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Abstract

The planning of complex systems such as energy systems calls for multiple and

recurrent operational decisions depending on the present situation as well as

future trends. Such decisions can be optimized with rolling-horizon approaches

where most immediate decisions are fixed, based on current previsions, while

next decisions are made at further optimization steps with updated informa-

tion. In this paper, focus is on cases where long-term decisions have to be

balanced with detailed short-term decisions to insure operational realism. On

such problems, standard rolling horizon approaches are hard to solve due to the

substantial increase of the temporal dimension. To overstep this issue, new ap-

proaches to balance short and long-term decisions are proposed. Two modelling

approaches, based on aggregated time steps, are proposed and tested on an

energy production problem where energy can be stored seasonally. Approaches

are compared to benchmarks approaches (myopic and a posteriori optimization),

and a sensitivity analysis is performed. Both approaches are promising and cor-

respond to different compromises between the model complexity, computation

times and solution quality.
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1. Introduction

This paper proposes new rolling horizon approaches to deal with dynamic

operational problems that include both short and long-term decisions. Focus

is on cases where immediate short-term decisions must be modelled with a

detailed discretization of time, whereas long-term decisions must be anticipated

but cannot be taken in advance due to poor quality of forecast information.

The new approaches are illustrated on a typical energy planning problem where

energy production decisions depend on seasonal variations; however, this energy

planning problem can be substituted by any production planning problem where

short and long-term decisions must be balanced.

Rolling horizon (RH) approaches are common in decision making [1, 2] and

are particularly relevant to solve recurrent, dynamic or multi-period problems

where some immediate decisions must be made and available data can be up-

dated through time. The idea is to solve the problem over a chosen planning

horizon and using current forecasts, but to fix and effectively apply only a part

of the optimized decisions. Then, for the next step, the system state as well as

forecasts are updated, as in real life situations, and the problem is solved again

on the shifted planning horizon. Relying on a RH can also help to divide a large

optimisation problem into smaller ones. In [3], authors compare the solving of

energy planning problems over the entire problem horizon with RH approaches.

Finally, [4] compare LP, MILP and NLP (respectively Linear Programming,

Mixed Integer Linear Programming and Non-Linear Programming) approaches,

relying on a RH mechanism.

RHs are particularly applied in the energy sector. They were traditionally

used to solve so-called unit commitment problems, where the set-up and the

power dispatch of energy production units must be decided [5]. A RH based

method is applied in [6] to optimize operations in a district heating system. In
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[7], authors develop a three level RH framework for power systems and evaluates

the impact of forecast accuracy. In [8], authors use a RH approach to optimize

energy market bids and balancing market decisions in a stochastic framework.

[9] uses a RH approach to optimize operations in an electric microgrid (i.e.

electricity purchased, produced, stored, consumed and sold). In [10], [11] and

[12] , authors optimize electric network operations. They rely on RH algorithms

to optimize day and intra-day decisions. They investigate various models that

consider the stochastic nature of the intermittent energy productions and of the

demand. Authors from [13] use a RH model as a reference to evaluate several

mathematical programming formulations dedicated to the design and operation

optimization of an energy system. Further examples can be found in [14], [15]

and [16].

In the previous examples, RHs consider short planning horizons with de-

tailed time discretization. For instance, energy system modelling often requires

an hourly discretization of time. In cases of long-term planning needs (typi-

cally when energy systems include seasonal storage), short planning horizons

are limiting: a hourly planning horizon of 48 hours can fail to provide an ef-

fective use of a seasonal storage for instance. On the other hand, increasing it

to 8760 hours can lead to untractable optimization problems. One could drop

the RH approach and solve the problem as a single mathematical program with

heuristics or decomposition techniques. However, this would require the per-

fect foresight assumption while the RH approaches enable to consider imperfect

forecasts and information updates. Furthermore, RH approaches can include

interactions of the decision model with other parties. Hence, this paper focuses

on RH applications where short-term decisions should be optimized along with

long-term ones. In such cases, there is a need to consider decisions over different

time scales and to optimize them jointly.

This challenge was recently discussed in the energy system literature. Au-

thors in [17] use a RH to optimize a heat supply system that includes a seasonal

storage. The RH includes a few days planning horizon with seasonal storage

level targets at each RH cycle. The economic objective is penalised if targets
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are not met. However the penalty price is still to be found. In [18], large scale

hydro-thermal systems are optimized with a RH mechanism . The long-term

hydro storage is managed by introducing a value for the stored water at the end

of the planning horizon. However the computation of this value is not detailed.

Finally, authors from [19] simulate a microgrid with a RH. The value of stor-

age and set-up units at the end of the planning horizon are given by a value

function. The latter is estimated by solving a simplified version of the infinite

horizon problem with dynamic programming.

The need for a long-term planning horizon can also occur from annual con-

straints or objectives like energy efficiency/savings, peak power prices, or envi-

ronmental emission limits for instance. In [20], authors consider annual network

charges based on an energy use threshold. They use a RH with a planning hori-

zon based on time aggregation by representative days on the long-term. In

[21], a RH is used to optimize the system operation and reach energy efficiency

and energy saving targets. They rely on long-term estimations based on rep-

resentative weeks. Contrarily to [20], the computations had to be done solved

several times with updated estimations to reach the targets. In both cases, the

continuity between aggregated periods is not kept, so such methods cannot be

used if long-term decisions are path-dependent: in case a long-term storage for

instance.

Finally, authors from [22] focus on the long-term degradation of batteries

while optimising their daily operation in a RH model. They develop a specific

parametric model to anticipate future costs of the battery deteriorating modes.

Contributions:

Few researches were found that deal with the cases where detailed short-term

decisions must be optimized along with long-term decisions. This type of chal-

lenge is relevant in the field of energy research. Methods proposed in [18, 17] rely

on key arbitrary values. Methods from [21] and from [20] do not keep continuity

between long-term decisions. Hence they are not applicable if long-term strate-

gies are path dependent. The method from [22] is technology specific and [19]
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provides one heuristic method. Given the related problems complexity, heuris-

tics relying on future data approximations are of interest. Different heuristics

can provide different compromises between computation times, performances

and simplicity. Furthermore, this can vary over the application case. Hence,

authors contribute to this research gap by proposing two news approaches.

