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Introduction

The fluctuations of ocean variables are a primary driver for fish populations [START_REF] García-Barón | Essential ocean variables and high value biodiversity areas: Targets for the conservation of marine megafauna[END_REF].

This environmental control has taken on particular importance in the context of global climate change, which affects numerous oceanic factors that may impact marine fauna [START_REF] Brander | Impacts of climate change on fisheries[END_REF]. Due to the complexity of the mechanisms involved and the interactions between space-and time -varying driving factors, understanding the effect of climate change on these populations may prove to be tricky [START_REF] Rijnsdorp | Resolving the effect of climate change on fish populations[END_REF]. The effects of climate change on environmental factors, such as modifications of the water cycle, are expected to differ among geographic areas (IPCC, 2007), both at global and regional scales. For instance, river runoff and precipitation are expected to increase/decrease in northern/southern Europe, respectively [START_REF] Frei | Future change of precipitation extremes in europe: Intercomparison of scenarios from regional climate models[END_REF].

Likewise, ocean water properties are exposed to global change-induced modifications, such as the significant increase in salinity, which was observed during the three last decades in the northern part of the Atlantic ocean [START_REF] Stott | Detection and attribution of atlantic salinity changes[END_REF].

Several effects of environmental changes due to global warming on fish populations have already been reported [START_REF] Both | Climate change and population declines in a long-distance migratory bird[END_REF][START_REF] Free | Impacts of historical warming on marine fisheries production[END_REF]. The review of [START_REF] Rijnsdorp | Resolving the effect of climate change on fish populations[END_REF] highlights that these changes may result in four response mechanisms. Firstly, changes in environmental parameters can induce a physiological response [START_REF] Cohen | A global synthesis of animal phenological responses to climate change[END_REF]. Secondly, modifications in environment may induce a behavioural response, such as moving into new suitable areas. The third type of response may be through population dynamics (i.e. changes in the balance between rates of mortality, growth, and reproduction in combination with dispersal) which could result in the establishment of new populations in new areas, in the abandonment of traditional sites or in a regime shift, with significantly higher or lower abundance than in other historical periods. Finally, a fourth response to environmental changes may be changes at ecosystem level (i.e. in productivity and/or trophic interactions). It should be emphasized that, even if this is expected to take on worrying proportions in the context of global change and increased fishing pressure, the characterization of the response of fish populations to the fluctuations of ocean variables is already a major challenge for ocean ecology scientists.

From an ecological perspective, the study of the relationships between environmental factors and populations is generally carried out using three main categories of models [START_REF] Melo-Merino | Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence[END_REF]: mechanistics models [START_REF] Kearney | Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges[END_REF], process-oriented models [START_REF] Peterson | Mechanistic and correlative models of ecological niches[END_REF] and correlative models [START_REF] Huntley | Special paper: modelling present and potential future ranges of some european higher plants using climate response surfaces[END_REF][START_REF] Araujo | Five (or so) challenges for species distribution modelling[END_REF][START_REF] Franklin | Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern california[END_REF][START_REF] Box | Macroclimate and plant forms: an introduction to predictive modeling in phytogeography[END_REF]. A direct application of such modelling strategies in a marine ecosystem remains very challenging. A major limitation is that most environmental data layers are not know in the entire three-dimensional ocean [START_REF] Assis | Deep reefs are climatic refugia for genetic diversity of marine forests[END_REF]. Another difficulty arises from the lack of knowledge on dynamics and behaviour for most species [START_REF] Bentlage | Plumbing the depths: extending ecological niche modelling and species distribution modelling in three dimensions[END_REF]. For fisheries stock assessment, the International Council for Exploration of the Sea (ICES) divide fish stocks into 6 categories. Categories 2 to 6 belong to data-limited categories [START_REF] Lart | Guide to Data-limited stock assessment[END_REF]. The majority of the world's fisheries, by number, are classified in these categories [START_REF] Costello | Status and solutions for the world's unassessed fisheries[END_REF][START_REF] Dowling | Generic solutions for data-limited fishery assessments are not so simple[END_REF]. A stock can be considered as data-limited for various reasons, including a lack or a limited amount of reliable data, incomplete surveys and/or poor sampling leading to uncertainties about the biology of the species [START_REF] Le Quesne | Data-deficient fisheries in eu waters. directorate-general for internal policies, policy department b: Structural and cohesion policies[END_REF]. For ICES categories 5 and 6, abundance is only indirectly assess through selected proxies, and ecology and behaviours are almost unknown. In such a context of data limitation which inhibits comprehensive understanding of fish behaviour, the alternative approach followed here is first to use a non-causal statistical approach, i.e. to identify and quantify dependencies between the level of interest and the available environmental covariates without any a priori knowledge of the driving mechanisms, and then to infer a posteriori causal relationships by combining statistical results and expert knowledge.

Apart from the data quality issue, the extraction of entangled trends and patterns in time-series data remains a major challenge for data processing science. A widely used approach is to split the time series into several components, possibly selected from an a priori knowledge of the driving factors [START_REF] Hyndman | Forecasting: Principles and Practice[END_REF]. A number of decomposition methods are available in literature in relation to the very variable nature of the data-sets, including for instance intermittency, shortness, instationarity, nonlinear response to driving factors [START_REF] Huang | The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. Standard data processing books, see e.g. [START_REF] Brockwell | Time series: theory and methods: theory and methods[END_REF], or more recently [START_REF] Shumway | Time series analysis and its applications: with R examples[END_REF], review and detail a large panel of decomposition methods, the latter with examples of application under R software. Under global change effect, the data from the Bay of Biscay, situated at mid-latitude, may be expected to respond to climate factors affected by both global long term trend and annual seasonal fluctuations. A helpful time-series decomposition can be therefore be based on the extraction of long term trend and seasonality from the time-series, with an additional residual [START_REF] Ferguson | Assessing ecological responses to environmental change using statistical models[END_REF]. Such a time-series decomposition into trend, seasonal and residual components is still rarely used in fish ecology [START_REF] Broekhuizen | Patterns of abundance for calanus and smaller copepods in the north sea: time series decomposition of two cpr data sets. Marine ecology progress series[END_REF][START_REF] Beare | Connecting ecological and physical time-series: the potential role of changing seasonality[END_REF]. Among the rather rare attempts, [START_REF] Plaza | Identifying ecosystem patterns from time series of anchovy (engraulis ringens) and sardine (sardinops sagax) landings in northern chile[END_REF] used time-series decomposition as a method of data filtering, to identify contrasts between data features and technical fisheries literature, and [START_REF] Hsieh | Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of taiwan[END_REF] analysed links between larval anchovy data and environmental variables. More generally, time-series decomposition methods, while widely used in data processing, are not familiar to ecologists [START_REF] Hsieh | Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of taiwan[END_REF].

