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North-South type dynamics of relative atoroidal automorphisms of free groups on a relative space of currents

This paper, which is the second of a series of three papers, studies dynamical properties of elements of OutpF n q, the outer automorphism group of a nonabelian free group F n . We prove that, for every exponentially growing outer automorphism of F n , there exists a preferred compact topological space, the space of currents relative to a malnomal subgroup system, on which φ acts by homeomorphism with a North-South dynamics behavior.

Introduction

Let n ¥ 2. This paper is the second of a sequence of three papers where we study the growth of the conjugacy classes of elements of F n under iterations of elements of OutpF n q, the outer automorphism group of a nonabelian free group of rank n. An outer automorphism φ OutpF n q is exponentially growing if there exist g F n , a representative Φ of φ, a free basis B of F n and a constant K ¡ 0 such that, for every m N ¦ , we have B pΦ m pgqq ¥ e Km , where B pΦ m pgqq denotes the length of Φ m pgq in the basis B. Such an element g is said to be exponentially growing under iteration of φ and the set of elements of F n which have exponential growth under iteration of φ is the pure exponential part of φ. It is known, using for instance the train track technology of Bestvina and Handel (see [BH]), that every element g of F n which is not exponentially growing under iteration of φ is polynomially growing under iteration of φ, that is, there exist Φ φ and an integer K N such that, for every m N ¦ , we have B pΦ m pgqq ¤ pm 1q K . Initiated by Švarc, Milnor and Wolf, and particularly developped by Guivarc'h, Gromov and Grigorchuk, growth problems in groups is a major field of study in geometric and dynamical group theory, see for instance [LS, Man, Hel]. Many works study the subfield of the element growths under iteration of group automorphisms (see for instance [START_REF] Bestvina | The Tits alternative for OutpF n q I: Dynamics of exponentially growing automorphisms[END_REF][START_REF] Levitt | Counting growth types of automorphisms of free groups[END_REF][START_REF] Clay | Atoroidal dynamics of subgroups of OutpF N q[END_REF]), for instance in the context of hyperbolic groups. See in particular [Cou] for examples of intermediate growth rates. As another example, Dahmani and Krishna [DS] found a sufficient condition for the suspension of an automorphism of a hyperbolic group to be relatively hyperbolic, and this condition is linked with the structure of the set of all elements of the hyperbolic group which have polynomial growth under iterations of the considered automorphism. Such exponentially growing outer automorphisms of F n were already studied in distinct contexts. For instance, Bestvina,Feighn and Handel [BFH1] used them to prove the Tits alternative for OutpF n q.

If φ OutpF n q, we denote by Polypφq the set of elements g of F n such that g is polynomially growing under iteration of φ. Let PolypHq φH Polypφq. The aim of this series of papers is to prove the following theorem.

Theorem 1.1. Let n ¥ 3 and let H be a subgroup of OutpF n q. There exists φ H such that Polypφq PolypHq.

Informally, Theorem 1.1 shows that the exponential growth of a subgroup H of OutpF n q is encaptured by the exponential growth of a single element of H. Indeed, if g F n has exponential growth for some element ψ H, then g has exponential growth for an element φ H given by Theorem 1.1. The proof relies on dynamical properties of the action of outer automorphisms on some preferred topological space. In this article, we study the dynamical properties of the elements of the subgroup H of F n that will be used in [START_REF] Guerch | Polynomial growth and subgroups of OutpF n q[END_REF] in order to construct an element φ H given by Theorem 1.1.

Let φ OutpF n q be an exponentially growing outer automorphism. In this article, we construct natural (compact, metrizable) topological spaces X on which a subgroup of OutpF n q containing φ acts by homeomorphisms with the additional property that φ acts with North-South dynamics: there exist two proper disjoint closed subsets of X such that every point of X which is not contained in these subsets converges to one of the two subsets under positive or negative iteration of φ. North-South dynamics are preferred tools to apply ping-pong arguments similar to the ones of Tits [Tit] and are used to obtain structural properties of some groups.