Both approaches rely on an adaptive time-step aggregation. They do not

need the modeller to provide a value for long-term moves. Furthermore, both

can keep the continuity between state variables over the long-term and ensure

short computation times. The first one stands out for its easiness of applica-

tion and short computation times with a case-dependent solution quality. The

second for its potential to reach better solutions. The proposed approaches are

illustrated on an energy production planning problem and can be extended to

other domains.

The paper is organized as follows. The problem studied is introduced (Sec-

tion 2). Then, Section 3 describes the proposed approaches. Results are shown

and discussed in Section 4 and a sensitivity analysis is performed on the two

best versions of the models (Section 5).

2. Problem formulation

This section presents the problem used to illustrate the proposed methodolo-

gies. It is a heat production case study: heat production units and storage must

be managed to supply a network that delivers heat to dwellings corresponding

to 5000 inhabitants. The time varying heat demand (D) must be supplied at

each period (units considered are actually energy units). It can be supplied

with two production means: an Inflexible (but cheap) Production (IFP) and a

Flexible (but expensive) Production (FP). They respectively correspond to a

biomass boiler and a gas boiler. Additionally, two storage units can be used:

a Short-Term Storage (STS) and a Long-Term Storage (LTS). The latter has a

higher capacity but lower performances.

The mathematical description of the problem is further detailed. This model
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is supposed to perfectly represent the real life problem. The mathematical for-

mulation is described on a discrete horizon H = {1, . . . ,Θ ∈ N∗}. The time step

size (in hours) is given by dt and ensures units consistency. Variables are writ-

ten in bold, continuous variables in capital letters and binary variables in small

letters. In order to represent units consistency, X corresponds to units/hour

and E to units. Parameters and variables are detailed below.

Production units.

• The FP unit is only defined by its unitary production cost in e/unit

CF , with no constraint on the produced quantity. Variable XF
t ∈ R+

corresponds to the production of the FP at t in units/hour.

• The IFP is characterised by a minimum and a maximum production capac-

ity in units/hour (XI
min and XI

max), a maximum change of its production

rate in units/hour (XI
r ), a minimum on/off time in hours (T Imin), a uni-

tary production cost in e/unit (CI), a fixed production cost in e/hour

(CIon) and a set-up cost in e (CIset). Variable XI
t ∈ {0 ∪ [XI

min, X
I
max]}

corresponds to the production of the IFP at t in units/hour, yI
t ∈ {0, 1}

equals 1 if the IFP is on at t, 0 otherwise and zI
t ∈ {0, 1} equals 1 if the

IFP is being set-up at t, 0 otherwise.

Storage units. Storage units (STS and LTS) are respectively defined by a maxi-

mum capacity in units (ESmax, ELmax), a storing efficiency (ηS , ηL) corresponding

to the percentage of units that are actually stored during the storing operation

(the rest is lost), losses in units lost/unit stored/hour (δS , δL) and a simi-

lar stock/destock capacity in units/hour (XSL
max). Associated variables are the

stored quantity in units (ES
t ∈ [0, ESmax] and EL

t ∈ [0, ELmax]) and the stock

and destock rates in units/hour ((XoutS
t ,XoutL

t ,XinS
t ,XinL

t ) ∈ [0, XSL
max]4)

at time step t.

Demand. The demand (XD
t in units/hour) has seasonal variations with higher

values in winter and intermediate seasons than in summer. It also varies weakly,

and daily due to external temperatures and sociological aspects.

6



The mathematical formulation of the problem is as follows.

Original model:

min
∑
t∈H(CFXF

t + CIXI
t + CIonyI

t)dt+ CIsetz
I
t (E1)

such that

∀t ∈ H : XD
t = XF

t + XI
t + XoutS

t + XoutL
t −XinS

t −XinL
t (E2)

ES
t = ES

t−1(1− δSdt) + (ηSXinS
t −XoutS

t )dt (E3)

EL
t = EL

t−1(1− δLdt) + (ηLXinL
t −XoutL

t )dt (E4)

XI
minyI

t ≤ XI
t (E5)

XI
t ≤ XI

maxy
I
t (E6)

yI
t − yI

t−1 ≤ zI
t (E7)

XI
t −XI

t−1 ≤ XI
r (E8)

XI
t−1 −XI

t ≤ XI
r (E9)

∀t ∈ {T Imin, . . . ,Θ} :
∑t
t′=t+1−TminI

zI
t′ ≤ yI

t (E10)

∀t ∈ {1, . . . , T Imin − 1} :
∑t
t′=1 zI

t′ ≤ yI
t (E11)

EL
0 ≤ EL

Θ (E12)

The objective E1 is to minimize the sum of all costs. E2 ensures that the

demand is satisfied. E3 and E4 are the balance equations for both storage units.

E5-E6 set the minimum capacity of the IFP and fixes yI
t. E7 fixes zI

t. E8-E9

limit the changes in the IFP production rate. The minimum on/off times of the

IFP are given by E10-E11. Finally, E12 states that the final LTS level is at

least equal to its initial level. This last constraint is only used if H corresponds

to a year (EL
0 is set to 0 otherwise). Other variables are set to 0 if t = 0.

It is assumed that the problem is fully described by the above model. This

problem can be solved iteratively over H in a rolling horizon fashion (see next

section). However, with the possibility to store units over the long-term with

the LTS, the optimal operation of the system for a given RH cycle can only be

found by setting the length of H equal to a year. With an hourly time step, H

would include 8760 periods which highly increases the problem dimension. To

overcome this issue, new approaches are proposed in Section 3.
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3. Proposed rolling horizon approaches to solve the optimization prob-

lem

This section describes the approaches proposed in this paper. They enable

to solve the problem presented in Section 2 in a RH fashion by considering

long-term future decisions while optimizing short-term ones.

Figure 1 describes the RH approach as well as the additional notations used

in this paper. The problem is solved over a chosen planning horizon with avail-

able forecasts. Optimized decisions are effectively applied over the fixed horizon

(FH). At the next cycle, H is shifted by the length of FH. The system state

as well as forecasts are updated before the problem is solved again on H. This

process goes infinitely.