The present study is, to our knowledge, the first assessment of the effect of changes in environmental factors on data-limited fish populations using the time-series decomposition method. The target species is the striped red mullet, Mullus surmuletus Linnaeus, 1758. The striped red mullet is distributed in the Mediterranean Sea and along the Eastern Atlantic coasts, from the English Channel to the northern part of West Africa [START_REF] Labropoulou | Feeding habits and ontogenetic diet shift of the striped red mullet, Mullus surmuletus linnaeus, 1758[END_REF]. At a large scale (Atlantic ocean), northerly migration of striped red mullet during a phase with demonstrated temperature increases due to climate change has already been demonstrated [START_REF] Mccarty | working group II to the Third assessment report of the intergovernmental panel on climate change[END_REF][START_REF] Hulme | Climate change scenarios for the United Kingdom: the UKCIP02 scientific report[END_REF][START_REF] Beare | Red mullet migration into the northern north sea during late winter[END_REF]. Striped red mullet abundance increases in the English Channel [START_REF] Vaz | Eastern english channel fish community from 1988 to 2003 and its relation to the environment[END_REF] and the North Sea. Eastern English Channel and the Bay of Biscay are two main areas of catches of striped red mullet in the Atlantic Ocean [START_REF] Mahe | Morphological variability of the shape of striped red mullet mullus surmuletus in relation to stock discrimination between the bay of biscay and the eastern english channel[END_REF].

Individuals in the Bay of Biscay belong to the sub-population individualized in Western Europe by ICES.

It extends from the Celtic sea to the waters bordering the Iberian Peninsula with a significant presence in the Bay of Biscay. It is a predominantly benthic and gregarious species living in small groups of up to a dozen individuals. It can also be solitary or live just in pairs. Young fishes live in lower salinity coastal areas while adults have a more offshore distribution [START_REF] Oskarsson | Working Group on Widely Distributed Stocks[END_REF]. [START_REF] Pajuelo | Biology of the red mullet mullus surmuletus (mullidae) off the canary islands, central-east atlantic[END_REF] find young striped red mullet between 10 and 60 m deep in Canaries Islands while [START_REF] Reñones | Life history of the red mullet mullus surmuletus from the bottom-trawl fishery off the island of majorca (north-west mediterranean)[END_REF] report values between 30 and 90m in Majorcan waters. The striped red mullet has an inter-depth migration because of its reproduction [START_REF] Kousteni | Life-history traits of the striped red mullet mullus surmuletus (linnaeus, 1758) in the south aegean sea (eastern mediterranean)[END_REF]. The recruitment occurs in shallow habitat [START_REF] García-Rubies | Substrate use and temporal pattern of recruitment in juvenile fishes of the mediterranean littoral[END_REF], spawns in deep habitats and continue to disperse into deep water after reproduction [START_REF] Machias | Intra-specific variation in resource use by red mullet, mullus barbatus[END_REF]. On average, striped red mullet abundance is highest in surface waters down to 100 m depth (easily observable from 0 to 30 m) [START_REF] Mahé | Le rouget barbet de roche Mullus surmuletus (l. 1758) en manche orientale et mer du nord[END_REF], but large specimens have been observed below 300 m depth. In the north Atlantic, mature striped red mullet depths is between 100 and 200 m on average [START_REF] Leaute | ROMELIGO. Amélioration des connaissances halieutiques du ROuget-barbet, du MErlan et du LIeu jaune du GOlfe de Gascogne[END_REF]. Several factor may intervene in the abundance of the striped red mullet.

Benthic habitat composition [START_REF] Ajemian | Aggregation dynamics and foraging behaviour of striped red mullet Mullus surmuletus in the western mediterranean sea[END_REF] or substrate type [START_REF] Lombarte | Spatial segregation of two species of mullidae (Mullus surmuletus and Mullus barbatus) in relation to habitat[END_REF][START_REF] Mahé | Le rouget barbet de roche Mullus surmuletus (l. 1758) en manche orientale et mer du nord[END_REF] are important. As for all other species, other factors can affect striped red mullet and may have an important impact on its abundance. In particular, population may be affected by trophic web parameters, such availability of preys and abundance of predators, or factors related to natural mortality such as diseases and parasites. Recent study reports life-history traits of the striped red mullet in Mediterranean [START_REF] Kousteni | Life-history traits of the striped red mullet mullus surmuletus (linnaeus, 1758) in the south aegean sea (eastern mediterranean)[END_REF]. Longevity of striped red mullet is estimated at 11.75 years and the length at 50% of maturity is 153.3 mm for females and 139.2 mm for males.

Following the ICES classification categories (ICES, 2012), Bay of Biscay sub-population is currently in data-limited stocks (DLS) category 5: it is a stock for which only landing data are available, as described above. From a fish population perspective, the Bay of Biscay remains a limited area with a total surface aire of approximately 223 000 km 2 . No substantial scientific literature is available to qualify the striped red mullet stock status within the Bay of Biscay and its relationship with ocean variables, whether in the past, at present or in the global change context.

The aim of the present paper is to determine whether modifications of oceanic environmental factors, such as changes in long term or seasonal trends, have an impact on the striped red mullet population within the Bay of Biscay. The analysis will be based on selected professional LPUE (Landing Per Unit Effort) as a proxy of striped red mullet stock abundance in the Bay of Biscay, as suggested by [START_REF] Caill-Milly | A methodology based on data filtering to identify reference fleets to account for the abundance of fish species: Application to the striped red mullet (Mullus surmulletus) in the bay of biscay[END_REF]. Timeseries decomposition was first applied on striped red mullet abundance to achieve a rough understanding of the population dynamics through space and time. Secondly, the analysis was dedicated to the identification and quantification of possible links between trends and seasonal fluctuations of both striped red mullet abundance and environmental covariates. The results and methodology were then discussed, keeping in mind the challenge of the limited time span of the available time-series on for striped red mullet index of abundance.

