°. It has been previously shown that a 10°
window around the Brewster angle is sufficient to get a significant polarization.

3.2 Registration

The mechanical movement of the whole set of filters (polarimetric and bandpass), along with the distor-
tion induced by the prism inside the camera resulted in a misalignment among images. After studying
this effect, it is stated that only translation differences effectively affects the images. We select the
method developed by Evangelidis29 to align the image set. The Matlab toolbox is directly available in
the public domain (Image Alignment Toolbox). We selected the Imnir

0 as a reference alignment image.

3.3 Calibration

3.3.1 Radiometric calibration

CMOS and CCD elements collect charges that are generally proportional to irradiance. But non-linear
responses could occur due to electronic amplification, analog-to-digital conversion, saturation, etc. More-
over, many digital camera manufacturers apply some non-linearity mapping in the output pixel values
to match and compensate for the inverse of non-linear display systems. As polarization descriptors are
mainly derived from relative differences among intensity images, huge errors could appear in results.30

The linearity of our camera was investigated using neutral patches from the ColorChecker Classic chart,
along with the method described in the literature.31 It has been found that the camera has a near-
to-linear behavior, so it exists a relationship between irradiance and pixel brightness. A small gamma
function is applied for each band to get the final linear responses.

Additionally, we also correct images for dark noise and spatial nonuniformity of lighting, by employing
the methods from state-of-the-art.31

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



colorchecker

111,11111.11111111111,1111+1thotor"

0.8

m 0.6
Ú

0.4

0.2

0
420 500 600 700 800

Wavelength (nm)

900 1 000

*MOW

0.8

m 0.6
Ú

0.4

0.2

0
420 500 600 700 800

Wavelength (nm)

"-A íGi_--. -`__.i
900 1 000

3.3.2 Spectral calibration

A set of known reflectance spectra are employed to recover the model parameters, i.e. the matrix M from
Equation 3. We choose the Xrite Macbeth ColorChecker PassPort (MCCPP) as a training and testing
chart. Training reflectance data Rtrain are from the patches of the ColorChecker Classic chart, whereas
test reflectance data are from the patches of the Creative Enhancement chart. The testing chart is used
to verify the spectral estimation behavior of our system after calibration. Figure 4 shows the spectral
behavior of both ColorChecker Classic and Creative Enhancement charts in the visible and near-infrared
parts of the spectrum. According to the model described in Section 2, we calibrate the matrix M using
the pseudo-inverse method. M−1 is estimated using the linear regression as follows:

M̂−1 = Rtrainρtrain
+, (9)

, where ρ+ is the right pseudoinverse of ρ.

(a) (b)

(c) (d)

Figure 4. (a) sRGB visualization of the training target (ColorChecker Classic chart) used for spectral calibration.
Color versions are obtained using a linear color transform from 6-band to XYZ, and from XYZ to sRGB. (b)
Spectral reflectance of the 24 patches of the training target.32 (c) sRGB visualization of the 26 patches the
testing target (Creative Enhancement Chart). (d) Spectral reflectance of the testing target. Thanks to Dr.
Yusuke Monno for providing the measurement data of this chart from his work.33

3.3.3 Polarimetric calibration

We could summarize the calibration procedure as follows: starting from a light source (tungsten in our
case), an integrating sphere is used to get unpolarized light, and a Newport 10LP-VIS-B linear polarizer
is rotated to generate Q reference input Stokes vectors. For each spectral band i and for each generated
reference Stokes vector, intensities vector [ρ0, ρ45, ρ90, ρ135]T is measured, leading to the following system
:

Ii =


ρ0,i,1 ρ0,i,2 . . . ρ0,i,Q
ρ45,i,1 ρ45,i,2 . . . ρ45,i,Q
ρ90,i,1 ρ90,i,2 . . . ρ90,i,Q
ρ135,i,1 ρ135,i,2 . . . ρ135,i,Q

 = Ai


S0,i,1 S0,i,2 . . . s0,i,Q
S1,i,1 S1,i,2 . . . s1,i,Q
S2,i,1 S2,i,2 . . . s2,i,Q

0 0 . . . 0

 (10)

where A is the 4 × 4 polarimetric measurement matrix to be estimated, and s0−2,i are the linear Stokes
parameters of the incident light for each spectral band i. The calibration procedure with Q = 4 is
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performed to recover an estimation of A for each band i. Thus, the ideal matrix in Equation 6 is
replaced by the calibrated matrix. Once calibration is done, any input Stokes vectors could be estimated
using the Equation 8 described in Section 2.

4. DATABASE AND DISCUSSION

(a) ColorChecker Classic (b) ColorChecker creative
enhancement

(c) Painting

(d) Glass (e) Fake & real leaves (f) Potery

(g) Food (h) Fabrics (i) Liquid

(j) Knife

Figure 5. sRGB visualization of the 10 scenes that compose the spectral and polarimetric database. The angle of
incidence is 45°. The database can be downloaded at https://github.com/pjlapray or by simple request by email
to the corresponding author.

The RGB versions of the different scenes that compose the database are represented in Figure 5. The
imaging dataset is organized with the following items (and thus folders):

1. Raw: the 12 raw images, registered and radiometrically corrected,
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2. Multispectral: the set of 6-band multispectral images taken at four polarization angles (0°, 45°,
90° and 135°), after dual-RGB recombination of bands.

3. Data: contains the matrices resulting from the spectral and polarimetric calibrations. It is useful
for Stokes and reflectance estimations.