Figure 1: Rolling horizon principle

As mentioned previously, the possibility to store units over the long-term

extends the planning horizon length, leading to computational issues. In order

to make this extension possible, the idea of short and long-term horizons with
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aggregated time steps is introduced. The horizon of the original model (H) is

divided into SH = {1, . . . , θ − 1} and LH = {θ, . . . ,Θ} where θ ∈ H (H =

SH ∪LH). The time step size of the original model (dt) is kept over SH while

it is increased over LH. Time step aggregations were already used in other

fields of energy system analysis (see [23] and [24] for instance): time steps with

similar values are aggregated to reduce the problem size. Here, aggregations

are made on the more distant time steps for which uncertainty increases i.e.

the more distant, the bigger the aggregation. Hence, the time step size dt is

now dependent on t: dtt. The approach enables a long-term vision up to a

year or more while limiting the total number of time steps. Furthermore, the

aggregation is adapted to the immediate decision need: upcoming decisions are

accurately modelled while long-term ones are reduced to necessary variables.

This way, short and long-term decisions are reconciled.

The slicing (i.e. the values of θ and dtt) is to be defined by the modeller.

It is problem dependant. One could further define a hypothetical medium-term

horizon for instance. An example of slicing is given Figure 2. This slicing

naturally fits the problem of Section 2 with its actual data (see Section 4). The

time step size is adapted to the forecast accuracy. Different versions of this

slicing will be tested in the numerical experiments (Section 4).

Figure 2: Planning horizon including a long-term vision with aggregated time steps
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In all cases, the original MILP formulation of the problem of Section 2 is

kept over SH, which includes FH. Hence, E2, E5 and E6 are satisfied as well

as E3, E4 and E7−E11 within FH. The RH mechanism ensures that E3, E4

and E7−E11 are satisfied between each FH. Finally, E12 is satisfied because

EL
0 is set to 0. Hence, the solution provided by the RH is a solution of E2− 12.

Two models are proposed for LH to capture long-term data and decisions.

The optimization is then carried out on both horizons jointly in order to keep

consistency between short and long-term decisions.

3.1. Aggregation by Means and Relaxation: the M-LP model

This approach uses means of the demand over LH as an aggregation of future

data. The demand XmeanDt over the current time step t of size dtt is the mean

of the original demand over this time step. Two formulations are presented for

the problem over LH.

3.1.1. Linear formulation: the original M-LP model

Here, the original MILP formulation given by E1-E11 is kept but integer

variables are set to zero over LH. Variables on LH represent the means of the

original continuous variables over the aggregated period. This new formulation,

M-LP, is given below. Changes are marked in blue and new equations are

indexed by “EX.1. It is assume that T Imin < θ.
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The M-LP model is as follows:

min
∑
t∈H(CFXF

t + CIXI
t)dtt +

∑
t∈SH C

I
onyI

tdtt + CIsetz
I
t (E1.1)

such that

∀t ∈ H : XmeanDt = XF
t + XI

t + XoutS
t + XoutL

t −XinS
t −XinL

t (E2.1)

ES
t = ES

t−1(1− δS dtt ) + (ηSXinS
t −XoutS

t ) dtt (E3.1)

EL
t = EL

t−1(1− δL dtt ) + (ηLXinL
t −XoutL

t ) dtt (E4.1)

∀t ∈ SH : XI
minyI

t ≤ XI
t (E5.1)

XI
t ≤ XI

maxy
I
t (E6.1)

yI
t − yI

t−1 ≤ zI
t (E7.1)

XI
t −XI

t−1 ≤ XI
r (E8.1)

XI
t−1 −XI

t ≤ XI
r (E9.1)

∀t ∈ {T Imin, . . . , θ − 1 } :
∑t
t′=t+1−TminI

zI
t′ ≤ yI

t (E10.1)

∀t ∈ {1, . . . , T Imin − 1} :
∑t
t′=1 zI

t′ ≤ yI
t (E11)

EL
0 ≤ EL

Θ (E12)

3.1.2. Including set-up costs: the M-LP-SetUp model

In a second formulation, set-up costs are included over LH. This is because

set-up costs can be preponderant (see Section 4), thus there might be an interest

in setting-up the IFP for longer than the length of SH. This is done by including

the second part of E4, E5-E7, as well as set-up costs in the objective on LH.

The model including the set-up costs is called M-LP-SetUp. Contrarily to the

M-LP model, the M-LP-SetUp model is expected to better manage a potential

cycling of the IFP. The MILP formulation of the M-LP-SetUp model is given

below. Changes compared to the M-LP model are shown in blue and new

equations are indexed by “EX.2”.
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The M-LP-SetUp model is as follows:

min
∑
t∈H((CFXF

t + CIXI
t)dtt + CIsetz

I
t) +

∑
t∈SH C

I
onyI

tdtt (E1.2)

such that

∀t ∈ H : XmeanDt = XF
t + XI

t + XoutS
t + XoutL

t −XinS
t −XinL

t (E2.1)

ES
t = ES

t−1(1− δSdtt) + (ηSXinS
t −XoutS

t )dtt (E3.1)

EL
t = EL

t−1(1− δLdtt) + (ηLXinL
t −XoutL

t )dtt (E4.1)

XI
t ≤ XI

maxy
I
t (E6)

yI
t − yI

t−1 ≤ zI
t (E7)

∀t ∈ SH : XI
minyI

t ≤ XI
t (E5.1)

XI
t −XI

t−1 ≤ XI
r (E8.1)

XI
t−1 −XI

t ≤ XI
r (E9.1)

∀t ∈ {T Imin, . . . , θ − 1} :
∑t
t′=t+1−TminI

zI
t′ ≤ yI

t (E10.1)

∀t ∈ {1, . . . , T Imin − 1} :
∑t
t′=1 zI

t′ ≤ yI
t (E11)

EL
0 ≤ EL

Θ (E12)

Although the M-LP-SetUp model is expected to perform better than the

M-LP model, both models rely on an approximation of future costs. This ap-

proximation is based on means and on a lightened version of the original problem

formulation. These models are expected to give lower bounds for the original

problem over T and to underestimate future costs. In particular, the use of

means leads to ignore oscillations, which are costly to the system. This justifies

the elaboration of a second method described in the next section.