Methodology

Database

Fishery data

The fishery database used for the present paper [START_REF] Kermorvant | Dataset : Striped red mullet landing per unit of effort and environmental variables in the bay of biscay[END_REF] was provided by the SACROIS (SACROIS) algorithm developed by Ifremer. SACROIS is a cross validation tool for fisheries statistics, in response to Article 145 of the EU regulation (EC Reg. 404/2011). SACROIS algorithm cross-checks information from fishing forms, fishing fleet registers, logbooks, sales notes, VMS data and the scientific census of fishing activity calendars [START_REF] Mateo | Highly mixed fisheries: fine-scale spatial patterns in retained catches of french fisheries in the celtic sea[END_REF]. We have selected this database because we considered that it is the most complete available database regarding production and fishing effort data for the French fleet operating in the Bay of Biscay. The SACROIS data are spatially aggregated by ICES rectangles assembled monthly. ICES rectangles extend about 0.5 and 1 degree in longitude and latitude, respectively, with an area of approximately 30 nautical squared miles. The present study was based on a set of six coastal ICES rectangles selected because they were sufficiently documented to allow time and time-frequency analysis (see Figure 1A). These selected rectangles do not integrate the full ecological niche of striped red mullet in the Bay of Biscay, but were each inside the niche and contain sufficient information to be considered as representative of the Bay of Biscay striped red mullet population ICES (2019). LPUE was provided for a given gear, gear mesh, day and ICES statistical rectangle. Specific vessels, i.e. small trawl vessels (7.9-15.8 m) with a gear mesh of 70-79 mm, were selected in the SACROIS database following the criteria of [START_REF] Caill-Milly | A methodology based on data filtering to identify reference fleets to account for the abundance of fish species: Application to the striped red mullet (Mullus surmulletus) in the bay of biscay[END_REF] for striped red mullet. The time series of the selected mean trawlers LPUE was available from 2005 to 2018. LPUE is not a direct estimator of abundance. However, applying, (i), a filtering on vessel and gear characteristics and, (ii), a selection of a period without significant changes in regulation [see [START_REF] Caill-Milly | A methodology based on data filtering to identify reference fleets to account for the abundance of fish species: Application to the striped red mullet (Mullus surmulletus) in the bay of biscay[END_REF]], we considered that the selected daily LPUE was a relevant proxy for striped red mullet abundance. In fisheries-dependent data, bias can be introduced to abundance estimates when sampling was not randomized [START_REF] Potts | Evaluation of glm and gam for estimating population indices from fishery independent surveys[END_REF]. Striped red mullet is of high commercial interest but is not specifically targeted by trawlers in the Bay of Biscay (it is a part of set of sought-after demersal species). Therefore, even if the sampling scheme was not randomized, it was not directed. Futhermore, the International Council For the Exploration of the Sea (ICES) identified striped red mullet LPUE as a potential abundance index for this stock [START_REF] Oskarsson | Working Group on Widely Distributed Stocks[END_REF][START_REF] Ices | Striped red mullet (Mullus surmuletus) in subareas 6 and 8, and divisions 7.a-c, 7.e-k, and 9.a (North Sea, Bay of Biscay, southern Celtic Seas, and Atlantic Iberian waters)[END_REF]. Note that, as the present analysis requires continuous time-resolved database, other available sources of data at lower sampling rates (such the EVHOE campaign in the Bay of Biscay and Celtic Sea) were not considered.

Environmental data

Environmental data was extracted from the Copernicus portal (https://www.copernicus.eu). Values for surface temperature (in degree Celcius), surface salinity (in grams per liter), phytoplankton concentration (in mmolC/m 3 ), chlorophyll concentration (in mg/m 3 , and chemicals (Silicate (Si), Phosphate (P O 3- 4 ), Tab.1 here 2.2. Data processing

Ammonium (N H + 4 ), Nitrate (N O 3-

LPUE time-series decomposition

Our strategy to analyse the spatio-temporal dynamics of striped red mullet abundance was to assume an additive decomposition of the LPUE in terms of a Long Term Trend (LTT), a Seasonal Trend (ST) and a residual R. LT T aimed to describe the interannual changes in LPUE while ST was dedicated to characterizing the amplitude of the seasonal fluctuations. LPUE time-series exhibited a very high variance and needed to be log transformed to be modelled at a given time t (in months from January 2005 to December 2018) and location r, Y rt being here below the value of log(LP U E rt ), the decomposition was written:

Y rt = LT T rt + ST rt + R rt .
(1)

Long Term Trends

For each rectangle r, a moving median (M M (Y rt )) over a 48-month window was applied to remove intraannual or seasonal effects and then investigate appropriate model for estimating the LT T . We proposed to investigate the Long Term Trends applying a smoothing function to time:

M M (Y rt ) = α r + f r (t) + rt , (2) 
where rt follows a normal distribution N (0, σ 2 ). The smooth function of each rectangle f r (•) is defined using spline bases [see [START_REF] Wood | Generalized additive models: an introduction with R[END_REF]]. In practice we used generalized additive model (GAM) through the mgcv R package provided by [START_REF] Wood | Generalized additive models: an introduction with R[END_REF]. Note that an intercept α r by rectangle was required due to some optimization constraints used in mgcv (see Chapter 5 and 7 of Wood ( 2017)).

The fitted model ( 2) provided a smooth estimation of the time-dependent inter-annual trend for each rectangle: LT T rt = α r + f r (t).

Seasonal Trends

The seasonal component was obtained by removing the estimated trends from the initial log(LP U E) data:

ST rt = Y rt -LT T rt .
The subsequent analysis is twofold:

• The first bulk Seasonal Trend model in each rectangle was obtained from dynamic harmonic regression [START_REF] Young | Dynamic harmonic regression[END_REF]:

ST rt = Kr j=1 {α 0,r cos(ω j t) + α 1,r sin(ω j t)} + rt (3) 
where ω j = 2π m j are the harmonic frequencies associated with the seasonality in the series, m being the annual number of months, i.e. 12. rt ∼ N (0, σ 2 r ). Depending on the selected rectangle, a range of harmonics (2 < K r < 6) were tested to provide the best model based on AIC comparisons [START_REF] Sakamoto | Akaike information criterion statistics[END_REF]. This first bulk Seasonal Trend model in each rectangle provided an overview of the LPUE seasonality.

