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Introduction

In order to confer isotropic physical properties to industrial metallic parts like cast engine blocks, equiaxed solidification is preferred in practice. Many materials that are used in such applications belong to the large family of aluminum alloys [1,[START_REF] Kaufman | Aluminum Alloy Castings: Properties, Processes and Applications[END_REF]. We focus here on Al-Cu diluted alloys that have been studied quite intensively over the last decades [START_REF] Mondolfo | Aluminum Alloys: Structure and Properties[END_REF]. One key point concerning the dynamics of growing equiaxed grains is to predict and control the interactions between two grains that grow toward each-other. Scaling laws that govern the grain growth and the grain-grain interactions in thin samples were recently proposed in reference [START_REF] Boukellal | [END_REF] (hereafter denoted as BEA). Some preliminary results in [START_REF] Boukellal | Isothermal solidification of Si and Al-Cu : 3D phasefield simulations[END_REF] have shown that a sample of Al-1wt.%Cu, 1000µm in width and length, presents confinement effects for a thickness below 500µm. This thickness is approximately five times the solutal diffusion length l s = D/V m where D is the solute diffusion coefficient in the liquid phase and V m is the maximum tip growth velocity. The samples considered in the present study are 100µm in thickness, thus definitely confined in this direction. The scaling laws are of great relevance because they can be extrapolated to predict the dynamics of equiaxed dendrites in materials containing higher copper concentrations that are not easy to simulate directly. In the present study, phase-field simulations in three dimensions are performed to explore the implications of experimentally relevant thermodynamic effects that were not included originally in BEA, specifically how the growth and interaction scaling laws are affected.

Most of the phase-field simulations of Al-Cu solidification reported in the literature were performed for directional solidification [START_REF] Badillo | [END_REF][7][8] or in the case of a constant applied undercooling [9]. Conversely, simulations of solidification in samples cooled homogeneously at a constant rate, as we consider here, are less common [START_REF] Boukellal | [END_REF]10]. In section 2, we introduce the phase-field model used to simulate isothermal solidification at a constant cooling rate. The constitutive physical equations are discussed together with the corresponding phase-field equations, and their implementation in the numerical code is described. The phase diagram of a diluted alloy is very often assumed linear in numerical studies, while it is usually curved, even for rather low concentrations [START_REF] Okamoto | Phase Diagrams for Binary Alloys[END_REF]. It is the first task of the present study to consider the curved Al-Cu phase diagram provided by thermodynamic calculations. The corresponding results are presented and analyzed in section 3. During dendritic growth, the development of secondary branches may have a more or less important influence on the final polycrystalline structure of the material [START_REF] Bőttger | [END_REF]13], thus on the final properties of the material [START_REF] Kaufman | Aluminum Alloy Castings: Properties, Processes and Applications[END_REF]. In the phase-field simulations, it is necessary to introduce thermodynamic temperature fluctuations by means of a controlled spatio-temporal noise in order to produce realistic dendritic branching. Section 4 is devoted to this second task. The central question of the present study is to quantify the influence of the two thermodynamic effects that are introduced. To do so, the growth and interaction scaling growth laws obtained with and without these two effects are compared in section 5. Finally, section 6 summarizes our main conclusions.

Phase-field model

Physical equations

We consider aluminum alloys that contain a low copper concentration c 0 . For these alloys the partition coefficient k < 1, the liquidus slope m < 0, so m(k -1) > 0.

At a given temperature T 0 , the equilibrium concentration at the planar interface taken on the liquid side is given by

c 0 l = (T 0 -T M )/m, (1) 
where T M is the Al melting temperature. In the reference frame where the material is at rest, the copper diffusion equation reads

∂c ∂t = D∇ 2 c, (2) 
where D is the solute diffusion coefficient that will be assumed zero in the solid phase (one-sided model). In addition, two local equations must be verified at any interface point. The first one expresses solute conservation and it imposes the interface normal velocity,

V n = -D ∂c ∂r , (3) 
the derivative being taken on the liquid ( ) side, in the direction perpendicular to the solid-liquid interface. The second one is the Gibbs-Thomson equation that expresses local thermodynamic equilibrium and that reads in terms of temperatures,