3.2. Aggregation by Representative Periods and Cost Functions: the RP-CF

model

In order to overcome the mentioned limits of the M-LP model, the RP-CF

model is introduced. It relies on an aggregation of future data by representative

periods (RPs). RPs could be used directly over LH with the original MILP

formulation, as performed in [20]. However, this can highly increase computa-

tion times and the continuity between time steps is lost. Hence, the RP-CF

approach is proposed.
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First, τ is introduced as the date corresponding to the first time step of LH.

The proposed RP-CF approach relies on a pre-computation of operational costs

in function of a variable which describes the long-term evolution of the system

state: cτ,t. In our case this variable is the state of the LTS: ∆t = EL
t − EL

t−1.

Hence, future system costs are estimated depending on the quantity moved to

the LTS (possibly negative) over all periods of the LH. The functions cτ,t are

called the cost functions (CFs) and are defined for all periods t and for all τ .

Similarly to Section 3.1, two versions of the RP-CF model are presented: a

first one without including set-up costs over LH, and a second one that includes

them.

3.2.1. The original RP-CF model

Assuming that functions cτ,t are known, the problem is formulated as follows.

Changes to the original MILP formulation are shown in blue and new equations

are indexed by “EX.3”.

The RP-CF model is as follows:

min
∑
t∈SH(CFXF

t + CIXI
t + CIonyI

t)dtt + CIsetz
I
t +

∑
t∈LH cτ,t(∆t) (E1.3)

such that

∀t ∈ SH : XD
t = XF

t + XI
t + XoutS

t + XoutL
t −XinS

t −XinL
t (E2.3)

ES
t = ES

t−1(1− δS dtt ) + (ηSXinS
t −XoutS

t ) dtt (E3.3)

EL
t = EL

t−1(1− δL dtt ) + (ηLXinL
t −XoutL

t ) dtt (E4.3)

XI
minyI

t ≤ XI
t (E5.1)

XI
t ≤ XI

maxy
I
t (E6.1)

yI
t − yI

t−1 ≤ zI
t (E7.1)

XI
t −XI

t−1 ≤ XI
r (E8.1)

XI
t−1 −XI

t ≤ XI
r (E9.1)

∀t ∈ {T Imin, . . . , θ − 1 } :
∑t
t′=t+1−TminI

zI
t′ ≤ yI

t (E10.1)

∀t ∈ {1, . . . , T Imin − 1} :
∑t
t′=1 zI

t′ ≤ yI
t (E11)

EL
0 = EL

Θ (E12)

∀t ∈ LH : EL
t = EL

t−1(1− δLdtt) + ∆t (E13.3)
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Equation E13.3 is the storage balance equation over LH. One can note that

the problem over LH is a shortest path problem.

The CFs are naturally included in the MILP formulation as piecewise linear

functions. The CFs are estimated by solving the original problem over one or

several RPs of the period t, for all t and for various values of ∆. The method

for estimating the CFs is detailed in Appendix A for a given horizon slicing. In

the case of the problem given in Section 2 and the data used in Section 4, the

CFs are very close to piecewise linear functions and are convex. Slopes of the

linear parts correspond to the marginal cost of the last called production unit

(IFP or FP). Hence they are easily included in the MILP formulation. However,

non-convex and non-linear functions would be more costly to handle.

Contrarily to the mean approximation, costs estimations based on RPs do

not ignore the hourly oscillations which are costly to the system. Furthermore,

costs are estimated based on the original problem formulation as opposed to the

M-LP model where a linear approximation is used.

3.2.2. Side effects and inclusion of set-up costs: the RP-FC-SetUp model

Computations of CFs are subject to side effects depending on the STS and

the IFP states at the beginning of the RP. In particular, set-up costs can be

preponderant (see Section 4) and ignoring them over could lead to sub-optimal

solutions. Hence, similarly to the M-LP-SetUp approach, the RP-FC approach

is extended so that set-up costs are anticipated over the long-term. This is done

by computing CFs for both assumptions:

• The IFP is already set-up at the beginning of the RP (“On” assumption).

• The IFP is off at the beginning of the RP (“Off” assumption).

Hence, two sets of CFs are obtained: con and coff . This information is

included in the model as follows. Changes compared to the formulation of the

RP-CF model are shown in blue and new equations are indexed by “EX.4”.
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The RP-CF-SetUp model is as follows (SH = {1, . . . , θ−1} and LH = {θ, . . . ,Θ}):

min
∑
t∈SH(CFXF

t + CIXI
t + CIonyI

t)dtt + CIsetz
I
t

+ conτ,θ(∆
on
θ ) + coffτ,θ (∆off

θ ) +
∑
t∈LH\{θ} c

on
τ,t(∆t) (E1.4)

such that

∀t ∈ SH : XD
t = XF

t + XI
t + XoutS

t + XoutL
t −XinS

t −XinL
t (E2.3)

ES
t = ES

t−1(1− δSdtt) + (ηSXinS
t −XoutS

t )dtt (E3.3)

EL
t = EL

t−1(1− δLdtt) + (ηLXinL
t −XoutL

t )dtt (E4.3)

XI
minyI

t ≤ XI
t (E5.1)

XI
t ≤ XI

maxy
I
t (E6.1)

yI
t − yI

t−1 ≤ zI
t (E7.1)

XI
t −XI

t−1 ≤ XI
r (E8.1)

XI
t−1 −XI

t ≤ XI
r (E9.1)

∀t ∈ {T Imin, . . . , θ − 1} :
∑t
t′=t+1−TminI

zI
t′ ≤ yI

t (E10.1)

∀t ∈ {1, . . . , T Imin − 1} :
∑t
t′=1 zI

t′ ≤ yI
t (E11)

EL
0 = EL

Θ (E12)

∀t ∈ LH \{θ} : EL
t = EL

t−1(1− δLdtt) + ∆t (E13.4)

EL
θ = EL

θ−1(1− δLdtθ) + ∆on
θ + ∆off

θ (E14.4)

∆on
θ ≤ yI

θ−1E
L
max (E15.4)

∆off
θ ≤ (1− yI

θ−1)ELmax (E16.4)

Equation E14.4 is the storage balance equation exclusive to time step θ.

E15.4-E16.4 ensure the consistency between the CFs con and coff with the

state of the IFP at θ − 1.