• Further insight on LPUE spatio-temporal dynamics was provided by a time-frequency analysis of the seasonal component. A discrete Fourier analysis [START_REF] Bloomfield | Fourier analysis of time series: an introduction[END_REF] was performed on the seasonal component for each ICES rectangle to provide the spectral density (i) over the complete time-series and (ii) over a moving 48-month window for time-resolved analysis. From the latter analysis, the amplitude of seasonal fluctuations associated with annual (12 months) and biannual (6 months) periods were extracted, named ST 12 LP U E,rt and ST 6 LP U E,rt , respectively:

ST n LP U E,rt = f2 f1 SD(u)du (4)
where SD(•) is the spectral density [START_REF] Stoica | Spectral analysis of signals[END_REF], n = 6 or 12 for biannual and annual fluctuations, respectively and f 1 and f 2 are the frequency boundaries taken at 5 and 8, and 9 and 16 for the biannual and annual fluctuations. 

LT T LP U E,t = β 0 + β 1 LT T M T,t + β 2 LT T M S,t + β 3 LT T P C1,t + β 4 LT T P C2,t + β 5 LT T P C3,t + t , (5) 
where t ∼ N (0, σ 2 ).

Seasonality

The seasonal component of environmental covariates was processed by time-frequency analysis similarly to the LPUE data. For each variable and each rectangle, the annual and biannual amplitudes of seasonal fluctuations were obtained from the time-resolved spectral density over a 48-month moving window.

A linear model was built by rectangle to test the relationship between the annual and biannual amplitudes of seasonal fluctuations of LPUE and environmental covariates data:

ST n LP U E,rt = γ 0 + γ 1 ST n M T,t + γ 2 ST n M S,t + γ 3 ST n P C1,t + γ 4 ST n P C2,t + γ 5 ST n P C3,t + t . (6) 
where n = 6 and 12 for biannual and annual fluctuations and t follows N (0, σ 2 ). [START_REF] Grömping | Relative importance for linear regression in r: the package relaimpo[END_REF]. The used metric is "lmg", which provides a decomposition of the model explained variance [START_REF] Grömping | Relative importance for linear regression in r: the package relaimpo[END_REF]. Figure 1D shows decomposition residuals. For all sites, the residuals did not exhibit any discernible pattern. This confirmed that the selected additive decomposition had extracted most of the relevant information in the striped red mullet abundance time-series.

Models performance

Results

LPUE time-series decomposition

Long term effects

Figure 2 depicted the comparison between LT T s for striped red mullet abundance and selected environmental covariates. Results were first presented in qualitative terms, while a more quantitative analysis is provided hereafter by the linear model. LT T for log(LP U E) was described and compared in the previous section (see Figure 1B). LT T for environmental covariates generally shown a strong spatial variability. The surface salinity (MS) was lower for coastal rectangles R23E7, R21E8 and R20E8 due to the continental freshwater inputs, in particular by the Garonne and Charente rivers. For most rectangles, the overall trend was a slight decrease of salinity affected by a rise during the 2010-2012 period. The surface temperature (MT) shown the expected meridional variation (higher temperature in the south) and an overall increase for all rectangles. For the northern areas (R23E6, R23E7 and R22E7), the temperature tended to vary in the opposite way to the salinity: low temperatures were associated with high salinity during the 2009-2012 period while rising temperatures were associated with lowering salinity after 2012. This trend was less marked for the southern rectangles. The PCA-reduced environmental variables were generally well connected in space.

LT T for PC1, PC2 and PC3 were maximal in coastal regions R21E8, R20E8 and R22E7 and decreased offshore in R21E7 and R23E6. The only exception was the R23E7 coastal rectangle for which PC1 was maximal while PC2 and PC3 was minimal. Chnages over time for PC1 were generally very weak. Stronger dynamics were observed for PC2, for which low values were associated with low temperatures and high salinity events and, inversely, to rise after 2012 when salinity/temperature are generally decreasing/increasing. For PC3, the signal was nearly stable for R20E8 and R21E7 and mainly decreasing for R21E8, R22E7 and R23E6, without any straightforward relation with other environmental covariates. For R23E7, PC3 followed PC2 trends, with a strong link with surface temperature. The linear model presented in Equation ( 5) was used to assess quantitatively the relationships between LT T for striped red mullet abundance and environmental variables. The results were summarized in Table 2. The first observation was that all R 2 values were above 0.8 (excepting R22E7 which shows R 2 = 0.65), meaning that trends in environmental variables were able to explain at least 80% of trends in striped red mullet abundance. Note that these R2 values were not directly related to the raw data and they had to be interpreted on the explained variance of the extracted long term trends LLT of the LPUE obtained from 2 by the long term trends of environmental variables. Our main goal was to investigate and highlight the importance of variables to explain striped red mullet LPUE. Another observation was that striped red mullet abundances were predominantly positively affected by salinity for five out of six rectangles. For the coastal rectangles R20E8, R21E08 and R23E7, striped red mullet abundance could be linked to continental freshwater inputs. The role of temperature was mainly significant in the two northern zones R23E6 and R23E7, with striped red mullet abundance favored by higher temperature. PC1 generally played a weak role except in the most northwestern zone R23E6/R23E7. PC2 was negatively correlated to abundance in all rectangles except the most southeastern ones R21E8 and R20E8. PC3 displayed stronger positive correlations only for the northern zones R23E6, R23E7 and R22E7.

Tab. 2 here

Seasonality

Figure 1 revealed the spatial and temporal variability of the LPUE seasonal component using a bulk harmonic approach. Further insight was provided by the spectral density computed, for each rectangle, over the complete time series, see Figure 3. The spatial discrimination was straightforward: coastal rectangles R20E8, R21E8 and R23E7 were the only ones to show both biannual (6-month period) and annual (12month period) fluctuations. The offshore rectangles R23E6 and R21E7 shown a single annual seasonality, although less marked for R21E7 than for the northwestern R23E6. The remaining rectangle R22E7 had a noisy spectral density. This lack of consistency for the spectrum was related to the fluctuations of seasonality, both in amplitude and period, during the acquisition period revealed in Figure 1. The multivariate linear model presented in Equation 6was used to evaluate comprehensively the relationship between abundance and covariate seasonality. Complete results were shown in Table 3.

Figure 3 previously demonstrated that the annual seasonality of striped red mullet abundance was well developed for rectangles R21E8, R23E6 and R23E7 and to a lesser extent for rectangles R20E8 and R21E7. Table 3 further indicates that the dependency of abundance seasonality on environmental covariates seasonality was not systematic and not spatially uniform. PC1 annual seasonality appeared to affect abundance annual seasonality in rectangles R20E8 and R23E6, with negative and positive correlations, respectively. R20E8

was furthermore connected to the annual fluctuations of salinity and temperature: abundance seasonality was favored by strong temperature and weak salinity fluctuations. R21E7 and R21E8 were connected to salinity and temperature annual fluctuations, respectively, while R23E7 annual seasonality did not show any significant relation with environmental parameters.