T i = T M + mc i - Γ ρ - V n µ . (4) 
In this equation, ρ is the average radius of curvature, µ the linear kinetic coefficient, and the Gibbs-Thomson constant Γ is related to the chemical capillary length d 0 through

d 0 = Γ m(k -1)c 0 l . (5) 
In the present case, solidification results from a homogeneous cooling at a constant rate R = 0.5 K/min. Then the interface temperature T i = T 0 -Rt, where T 0 is set to be the liquidus temperature T L . Thus, c 0 l = c 0 and the Gibbs-Thomson equation in terms of concentrations reads

U * i = c i -c 0 (1 -k)c 0 = - d 0 ρ -β kin V n + Rt m(k -1)c 0 , (6) 
where

β kin = 1/[m(k -1)c 0 µ] is the corresponding kinetic coefficient.
In the following, we will use the notation

Θ(t) = - Rt m(k -1)c 0 (7) 
for the negative undercooling that decreases in time as a result of the sample cooling.

Phase-field equations

We adopt the quantitative phase-field model introduced by Karma et al to simulate the solidification of diluted alloys [14,15]. Instead of the usual phase-field -1 ≤ ϕ ≤ 1, we use the preconditioned phase-field

ψ = √ 2 tanh -1 (ϕ) (8) 
that was shown to increase numerical precision for a given mesh size [16]. A number of recent phase-field studies confirmed that quantitative results are obtained when using the preconditioned phase-field [START_REF] Boukellal | [END_REF][17][18][19][20].

We follow the usual convention where lengths are scaled by the interface thickness W 0 and times by the relaxation time τ 0 . The resulting nondimensional evolution equation for ψ is

[1 -(1 -k)Θ]a 2 s ∂ψ ∂t = a 2 s ∇ 2 ψ - √ 2ϕ( ∇ψ) 2 + √ 2 ϕ -λ(1 -ϕ 2 )(U + Θ) + 2a s ∇a s ∇ψ + √ 2 (1 -ϕ 2 ) ∇ A. (9) 
As in the case of directional solidification, the imposed undercooling Θ(t) is also introduced on the left hand side of this equation to prevent the kinetic coefficient β kin from deviating in time from its imposed value (zero here) [15]. The nondimensional concentration field U is related to the physical concentration field c through

U = f U (ϕ)c -c 0 (1 -k)c 0 , (10) 
with f U (ϕ) = 2 (1 + k) -(1 -k)ϕ . ( 11 
)
This is the diffuse interface version of the physical definition given in [START_REF] Badillo | [END_REF]: in the liquid phase, ϕ = -1.0, so f U (ϕ) = 1.0. Al-Cu is a material with an atomically rough solid-liquid interface. Thus, the kinetic coefficient β kin should be set to zero for the low solidification velocities considered here. In practice, this is ensured by imposing λ = (75/47)Dτ 0 /W 2 0 for the constant that couples the non-dimensional concentration field U to the phase-field [21]. Since the interface width W 0 = ξd 0 is adjusted by varying the numerical parameter ξ, this fixes the relaxation time to τ 0 = (47 √ 2/120)(d 2 0 /D)ξ 3 . In the present work, as in [START_REF] Boukellal | [END_REF]19,22,23], the equation for the time evolution of the phase-field is written in terms of the anisotropy vector A. This vector appears when, in the original phase-field equation for solidification of a pure melt [21], one rewrites the following sum of three terms as a vector divergence, η=x,y,z

∂ η | ∇ϕ| 2 a s ∂a s ∂ϕ η = ∇. A. (12) 
It is worth mentioning that this formulation can be easily implemented for most anisotropy functions of the surface energy, a s (see Appendix A). For instance, the case of a surface energy anisotropy that leads to facetted growth shapes was recently considered by using this anisotropy vector formulation [23].