The topological space X that we use in the proof of Theorem 1.1 is constructed in such a way that it allows us to create a dictionnary between dynamical properties of the action of φ on X and growth properties of elements of F n under iterations of φ. In order to construct X, we first need to detect all the elements g of F n such that the length of rgs with respect to any basis of F n grows at most polynomially fast fast under iteration of φ. Levitt [Lev] proved that there exist finitely many finitely generated subgroups H 1 , . . . , H k of F n such that the conjugacy class of an element g of F n is not exponentially growing under iteration of φ if and only if g is contained in a conjugate of some H i for i t1, . . . , ku. Moreover, the set Apφq trH 1 s, . . . , rH k su is a malnormal subgroup system: for every i t1, . . . , ku, the group H i is a malnormal subgroup of F n and for every distinct subgroups A and B such that rAs, rBs Apφq, we have A B teu. Every element of F n which is contained in a conjugate of some H i with i t1, . . . , ku has polynomial growth under iteration of φ. Moreover, we have Polypφq r i1 gFn gH i g ¡1 .

In [START_REF] Guerch | Currents relative to a malnormal subgroup system[END_REF], we construct a compact, metrizable space, called the space of projectivised currents relative to Apφq, denoted by PCurrpF n , Apφqq, which is the space of projectivised Radon measures on the double boundary of F n relative to Apφq, equipped with the weak-star topology (see Section 2.4 for precise definitions). In [START_REF] Guerch | Currents relative to a malnormal subgroup system[END_REF], we proved that the set of currents associated with Apφq-nonperipheral conjugacy classes of elements of g of F n , that is, such that g is not contained in the conjugacy class of some H i with i t1, . . . , ku, is dense in PCurrpF n , Apφqq. Thus, the set of conjugacy classes of elements of F n whose length grows exponentially fast under iteration of φ is dense in PCurrpF n , Apφqq. If we denote by OutpF n , Apφqq the subgroup of OutpF n q consisting in every element ψ OutpF n q such that ψpApφqq Apφq, the group OutpF n , Apφqq acts by homeomorphisms on PCurrpF n , Apφqq by pushing forward the measures. In this article, we prove the following theorem.

Theorem 1.2 (see Theorem 5.1). Let n ¥ 3 and let φ be an exponentially growing outer automorphism. The outer automorphism φ acts with North-South dynamics on the space PCurrpF n , Apφqq.

In fact, we prove a slightly stronger result since we prove a uniform North-South dynamics result, that is, the convergence in the North-South dynamics statement can be made uniform on compact subsets of PCurrpF n , Apφqq. As explained above, North-South dynamics results given by Theorem 1.2 will be a key point in the proof of Theorem 1.1.

Such dynamical results already appear in similar contexts. For instance, Tits proved in [Tit] its alternative for linear groups using North-South dynamics and ping-pong arguments. In the context of the mapping class group ModpSq of a compact connected orientable surface S of genus at least 2, pseudo-Anosov elements acts with North-South dynamics on the space of projectivised measured foliations ( [Thu], see also the work of Ivanov [Iva]) or the curve complex [MM]. Using this North-South dynamics, Ivanov [Iva] (see also the work of McCarthy [McC]) later proved a Tits alternative for subgroups of ModpSq. Similarly, North-South dynamics results were obtained for certain classes of outer automorphisms of F n . For instance, fully irreducible outer automorphisms act on the compactified Outer space [LL] or the space of projectivised currents ( [Mar], see also the work of Uyanik [START_REF] Uyanik | Generalized north-south dynamics on the space of geodesic currents[END_REF]) with a North-South dynamics and atoroidal outer automorphisms act on the space of projectivsed currents with a North-South dynamics [START_REF] Lustig | North-South dynamics of hyperbolic free group automorphisms on the space of currents[END_REF][START_REF] Uyanik | Hyperbolic extensions of free groups from atoroidal ping-pong[END_REF]. Clay and Uyanik [CU] applied this result in the proof of the fact that, for every subgroup H of OutpF n q, either H contains an atoroidal outer automorphism or there exists a nontrivial element g of F n such that, for every element φ H, there exists k N ¦ such that we have φ k prgsq rgs. Such dynamical results were later extended to relative contexts by Gupta [START_REF] Gupta | Relative currents[END_REF][START_REF] Gupta | Loxodromic elements for the relative free factor complex[END_REF].

