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Simulation of rare-earth-doped high-power fiber-lasers using Matlab BVP solver
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UNIV. RENNES, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France

Abstract

Numerical simulation of light-wave propagation in double-clad rare-earth-doped fiber-lasers implies dealing with a two-point

boundary value problem (BVP) with non separated boundary conditions. We show that this BVP can be solved in a simple way

using Matlab BVP solver. However, this requires being able to provide to the BVP solver a relevant initial guess for the solution

and the Jacobian matrix of the mapping defining the BVP. We show that when propagation losses and contribution to spontaneous

emission are neglected, the BVP is equivalent to an initial value problem (IVP) whose solution, computed by Matlab IVP solver,

provides a suitable guess for Matlab BVP solver. We also provide the expression of the Jacobian. This results in a very simple and

cost-less Matlab program for the simulation of light-wave propagation in high-power fiber-lasers.
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1. Introduction

In the theoretical study of high-power fiber-lasers, the most

commonly used mathematical model is based on the rate-

equation theory [2, 3] that describes the distributions of inver-

sion populations and optical powers along the fiber when a sta-

tionary regime has been attained. In this model, the power prop-

agation equations consist of several coupled non-linear first or-

der ordinary differential equations (ODE) depending on the po-

sition z along the fiber [6]. The main difficulty for solving this

system of non-linear ODE is related to the boundary conditions.

We have a two-point boundary value problem (BVP), not an ini-

tial value problem (IVP), and the boundary conditions (BC) for

this BVP are not separated, which means that we do not have

independent relations at each endpoint for the unknowns but

relations that correlate the values of the unknowns at the two

endpoints, see relations (9c) and (9d) in the text below. This

mathematical specificity is related to the reflection of the laser

signal by Bragg mirrors at the two fiber extremities. Usually,

existence and uniqueness for BVPs are much more difficult to

investigate than for IVPs since there is no general theory [1].

As well, it is usually more difficult to solve numerically a BVP

than an IVP where the solution can be propagated from one

endpoint of the computational domain to the other. For a BVP,

the solution is not fully known at the domain endpoints so that

the numerical approach used for IVPs does not apply.

They are mainly two approaches for solving a BVP. The first

one is to use a shooting method [10, 1]. Basically, shooting

methods consist in reducing the solving of the BVP to the solv-

ing of a sequence of IVPs where the values for the missing

boundary conditions at the fiber front end (z = 0) are enforced.

After the missing boundary values were chosen arbitrarily at the
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first attempt (the initial guess), they are adjusted for the next at-

tempts by comparing the computed back end (z = L) boundary

values to the BVP boundary conditions and using a root find-

ing solver to compute the new boundary values at z = 0 for

the next iteration. The second approach is to use collocation

methods [1, 10]. The collocation technique introduces a mesh

of points to divide the fiber length into sub-intervals. Over each

sub-interval, an approximation formula for the system of ODE

is considered. It can be a Runge-Kutta formula or a Lobatto

formula as used in Matlab BVP solvers [7]. This results in a

global system of non-linear algebraic equations to which the re-

lations given by the boundary conditions are added. Then, this

system of non-linear equations is solved to obtain the approxi-

mate solution to the BVP.

In the last years, several authors have proposed numerical

strategies to solve the BVP stemming from the modeling of

light-wave propagation in high-power fiber-lasers. Among the

more recent papers, one can quote reference [8] where the stan-

dard shooting approach described above is improved by using

some relations (close to relations (A.2) given in Appendix A)

between the boundary values of the pump and laser signal pow-

ers at the both ends of the fiber. The main drawback of the

method identified by the authors is that it is necessary for the

initial guessed power laser to be lower than the true (unknown)

value for the method to converge fast and provide accurate re-

sults. In [12], the authors also use a shooting method but they

combined it with a relaxation method to improve the conver-

gence speed of the shooting method. We can also quote refer-

ences [4, 5] where a complicated strategy is deployed to solve

the BVP using Matlab BVP solver. For an incomprehensible

reason, the authors use Matlab BVP solver in conjunction with

an iterative method where, starting from guessed initial values

and updating these values at each step, convergence to the so-
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lution to the BVP is expected. Although, according to their

authors, these different numerical approaches provide the ex-

pected results in terms of simulation of light-wave propaga-

tion in high-power fiber-lasers, they appear to be excessively

and unnecessarily complicated from a numerical point of view,

especially the numerical approaches suggested in references

[12, 4, 5]. Moreover, all these numerical approaches are very

dependent on the initial guess for the iterative strategies they

use and it is well known that fixed-point like methods efficiency

is very dependent on the quality of the initial guess, see e.g. [13,

chap.14] or [1, chap. 8].