Crystalline anisotropy governs the expression of the anisotropy function a s . Here, we choose to align the Al-Cu cubic crystal axes [1 0 0], [0 1 0] and [0 0 1] with the x, y, and z axes of the numerical mesh. The corresponding anisotropy function reads then [24] 

a s = (1 -3 4 ) + 4 4 (n 4 x + n 4 y + n 4 z ), (13) 
where n x , n y , n z are the components of the unit vector n along the normal to the solid-liquid interface and 4 is the anisotropy strength of the interface energy. As shown in Appendix A, the three components of the anisotropy vector A are then

A x,y,z = 16 4 (1 -ϕ 2 ) √ 2 | ∇ψ|a s (n 4 x + n 4 y + n 4 z ) -n 2 x,y,z n x,y,z . (14) 
As we neglect solute diffusion in the solid (one-sided model), we must introduce a corrective solute current

j at = W 0 2 √ 2 c 0 (1 -k)G n, (15) 
where

G = 1 -ϕ 2 √ 2 [1 + (1 -k)U ] ∂ψ ∂t , (16) 
in order to counterbalance the excess of solute trapping and other spurious corrections due to the finite interface thickness W 0 [14,15]. The evolution equation for the nondimensional concentration field U is then [14,15] (

1 + k) -(1 -k)ϕ ∂U ∂t = (1 -ϕ)D * ∇ 2 U - (1 -ϕ 2 ) √ 2 D * ∇ψ ∇U - 1 √ 2 n ∇G + G 1 - ∇ n √ 2 , (17) 
where

D * = Dτ 0 W 2 0 . (18) 

Implementation

We very closely follow the implementation described in BEA. The main physical parameters of the Al-Cu alloys are gathered in Table 1. It was shown in BEA that the choice W 0 = 24.0d 0 for the interface width gives well converged results, so we also use this value here.

The first step of the work consists in bringing an initial germ to equilibrium for the imposed parameters. To do so, we start from a sphere of radius R 0 . We set the phase-field ψ( r, t = 0) = -| r -R 0 |/W 0 , the supersaturation 

U ( r, t = 0) = -d 0 /R 0 and Θ(t = 0) = d 0 /R 0 .
Then ψ and U are calculated while varying up and down Θ until the V x along the x axis cancels out. The final state of this step is used as the initial condition in what follows. Mirror (no-flux) conditions are constantly imposed at all the domain boundaries. Thus, it is sufficient to simulate a quarter of the whole sample plane xz, let us say x ≥ 0 and z ≥ 0. For the same reason, only one half of the sample thickness is necessary, let us say y > 0. Altogether, we only simulate an eighth of the sample and complete it by applying symmetries: the origin of the numerical domain is thus the center of the solid. Due to the no-flux boundary conditions, mirror dendrites develop and progress toward the reference dendrite from the right and from above, causing dendrite-dendrite collisions after some time. As the interface width W 0 is inversely proportional to the copper concentration, the physical mesh size δs varies the same way. We take here δs = hW 0 with the numerical grid spacing h = 1.0. As shown in [16], this choice gives very accurate results for a pre-conditioned phase-field. The dimensions L × L × H of the simulated physical domains are the same as in BEA, i. e., L = 800, 1000, 1200 µm and H = 100 µm. These dimensions are chosen to reproduce the geometry of recent experiments in thin samples, that we want to compare with our simulations [START_REF] Boukellal | [END_REF]25]. We use the simple Euler time integration scheme and a simple finite difference scheme for the spatial derivates. Then the time step must satisfy the stability condition δt ≤ 75 282

h 2 λ τ 0 (19) 
in three dimensions. The finite difference scheme is accelerated more than 30 times by coding it on a Graphics Processing Unit (GPU). A general purpose GPU is used that is optimized for 32-bit numbers, so all the real numbers we use are implemented as simple precision floats. As discussed in Appendix B, this is not without consequences when a small thermodynamic noise is to be introduced in the code.

Thermodynamic phase diagram

Concentration dependence

In BEA, average estimates of the partition coefficient, k = 0.14, and of the liquidus slope, m = -2.6K/wt.%Cu, were used. Both estimates were taken from an early representation of the whole Al-Cu phase diagram where the liquidus and the solidus are assumed globally linear for c 0 < 16wt.%Cu [START_REF] Hultgren | Selected Values of the Thermodynamic Properties of Binary Alloys[END_REF]. However, the phase diagram of Al-Cu alloys is actually not linear, even for concentrations of a few wt.%Cu. The reason is that the assumption of a diluted alloy rapidly loses its statistical justification: for a concentration of c 0 = 2.0 wt.%Cu, the probability that two Cu atoms in a randomly diluted alloy are in contact is already about 10 percent. According to recent thermodynamic data [START_REF][END_REF], the liquidus and solidus are definitely curved, as can be seen in Fig. 1. In order to assess the robustness of the BEA results, the magnitude of the corrections induced by these deviations from linearity has to be carefully estimated.