In order to prove Theorem 1.1, we will need a slightly stronger result than Theorem 1.2. Indeed, let φ OutpF n q and let Apφq trH 1 s, . . . , rH k su. Suppose that φ preserves the conjugacy class of a corank one free factor A of F n . Let Apφq A be the malnormal subgroup system consisting in the conjugacy classes of the intersection of the conjugates of the subgroups H i with i t1, . . . , ku with A. Note that, by Theorem 1.2, there exist closed disjoint subsets ∆ ¨pφ| A q such that the outer automorphism φ| A OutpA, Apφq Aq acts with North-South dynamics on PCurrpA, Apφq Aq with respect to ∆ ¨pφ| A q. There is a canonical embedding PCurrpA, ApφqAq ãÑ PCurrpF n , ApφqAq, and we denote by ∆ ¨pφq the image of ∆ ¨pφ| A q in PCurrpF n , Apφq Aq. We will need to understand the dynamics of φ on the space PCurrpF n , Apφq Aq. As there might exist elements in F n which have polynomial growth under iterations of φ and which are not contained in a conjugate of A, one cannot apply Theorem 1.2 to obtain a North-South dynamics result. However, we obtain the following result.

Theorem 1.3 (see Theorem 6.4). Let n ¥ 3 and let φ OutpF n q be an exponentially growing outer automorphism which preserves a corank one free factor A. ∆ ¨pφq in PCurrpF n , Apφq Aq. There exists M N ¦ such that for every n ¥ M , we have φ ¨npPCurrpF n , Apφq Aq ¡ p V © q U ¨.

In [START_REF] Clay | Atoroidal dynamics of subgroups of OutpF N q[END_REF]Theorem 4.15], Clay and Uyanik proved an analogue of Theorem 1.3 in the context of atoroidal outer automorphisms of F n . In Theorem 1.3, the two convex subsets p ∆ ¨pφq have nonempty intersection, so that Theorem 1.3 is not a North-South dynamics result as defined above. However, Theorem 1.3 gives a sufficiently precise description of the dynamics of φ for our considerations. The intersection p ∆ pφq p ∆ ¡ pφq corresponds informally to the polynomial growth part of φ. This intersection, denoted by K P G in the rest of the article, is the closure in PCurrpF n , Apφq Aq of the pApφqAq-nonperipheral elements of F n which have polynomial growth under iteration of φ. In Section 3.3, we give a complete study of the subspace K P G in a more general context. In fact, Section 3 is devoted to the study of the polynomial growth of an exponentially growing outer automorphism. Following the works of Bestvina,Feighn and Handel [BFH1,[START_REF] Bestvina | Solvable subgroups of OutpF n q are virtually abelian[END_REF], of Feighn and Handel [FH] and of Handel and Mosher [HM], we use appropriate relative train track representatives of a power of an exponentially growing outer automorphism φ in order to describe Apφq geometrically. It gives rise to a (not necessarily connected) topological graph G ¦ such that the fundamental group of every connected component G ¦ c of G ¦ injects into F n and such that the set trπ 1 pG ¦ c qsu G ¦ c π 0 pG ¦ q