In this paper, we show that it is possible to use Matlab BVP

solver, in a very simple way, to solve the BVP stemming from

the modeling of light-wave propagation in double-clad rare-

earth-doped fiber-lasers. Moreover, we show that an initial

guess for Matlab BVP solver, close to the solution to the BVP,

can be obtained at a very low cost. Indeed, when propaga-

tion losses and spontaneous emission are neglected, we show

that an equivalent IVP to the BVP at hand can be obtained, for

which the solution can be computed simply by using Matlab

ode45 solver. This leads to a very simple and efficient Matlab

program to simulate light-wave propagation in rare-earth-doped

high-power fiber-lasers.

The document is organized as follows. In Section 2, we in-

troduce the mathematical model for light-wave propagation in

rare-earth-doped high-power fiber-lasers giving rise to the BVP

with non-separated BC. Then, in Section 3, we explain how to

use Matlab BVP solver in an efficient way to solve this BVP.

Namely, we discuss the way an initial guess required by Mat-

lab BVP solver can be computed so as to be close to the so-

lution for a faster convergence of Matlab BVP solver and we

give the expression of the Jacobian also required by Matlab

BVP solver for a better efficiency. Section 4 is dedicated to

an overview of the Shipol program written for the simulation

of light-wave propagation in rare-earth-doped high-power fiber-

lasers. Finally, in Section 5, we compare the results provided

by Shipol program to the existing literature results for valida-

tion purposes.

2. The mathematical model

We denote by L the length of the fiber and we assume that

the axis of the fiber coincides with the z-axis of the reference

frame. Using the rate-equation theory under the steady state

condition [2, 3], we obtain a set of coupled equations for the

pump and signal laser co-propagative and contra-propagative

powers P+p , P
−
p , P

+

s , P
−
s describing light-wave propagation in a

linear cavity as follows [6]:
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

±
dP±p

dz
(z) =

(

(σ(e)
p + σ

(a)
p ) N2(z) − σ(a)

p N
)

Γp P±p(z)

− αp P±p(z)

±
dP±s

dz
(z) =

(

(σ(e)
s + σ

(a)
s ) N2(z) − σ(a)

s N
)

Γs P±s (z)

− αs P±s (z) + Γs σ
(s)
e P0 N2(z)

(1a)

(1b)

where

- P±p and P±s represent respectively the pump power (index p)

at pump wavelength λp and the signal laser power (index s)

at laser wavelength λs in the forward propagating direction

(superscript +) and backward propagating direction (super-

script -);

- Γp and Γs are respectively the overlap integral factors be-

tween the ion-doping distribution and mode fields of pump

and signal laser lights;

- σ
(a)
p and σ

(e)
p denote respectively the absorption and emission

cross-sections at the pump wavelength λp;

- σ
(a)
s and σ

(e)
s denote respectively the absorption and emission

cross-sections at the signal laser wavelength λs;

- αp and αs represent the propagation losses coefficients in-

cluding background loss and scattering loss at the pump and

signal laser wavelengths respectively;

- P0 represents the contribution to spontaneous emission into

the propagation laser mode;

- N is the doping substance concentration density assumed to

be constant along the fiber and N2 is the upper-level popula-

tion density.

For continuous-wave laser, the upper-level population den-

sity N2 at position z (in unit m−3) is given by [2, 6]:

N2(z) =
σ

(a)
s
Γs

hνs
Ps(z) + σ

(a)
p
Γp

hνp
Pp(z)

Aeff

τ
+ (σ

(a)
s + σ

(e)
s )

Γs

hνs
Ps(z) + (σ

(a)
p + σ

(e)
p )

Γp

hνp
Pp(z)

N

(2)

where Pp(z) = P+p(z) + P−p(z) is the total pump power and

Ps(z) = P+s (z) + P−s (z) is the total signal power, τ is the spon-

taneous emission lifetime, Aeff is the effective doping area, h =

6.62607015 10−34 J · s is the Planck s constant and νp = c/λp,

νs = c/λs, where c = 299 792 458 m · s−1 denotes light veloc-

ity in vacuum, are respectively the pump and signal frequen-

cies. The contribution to spontaneous emission is given by

P0 = 2hc2 δλ/λ
3
s where δλ is the spontaneous emission band-

width.

We define the pump attenuation constant α
(a)
p and the signal

attenuation constant α
(a)
s (in unit m−1) as

α(a)
p = N Γp σ

(a)
p (3a)

α(a)
s = N Γs σ

(a)
s (3b)

and the saturation powers for the pump and signal (in unit W)

as

Psat
p =

Aeffhνp

τ (σ
(a)
p + σ

(e)
p ) Γp

(4a)

Psat
s =

Aeffhνs

τ (σ
(a)
s + σ

(e)
s ) Γs

(4b)

Using the above defined quantities, the ion population density

N2 given by (2) can be expressed as

N2(z) =
τ

Aeff

α
(a)
p

hνp
Pp(z) +

α
(a)
s

hνs
Ps(z)

1 +
Ps(z)

Psat
s
+

Pp(z)