Since the information about the state of the IFP is lost after θ, CFs computed

with the “On” assumption are used afterwards (E1.4). This is because future

costs are overestimated otherwise, which can lead to unused stored units and

costly solutions. This model is called the RP-FC-SetUp model. It is expected

to perform better than the RP-FC model since continuity over the IFP state is

kept between SH and LH.
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4. Comparison of all approaches: computational experiments

In this section, the proposed approaches are compared on the basis of the

problem described in Section 2. The problem corresponds to a heat production

case study: heat production units and storages must be managed to supply

a network that delivers heat to 5000 inhabitants. Other production planning

problems where short and long-term decisions must be balanced could be used

as well. The data are shown Table 1.
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Table 1: Data of the heat production problem.

Element Parameter Notation Value

Flexible

Production

(FP), gas based

Capacity (units/hour) N.A. Uncapacitated

Cost (euros/unit) CF 66.8 (See Appendix

D for details)

Inflexible

Production

(IFP), biomass

based

Capacity (units/hour) Xmaxt 3

Minimum capacity (units/hour) Xmint 1.2

Maximum change in production

(units/hour)

Rt 1.2

Minimum up and down time

(hours)

Tmint 6

Variable cost (euros/unit) Ct 33.3 (See Appendix

D for details)

Fixed cost (euros/hour) Cont 10

Set up cost (euros) Csett 500

Short-Term

Storage (STS)

Capacity (units) EmaxS 30

Efficiency ηS 0.98

Losses (units/unit stored/hour) δS 0.00021

(0.5% per day)

Stock/destock capacity

(units/hour)

XmaxS 3

Long-Term

Storage (LTS)

Capacity (units) EmaxL 1500

Efficiency (units stored/unit in) ηL 0.97

Losses (units/unit stored/hour) δL 0.00042

(1% per day)

Stock/destock capacity

(units/hour)

XmaxL 3

Demand (D) Demand profile

(units/hour)

XD
t See Appendix C for

details
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4.1. Experiments procedure

The same heat demand profile is used over both horizons SH and LH. This

way, only biases on the data aggregation method and on the models themselves

are accounted for. Other demand profiles as well as imperfect forecasts will be

tested in Section 5.

The RH process is parametrized as follows: for all computations, the fixed

horizon FH is set to 24 hours, and three different planning horizons H are

tested, as defined by Figure 3. H1 and HM are respectively a simplified and a

truncated version of H2.

Figure 3: Planning horizons H1, H2 and HM

Two extra computations are performed to provide benchmark references:

• A myopic approach where the problem is solved based on a similar RH

mechanism as previous approaches, except that the planning horizon H

is limited to SH. This approach is used as a benchmark where forecasts

are limited to 48 hours. As mentioned in Section 2, given the seasonal

variations of the demand and given the possibility to store units over the
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long-term with the LTS, the optimal solution might only be found by

solving the problem over a year. Hence the myopic strategy suffers from

the so called truncated horizon effect as defined in [25]. Storage units are

emptied and the IFP is turned off at the end of H. The FH of 24 hours

limits these side effects but is not sufficient to ensure an efficient long-term

strategy.

• An a posteriori optimization of production decisions where the problem

(original formulation, E1-E12) is solved over a year in a single optimiza-

tion (with an hourly time discretization). This is used as a benchmark

where the hourly demand is perfectly known over the whole year, which

over-estimates forecast abilities and under-estimate the system operating

costs. Given the problem size, only the lower and upper bounds are ob-

tained.

All approaches are evaluated over a year. Solutions retained correspond to

solutions on the Fixed Horizons FH of the RH process over a year (see Figure 4).

Since the yearly strategy over the LTS might evolve if more years are simulated,

models are run until it converges. In practice, this is the case after one or two

years.

Figure 4: Evaluation process
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4.2. Computational environment

Computations are performed within the PERSEE environment (see Fig-

ure 5). PERSEE is a modelling software dedicated to techno-economical as-

sessment and design of energy systems at local, industrial and territorial scales,

while optimizing their operating costs. It has been developed in CEA (Centre

Energie Atomique et Energies Alternatives) since 2018 on the basis of past ex-

periences from the Odyssey [26] and the PEGASE platforms [27]. It relies on

the MILP formalism which is widely applied to deal with problems related to

energy-system planning [28]. PERSEE provides a graphical user interface that

allows one to model the system by assembling MILP model contributions from

a C++ library, building the whole optimization problem. Multiple carriers can

be used including electricity, heat or materials (gas, fuel, biomass etc.). Vari-

ables can describe energy, mass, power or mass flows. The net present value is

used as the objective function. It accounts for capital and operating expendi-

tures, replacement, purchase and sales costs as well as possible carbon emission

penalties. It becomes an operating cost function when the system operation

only is considered. Following up [28], PERSEE models have been written to be

compliant with several time discretizations including RPs and time dependent

aggregated time steps.

The problem is solved by one of the solvers available through a multi-MILP-

solver interface (OSI open source, CPLEX, GUROBI etc.) As part of the PE-

GASE platform, PERSEE is able to control fine simulators, digital twins or

real systems using model predictive control. PEGASE is compliant with the

FMI-Cosimulation 2.0 norm. Both PERSEE and PEGASE are expected to be

open source by 2022, in the frame of the starting CEA Trilogy project.

In this paper, the 12.9.0 version of the CPLEX solver [29] was used on an

Intel Xeon Gold 6154 CPU with 2 processors of 3 GHz. The installed RAM

is 96 GB. Threads used were limited to 8 threads except for the a posteriori

optimization where all threads were used with a limit of 40 hours. In all cases,

the final relative gap was set to 10−6.
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Figure 5: Schematic description of the modelling environment.

21



4.3. Results

4.3.1. Economic performances and computation times

Results are given in Table 2. The final relative gap with upper and lower

bounds are given for the a posteriori optimization. Savings are defined as the

difference between the total costs of the myopic approach with the total costs

of another approach. This way, only compressible costs are considered. Savings

of Table 2 are displayed on Figure 6.

Figure 6: Savings of all approaches compared to the myopic approach (e), with upper bound

(red) and lower bound (green) of the a posteriori optimization
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Table 2: Results of the proposed models.