where π 1 pG ¦ c q is viewed as a subgroup of F n is equal to Apφq (see Proposition 3.13). We then use this characterization of Apφq in Section 3.3 in order to describe the subset K P G . We now sketch a proof of Theorem 1.2. The proofs of Theorem 1.2 and Theorem 1.3 given in this paper are long and quite technical, this is why we postpone the proof of Theorem 1.1 in [START_REF] Guerch | Polynomial growth and subgroups of OutpF n q[END_REF]. Let φ OutpF n q be exponentially growing. The first step is to construct the closed subsets ∆ ¨pφq associated with φ as defined in Therorem 1.2. This is done in Section 4. In order to construct them, we use as inspiration the construction given by Lustig and Uyanik in [START_REF] Lustig | North-South dynamics of hyperbolic free group automorphisms on the space of currents[END_REF] (see also [START_REF] Uyanik | Hyperbolic extensions of free groups from atoroidal ping-pong[END_REF][START_REF] Gupta | Relative currents[END_REF]). We choose an appropriate relative train track representative f : G Ñ G of a power of φ, where G is a graph whose fundamental group is isomorphic to F n . A current of ∆ pφq is then constructed by considering occurrences of paths in lim mÑV f m peq, where e is an edge in G whose length grows exponentially fast under iteration of f (see Proposition 4.4). Currents of ∆ ¡ pφq are then defined similarly using a representative of a power of φ ¡1 . We then prove Theorem 1.2 in Section 5. Let rµs PCurrpF n , Apφqq ¡ ∆ ¨pφq be the current associated with a Apφq-nonperipheral conjugacy class rws F n . Then rws is represented by a circuit γ w in the graph G. In order to show that we have lim mÑV φ m prµsq ∆ pφq, we prove that the proportion of the path f m pγ g q which grows exponentially fast under iteration of f tends to 1 as m goes to infinity. This fact is sufficient to prove that lim mÑV φ m prµsq ∆ pφq (see Lemma 5.20). We then conclude the proof using the density of currents associated with nonperipheral elements in F n proved in [START_REF] Guerch | Currents relative to a malnormal subgroup system[END_REF]. Theorem 1.3 is then proved in Section 6 using a combination of Theorem 1.2 and the description of the space K P G .
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Preliminaries

Malnormal subgroup systems of F n

Let n be an integer greater than 1 and let F n be a free group of rank n. A subgroup system of F n is a finite (possibly empty) set A whose elements are conjugacy classes of nontrivial (that is distinct from t1u) finite rank subgroups of F n . There exists a partial order on the set of subgroup systems of F n , where A 1 ¤ A 2 if for every subgroup A 1 of F n such that rA 1 s A 1 , there exists a subgroup A 2 of F n such that rA 2 s A 2 and A 1 is a subgroup of A 2 . The stabilizer in OutpF n q of a subgroup system A, denoted by OutpF n , Aq, is the set of all elements φ OutpF n q such that φpAq A.

Recall that a subgroup A of F n is malnormal if for every element x F n ¡ A, we have xAx ¡1 A teu. A subgroup system A is said to be malnormal if every subgroup A of F n such that rAs A is malnormal and, for all subgroups A 1 , A 2 of F n such that rA 1 s, rA 2 s A, if A 1 A 2 is nontrivial then A 1 A 2 . An element g F n is A-peripheral (or simply peripheral if there is no ambiguity) if it is trivial or conjugate into one of the subgroups of A, and A-nonperipheral otherwise.

An important class of examples of malnormal subgroup systems is given by the free factor systems. A free factor system of F n is a (possibly empty) set F of conjugacy classes trA 1 s, . . . , rA r su of nontrivial subgroups A 1 , . . . , A r of F n such that there exists an integer k N with F n A 1 ¦ . . . ¦ A r ¦ F k . The free factor system F is sporadic if pk r, kq ¤ p2, 1q for the lexicographic order, and is nonsporadic otherwise. Therefore, the sporadic free factor systems are those of the form trCsu where C has rank at least equal to n ¡ 1 and those of the form trAs, rBsu with F n A ¦ B. An ascending sequence of free factor systems F 1 ¤ . . . ¤ F i trF n su of F n is called a filtration of F n .