The files can be downloaded at https://github.com/pjlapray or by simple request by email to the cor-
responding author, where a zip file contains directories, one directory for each of the scenes. Figure 6
shows an example of different processed images from the scene called ”Painting”.

4.1 Spectral estimation evaluation

Spectral reflectances estimation is evaluated using the MCCPP. The linear model method from Equa-
tion 4 is applied over the camera response values. Figure 7 and 8 shows the estimated and measured
(reference) spectral reflectances of the 26 patches of the Creative Enhancement chart in the visible and
near-infrared parts of the spectrum respectively. The RMSE (Root Mean Square Error) has been selected
as a spectral metric. It is defined by:

RMSE =

√√√√ 1

n

n∑
j=1

[R̃(λj) −R(λj)]2 (11)

From the spectral plots, we see that the estimations are very close to the ground truth in the visible
part of the spectrum (420 − 720 nm). It is fairly good in the near-infrared parts of the spectrum when
reflectance is near to flat (720 − 1000 nm). But it fails in the near-infrared spectrum when spectral
behavior of patches are varying widely. It is due to the large spectral gap that exists between the
channel 5 and 6 (see Figure 4(d)) of the acquisition system.

4.2 Discussion

There are several aspects that we identified, and that could potentially be investigated in the future.

First, the spectral bands of dual-RGB cameras appear to be inequitably balanced in terms of energy.
Thus, noise affects inequitably the resulting multispectral images. Correction could be done by filter
design consideration32 or by a pre-processing imaging pipeline using High Dynamic Range imaging.34,35

Moreover, several state-of-the-art works handle with optimal filter selection to get a better reflectance
estimation.36 This selection is done using specific bandpass filters from a set of available manufactured
filters. In our case, we took the same bandpass filters as in Berns et al.,28 because we found that the
resulting sensitivities are well uniformly spaced (see Figure 2).

Secondly, drawbacks on spectral estimation errors have to be considered for all materials. In this
work, reflectance estimation is done using training data that is not very representative of all natural and
man-made surface of objects tested. More robust spectral calibration using a more evolved method and
more materials could be employed for a better estimation.

A significant polarized component exists from the objects due to the incident angle of light (45°).
It appears that a lot of highlights could be removed using polarization processing. Fully polarization
filtered images (Ûi) can be produced by the following equation:

Ûi = ŝ0,i −
√

(ŝ1,i)2 + (ŝ2,i)2 (12)

Figure 6(t) is a sRGB representation of data using this polarization component removing. We can
see that a lot of specular polarized highlights are removed. Thus, it would be interesting to evaluate
reflectance reconstruction and calculate RMSE using different kinds of data from the pipeline outputs:
light intensity (Ŝi), single-angle polarization filtered (ρi), and fully filtered polarization(Ûi). This study
will be done in the future.
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Dynamic range of values is an important parameter in polarimetric acquisition, because quality of
polarimetric descriptors are very sensitive to noise in images acquired.37 Moreover, scenes containing
specular highlights needs to capture a wide range of intensities. Well-known High Dynamic Range (HDR)
technique38,39 could be employed to resolve these issues. Taking multiple exposure times of the same
scene, and combine them into a relative radiance map seems to be a valid method. In order to not
increase the complexity of the imaging acquisition pipeline, we preferred not to use such method, but
evaluation of polarimetric and multispectral image quality using HDR will be considered as a future
work.

We are aware that our imaging technique is not suitable for practical imaging in outdoor environment,
as it is relatively slow for capturing data. Real-time achievements of hybrid spectral/polarization capture
is at his very beginning, and we believe that investigating dedicated imaging pipeline for these future
device is an important subject of research. Our goal was to investigate an imaging pipeline, as well as
providing some real data to the community, thus snapshot imaging is off topic here.

5. CONCLUSION

Joint spectral and polarimetric capture were investigated in this work. We define an imaging model that
permits to recover both spectral reflectance and Stokes estimations. We developed an experimental setup
that implements the imaging pipeline, and provide data calibration and image dataset as supplementary
materials.

The data presented in this work allow to analyze, for example, the degree and angle of polarization
for each spectral band. Further analysis would be interesting to study the correlations between spectral
and polarization signatures of different materials in the visible and near-infrared range of the spectrum.
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(e) 0° (f) 45° (g) 90° (h) 135°

(i) 0° (j) 45° (k) 90° (l) 135°

(m) ŝ0 band 1 (n) ŝ0 band 2 (o) ŝ0 band 3 (p) ŝ0 band 4 (q) ŝ0 band 5 (r) ŝ0 band 6

(s) Simple RGB (t) sRGB transform after polarization
component removing

Figure 6. Visualization of the painting scene. (a)-(d) Raw images through the blue-green filter. (e)-(h) Raw images
through the yellow filter. (i)-(l) Near-infrared raw images. (m)-(r) Multispectral ŝ0,i images reconstructed from
the dual-rgb method and using the pipeline described in Figure 1. (s) Simple color image taken from the RGB
sensor without any filters. (t) sRGB visualization from a linear transform of multispectral images to sRGB, after
removing the polarization component.
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Figure 7. Measured and estimated spectral reflectance of the creative enhancement chart in the visible part of
the spectrum (420 − 720 nm). Measured data is from a spectrometer and is used as a reference.

Figure 8. Measured and estimated spectral reflectance of the creative enhancement chart in the near-infrared
part of the spectrum (720 − 1000 nm). Measured data is from a spectrometer and is used as a reference.
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