Model Planning

horizon

Total cost

(euros)

Savings

compared to

the myopic

approach

(euros)

Simulation

computation

time (sec)

Cost func-

tions compu-

tation time

(sec)

M-LP H1 847 755 16 887 36 0

M-LP-setUp H1 835 340 29 302 33 0

M-LP H2 844 700 19 942 33 0

M-LP-setUp H2 833 924 30 718 34 0

M-LP HM 851 083 13 559 40 0

M-LP-setUp HM 837 918 26 724 40 0

RP-CF H1 844 948 19 694 95 353

RP-CF-setUp H1 827 315 37 327 95 695

RP-CF H2 846 071 18 571 202 9 331

RP-CF-setUp H2 833 064 31 578 253 18 641

RP-CF HM 849 442 15 200 130 8 970

RP-CF-setUp HM 834 456 30 186 131+131∗ 17 945

Myopic approach 864 642 0 32 0

A posteriori optimization
Lower

bound:

806 435

58 207 40 hours

Final

relative gap:

1.03%

RAM used:

56GB

Upper

bound:

814 863

49 779

*Only case where the computations converged after two years instead of one year
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4.3.2. Solutions

The solutions for the benchmark myopic approach, for models M-LP, M-

LP-SetUp, RP-CF, RP-CF-SetUp with horizon H1 and for the a posteriori

optimization are described here (Figures 7 to 12). For each figure, the upper

graph shows the elements of the balance equation E2, while the lower graph

shows the state of both storages. All graphs start on the first of July.

Figure 7: Results for the benchmark myopic approach.
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Figure 8: Results for the a posteriori optimization.
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Figure 9: Results for the M-LP model.
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Figure 10: Results for the M-LP-SetUp model.
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Figure 11: Results for the RP-CF model.
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Figure 12: Results for the RP-CF-SetUp model.
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The myopic approach shows nearly no use of the LTS. It makes the IFP

cycling a lot. This is due to the fact that it does not anticipate set up costs

after 48 hours.

In the a posteriori optimization solution, the IFP is started up only few

times during the summer to limit set-up costs. The storage is filled up to 650

units before the heating season.

The M-LP model makes the IFP cycle as much as the myopic approach

before the heating season (the same phenomena occurs with H2 and HM). It

makes use of the LTS (which is not the case with HM) but stores more than the

a posteriori optimization. This is due to the fact that it does not anticipate the

destocking flow capacity of the LTS and the demand flows lower than the IFP

capacity. Hence the stored quantity is held longer than expected which implies

more losses.

The M-LP-SetUp model makes longer cycles with the IFP (the same phe-

nomena occurs with H2 and HM). It stands far from the cycling strategy of

the a posteriori optimization because the minimum capacity of the IFP is not

considered on the LH. Hence, future costs are under-estimated. The inclusion

of set-up costs also add a phase where the IFP is used at minimum capacity

(before the heating season).

The RP-CF model also makes the IFP cycle a lot (to a lesser extent that the

myopic or the M-LP models). It also stores less units before the heating season,

which is an improvement compared to the M-LP model.

Finally, the RP-CF-SetUp model has an efficient cycling strategy on summer

which is comparable to the a posteriori optimization. The model also stores units

at the end of the heating season, contrarily to the a posteriori optimization.

One explanation is that the approximation with RPs led to an overestimation

of future costs on these periods.

4.4. Discussion and recommendations

Solutions quality. All approaches bring savings compared to the myopic bench-

mark approach (see Figure 6). In most cases, RP-CF approaches yield better
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solutions than M-LP approaches. The difference is more significant with H1.

These savings are also significant compared to the upper and lower bounds

obtained by the a posteriori optimization. The difference with the a posteri-

ori optimization is due to the model approximations and to the aggregation of

future data.

Computation times. Table 2 shows the computation times for the different ap-

proaches (Appendix B provides further information on the convergence of the

a posteriori optimization). The inclusion of a long-term horizon with the M-

LP and M-LP-SetUp approaches does not significantly impact computation

times. Computation times with HM increased because the relative gap was

not adapted to the horizon length (the objective is optimized down to the euro

for horizons H1 and H2 while it is optimized down to the tenths of euro on the

HM horizon which is over-qualitative). On the other hand, computation times

are three times higher for the RP-CF models on H1. It further increases when

moving to H2 and HM horizons. The RP-CF-SetUp model with H2 needed a

second year of simulation to converge: the first year ended with a higher stor-

age level than what it started with. Regarding the CFs building computation

times, they can easily be reduced by using binary search techniques or parallel

computations for instance. Computation times are relatively high for horizons

H2 and HM because CFs are computed for every days and weeks of the year,

while H1 only requires CFs for every period of 4 weeks.

What modelling aspects to include in the long-term model. Long-term models

that include set-up costs give better savings. This is due to the high set-up

costs: there is an interest in setting up the IFP for longer than the SH. Further

applications should include decisions that have a potential long-term impact in

the long-term model. Concerning the M-LP models, the problem formulation

to use as a long-term approximation can be case dependent. In this case, in-

clusion of the IFP minimal capacity was not fruitful for instance. It led to an

overestimation of future costs and units were stored for no use. A formulation

that under-estimates future costs will at least perform better than the myopic
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approach. This is true for M-LP models on this case study because oscillations

of the system are costly.

Choice of planning horizons. Concerning M-LP approaches, the longer and the

more detailed the planning horizon the better the results. This is not true for

the RP-CF model which yields a better solution with H1. This can be explained

because the continuity between the IFP discrete states is kept between SH and

LH but it is lost after the first time step of LH. Hence, the RP-CF-SetUp

model benefits from the large time steps of H1. As a consequence, the choice

of the planning horizon can depend on the approach used.

5. Sensitivity analysis

A sensitivity analysis for models RP-CF-SetUp and M-LP-SetUp is per-

formed here. The same LH is kept in both cases. Hence, H1 is used because it

led to significantly better results with the RP-CF-SetUp model. The objective

is to test the robustness of the two best approaches on similar horizons. Both

models are tested with different assumptions on the data used in Section 4, and

on the quality of the demand forecast.

5.1. Sensitivity on the data

First, both models on different data sets are tested. Two data modifications

are crossed:

• A change in the FP costs: 44.4, 55.6, 66.8 and 78.0 e/unit are tested. A

cost of 66.8 was used in Section 4 and a cost of 44.4 corresponds to the

case where no CO2 emission penalties are considered (see Appendix D

for details).