Given a free factor system F of F n , a free factor of pF n , Fq is a subgroup A of F n such that there exists a free factor system F I of F n with rAs F I and F ¤ F I . When F ∅, we say that A is a free factor of F n . A free factor of pF n , Fq is proper if it is nontrivial, not equal to F n and if its conjugacy class does not belong to F.

Another class of examples of malnormal subgroup systems is the following one. An outer automorphism φ OutpF n q is exponentially growing if there exists g F n such that the length of the conjugacy class rgs of g in F n with respect to some basis of F n grows exponentially fast under iteration of φ. If φ OutpF n q is not exponentially growing, then φ is polynomially growing. For an automorphism α AutpF n q, we say that α is exponentially growing if there exists g F n such that the length of g grows exponentially fast under iteration of φ. Otherwise, α is polynomially growing. Let φ OutpF n q be exponentially growing. A subgroup P of F n is a polynomial subgroup of φ if there exist k N ¦ and a representative α of φ k such that αpP q P and α| P is polynomially growing. By [START_REF] Levitt | Counting growth types of automorphisms of free groups[END_REF]Proposition 1.4], there exist finitely many conjugacy classes rH 1 s, . . . , rH k s of maximal polynomial subgroups of φ. Moreover, the proof of [START_REF] Levitt | Counting growth types of automorphisms of free groups[END_REF]Proposition 1.4] implies that the set H trH 1 s, . . . , rH k su is a malnormal subgroup system. Indeed, Levitt shows that there exists a nontrivial R-tree T in the boundary of Culler and Vogtmann Outer space [CV] on which F n acts with trivial arc stabilizers, such that φ preserves the homothety class of T and such that the groups H 1 . . . , H k are elliptic in T .

If two distinct subgroups A, B of F n such that rAs, rBs H fix distinct points in T , then their intersection is trivial. If A and B fix the same point x in T , then (up to taking a power of φ) φ preserves rStabpxqs and an inductive argument on the rank using φ| Stabpxq (the rank of Stabpxq is less than n by a result of Gaboriau-Levitt [GL]) shows that the intersection of A and B is trivial. We denote this malnormal subgroup system by Apφq.

Note that, if H is a subgroup of F n such that rHs Apφq, there exists Φ ¡1 φ ¡1 such that Φ ¡1 pHq H and Φ ¡1 | H is polynomially growing. Hence we have Apφq ¤ Apφ ¡1 q.

By symmetry, we have Apφq Apφ ¡1 q.

(1)

Let A be a malnormal subgroup system and let φ OutpF n , Aq be a relative outer automorphism. We say that φ is atoroidal relative to A if, for every k N ¦ , the element φ k does not preserve the conjugacy class of any A-nonperipheral element. We say that φ is expanding relative to A if Apφq ¤ A. Note that an expanding outer automorphism relative to A is in particular atoroidal relative to A. When A ∅, then the outer automorphism φ is expanding relative to A if and only if for every nontrivial element g F n , the length of the conjugacy class rgs of g in F n with respect to some basis of F n grows exponentially fast under iteration of φ. Therefore, by a result of Levitt [START_REF] Levitt | Counting growth types of automorphisms of free groups[END_REF]Corollary 1.6], the outer automorphism φ is expanding relative to A ∅ if and only if φ is atoroidal relative to A ∅.

Let A trA 1 s, . . . , rA r su be a malnormal subgroup system and let F be a free factor system. Let i t1, . . . , ru. By [START_REF] Scott | Topological methods in group theory. dans "Homological group theory[END_REF]Theorem 3.14] for the action of A i on one of its Cayley graphs, there exist finitely many subgroups A p1q i , . . . , A pk i q i of A i such that: p1q for every j t1, . . . , k i u, there exists a subgroup B of F n such that rBs F and A pjq i B A i ; p2q for every subgroup B of F n such that rBs F and B A i $ teu, there exists j t1, . . . , k i u such that A pjq i B A i ; p3q the subgroup A p1q i ¦ . . . ¦ A pk i q i is a free factor of A i .