Psat
p

(5)
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Substituting N2 as given by (5) into the propagation equa-

tions (1), we obtain the following non-linear system of ODE
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

±
dP±p

dz
(z) = − (α(a)

p + αp) P±p(z) +Gp(P±p(z), P±s (z))
P±p(z)

Psat
p

±
dP±s

dz
(z) = − (α(a)

s + αs) P±s (z)

+Gs(P
±
p(z), P±s (z))

(

P±s (z)

Psat
s

+
P0

P
sat,e
s

)

(6a)

(6b)

where (we recall that Pp = P+p + P−p and Ps = P+s + P−s )

Gp(P±p(z), P±s (z)) =
α

(a)
p Pp(z) +

νp

νs
α

(a)
s Ps(z)

1 +
Ps(z)

Psat
s
+

Pp(z)

Psat
p

(7a)

Gs(P
±
p(z), P±s (z)) =

α
(a)
s Ps(z) +

νs

νp
α

(a)
p Pp(z)

1 +
Ps(z)

Psat
s
+

Pp(z)

Psat
p

(7b)

and where, with reference to (4b), we have set

Psat,e
s =

Aeffhνs

τσ
(e)
s Γs

(8)

The boundary conditions (BC) are as follows [6]:


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
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
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



P+p(0) = R(1)
p P−p(0) + P+pump

P−p(L) = R(2)
p P+p(L) + P−pump

P+s (0) = R(1)
s P−s (0)

P−s (L) = R(2)
s P+s (L)

(9a)

(9b)

(9c)

(9d)

where P+pump and P−pump are the pump powers available at the

front (z = 0) and back (z = L) ends respectively, R
(1)
s and R

(2)
s

are respectively the front and back ends mirror reflectivities at

the signal wavelength λs and R
(1)
p and R

(2)
p are the reflectivities

at the pump wavelength λp.

Thus, we have to solve a BVP that consists in the non-linear

first order coupled ODE (6) and linear two-point BC (9). The

specificity of these BC is that they are not separated due to the

reflection at the fiber ends that mixes forward and backward

propagating powers. However, this BVP can be solved in a

very simple way under Matlab using its BVP solvers contrary

to what has been stated in [8, 12, 4, 5] and without need of com-

plicated numerical approaches. To this end, we express BVP

(6)–(9) in the form

Y′(z) = F(Y(z)) ∀z ∈]0, L[ (10)

where the unknown vector Y(z) ∈ R4 is defined as

Y(z) =
(

P+p(z) P−p(z) P+s (z) P−s (z)
)⊤
∈ R4

where ⊤ indicates matrix transposition and the mapping F is

defined as

F : Y ∈ R4 7−→


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






























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

−(α
(a)
p + αp) Y1 +Gp(Y) Y1

Psat
p

(α
(a)
p + αp) Y2 −Gp(Y) Y2

Psat
p

−(α
(a)
s + αs) Y3 +Gs(Y)

(

Y3

Psat
s
+

P0

P
sat,e
s

)

(α
(a)
s + αs) Y4 −Gs(Y)

(

Y4

Psat
s
+

P0

P
sat,e
s

)






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(11)

where here and throughout the paper Y1, . . . , Y4 denotes the

components of Y. The BC (9) can be expressed in matrix form

as

M0 Y(0) +ML Y(L) =































P+pump

P−pump

0

0































(12)

where the two matrices M0 and ML inM4(R) are given by

M0 =































1 −R
(1)
p 0 0

0 0 0 0

0 0 1 −R
(1)
s

0 0 0 0































ML =































0 0 0 0

−R
(2)
p 1 0 0

0 0 0 0

0 0 −R
(2)
s 1































3. MATLAB BVP solvers

Matlab BVP solver bvp4c implements a collocation method

based on the three-stage Lobatto IIIa formula, see [7]. Matlab

BVP solver bvp5c implements the four-stage Lobatto IIIa for-

mula and slightly differs from bvp4c on some internal imple-

mentation choices, see Matlab documentation for details. Mat-

lab BVP solvers efficiency is improved when an initial guess

close enough to the solution is provided and when the Jaco-

bian matrix of the function F defining the ODE given by (11) is

available. We examine now these two topics for BVP (6)–(9).

Propagation losses in the fiber, although not negligible, are

generally small and they contribute lowly to the BVP solution

that is mainly driven by other optical phenomena. The same can

be observed concerning the contribution to spontaneous emis-

sion into the propagation laser mode. This observation leads us

to chose as initial guess for Matlab BVP solver, the solution to

BVP (6)–(9) in the case when αp = αs = 0 and P0 = 0. This

idea would be idiotic if solving the BVP under these assump-

tions was as difficult as solving the complete BVP, but such is

not the case. Indeed, we show in Appendix A that when losses

and spontaneous emission are neglected, BVP (6)–(9) can be

reformulated in an equivalent Initial Value Problem (IVP) that

can be solved easily using standard numerical method such as

the Runge-Kutta RK4 method as e.g. implemented in Matlab

ode45 solver [11]. This solution, though different from the real

solution to the BVP is likely to be close to it and it will thus pro-

vide a very good initial guess for Matlab BVP solvers. There-

fore, using Matlab ode45 solver, we solve the IVP composed

of ODE (6) and initial conditions (A.9) for P−p(0), (A.10) for

P−s (0), (9a) for P+p(0) and (9c) for P−p(0). Then, we provide to

Matlab BVP solver bvp4c, as initial guess, the solution Y to

this IVP computed at the grid nodes of a subdivision (z j) j=0,...,J

of the interval [0, L].