• A change in the profiles used for the demand, which corresponds to dif-

ferent meteorological scenarios. Three demand profiles A, B and C are

considered (details are provided in Appendix C). Profile A was used in

Section 4.
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Figure 13: Savings of models RP-CF-SetUp and M-LP-SetUp on horizon H1, for different

costs for the FP, on demand A, B and C (e). *Cost of the FP

The savings compared to the myopic model are compared for all tests, see

Figure 13. Both models have steady and consistent behavior. They bring im-

portant savings on other profiles, showing reassuring stability. The exception

occurs when the FP costs are low. As a matter of fact, potential saving heavily

depends on the FP costs. This is because an important part of the savings comes

from an efficient management of the IFP during the summer and intermediate

seasons. If the FP costs are lowered, it is used during the summer instead of

the IFP. In addition, the small difference between the FP and IFP costs lowers

the interest in the storage of units at the beginning of the heating season. This

makes the RP-CF-SetUp model slightly less performing than the myopic model:

units are stored but losses exceed the savings over the FP use (see Figure 14).

This is due to an over-estimation of future costs which can come from the data

aggregation with RPs.
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Figure 14: Solution of the RP-CF-SetUp model in case where the FP cost is 44.4 euros and

the demand profile B is considered.
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5.2. Sensitivity on the quality of forecasts

Up to now, the same profiles for the demand were used for both short-term

and long-term horizons. The only biases came from the models used and data

aggregation method (i.e. means and RPs). Now, results when different demand

profiles are considered over the long-term horizon are compared (i.e. if forecasts

are inexact after 48 hours).

This is done through two test procedures. In the first procedure, the planned

meteorological profile after 48 hours differs from the realized profile. However,

monthly total demands are constant between the planned and the realized pro-

file. This way, intra-month forecast errors are modeled. In the second procedure,

extra-month forecast errors are considered.

5.2.1. Sensitivity on the forecast meteorological profile: intra-month forecast er-

rors

In this section, tests are run with profile A, B or C as effective demands

(i.e. profiles used over SH) and with profile A, B, C or the mean on the three

profiles as forecast demands (i.e. profiles used over LH). Hence, the demand is

still perfectly known on SH, but not on LH.

The savings (cost difference with the myopic model) of different experiences

are compared. Results are shown in Figure 15 for models RP-CF-SetUp and

M-LP-SetUp.

A first observation is that savings are still significant and that the model RP-

CF-SetUp outperforms the M-LP-SetUp model in all cases. Both approaches

show relatively robust results with respect to the demand profile used on LH.

As mentioned earlier, potential savings differ from one profile to another. In-

terestingly, the best results are not necessarily obtained when the same data

is used over both SH and LH, and the effective demand seems to be the core

element (savings are bigger for A and B, smaller for C): the models do not seem

to overfit the forecast data.
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Figure 15: Savings obtained with models M-LP-SetUp and RP-CF-SetUp, on horizon H1, for

different demand profiles run and planned (e). *Profile use as forecasted demand after 48

hours.

5.2.2. Sensitivity on the forecasted meteorological profile: extra-month forecast

errors

Data sets A, B and C are built from different meteorological scenarios. How-

ever, the building method supposes constant monthly total demands for all data

series. In order to test our models in the case of forecast errors on total monthly

demands, a second test procedure is applied. A monthly forecast error is intro-

duced: the profile used over LH corresponds to the effective profile used over

SH increased or decreased by a given percentage. The demand is still perfectly

known over SH, but not over LH. Three cases are tested:

• The hourly demand is always overestimated by a given percentage (+X%)

• The hourly demand is always underestimated by a given percentage (−X%)

• The demand is overestimated or underestimated depending on months

(±X%; the pattern used is given in Appendix C).

The savings (cost difference with the myopic model) of the different experi-

ences are compared on Figure 16. All tests are performed with profile A.
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Figure 16: Savings obtained for methods RP-CF-SetUp and M-LP-SetUp on horizon H1, for

different errors on the forecasted demand (e).

Similarly to Section 5.2.1, savings are still significant and the RP-CF-SetUp

model remains more effective. Both models show satisfying robustness and the

downgrade remains very limited as errors increase. The worst cases are when

the demand is overestimated: this worsen the tendency of both model to store

too many units before the heating season.

5.3. Conclusion of the sensitivity analysis

The sensitivity tests show that both models bring similar significant savings

with different meteorological profiles. Modifying the cost of the FP induces sig-

nificant changes in the solutions costs but this is not surprising: this parameter

is decisive. Hence, this does not question the models relevancy but informs us

on the models behaviour for different data. In this case, the difference in the

solution costs between models is lowered. Additionally, the sensitivity analysis

on the quality of forecasts suggests that both models yield robust solutions, even

with forecast errors. This quality is precious for planning models.
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6. Conclusion and perspectives

Rolling horizon optimization methods are relevant to recurrent and dynamic

problems where immediate decisions must be made while they depend on up-

coming ones. These decisions can rely on forecasts that can be updated at each

optimization step. This paper focuses on problems where detailed short-term

decisions can have an impact on very distant ones and vice-versa. This highly

increases the temporal dimension of the problem that has to be solved at each

step. Hence, there is a need to adapt the way long-term decisions are modeled.

For this purpose, two new approaches that include long-term decisions while

keeping a detailed short-term formulation and a reasonable problem size are

proposed. Both approaches rely on aggregated time steps that are adaptive

to the forecasts accuracy. In the first approach, long-term data and decisions

are aggregated as means, with a simplified long-term model. In the second

approach, long-term decisions are accounted by cost functions. Cost functions

are estimated with representative periods of future data and with the original

detailed model. The two approaches are described and evaluated on a case study

describing a heat production problem. Different versions of both approaches are

tested and compared with benchmark models. Finally, a sensitivity analysis on

the data is performed.

Both models show promising performances and can be implemented to in-

clude long-term decisions in rolling horizon approaches. The first one is easy

to implement and has low and stable computation times. An advantage is that

the continuity between state variables is kept over the whole planning horizon.