Thus, one can define a new subgroup system as F A r ¤ i1 trA p1q i s, . . . , rA pk i q i su.

Since A is malnormal, and since, for every i t1, . . . , ru, the group A p1q i ¦ . . . ¦ A pk i q i is a free factor of A i , it follows that the subgroup system F A is a malnormal subgroup system of F n . We call it the meet of F and A.

Graphs, markings and filtrations

Let n ¥ 2. A marked graph is a pointed (at a vertex ¦), connected, finite graph G (in the sense of [Ser]) whose fundamental group is isomorphic to F n which is equipped with a marking, that is an isomorphism ρ : F n Ñ π 1 pG, ¦q.

We denote by V G (resp. EG) the set of vertices (resp. edges) of G. Given an edge e of G, we denote by opeq the origin of e, by tpeq the terminal point of e and by e ¡1 the edge of G such that ope ¡1 q tpeq and tpe ¡1 q opeq. An edge path γ of length m is a concatenation of m edges γ e 1 e 2 . . . e m such that for every i t1, . . . , m ¡ 1u, we have tpe i q ope i 1 q. The length of γ is denoted by pγq. The edge path γ is reduced if for every i t1, . . . , m ¡ 1u, we have e i $ e ¡1 i 1 . A reduced edge path is cyclically reduced if tpe m q ope 1 q and e m $ e ¡1

1 . A cyclically reduced edge path is also called a circuit. For any edge path γ, there exists a unique reduced edge path homotopic to γ relatively to endpoints, we denote it by rγs.

Let G and G I be two marked graphs. A graph map is a pointed homotopy equivalence f : G Ñ G I such that f pV Gq V G I and such that the restriction of f to the interior of an edge is an immersion. Thus, for every edge e EG, the image f peq determines a reduced edge path rfpeqs. Given φ OutpF n q and pG, ρq a marked graph, a topological representative of φ is a graph map f : G Ñ G such that the outer automorphism class of ρ ¡1 ¥ f ¦ ¥ ρ AutpF n q is φ.

Let f : G Ñ G be a topological representative. Let w F n . We denote by γ w the unique circuit in G which represents the conjugacy class of w.

Let f : G Ñ G be a topological representative. A filtration for G is an increasing sequence of f -invariant (not necessarily connected) subgraphs ∅ G 0 G 1 . . . G k G. Let r t1, . . . , ku. The r-th stratum in this filtration, denoted by H r is the (not necessarily connected) closure of G r ¡ G r¡1 . For every r t1, . . . , ku, there exists a square matrix M r associated with the stratum H r called the transition matrix of H r . The rows and columns of M r are indexed by the nonoriented edges in H r and the entry associated with the pair of nonoriented edges defined by pe, e I q pEH r q 2 is the number of occurrences of e I and e I¡1 in rfpeqs.

Recall that a nonnegative square matrix M pM i,j q i,j is irreducible if for every pi, jq, there exists p ppi, jq such that M p i,j ¡ 0 and that M is primitive if there exists p N ¦ such that every entry of M p is positive. For r t1, . . . , ku, we say that the stratum H r is irreducible if its associated matrix is irreducible and we say that H r is primitive if its associated matrix is primitive. Let r t1, . . . , ku and suppose that M r is irreducible.

Then it has a unique real eigenvalue λ r ¥ 1 called the Perron-Frobenius eigenvalue. Let H r be an irreducible stratum. Then H r is exponentially growing (EG) if λ r ¡ 1 and is nonexponentially growing (NEG) otherwise. Finally, if the matrix associated with the stratum H r is the zero matrix, then H r is called a zero stratum.

Let G be a marked graph of F n and let K be a (possibly disconnected) subgraph of G. The subgraph K determines a free factor system FpKq of F n as follows. Let C 1 , . . . , C k be the noncontractible connected components of K. Then, for every i t1, . . . , ku, the connected component C i determines the conjugacy class rA i s of a subgroup A i of π 1 pGq. Then the set trA 1 s, . . . , rA k su is a free factor system FpKq of F n .