Biannual seasonality of log(LP U E) was well established in the three coastal rectangles R20E8, R21E8

and R23E7 (Fig. 3). For the latter rectangle, the biannual seasonality was not related to environmental covariates seasonality, similarly as for annual seasonality. PC1 biannual seasonality was observed to affect both R20E8 and R21E8, while salinity biannual seasonality only affected R20E8.

Tab. 3 here

Discussion

The aims of the present study were (i) to assess long-term and seasonal changes in striped red mullet abundance in the Bay of Biscay, and (ii) to identify the possible relationships between changes in abundance and environmental factors. This study was carried out on the basis of an indicator of abundance, which was the sole information available for striped red mullet natural fish populations within the Bay of Biscay.

As no appropriate methodology to tackle this problematic with these data already existed in literature, we had to develop a new one. Thus, the main aim of this study was not to present a new methodology, but to better understand the effects of the environment on striped red mullet abundance. Here, we will discuss results and compare them with other studies, but some conclusion will remains hypothtical due to a very poor documentation in literature on the ecology of striped red mullet.

Long term trends were inferred from the abundance data using a moving average with a smoothing function. The resulting trends were clearly non-linear, thus ruling the use of linear approaches (see [START_REF] Hess | Linear trend analysis: a comparison of methods[END_REF]; [START_REF] Lentka | Methods of trend removal in electrochemical noise data -overview[END_REF] for trends detection). Seasonal components were processed using timefrequency analysis with moving-window spectral computations, which highlighted the strong fluctuations of the abundance seasonality both in space and time. Other tools for time-frequency analysis could have been used here such as the wavelet analysis [START_REF] Huang | The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. It is important to note that time-frequency analysis is strongly constrained by the need to have continuous and long enough time-series.

The selected environmental variables also shown non-linear long term trends. These observations result from the complex interactions between a large number of processes affected by fluctuations over wide ranges of space and time scales which were outside of the scope of the present study. However, from a data-processing perspective, it is again worth noting to note that, in our study zone, coupled ocean-atmosphere systems such as the North-Atlantic Oscillation (NAO) [START_REF] Hurrell | Decadal trends in the north atlantic oscillation: regional temperatures and precipitation[END_REF] or other fluctuating large scale climate patterns [START_REF] Castelle | A new climate index controlling winter wave activity along the atlantic coast of europe: The west europe pressure anomaly[END_REF] provided additional variability to the global change track. For instance, the overall warming of the ocean surface observed from the present analysis of Copernicus database, well documented in the literature [START_REF] Peck | Climate change impacts, vulnerabilities and adaptations: North atlantic and atlantic arctic marine fisheries[END_REF][START_REF] Decastro | Present warming within the context of cooling-warming cycles observed since 1854 in the bay of biscay[END_REF][START_REF] Koutsikopoulos | Temporal trends and spatial structures of the sea surface temperature in the bay of biscay[END_REF][START_REF] Planque | Large-scale hydroclimatic variability in the bay of biscay: the 1990s in the context of interdecadal changes[END_REF], combines with inter-and intra-annual oscillations and spatial variability. Similarly, salinity and PCAreduced environmental variables showed strong time and space variability. Such results could be related with climate-driven patterns [START_REF] Roessig | Effects of global climate change on marine and estuarine fishes and fisheries[END_REF] of atmosphere properties, precipitation, land runoff, river discharge, etc. This reinforces the relevance of the present approach to determine trends and relationships between fish populations and environmental factors.

the study of long term trends in striped red mullet abundance shown a high spatial heterogeneity within the Bay of Biscay even on a relatively small scale. The dominant trend was a decrease in striped red mullet abundance. This decrease varied among the studied ICES spatial rectangles. But, for almost all rectangles, we could link 80% of this trend variance to environmental covariates trends. The dependency on environmental covariates was also spatially variable. In coastal rectangles, long term trends of abundance can had a slight positive link with surface salinity trends. While for more off-shore rectangles, striped red mullet abundance increased along with salinity. Striped red mullet salinity preference was detected to be between 35.1 and 35.6 grams per liter [START_REF] Desbrosses | Contribution à la connaissance de la biologie du rouget barbet en atlantique nord (iii)[END_REF]. These values were for adults fishes at depths between 100 and 200 meters. One possible explanation for positive link in trends between striped red mullet abundance and salinity in coastal rectangles is that the striped red mullet is at the lower limit of its salinity ecological niche in coastal rectangles (see table 1). When salinity decreases in coastal zones, due to inland freshwater inputs, striped red mullet abundance decreases. More precise information about the striped red mullet ecological niche is needed to consolidate this hypothesis of a positive link between striped red mullet abundance trends and salinity in coastal zones.

In the southern Bay of Biscay, striped red mullet have already been detected as species with an affinity for warm temperatures [START_REF] García-Rodríguez | Biomass response to environmental factors in two congeneric species of mullus, M. barbatus and M. surmuletus, off catalano-levantine mediterranean coast of spain: a preliminary approach[END_REF]. In our study area, in the northern Bay of Biscay, mean sea surface temperature was around 14.5 degrees Celsius for the colder rectangles and 15 degrees Celsius for the warmer rectangles. We did not detect links between temperature trends and striped red mullet abundance except for the two coldest rectangles. In these two northern rectangles, abundance trends decreased when temperature trends decreased and conversely, which tends to confirm the observation of [START_REF] García-Rodríguez | Biomass response to environmental factors in two congeneric species of mullus, M. barbatus and M. surmuletus, off catalano-levantine mediterranean coast of spain: a preliminary approach[END_REF]. For a similar species M. barbatus in Aegean Sea, abundance has been proved to be higher in warm bottom water (19ºC) than in colder waters [START_REF] Maravelias | Environmental influences on the spatial distribution of european hake (Merluccius merluccius) and red mullet (Mullus barbatus) in the mediterranean[END_REF]. In addition, this species seems to avoid the cold bottom waters (< 16ºC) [START_REF] Maravelias | Environmental influences on the spatial distribution of european hake (Merluccius merluccius) and red mullet (Mullus barbatus) in the mediterranean[END_REF]. An hypothesis to explain the freshness of the two northern rectangles is they are in a river freshwater inputs and up-welling zone.