Let us now consider the calculation of the Jacobian matrix JF

of the mapping F introduced in (11). For all Y ∈ R4, we have

JF (Y) =





























∂1F1(Y) ∂2F1(Y) ∂3F1(Y) ∂4F1(Y)

∂1F2(Y) ∂2F2(Y) ∂3F2(Y) ∂4F2(Y)

∂1F3(Y) ∂2F3(Y) ∂3F3(Y) ∂4F3(Y)

∂1F4(Y) ∂2F4(Y) ∂3F4(Y) ∂4F4(Y)





























(13)
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where ∂ j refers to the partial derivation with respect to the j-th

variable and Fi refers to the i-th component of the mapping F.

A straightforward calculation shows that the partial derivatives

of F are given for j ∈ {1, . . . , 4} and for Y ∈ R4 by

∂ jF1(Y) = −(α(a)
p + αp) δ1, j +

Gp(Y)

Psat
p

δ1, j +
Y1

Psat
p

∂ jGp(Y)

∂ jF2(Y) = (α(a)
p + αp) δ2, j −

Gp(Y)

Psat
p

δ2, j −
Y2

Psat
p

∂ jGp(Y)

∂ jF3(Y) = −(α(a)
s + αs) δ3, j +

Gs(Y)

Psat
s

δ3, j +

(

Y3

Psat
s

+
P0

Psat,e
s

)

∂ jGs(Y)

∂ jF4(Y) = (α(a)
s + αs) δ4, j −

Gs(Y)

Psat
s

δ4, j −

(

Y4

Psat
s

+
P0

Psat,e
s

)

∂ jGs(Y)

where δi, j denotes the Kronecker symbol (equal to 1 when i = j

and 0 otherwise). The partial derivatives of the mappings Gp

and Gs defined in (7) are given by

∂1Gp(Y) = ∂2Gp(Y) =
(

α(a)
p −

Gp(Y)

Psat
p

) 1

ψ(Y)

∂3Gp(Y) = ∂4Gp(Y) =
(νp

νs

α(a)
s −

Gp(Y)

Psat
s

) 1

ψ(Y)

and

∂1Gs(Y) = ∂2Gs(Y) =
( νs

νp

α(a)
p −

Gs(Y)

Psat
p

) 1

ψ(Y)

∂3Gs(Y) = ∂4Gs(Y) =
(

α(a)
s −

Gs(Y)

Psat
s

) 1

ψ(Y)

where ψ(Y) = 1 +
Y1 + Y2

Psat
p

+
Y3 + Y4

Psat
s

.

4. The Shipol program

A Matlab program based on the ideas presented above

has been implemented. It can be downloaded with it

documentation from HAL library at the following URL :

https://hal.archives-ouvertes.fr/hal-03212156

The program basically consists in the following stages :

1. Computation of a guess (rough approximate solution) by

solving ODE (6) with αs = αp = P0 = 0 under the initial

conditions given by (A.9) for P−p(0), (A.10) for P−s (0), (9a)

for P+p(0) and (9c) for P−p(0) using Matlab ode45 solver.

2. Solving of the BVP (10) with BC (12) by Matlab bvp4c

solver with the guess computed at stage 1. Efficiency of

bvp4c is improved by supplying the Jacobian matrix of

the mapping F to bvp4c.

3. Results display. Values of the pump and signal powers

in the forward and backward directions (P+p , P
−
p , P

+

s , P
−
s )

at the two fiber ends are shown as well as the value of

the total laser signal output power. Graphical display of

the pump and signal powers in the forward and backward

directions as a function of the position z along the fiber

together with the ratio N2/N are also provided.

The accuracy of the computed solution can be evaluated us-

ing an error estimator based on relations (A.1). We must have

P+p(0) P−p(0) = P+p(L) P−p(L) and, when P0 = 0, we must also

have P+s (0) P−s (0) = P+s (L) P−s (L). Therefore, we use as error

estimator

EP =

∣

∣

∣

∣

∣

∣

P+p(0) P−p(0) − P+p(L) P−p(L)

P+p(0) P−p(0) + P+p(L) P−p(L)

∣

∣

∣

∣

∣

∣

(14a)

Es =

∣

∣

∣

∣

∣

∣

P+s (0) P−s (0) − P+s (L) P−s (L)

P+s (0) P−s (0) + P+s (L) P−s (L)

∣

∣

∣

∣

∣

∣

(14b)

where Es is relevant only when P0 ≡ 0. The closer to zero

these estimators are, the more accurate the computation can be

expected to be.