Let F 1 ¤ . . . ¤ F i trF n su be a filtration of F n . A geometric realization of the filtration is a marked graph G equipped with an increasing sequence ∅ G 0 G 1 . . . G j G of subgraphs of G such that for every k t1, . . . , iu there exists t1, . . . , ju such that F k FpG q.

Train tracks and CTs

In this section we introduce the technology of train tracks. Train tracks are a type of graph maps introduced by Bestvina and Handel ([BH]). Even though there exist outer automorphisms of F n which do not have a topological representative which is a train track, every outer automorphism has a power which has a topological representative called a completely split train track map (CT). CT maps were introduced by Feighn and Handel ([FH]). The definition of a CT map being quite technical, we will only state the relevant properties needed for the rest of the article. First we need some preliminary definitions.

Let G be a marked graph of F n and let f : G Ñ G be a graph map. The map f induces a derivative map Df : EG Ñ EG on the set of edges as follows. For every e EG, the map Df peq is equal to the first edge of the edge path f peq. A turn in G is an unordered pair te 1 , e 2 u of edges in G with ope 1 q ope 2 q. A turn te 1 , e 2 u is degenerate if e 1 e 2 , and is nondegenerate otherwise. A turn te 1 , e 2 u is illegal if there exists k N ¦ such that tpDfq k pe 1 q, pDfq k pe 2 qu is degenerate, and is legal otherwise. An edge path γ e 1 e 2 . . . e i is legal if for every j t1, . . . , iu, the turn te ¡1 j , e j 1 u is legal.

In order to deal with relative outer automorphisms, we also need a notion of relative legal paths. Let ∅ G 0 G 1 . . . G j G be the geometric realization of some filtration of F n which is f -invariant and let r t1, . . . , ju. We say that a turn te 1 , e 2 u is contained in the stratum

H r if te 1 , e 2 u EH r . An edge path γ of G is r-legal if every turn in γ that is contained in H r is legal. A connecting path for H r is a nontrivial reduced path γ in G r¡1 whose endpoints are in G r¡1 H r . A path γ in G is r-taken (or
taken if γ is r-taken for some r) if it is contained in the reduced image of an iterate of an edge e EH r , where H r is an irreducible stratum. The height of a path γ is the maximal r such that γ contains an edge of H r . We can now define the notion of a relative train track map due to Bestvina and Handel ([BH]).

Definition 2.1. Let n ¥ 3. Let G be a marked graph and let f : G Ñ G be a graph map equipped with a f -invariant filtration ∅ G 0 G 1 . . . G j G. The map f is a relative train track map if, for each exponentially growing stratum H r , the following holds:

p1q for every edge e EH r and every k N ¦ , we have pDfq k peq EH r ; p2q for every connecting path γ for H r , the reduced path rfpγqs is also a connecting path for H r ;

p3q if γ is a height r reduced edge path which is r-legal, then so is rfpγqs.

In order to explain the properties of CT maps that we will use in this paper, we will need some further definitions regarding edge paths in a graph.

Definition 2.2. Let n ¥ 3 and let G be a marked graph of F n equipped with an f -invariant filtration ∅ G 0 G 1 . . . G j G. Let γ be an edge path of G. p1q The path γ is a periodic Nielsen path if there exists k N ¦ such that rf k pγqs γ. The minimal such k is the period, and if k 1, then γ is a Nielsen path. p2q A (periodic) indivisible Nielsen path ((p)INP) is a (periodic) Nielsen path that cannot be written as a nontrivial concatenation of (periodic) Nielsen paths.

p3q The path γ is an exceptional path if there exist a cyclically reduced Nielsen path w, edges e 1 , e 2 EG and integers d 1 , d 2 , p Z ¦ such that for every i t1, 2u, we have f pe i q e i w d i and γ e 1 w p e ¡1