The first step is to estimate k and m as functions of the copper concentration c. To do so, the available thermodynamic data [START_REF][END_REF] for the liquidus temperature T L and for the solidus temperature T S are plotted in Fig. 1 as functions of c. Both curves are fitted to third-order polynomials,

T L (c) = a L c 3 + b L c 2 + c L c + T M , (20) 
and

T S (c) = a S c 3 + b S c 2 + c S c + T M , (21) 
The values of (a L , b L , c L ) and (a S , b S , c S ) are listed in Table 2.

For the alloy nominal concentration c = c 0 , (20) is used to obtain the corresponding liquidus temperature T 0 = T L (c 0 ). Then ( 21) is used to find c 0 such that T S (c 0 ) = T 0 (see Fig. 1), and the partition coefficient is given by k = c 0 /c 0 . For the same concentration c 0 , the liquidus slope is given by ∂T

L /∂c c=c 0 , that is m = 3a L c 2 0 + 2b L c 0 + c L . (23) 
The resulting values of k and m are listed in Table 3 for a few copper concentrations c 0 . In the range of concentrations considered in the present study (c 0 ≤ 2 wt.%Cu), the partition coefficient is roughly constant, k = 0.098, and the liquidus slope decreases slightly but remains close to m = -2.7 K/wt.%Cu. Both values definitely differ from the estimates used in BEA.

Regarding the imposed undercooling defined in (7), one sees that, at given time t and concentration c 0 , Θ(t) is roughly 8 percent smaller in the present case than in BEA, so dendritic growth is expected to be slower. 

Results

Figure 2 shows six snapshots illustrating the time evolution of a dendrite obtained in a 1000 × 1000 × 100 µm 3 sample for a concentration c 0 = 1.0 wt.%Cu. As in BEA, the production of secondary arms is very limited because thermal fluctuations are not included. One recovers the three main growth regimes already observed in BEA:

1. slow growth (0-60 s): the undercooling is proportional to time and cooling rate R, and so it is very low at the beginning of the growth. 2. fast growth (60-90 s): the nearly spherical seed turns into a crossshaped dendrite with two primary arms along x and z axes. The two primary arms grow fast and almost freely because the undercooling is high and the available space is large enough. 3. poisoned growth (90-150 s): the two primary arms reach the domain boundaries. They stop growing and they broaden. Secondary arms develop and fill the space.

Figure 3 represents the dendrite tip velocity V x measured along the horizontal direction x as a function of time. In comparison with the curve that was obtained in BEA, the maximum velocity is lower and it arises at later time in the present study because the instantaneous undercooling is smaller. Besides these quantitative differences, the two curves are very similar. 

(∆T ) 2 = k B T 2 0 c p ∆V , (24) 
with k B the Boltzmann constant, c p the Al specific heat (table 1), and ∆V, the fluctuation volume [START_REF] Landau | Statistical Physics Course of Theoretical Physics[END_REF]. At the scale of one mesh element, ∆V = (δs) 3 16.2 µm 3 , one expects thermodynamical temperature fluctuations to be of the order of 5 × 10 -4 K for the alloy considered here. So far, we neglected the thermal fluctuations, so secondary branches did not appear near the dendrite tip during the fast growth regime. Including physically reasonable thermal fluctuations should provoke branching. Moreover, since branching is not deterministic, an asymmetry between the two growth directions x and z may arise. The question we want to decide is wether this asymmetry would ultimately lead to different growth laws in the two directions and/or in different simulations.

In our code, the fluctuations of the sample temperature T (t) = T 0 -Rt are imposed by the means of a numerical spatiotemporal noise,

T ( r, t) = (T 0 -Rt){1 + F 0 [2η( r, t) -1)]}, ( 25 
)
where F 0 is the noise amplitude and η( r, t) is a pseudo-random number that is picked for each mesh point r and each time t from a uniform distribution over the range [0, 1). As a consequence, the dimensionless undercooling introduced in equation ( 7) now becomes

Θ( r, t) = -Rt + A 0 (T 0 -Rt) (k -1)mc 0 , ( 26 
)
where

A 0 = F 0 [2η( r, t) -1)
] is a random number between -F 0 and +F 0 .