5. Numerical validation

We have compared the simulation results provided by the

Shipol program to several results available in the literature.

(The numerical methods used in these papers are not always de-

tailed and the codes are not available for further comparisons.)

The numerical results presented below were obtained using the

software Matlab (R2018b) under Linux-Ubuntu OS on an Intel

Core i5 computer with 8 Go RAM.

5.1. Simulation of light-wave propagation in a Yb3+ doped

fiber-laser

Parameter Notation Value

Fiber length L 50 m

Pump wavelength λp 9.2 10−7 m

Signal wavelength λs 1.09 10−6 m

Pump power at front end P+pump 20 W

Pump power at the back end P−pump 0 W

Pump overlap factor Γp 1.2 10−3

Signal overlap factor Γs 8.2 10−1

Doping substance concentration Nt 4 1025 ions/m3

Pump absorption cross section σ
(a)
p 6 10−25 m2

Pump emission cross section σ
(e)
p 2.5 10−26 m2

Signal absorption cross section σ
(a)
s 1.4 10−27 m2

Signal emission cross section σ
(e)
s 2 10−25 m2

Pump background losses αp 3 10−3 m−1

Signal background losses αs 5 10−3 m−1

Front mirror reflectivity at λp R
(1)
p 0

Output mirror reflectivity at λp R
(2)
p 0

Front mirror reflectivity at λs R
(1)
s 0.98

Output mirror reflectivity at λs R
(2)
s 0.04

Lifetime of the upper-level atoms τ 10−3 s

Effective mode area Aeff 5 10−11 m

Table 1: Parameter values for the Yb3+ doped fiber-laser investigated in [6].

We have considered the Yb3+-doped fiber-laser investigated

in [6], the parameters of which are given in Table 1. The ASE

is neglected in [6] so that we set P0 ≡ 0 in (1b). We have de-

picted in Fig. 1 the pump and signal powers in the forward and
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backward directions, i.e. P+p , P
−
p , P

+

s , P
−
s , as a function of the

position along the fiber together with the ratio N2(z)/N. This

figure is identical to [6, Fig. 8]. We have obtained a forward

signal power at z = 0 with value P+s (0) = 2.02871 W and a

backward signal power at z = 0 with value P−s (0) = 2.07011 W.

At the fiber back end z = L, the values are P+s (L) = 10.2465

W and P−s (L) = 0.409861 W. The forward pump power at

z = L is 4.15728 W whereas the backward pump power re-

mains zero along the fiber. The CPU time for the simula-

tion was 1.8 s and the error estimator defined in (14b) was

Es = 2.7418 10−12. (Note that the estimator Ep not relevant here

since P−p ≡ 0.) Taking into account the ASE in the simulation,

we have obtained P+s (0) = 2.02874 W, P−s (0) = 2.07014 W,

P+s (L) = 10.2466 W and P−s (L) = 0.409862 W. These values

are not significantly different from the one obtained by neglect-

ing the ASE which justify the assumption made in [6]. We want

to point out that the numerical method used in [6] to solve the

BVP is not specified as it is mentioned only for comparison pur-

poses with a semi-analytical approach valid under strong pump-

ing conditions, such that the signal power is high enough to sat-

urate the gain medium and suppress the spontaneous emission.
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Figure 1: Pump and signal powers in the forward and backward directions

P+p , P
−
p , P

+
s , P

−
s as a function of the position along the fiber for the Yb3+ fiber-

laser the parameters of which are given in Table 1 (left axis). Ratio N2(z)/N as

a function of the position along the fiber in dotted line and right axis.

As a complement, we have made a simulation for the Yb3+

doped fiber-laser investigated in [8]. The parameters of the

fiber are similar to the one given in Table 1 excepted that

the fiber length is L = 150 m, the pump power launched

into the front end P+pump is 1000 W and the signal background

losses are αs = 3 10−3 m−1. We have depicted in Fig. 2 the

pump and signal powers in the forward and backward direc-

tions P+p , P
−
p , P

+

s , P
−
s as a function of the position along the fiber

together with the ratio N2(z)/N. We have obtained a forward

signal power at z = 0 with value P+s (0) = 105.493 W and a

backward signal power at z = 0 with value P−s (0) = 107.645 W.

At the fiber back end z = L, the values are P+s (L) = 532.818

W and P−s (L) = 21.3127 W. The forward pump power at z = L

is 8.84451 W whereas the backward pump power remains zero

along the fiber. The CPU time for the simulation was 0.7 s and

the error estimator defined in (14b) was Es = 1.6709 10−11.