This hypothesis is favoured by the study of [START_REF] Puillat | Mesoscale hydrological variability induced by northwesterly wind on the french continental shelf of the bay of biscay[END_REF] demonstrating some events of up-wellingfavourable winds exactly in the zone were we found the lowest temperature, and a positive link with striped red mullet abundance. In these rectangles, red-mullet is at the edge of its favoured life condition regarding temperature. When water temperature decreases, striped red mullet falls outside its life preferendum and abundance decreases.

Up-welling and river discharges also induce chemical transports or dissolution from sediments. In this study, we have attempted to find a relationship between striped red mullet abundance and chemical concentrations in the sea water. As strong correlations were initially observed between different chemical species, we chose to perform a dimension reduction with PCA. But, interpretation of linear model estimates of PCA reduced dimensions can be delicate. Only the two southern rectangles do not shown a link with PCA reduced dimensions. For the four other rectangles, trends in striped red mullet abundance were linked to chemicals and primary production. The link was positive with PC3. As PC3 had a positive contribution of O 2 concentration, we can say striped red mullet abundances were positively linked to O 2 concentration. This result is consistent with studies highlighting an increase of capture probability of an other mullet species along with dissolved oxygen rate [START_REF] Maes | Modelling the migration opportunities of diadromous fish species along a gradient of dissolved oxygen concentration in a european tidal watershed[END_REF]. In the four northern rectangles, trends in striped red mullet abundance were also positively linked with PC1. PC1 is built from a negative contribution of Si, P O 3- 4

and N H + 4 , meaning that striped red mullet abundance was negatively linked to Si, P O 3- 4 and N H + 4 concentrations. The effect of chemicals, phytoplankton and net primary production rates on striped red mullet abundance were never investigated. Further investigations are required to confirm the present original observations.

The seasonal study revealed high variability of striped red mullet abundance seasonality within the Bay of Biscay. In the most off-shore rectangle, striped red mullet abundance shown well defined annual oscillations while in the most shoreward ICES rectangles, additional biannual oscillations were observed.

In the two remaining ICES rectangles, no clear periodic pattern was observed. Multiple peaks per year when studying seasonality in fisheries stock abundance were already reported in the case of multiple species studies [START_REF] Hsieh | Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of taiwan[END_REF], but such a variability for a single species was not reported before, to the best of our knowledge. One peak in seasonality of annual abundance occured at intermediate depth. Following the literature on striped red mullet ecology, spawning commonly occurs in spring and early summer (May and June) [START_REF] Desbrosses | Contribution à la connaissance de la biologie du rouget barbet en atlantique nord (iii)[END_REF][START_REF] N'da | Sexual cycle and seasonal changes in the ovary of the red mullet, Mullus surmuletus, from the southern coast of brittany[END_REF][START_REF] Mahé | Le rouget barbet de roche Mullus surmuletus (l. 1758) en manche orientale et mer du nord[END_REF][START_REF] Leaute | ROMELIGO. Amélioration des connaissances halieutiques du ROuget-barbet, du MErlan et du LIeu jaune du GOlfe de Gascogne[END_REF]. Even if massive movement of spawners during reproduction has not been reported for striped red mullet, our best hypothesis regarding the annual seasonal peak in striped red mullet abundance may reflect movements during reproduction process. But, to our knowledge, it has to date never been statistically proven. We also modeled this one peak annual seasonal fluctuation of striped red mullet abundance along with similar environmental annual seasonal fluctuations. This dependency was not systematic and not spatially uniform. Temperature was the most relevant parameter linked with seasonal fluctuation in our study, but it was only significant in three rectangles. This result supports our hypothesis of the annual spawning peak. Higher sea water temperature has been reported during striped red mullet spawning in Israel and Canary Islands [START_REF] Suquet | Les rougets barbets (Mullus barbatus, Mullus surmuletus): biologie, pêche, marché et potentiel aquacole[END_REF]. For Brittany, striped red mullet spawning is observed in relation with increasing photo-period and temperature [START_REF] Suquet | Les rougets barbets (Mullus barbatus, Mullus surmuletus): biologie, pêche, marché et potentiel aquacole[END_REF]. One hypothesis is that the second peak may be explained by the recruitment process corresponding to the arrival in the catches of the individuals born the year before. This hypothesis is supported by the fact that biannual abundance seasonality occurs in shallow coastal rectangles and that multiple recruitment peaks have also been observed for different species (see, for example [START_REF] Abella | Some aspects of growth and recruitment of hake in the northern tyrrhenian sea[END_REF] or [START_REF] Hatfield | Towards resolving multiple recruitment into loliginid fisheries: Loligo gahi in the falkland islands fishery[END_REF]). We tried to model the biannual peak of seasonality in striped red mullet abundance with the corresponding peak in environmental covariates but we were not able to link the three coastal rectangles to the same set of environmental variables. One rectangle can be linked to low fluctuation of PC1, one to low fluctuation of PC3 and the third to all variables excepting PC3. The two rectangles where no seasonality was detected are in deep zones. Seasonality of striped red mullet abundance was clearly depth driven. Further studies will be needed to better reveal the link between seasonality in striped red mullet abundance and environmental variables.

A critical issue for a deeper understanding of the dependency of fish abundance on the oceanic variable is the proper definition of space and time scales. The focus was here on the Bay of Biscay over the 2005-2018 period. The Copernicus database used to define environmental covariates revealed a mean increasing trend of surface temperature over the considered period, following a century-long tendency (Garcia-Soto and Pingree, 2012) for the Bay of Biscay. This trend may appear contradictory with the large scale decrease of North Atlantic sea surface temperature noted for instance by [START_REF] Piecuch | Mechanisms underlying recent decadal changes in subpolar n orth a tlantic o cean heat content[END_REF] over the 2005-2015 period, but is indeed an indicator of the heterogeneity of the ocean dynamics. This underlines that any generalization of local findings should be made with particular caution and vice versa. From an ecological point of view, the use of ICES rectangles to study the impact of the environment on the red mullet population in the Bay of Biscay raises questions. ICES rectangles correspond to the finest spatial mesh common to the mandatory declarative data of fishermen and not homogeneous ecological units. For example, several habitats may be represented in the same rectangle or conversely, a single habitat may occupy several rectangles. The development of an habitat-delimited analysis will certainly be a fruitful but ambitious and long-term challenge. The present study was strictly bounded by the source data, i.e. by the fishermen's logbooks and fishing forms filled in by ICES rectangle. Moreover there is a crucial need to simultaneously dynamically refine and extend in space and time the mapping of both marine environmental parameters and fish abundance. Developing a model for such a small portion of the ocean is useful to be able to understand the effect of environmental changes on local fisheries. At this scale, most of the fisheries are local small industries. Understanding the link between environment and resources preserves local socio-economic activities, and it is of very high importance. While costly, such an approach appears now to be a prerequisite to decipher the response of marine fauna to the fluctuations of ocean variables. This is already true for the relationships existing at the present time [START_REF] García-Barón | Essential ocean variables and high value biodiversity areas: Targets for the conservation of marine megafauna[END_REF][START_REF] Véron | Major changes in sardine growth and body condition in the bay of biscay between 2003 and 2016: Temporal trends and drivers[END_REF] and it will become even more necessary to move forward towards a resource-preserving marine spatial planning strategy in the context of global change.