In the following, we impose a noise amplitude F 0 = 1.0 × 10 -4 . Noting that Rt remains negligible as compared to T 0 here, this leads to temperature fluctuations of the order of F 0 T 0 0.1 K per time step. Taking the time correlations into account [START_REF] Karma | [END_REF]30], we obtain independent fluctuations of typical amplitude F 0 T 0 δt/τ 0 0.0035 K which is about 7 times higher than the thermodynamic value calculated from equation (24). This enhancement of the thermal fluctuations is deliberately made here because we want to decide wether significant effects will result or not. As shown in Appendix B, studying the case of physical thermal fluctuations would in addition require to use the double precision representation of real numbers. The code would thus become much slower, unless 64-bit GPUs are used. Let us stress that the present noise differs in nature from the one that is usually imposed in phase-field simulations. While the latter is imposed on the phase and/or the concentration fields that are computed from the time evolution equations [START_REF] Karma | [END_REF]30], the former concerns the fluctuations of a control parameter (the imposed temperature).

Figure 4 shows six snapshots illustrating the evolution of a dendrite obtained with the thermal noise just discussed and for the k and m values used in BEA (linear phase diagram). Here again, the three main growth regimes are obtained. It is worth noting that during regime 2, in which primary arms grow freely, secondary arms do appear now because of the thermal fluctuations (see panel d). During this regime, secondary arms did not appear in our previous simulations without noise.

Growth velocity

Figure 5 shows the velocities of two dendrite tips when thermal noise is included and when it is not. This figure also shows the velocity differences ∆V x,z between the two curves. Both velocity curves (with and without noise) show the same global behaviour: a steady increase of the velocity until it reaches a maximum, then a sharp decrease followed by a slow convergence to zero. Obviously, the spatiotemporal noise affects more the tip velocity near its maximum. In the specific case shown in figure 5, the tip that progresses along the x axis is accelerated while the tip along the z axis is decelerated as compared to the case without noise. We obtained nine comparable figures by performing a single simulation for each choice of (L, c 0 ). It would have been interesting to average ∆V x,z for each (L, c 0 ) over a number of simulations with different realizations of the spatiotemporal noise but this represented a very time-consuming task that was beyond the scope of the present study. For the different choices of (L, c 0 ), one sometimes observes the same effect as in figure 5 and sometimes the opposite one, so the average of the velocity differences ∆V x,z on the different (L, c 0 ) simulations is close to zero (see figure 6). It is interesting to note that, even for the large noise amplitude considered here, there is no dramatic change of the tip dynamics but rather fluctuations around the mean behavior obtained without noise.

Growth scaling laws

In BEA, we characterized the time evolution of the dendritic tip velocity V through the maximum velocity reached, V = V m , and through the time ∆t m necessary for V to increase from V m /2 to V m (see figure 3). We obtained scaling laws giving both quantities as functions of the scaling parameters L a /c α 0 and L b /c β 0 , respectively. The scaling exponents (a, α) were obtained by fitting the numerical values of V m . On the other hand, (b, β) were deduced from the result Λ = L m /L =cst, where L m = V m ∆t m and L is the box length. In the present work, we plot the values of V m and ∆t m as functions of the same scaling parameters as in BEA, both for a linear phase diagram in the 
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Figure 5: Time evolution of the tip velocities (red disks) along x and z for the dendritic growth with thermal noise illustrated in Fig. 4. The represented data are obtained for the parameter choice (L, c 0 ) = (1000 µm, 1.0 wt.%Cu). For comparison, the results obtained without noise are represented by continuous curves (black lines). The irregular sawtooth curves represent the differences between the velocities obtained with and without noise (dashed blue lines).

case of imposed thermal fluctuations and for a realistic curved phase diagram. Figure 7 shows the variations of V m and ∆t m with the same scaling parameters as in BEA. As could be expected, the scaling laws derived previously fit the present data as well, with slight deviations due to numerical reasons. On one hand, in the case of a linear phase-diagram, one can notice that the results in presence of a thermal noise are in good agreement with those in 

ΔV m,x /V m ΔV m,z /V m ΔV m,xz /V m Figure 6: Velocity difference ∆V x /V m = (V m,x -V m )/V m
, where V m represents the maximum growth velocity without noise and V m,x represents the maximum growth velocity along the x axis, for an imposed thermal noise of amplitude F 0 = 1.0 × 10 -4 . The different cases correspond to the nine couples (L, c 0 ) considered in this work. ∆V z is the corresponding velocity difference along the z axis and ∆V xz the average over the x and z axes.