A drawback is that it can miss optimal solutions depending on the problem

structure and data. The second model is more costly to apply: it requires some

parameterizations and pre-computations. The continuity between the storage

states is kept over the whole planning horizon while the continuity between the

inflexible production discrete states is only kept until a certain point. However,

this can be sufficient and the second model still outperforms the first one with

limited computation times. Both show robust performances under sensitivity
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analysis, but their potential generalisation to further case studies should be

questioned. For this purpose, a study of the generalisation aptitude on typi-

cal cases is provided as Supplementary Material with the online version of this

article. Finally, all decisions with a long-term impact should be included in

the long-term model, which can be more or less challenging depending on the

approach. For instance, possible computation burdens for the second approach

can be anticipated if several long-term decisions have to be included, as this

would lead to multi-variable costs functions.

Future work will include the application of the approaches to other case

studies, for both optimization and simulation purposes. Other slicing for the

planning horizon can be tested and the method to build cost functions can be

improved to reduce computation times. Finally, the second method offers the

possibility to learn on future operational costs on the basis of more accurate

models. For instance, if an optimization model gives instructions to a physical

simulator or a real system, the feedback can be included in the cost functions.
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Appendix A. Computation of cost functions

In this Appendix, the method for pre-computing cost functions (CFs) is

detailed for the horizon H1 (see Figure 4), for a fixed horizon of 24 hours and

for the data of Table 2. As mentioned earlier, CFs are defined for all periods

t and all dates τ . However the number of CFs is only determined by the fixed

horizon size. Here, as the fixed horizon is one day, 365 functions will be needed

to simulate a year.

These functions are estimated by solving the original problem over one or

several representative period(s) (RP) of the period t, for all t and for various

values of δ.

The Python script used to build the cost functions is available at [30]. The

script modifies the input files and calls the PERSEE software (see Section 4).

Computation steps for CFs for H1:

1. The hourly data of the year is subdivided into 13 periods of 4 weeks. Each

period of 4 weeks is approximated by one or more RPs of chosen size, based

on the method proposed by [31]. If several RPs are used, the method

proposed by [31] provides weights for each RP such that the weighted

sum of all RP days equals the number of days in the original period.

The periods selected are those that minimise the difference between the

duration curves of the original data and the one of the (weighted) RPs (a

duration curve represents the given curve sorted by decreasing ordinate

values). An example is given for two RPs of 2 days for a given period

(Figure A.17, Figure A.18, Figure A.19 and Figure A.20).

2. Bounds over the minimal and maximal stored quantity (∆t) are set as well

as the number of points to be evaluated. This defines the accuracy of the

CF approximation.

3. For each period and for each point defined at Step 3, the CF cτ,t(∆t) is

evaluated by solving the original MILP formulation of the problem (given

in Section 5.2.1) over the corresponding RP(s) defined at Step 2. Costs are

extrapolated so that they correspond to the size of the original period (4

40



weeks). This is done by multiplying the RPs costs by their weight obtained

at Step 2. For instance, if 4 weeks are approximated by a 2-day RP,

results are multiplied by 14. In the case of (Figure A.17, Figure A.18 and

Figure A.19, the 4 weeks are approximated by two 2-day RPs with different

coefficients (their sum is equal to 14). The 13 CFs obtained correspond to

a single τ (see Figure A.21). Obtained functions are convex. Hence they

are modelled as piecewise linear functions by the mean of Special Order

Set (SOS) variables [32].

4. In order to obtain all 365 CFs, the 13 CFs obtained at Step 4 are extrap-

olated by weighted sums.

Figure A.17: Example of original data for a period of 4 weeks
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Figure A.18: First RP of 2 days for the original data.
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Figure A.19: Second RP of 2 days for the original data.
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Figure A.20: Corresponding duration curves for both original and RPs, the method minimises

the difference between both curves.

Figure A.21: Computed cost functions
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Appendix B. Convergence of the a posteriori optimization

Table B.3 provides extra information on the convergence speed of the a

posteriori optimization. Computations were stopped after 40 hours.

Table B.3: Lower, upper bounds and relative gap of the a posteriori optimization in function

of the running time.

Time (seconds) Lower bound Upper bound Gap (%)

0 800264 1278809 37.42

60 803667 1278809 37.16

90 803667 850715 5.53

91 803667 828029 2.94

95 803667 817584 1.70

1000 804117 814578 1.28

40 hours 806435 814863 1.03
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Appendix C. Demand profiles

The demand profiles correspond to the heat consumption of 5000 inhabi-

tants. It is estimated by the method used in [15] with 3 different meteorological

profiles: A, B and C. The monthly mean demands are the same for all profiles.

Figure C.22 shows the hourly heat demand profiles over a year, starting from

July. At the hottest periods of the year, the heat demand only corresponds to

hot water for sanitary use. This is supposed independent from the meteorolog-

ical profile, hence, all profiles are similar on these periods. Profile A is used in

Section 4, all are considered in Section 5.

Figure C.22: Demand profiles

Table C.4 shows the arbitrary pattern which is used to artificially overesti-

mate or underestimate (±X%) the future demand, depending on the month, as

explained in Section 5.2.2.

Table C.4: Pattern of over (+) or under (−) estimation for the error term of the forecast

demand.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

+ − + + − + − − + + − −
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Appendix D. Production costs

Flexible production cost

The production cost of the FP is computed from the equation CF = (CCH4+

CCO2 ∗ CO2CH4
content)/LHV

CH4/ηF , where CCH4 is the gas cost (0.4 euro/kg),

CCO2 is the CO2 emissions cost (0.06 euro/kg in Section 4), CO2CH4
content is the

gas CO2 content (3.36 kgCO2/kgCH4), LHV CH4 is the gas low heat value (0.01

MWh/kg) and ηF is the efficiency of the FP (0.9).

In Section 5, the different values tested for the FP production cost correspond

to the respective CO2 emissions costs of 0, 0.03, 0.06 and 0.09 euro/kg.

Inflexible production variable cost

The variable cost of the IFP is computed from the equation CF = Cbiomass/LHV biomass/ηI ,

where Cbiomass is the biomass cost (0.12 euro/kg), LHV biomass is the biomass

low heat value (0.004 MWh/kg) and ηI is the efficiency of the IFP (0.9). CO2

emissions from the biomass life-cycle are supposed to be null.
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