Fig. 2 is to be compared with [8, Fig. 2]. The two figures

are significantly different. Since the only difference with the

previous simulation that matches the results published in [6]

is the fiber length and pump power launched at the fiber front

end, we infer that Fig. 2 in [8] do not correspond to the fiber

parameter values provided in the text in [8] or that the numerical

method presented in [8] is implemented in an erroneous way or

that the method itself is erroneous. It should be noted that we

have detected an other error in [8] in the results reported for the

thulium-doped fiber-laser, see Section 5.3.
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Figure 2: Pump and signal powers in the forward and backward directions

P+p , P
−
p , P

+
s , P

−
s as a function of the position along the fiber for the Yb3+ doped

fiber-laser considered in [8].

5.2. Simulation of light-wave propagation in a Nd3+ doped

fiber-laser

We then have compared the results obtained by our numeri-

cal method to the one given in [6] for a Nd3+-doped high-power

double-clad fiber laser characterized by the values given in Ta-

ble 2. We have depicted in Fig. 3 the pump and signal pow-

ers in the forward and backward directions, i.e. P+p , P
−
p , P

+

s , P
−
s ,

as a function of the position along the fiber together with the

ratio N2(z)/N. This figure is identical to the one depicted in

[6, Fig. 5]. We have obtained a forward signal power at z = 0

with value P+s (0) = 2.50126 W and a backward signal power at

z = 0 with value P−s (0) = 2.5523 W. At the fiber back end z = L,

the values are P+s (L) = 12.6333 W and P−s (L) = 0.505331 W.

The forward pump power at z = L is 2.19664 W whereas the

backward pump power remains zero along the fiber. The CPU

time for the simulation was 0.6 s and the error estimator defined

in (14b) was Es = 2.6426 10−12. (Note that the estimator Ep is

not relevant here since P−p ≡ 0.)

For comprehensiveness, we have also made a simulation

when the pump is injected at the fiber back end z = L, i.e.

P+p(0) = 0 and P−p(L) = 20W, the other parameters are as given

in Table 2. The result is depicted in Fig. 4 and it is identical to

the one depicted in [6, Fig. 6].
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Parameter Notation Value

Fiber length L 50 m

Pump wavelength λp 0.808 10−6 m

Signal wavelength λs 1.060 10−6 m

Pump power at front end P+pump 20 W

Pump power at back end P−pump 0 W

Pump overlap factor Γp 0.01

Signal overlap factor Γs 0.8

Doping substance concentration Nt 2 1024 ions/m3

Pump absorption cross section σ
(a)
p 2 10−24 m2

Pump emission cross section σ
(e)
p 0 m2

Signal absorption cross section σ
(a)
s 0 m2

Signal emission cross section σ
(e)
s 2.5 10−24 m2

Pump background losses αp 4.5 10−3 m−1

Signal background losses αs 0 m−1

Front mirror reflectivity at λp R
(1)
p 0

Output mirror reflectivity at λp R
(2)
p 0

Front mirror reflectivity at λs R
(1)
s 0.98

Output mirror reflectivity at λs R
(2)
s 0.04

Lifetime of the upper-level atoms τ 4 10−4 s

Effective mode area Aeff 1 10−11 m

Table 2: Parameter values for the Nd3+ doped fiber-laser investigated in [6].
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Figure 3: Pump and signal powers in the forward and backward directions

P+p , P
−
p , P

+
s , P

−
s as a function of the position along the fiber for the Nd3+ fiber-

laser the parameters of which are given in Table 2 (left axis). Ratio N2(z)/N as

a function of the position along the fiber in dotted line and right axis.
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Figure 4: Pump and signal powers in the forward and backward directions

P+p , P
−
p , P

+
s , P

−
s as a function of the position along the fiber for the Nd3+ fiber-

laser the parameters of which are given in Table 2 except that the pump is

injected at z = L (left axis). Ratio N2(z)/N as a function of the position along

the fiber in dotted line and right axis.
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5.3. Simulation of light-wave propagation in a thulium-doped

fiber-laser

Finally, we have considered the Tm3+-doped high-power

double-clad fiber-laser proposed in [8] characterized by the val-

ues given in Table 3. The ASE is neglected in [8] so that we

set P0 ≡ 0 in the simulation. Note that the doping substance

concentration given in [8] was N = 4.68 1026 ions/m3 and it is

changed for N = 8.6 1025 ions/m3 to comply with the value of

the literature quoted in [8].