BEA. Indeed, taking into account the thermal noise in the present work does not affect the growth regimes described in section (4.2). One can see that although the amplitude of the fluctuations imposed in the code is 7 times higher than the thermodynamic one predicted by Equation ( 24), the noise induces only slight deviations of V m and ∆t m . On the other hand, we also notice a good agreement with the results in BEA when a thermodynamic phase diagram is considered. Let us remark that for the dilute Al-Cu alloys considered here, the product m(k -1) is only increased by a factor of 1.088 for a given c 0 in the present case as compared to BEA. This small variation is thus expected to weakly affect the dynamics of the system as W 0 and Θ(t) keep almost the same values in both cases. Considering the three series of the data altogether, one finds that Λ ≈ 0.537 instead of Λ ≈ 0.546 quoted in BEA (that was readjusted after a more systematic data analysis to Λ ≈ 0.550). This result strengthens the conclusions drawn previously stating that V m ∆t m is only a function of the distance 2L between the grains whose primary arms grow toward each other. Altogether, the results obtained in this section confirm that extrapolation of our scaling laws to the concentrations of industrial or experimental interest remains possible even in presence of thermal fluctuations and in the case of a thermodynamic phase diagram. As a general remark from a numerical point of view, the results obtained in the case of a thermodynamic phase diagram can be reproduced by the code developed in BEA provided that the product m(k -1)c 0 and W 0 are adjusted so as to be identical in both cases. However, the results will correspond to different physical systems as c 0 will be shifted on the phase diagram.

Summary and conclusion

We have presented the numerical results of 3D phase-field simulations of Al-Cu equiaxed growth. Two thermodynamic effects have been considered and their implications on the scaling behaviour of the dendrite tip growth dynamics has been explored. First, a curved thermodynamic phase diagram has been considered, instead of the linear diagram approximation that is usually taken. The partition coefficient k and the product m(k -1) are lower in the former case (m is the liquidus slope). As a result, growth is slower than in the linear approximation. This shows that taking into account a thermodynamic phase diagram in the phase-field model is required to make a very quantitative comparison with experiment.

Second, keeping the linear phase diagram, spatiotemporal noise has been imposed to describe the thermal fluctuations that renders growth less deterministic. Developed secondary branches are indeed obtained and the curves giving the growth velocity as a function of time differ from one dendrite tip to the other. This partly explains the unique character of the dendrite evolutions observed in experiments [START_REF] Boukellal | [END_REF]25].

Finally, the scaling laws derived in BEA, giving the maximum dendritic growth rate V m and the characteristic growth time ∆t m as functions of the copper concentration c 0 and the available space L have been independently tested for both thermodynamic effects. Although consideration of a thermodynamic phase diagram is important at higher concentrations and the presence of thermal fluctuations is essential at lower concentrations, the scaling laws remain valid even in the presence of these thermodynamic effects. A natural extension of this work would be to combine both thermodynamic effects and check the accuracy of the scaling laws in these conditions that are closer to the experimental ones.

where F 0 is the fluctuation amplitude and a is a pseudo-random number picked from a uniform distribution over the range [-1, 1). For the sake of the argument, let us assume that one exactly has This means that the corresponding range of small fluctuations is always out of reach in numerical simulations. Our numerical simulations have been performed on a GPU that is very fast for simple precision (s = 6) but much slower for double precision (s = 15). For this reason, we used simple precision floats. Thus, for the noise amplitude we used (m = 4), the fluctuation range -0.01 < a < 0.01 is not described correctly. Physical fluctuations are roughly 10 times lower (m = 5). In this case, 10 percent of the fluctuation interval would not be described correctly, which is not acceptable. The solution would be to switch to double precision but, as just said, the computing time would be increased significantly. It is thus advisable, when one needs to simulate physical thermal fluctuations, to use GPUs that are optimized for double precision.
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 1 Figure 1: A part of the Al-Cu phase diagram. Markers represent available data from a thermodynamic data base[START_REF][END_REF]. Continuous lines are fits to third order polynomials giving approximate equations for the liquidus (L) and the solidus (S) lines.