The approach we developed to tackle our applied research question can be applied in a wide range of fish population studies, in order to monitor the effect of climate change on fish population distribution at various scales and tohelp fishermen anticipate changes. The analysis was carried out from abundance time-series, which is the sole information available for a number of natural fish populations. It had also been performed considering the main environmental factors available over the study area, mainly focused in the surface layers. When available, additional factors can be easily implemented and tested such as more complete three-dimensional information [START_REF] Assis | Deep reefs are climatic refugia for genetic diversity of marine forests[END_REF]. For the study of striped red mullet, knowledge on benthic habitat composition [START_REF] Ajemian | Aggregation dynamics and foraging behaviour of striped red mullet Mullus surmuletus in the western mediterranean sea[END_REF] or on substrate type [START_REF] Lombarte | Spatial segregation of two species of mullidae (Mullus surmuletus and Mullus barbatus) in relation to habitat[END_REF][START_REF] Mahé | Le rouget barbet de roche Mullus surmuletus (l. 1758) en manche orientale et mer du nord[END_REF] can improve the study. Substrate type layer is not yet available for the entire Bay of Biscay.

One perspective will be to include new layers in this study, once one is available. Finally, a comprehensive understanding of the time-resolved population dynamics should encompass each driving factor, including trophic web parameters and additional mortality causes.
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Tables

  ) and Dissolved Oxygen (mmol/m 3 ) were selected from 2005 to 2018 within the Bay of Biscay. For surface temperature and surface salinity, main statistical values (table 1) were computed for each environmental variable by ICES rectangle. For phytoplankton concentration, chlorophyll concentration, and chemicals, a first statistical study showed a high correlation. A principal component analysis (PCA -available in appendix) was therefore used to reduce the number of variables. Based on the eigenvalues of the three first axes, three new variables were produced, namely PC1, PC2 and PC3. PC1 is driven by Si, P O 3- 4 and N H + 4 and explain 57.2% of variability, PC2 by phytoplankton, net primary production and N O 3-and explain 18.6% of variability. PC3 by Dissolved Oxygen and explain 10.2% of variability.
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 1 Figure 1: Time-series decomposition in striped red mullet abundance. A: Map of studied rectangles. B, C and D: Long Term Trend (LTT) and associated GAM error, Seasonal Trend (ST) and Residual (R) of log(LP U E) by ICES statistical rectangle, respectively.

Figure

  Figure 1A presents the locations of the ICES rectangles in this study. Data were recorded from 01/01/2005 to 12/31/2018. Due to moving average processing, the two first and the two last years of data were deleted. Data are so presented from 01/01/2007 to 12/31/2016. The first observation in Figure 1B was an overall decreasing of LT T of log(LP U E) during time, with an average value of approximately 20 % between 2006and 2017. To go further we used a linear model by rectangle to assess the ability of LT T to explain initial log(LP U E). LT T variable is significant (p-value < 0.01) in almost all linear models to explain log(LPUE) data, but not for rectangles R23R7 and R22E7. A finer analysis of Figure1Brevealed a significant spatial variability in time evolution of striped red mullet abundance with three main periods:[START_REF] Grömping | Relative importance for linear regression in r: the package relaimpo[END_REF][START_REF] Brander | Impacts of climate change on fisheries[END_REF][START_REF] Brander | Impacts of climate change on fisheries[END_REF][START_REF] Mahe | Morphological variability of the shape of striped red mullet mullus surmuletus in relation to stock discrimination between the bay of biscay and the eastern english channel[END_REF][START_REF] Mahe | Morphological variability of the shape of striped red mullet mullus surmuletus in relation to stock discrimination between the bay of biscay and the eastern english channel[END_REF][START_REF] Wood | Generalized additive models: an introduction with R[END_REF] . First, during the 2006 -2010 period, R23E7, R23E6 and R21E7 period, R23E7, R23E6 and R21E7 showed weakly fluctuating values, R20E8 and R21R8, situated at the southeast of the study area, showed a significant increase and
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 2 Figure 2: Long Term Trends (LTT) for striped red mullet abundance and environmental covariates for all studied ICES rectangles. LPUE is landing per unit of effort, expressed in monthly mean of daily kg by rectangle, MS is salinity in grams per liter and MT is temperature in degrees Celsius.

Figure 3 :

 3 Figure 3: Spectral density of log(LPUE) for each ICES rectangle over the complete time series.

Figure 4 :

 4 Figure 4: Time-frequency analysis for rectangle R23E7. A: spectral density for log(LP U E) and environmental covariates over the full time-series. B and C: time-resolved magnitude of seasonal fluctuations over a 48-month moving window for biannual and annual components, respectively, for log(LP U E) and environmental covariates.

Figure 1 :

 1 Figure 1: Time-series decomposition in striped red mullet abundance. A: Map of studied rectangles. B, C and D: Long Term Trend ( LT T ), Seasonal Trend (ST) and Residual (R) of log(LP U E) by ICES statistical rectangle, respectively.Figure 2: Long Term Trends ( LT T ) for striped red mullet abundance and environmental covariates for all studied ICES rectangle. LPUE is landing per unit of effort, expressed in monthly mean of daily kg by rectangle MS is salinity in gram per liter and MT is temperature in degree Celsius, PC1, PC2 and PC3 are the

  Models for Long Term Trends were defined for environmental covariates time-series similarly as done for LPUE (seeEq. 2). Links between estimated long term trends of LPUE (noted LT T LP U E ) and various environmental covariates were first tested using an uni-variate linear model. Five relevant environmental variables were then selected for the multivariate linear model: the fitted trend of median water salinity LT T M S , the fitted trend of median surface temperature LT T M T , and the fitted trends of PC1, PC2 and PC3 variables LT T P C1 , LT T P C2 and LT T P C3 , respectively. For each rectangle, we modeled:

	2.3. Dependency on environmental variables
	2.3.1. Long Term Trends

Table 1 :

 1 Main statistical values of two environmental variables (temperature and salinity) recorded over the 2005-2018 period in the selected ICES rectangles. Temperature is expressed in degrees Celcius, salinity in grams of salt per liter of water

			R20E8 R21E7 R21E8 R22E7 R23E6 R23E7
		Min 28.51	32.36	29.10	31.80	32.27	26.76
	Salinity	Max 34.65 Med 33.17	35.72 34.85	34.57 33.12	35.53 34.13	35.67 34.80	34.58 32.10
		Sd	1.27	0.67	0.88	0.66	0.65	1.52
		Min 7.32	8.56	7.09	7.76	8.57	7.32
	Temperature	Max 22.16 Med 15.26	22.54 15.25	21.22 14.85	21.64 14.84	21.52 14.44	20.89 14.47
		Sd	4.23	3.77	4.16	3.79	3.34	3.80

Table 2 :

 2 Results of the linear model to assess the relationship between long term trends of stripped red mullet abundance and environmental variables. Models estimates (β), P-values, R 2 and relative importance (Imp) of variables obtained with linear models on each rectangle. Results with P-values < 0.005 are in bold. Standard deviations of models estimates are available in appendix.TypeIntercept LT T M S LT T M T LT T P C1 LT T P C2 LT T P C3 R 2

	R20E8 β	-6.906	0.433	-0.35	0.438	-0.879	0.373	.
	P value 0.358	<0.001 0.219	0.141	0.337	0.611	.
	Imp.	.	0.231	0.246	0.102	0.214	0.069	0.862
	R21E7 β	-7.495	0.102	0.205	-0.873	-1.739	1.743	.
	P value 0.036	0.142	0.1	<0.001	<0.001	<0.001	.
	Imp.	.	0.147	0.308	0.083	0.295	0.069	0.902
	R21E8 β	-15.951	0.524	0.071	0.358	-0.731	-0.31	.
	P value 0.004	<0.001 0.772	0.096	0.097	0.67	.
	Imp.	.	0.366	0.163	0.051	0.162	0.087	0.828
	R22E7 β	31.395	-0.959	0.177	-0.842	-3.379	2.824	.
	P value 0.011	<0.001 0.618	<0.001	<0.001	0.002	.
	Imp.	.	0.091	0.153	0.077	0.19	0.136	0.647
	R23E6 β	-56.003	0.732	1.855	-1.067	-5.673	6.577	.
	P value <0.001	0.001	<0.001 0.003	<0.001	<0.001	.
	Imp.	.	0.04	0.214	0.22	0.164	0.254	0.892
	R23E7 β	-23.493	0.434	0.632	0.574	-0.922	2.213	.
	P value <0.001	<0.001 <0.001 <0.001	<0.001	<0.001	.
	Imp.	.	0.215	0.14	0.207	0.16	0.15	0.8725

Table 3 :

 3 Results of the linear model to assess the relationship between seasonal trends of stripped red mullet abundance and environmental variables. Model estimates(β), P-values, R 2 and relative importance (Imp) of environmental covariates seasonality in abundance seasonality obtained with lm models on each rectangles. ".12" and ".6" notations correspond to the annual and biannual fluctuations, respectively. Results with p-values < 0.005 are in bold. Standard deviations of models estimates are available in appendix.

	Type	Intercept ST M S	ST M T	ST P C1	ST P C2	ST P C3	R 2
	R20E8.6 β	0.171	0.063	0.077	-0.365	0.298	0.069	.
	P value <0.001	0.441	0.031	<0.001 0.008	0.598	.
	Imp.	.	0.009	0.119	0.146	0.059	0.051	0.383
	R20E8.12 β	-0.167	-0.28	0.278	-0.721	-0.207	0.462	.
	P value 0.087	<0.001 <0.001 <0.001 0.456	0.003	.
	Imp.	.	0.152	0.28	0.272	0.27	0.008	0.982
	R21E7.6 β	0.141	-0.271	-0.045	-0.182	0.2	-0.056	.
	P value <0.001	0.002	0.006	<0.001 0.007	0.286	.
	Imp.	.	0.167	0.088	0.244	0.075	0.095	0.668
	R21E7.12 β	0.232	0.225	-0.141	0.073	0.64	-0.212	.
	P value <0.001	<0.001 0.177	0.571	0.161	0.404	.
	Imp.	.	0.289	0.04	0.034	0.057	0.046	0.466
	R21E8.6 β	0.343	-0.765	-0.193	-0.906	0.629	0.024	.
	P value <0.001	<0.001 <0.001 <0.001 <0.001 0.895	.
	Imp.	.	0.261	0.089	0.138	0.069	0.012	0.569
	R21E8.12 β	0.227	0.16	-0.25	0.123	-0.018	0.693	.
	P value 0.011	0.014	<0.001 0.004	0.877	<0.001 .
	Imp.	.	0.144	0.305	0.1	0.266	0.095	0.910
	R22E7.6 β	0.152	-0.128	-0.006	0.087	0.092	-0.24	.
	P value <0.001	0.231	0.82	0.07	0.062	0.002	.
	Imp.	.	0.015	0.044	0.021	0.025	0.123	0.229
	R22E7.12 β	0.648	0.478	0.37	0.157	-0.973	-1.629	.
	P value <0.001	0.252	0.003	0.253	<0.001 <0.001 .
	Imp.	.	0.102	0.068	0.027	0.066	0.256	0.520
	R23E6.6 β	0.103	-0.026	-0.08	0.26	-0.236	0.24	.
	P value 0.012	0.897	0.128	0.211	0.253	0.089	.
	Imp.	.	0.008	0.023	0.054	0.012	0.078	0.175
	R23E6.12 β	0.403	-0.131	-0.248	1.124	-0.588	-0.092	.
	P value 0.003	0.647	0.026	<0.001 <0.001 0.456	.
	Imp.	.	0.032	0.243	0.409	0.036	0.241	0.961
	R23E7.6 β	0.183	-0.024	0.068	-0.016	-0.076	0.148	.
	P value <0.001	0.307	0.001	0.505	0.004	0.002	.
	Imp.	.	0.02	0.072	0.007	0.097	0.077	0.273
	R23E7.12 β	-0.341	0.025	0.241	-0.228	0.192	-0.106	.
	P value 0.002	0.532	0.029	0.005	0.13	0.347	.
	Imp.	.	0.097	0.074	0.131	0.057	0.084	0.442
	7. Figure legends