Parameter Notation Value

Fiber length L 25 m

Pump wavelength λp 0.790 10−6 m

Signal wavelength λs 1.973 10−6 m

Pump power at front end P+pump 1000 W

Pump power at back end P−pump 0 W

Pump overlap factor Γp 0.01

Signal overlap factor Γs 0.752

Doping substance concentration Nt 8.6 1025 ions/m3

Pump absorption cross section σ
(a)
p 5 10−25 m2

Pump emission cross section σ
(e)
p 0 m2

Signal absorption cross section σ
(a)
s 1 10−26 m2

Signal emission cross section σ
(e)
s 2.5 10−25 m2

Pump background losses αp 3 10−3 m−1

Signal background losses αp 5 10−3 m−1

Front mirror reflectivity at λp R
(1)
p 0

Output mirror reflectivity at λp R
(2)
p 0

Front mirror reflectivity at λs R
(1)
s 0.98

Output mirror reflectivity at λs R
(2)
s 0.04

Lifetime of the upper-level atoms τ 1.45 10−5 s

Effective mode area Aeff 1.39 10−11 m

Table 3: Parameter values for the Tm3+ doped fiber-laser investigated in [8].

We have depicted in Fig. 5 the pump and signal powers in the

forward and backward directions (P+p , P
−
p , P

+

s , P
−
s ) as a function

of the position along the fiber together with the ratio N2(z)/N.

This figure is quite similar to the one depicted in [8, Fig. 5].

Note however that when using the doping substance concen-

tration given in [8] (N = 4.68 1026 ions/m3) rather than the

one given in Table 3, the figure we obtain is significantly dif-

ferent from [8, Fig. 5]. We have obtained a forward signal

power at z = 0 with value P+s (0) = 74.8308 W and a back-

ward signal power at z = 0 with value P−s (0) = 76.358 W. At

the fiber back end z = L, the values are P+s (L) = 377.953 W

and P−s (L) = 15.1181 W. The forward pump power at z = L

is 2.02216 W whereas the backward pump power remains zero

along the fiber. The CPU time for the simulation was 1.3 s and

the error estimator defined in (14b) was Es = 7.5682 10−12.

Note that when the ASE was taken into account in the simu-

lation, we obtained similar results to the one provided above

which justify the assumption made in [8] to neglect the ASE.
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Figure 5: Pump and signal powers in the forward and backward directions

P+p , P
−
p , P

+
s , P

−
s as a function of the position along the fiber for the Tm3+ doped

fiber-laser.

6. Conclusion

We have shown that the boundary value problem (BVP)

stemming from the modeling of light-wave propagation in high-

power fiber-lasers can be solved in a simple way by Matlab

BVP solver. This approach renders meaningless the numeri-

cal methods proposed in [8, 12, 4, 5] to solve this BVP. The

effectiveness of the method relies on the efficiency of Mat-

lab BVP solver program and on the practicability to provide

an initial guess close to the solution to the BVP at a very low

cost as shown in the paper. Moreover we have provided the

expression of the Jacobian of the mapping defining the BVP

that further improves the overall effectiveness of the simulation.

This results in a very simple and efficient Matlab program for

the simulation of light-wave propagation in high-power fiber-

lasers. We hope that the author Matlab program distributed un-

der CeCILL-C free software license, will benefit to the greatest

number of researchers in the optics community.
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Appendix A. An equivalent initial value problem in the ab-

sence of losses

We consider in this appendix the special case when the losses

and the contribution to spontaneous emission into the propa-

gation laser mode can be neglected. That is to say, we con-

sider BVP (6)–(9) under the assumptions that αs = αp = 0 and

P0 = 0.

In this special case, the solutions P±p , P
±
s to the set of ODE (6)

exhibit the following features: There exist two real numbers Cp

7



and Cs such that for all z ∈ [0, L]

P+p(z) P−p(z) = Cp, P+s (z) P−s (z) = Cs. (A.1)

This property can be easily proved by considering the mapping

z ∈ [0, L] 7→ P+p(z) P−p(z) and showing that its derivative is zero.

We have

d

dz

(

P+p(z) P−p(z)
)

= P+p(z)
dP−p

dz
(z) + P−p(z)

dP+p

dz
(z).

We then sum equation (6a) for P+p preparatorily multiplied by

P−p and equation (6a) for P−p preparatorily multiplied by P+p to

show that the derivative is zero. Note that the properties (A.1)

are true even when the losses are not zero. However, when

P0 , 0, only the relation on P±p remains valid.

We deduce from (A.1) and from BC (9a) and (9b), the fol-

lowing relationships between the boundary values at the fiber

ends:

P+p(L) =
1

R
(2)
p

(

1
4

(

P−pump

)2
+ R(1)

p R(2)
p

(

P−p(0)
)2

+ P−pumpR(2)
p P−p(0)

)
1
2

−
P−pump

2R
(2)
p

(A.2a)

P+s (L) =

√

R
(1)
s

R
(2)
s

P−s (0) (A.2b)

Note that when R
(2)
p = 0, (A.2a) has to be changed for

P−pump P+p(L) = R(1)
p

(

P−p(0)
)2
+ P+pumpP−p(0). (A.3)

Let us now show how we can express the two quantities

P−p(0) and P−s (0) in terms of the fiber-laser characteristic pa-

rameters. By difference between (1a) considered for P+p and P−p
on the one hand and by difference between (1b) considered for