Figure 2 :

 2 Figure 2: Time evolution of a dendrite obtained in a 1000 × 1000 × 100 µm 3 sample for a concentration c 0 = 1.0 wt.%Cu (see the second line in Table 3 for the phase diagram parameters k and m).

4. Thermal fluctuations 4 . 1 .

 41 Spatiotemporal noiseOur second point of interest is the role of thermal fluctuations the mean square of which is given by

Figure 3 :

 3 Figure 3: Velocity V x of the dendrite tip as a function of time (curve with markers). A unique concentration, c 0 = 1.0 wt.%Cu, and a unique sample size L = 1000 µm is considered. The curve corresponding to BEA (k = 0.14) is shown for comparison (without markers).

Figure 4 :

 4 Figure 4: Time evolution of a dendrite obtained in a 1000 × 1000 × 100 µm 3 sample for c 0 = 1.0 wt.%Cu, k = 0.14 and m = -2.6 K/wt.%Cu. Noise amplitude F 0 = 1.0 × 10 -4 .

Figure 7 :

 7 Figure 7: Scaling of the data obtained for different phase diagrams and different noise amplitudes F 0 . The solid curves are fits of the data for the linear phase diagram without noise (from BEA). These fits give the following rounded values for the scaling exponents: a = 2, α = 2/3, b = -1, and β = -2/3.

F 0

 0 = 10 -m , (B.2) with m a positive integer. If s represents the number of significative digits of the floating-point representation used for real numbers, S = 10 -s (B.3)is the smallest number that can be added to or subtracted from 1 without totally falling in rounding errors. Thus, the imposed fluctuations will be masked by rounding errors if|aF 0 | < S,

Table 1 :

 1 Physical parameters of the Al-Cu alloys considered in the simulations.

	Symbol	Physical parameter	Value	Unit
	D	copper diffusion coefficient	3000.0	µm 2 /s
		in the liquid		
	T M	aluminum melting	933.0	K
		temperature		
	c p	aluminium specific heat	2.8 × 10 -12 J/K/µm 3
		at melting temperature		
	c 0	copper concentration	1.0, 1.5, 2.0 wt.%Cu
	4	crystal cubic anisotropy	0.01	-
	Γ	Gibbs-Thomson coefficient	0.236	Kµm

Table 3 :

 3 Partition coefficient k and liquidus slope m for Al-Cu alloys at different copper concentrations c 0 up to the eutectic concentration (last entry).

	c 0 (wt.%Cu)	k	m (K/wt.%Cu)
	0.5	0.098	-2.697
	1.0	0.098	-2.692
	1.5	0.098	-2.688
	2.0	0.098	-2.685
	4.0	0.099	-2.687
	10.0	0.103	-2.811
	20.0	0.118	-3.415
	33.1	0.172	-4.956
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Appendix A. Anisotropy vector for the surface free energy

In this appendix, we give the general expression of the anisotropy vector A as a function of the preconditioned phase-field ψ. We obtain explicit expressions of three components A x , A y , and A z for the case of a cubic anisotropy. Using the preconditioned phase-field

and its first derivatives

where η = x, y, z, one obtains

Introducing the components

of the unit vector n normal to the solid-liquid interface, the last term in eq. A.3 becomes

with δ η,ζ = 1 if η = ζ, and 0 otherwise. Thus,

The anisotropy vector can thus be derived for any continuous function a s (n x , n y , n z ) representing the anisotropy function. In the present work, we study the growth of Al-Cu alloys, that adopt a cubic symmetry in the solid phase. In this case, the anisotropy function simply reads

and its partial derivatives are

Then the three components of the anisotropy vector are

with η = x, y, z.

Appendix B. Significative range of fluctuations for a uniform spatiotemporal noise of amplitude F 0

In this appendix, we obtain bounds for the range of random fluctuations that it is possible to represent on a computer and we give advices to implement fluctuations on GPUs. In equation (25), the thermal fluctuations of the imposed temperature T are introduced by multiplying T by a factor 1 + aF 0 , (B.1)