P+s and P−s on the other hand, one can easily show that N2 given

by (2) can be expressed as

N2(z) = −
τ3

h Aeff

(

1

νp

( dP+p

dz
(z) −

dP−p

dz
(z)

)

+
1

νs

( dP+s

dz
(z) −

dP−s

dz
(z)

)

)

. (A.4)

Substituting this expression of N2 into equations (1a)–(1b), we

obtain


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




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




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





















































±
dP±p

dz
(z) = −

( dP±p

dz
(z) −

dP−p

dz
(z)

) P±p(z)

Psat
p

−
νp

νs

( dP±s

dz
(z) −

dP−s

dz
(z)

) P±p(z)

Psat
p

− αa
p P±p(z)

±
dP±s

dz
(z) = −

νs

νp

( dP±p

dz
(z) −

dP−p

dz
(z)

) P±s (z)

Psat
s

−
( dP±s

dz
(z) −

dP−s

dz
(z)

) P±s (z)

Psat
s

− αa
s P±s (z)

(A.5a)

(A.5b)

Let us consider equation (A.5a) for P+p . We divide both sides

by P+p(z) under the assumption that the forward pump power P+p
never cancels and we integrate over the interval [0, L]:

∫ L

0

1

P+p(z)

dP+p(z)

dz
dz = −

1

Psat
p

∫ L

0

( dP+p

dz
(z) −

dP−p

dz
(z)

)

dz

−
νp

νsP
sat
p

∫ L

0

( dP+s

dz
(z) −

dP−s

dz
(z)

)

dz − αa
p L.

It follows that

log

















P+p(L)

P+pump + R
(1)
p P−p(0)

















= −
1

Psat
p

(

P+p(L) − P+pump − R(1)
p P−p(0)

−P−pump − R(2)
p P+p(L) + P−p(0)

)

−
νp

νsP
sat
p

(

P+s (L) − R(1)
s P−s (0)

−R(2)
s P+s (L) + P−s (0)

)

− αa
p L.

The same calculation can be done with the three other equa-

tions in (A.5a)–(A.5b). Taking into account relations (A.2), it

remains the following two equations for the unknowns P−p(0)

and P−s (0):
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log
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P+pump + R
(1)
p P−p(0)

φ(P−p(0))

















=
νp

νs

η

Psat
p

P−s (0) + αa
pL

+
1

Psat
p

Φ(P−p(0))

1

2
log(R(1)

s R(2)
s ) =

η

Psat
s

P−s (0) + αa
s L +

νs

νp

1

Psat
s

Φ(P−p(0))

(A.6a)

(A.6b)

where we have set

η =

√

R
(1)
s

R
(2)
s

− R(1)
s −

√

R
(1)
s R

(2)
s + 1

Φ(P−p(0)) = (1 − R(2)
p )φ(P−p(0)) + (1 − R(1)

p )P−p(0) − (P+pump + P−pump)

φ(P−p(0)) =

√

√

(

P−pump

2R
(2)
p

)2

+
R

(1)
p

R
(2)
p

(

P−p(0)
)2
+

P−pump

R
(2)
p

P−p(0) −
P−pump

2R
(2)
p

Combining equations (A.6a) and (A.6b), we obtain that

log

















P+pump + R
(1)
p P−p(0)

φ(P−p(0))

















= A (A.7)

where

A =
νpPsat

s

νsP
sat
p

(1

2
log(R(1)

s R(2)
s ) − αa

s L
)

+ αa
pL (A.8)

From (A.7), we deduce that P−p(0) is solution to the following

algebraic equation with unknown X

√

1

4

(

P−pump

)2
+ R

(1)
p R

(2)
p X2 + P−pumpR

(2)
p X − e−AR(1)

p R(2)
p

= e−AR(2)
p P+pump +

1

2
P−pump.
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Solving this algebraic equation, we obtain that its non-negative

solution reads

P−p(0) =
P+pumpR

(2)
p + P−pump eA

e2A − R
(1)
p R

(2)
p

(A.9)

Then, from (A.6b) , we have

P−s (0) =
Psat

s

η

(1

2
log(R(1)

s R(2)
s ) −

νs

νp

1

Psat
s

Φ(P−p(0)) − αa
s L

)

. (A.10)

Finally, under the assumption that αs = αp = 0 and P0 = 0,

the BVP (6)–(9) is equivalent to the IVP composed of the

ODE (6) and initial conditions (A.9) for P−p(0), (A.10) for

P−s (0), (9a) for P+p(0) and (9c) for P−p(0).

Note that in [6] the authors also propose an IVP, different of

the one proposed here, equivalent to the BVP (6)–(9) under the

following additional assumptions: σ
(a)
s ≪ σ

(a)
p , σ

(e)
p = 0 and

R
(1)
p = R

(2)
p = 0. We did not need these additional assumptions

here. As well, in [9] the authors proposed an analytical solution

to the BVP in the absence of losses but also require additional

assumptions.
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