2 . The value |p| is called the width of γ. Definition 2.3. Let n ¥ 3, let G be a marked graph of F n and let f : G Ñ G be a relative train track map equipped with a filtration ∅ G 0 G 1 . . . G j G. Let γ be a reduced edge path or a circuit of G.

p1q A splitting of γ is a decomposition of γ into edge subpaths γ γ 1 γ 2 . . . γ i such that for every k N ¦ , we have rf k pγqs rf k pγ 1 qs . . . rf k pγ i qs, that is one can tighten the image of f k pγq by tightening the image of every f k pγ j q (where opγq is the base point in the case where γ is a circuit).

p2q Let γ be a circuit. A circuital splitting is a splitting γ γ 1 . . . γ i of γ such that for every k N ¦ , the concatenation rf k pγ 1 qs . . . rf k pγ i qs defines a path whose initial and terminal directions are distinct.

p3q Let γ γ 1 γ 2 . . . γ i be a splitting of γ. The splitting is complete if for every j t1, . . . , iu, the subpath γ j is one of the following:

an edge in an irreducible stratum; an INP; an exceptional path; a connecting path in a zero stratum that is both maximal (for the inclusion in γ) and taken.

Let n ¥ 2, let G be a marked graph of F n and let f : G Ñ G be a relative train track map with respect to a filtration ∅ G 0 G 1 . . . G j G. Let γ be an edge path of G. Such paths in the above list are called splitting units. When γ has a complete splitting, we say that γ is completely split.

Definition 2.4. [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Fact 2.16] Let p t0, . . . , ju. Let γ γ 1 γ 2 . . . γ i be a splitting of γ.

This splitting is complete relatively to G p , or relatively complete if there is no ambiguity, if for every j t1, . . . , iu, the subpath γ j is one of the following: a splitting unit of height at least equal to p 1; a subpath in G p .

We now describe some properties of CT maps whose complete definition can be found in [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Definition 4.7].

Proposition 2.5. Let n ¥ 3 and let G be a marked graph of F n . Let f : G Ñ G be a completely split train track (CT) map. Then f satisfies the following properties.

p1q The map f is a relative train track map and every stratum in G is either irreducible or a zero stratum ( [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Definition 4.7]).

p2q If H r is an NEG stratum, then H r consists of a single edge e r . Moreover, either e r is fixed by f or f pe r q e r u r where u r is a nontrivial completely split circuit in G r¡1 .

The terminal endpoint of each NEG stratum is fixed ( [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Lemma 4.21]).

p3q For every filtration element G r , the stratum H r is a zero stratum if and only if H r is a contractible component of G r ( [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Lemma 4.15]).

p4q For every zero stratum H r , there exists a unique ¡ r such that H is an EG stratum and, for every vertex v V H r , we have v V H r V H and the link of v is contained in V H r V H ( [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Definition 4.7]). p5q Every periodic Nielsen path has period one ( [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Lemma 4.13]). p6q For every edge e in an irreducible stratum, the reduced path f peq is completely split. For every taken connecting path γ in a zero stratum, rfpγqs is completely split. p7q Every completely split path or circuit has a unique complete splitting. p8q If γ is an edge path, there exists k 0 N ¦ such that for every k ¥ k 0 , the reduced path rf k pγqs is completely split ( [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Lemma 4.25]). p9q If H r is an EG stratum, there is at most one INP ρ r of height r. The initial edges of ρ r and ρ ¡1 r are distinct oriented edges in H r ( [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Corollary 4.19]).

p10q If H r is a zero stratum, no Nielsen path intersects H r in at least one edge ( [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Fact I.1.43]).

p11q Let H r be an NEG stratum such that H r te r u, such that f pe r q e r u r and such that u r is not trivial. There exists an INP σ which intersects H r nontrivially if and only if u r is a Nielsen path and there exists s Z such that σ e r u s r e ¡1 r ( [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Definition 4.7]).

Definition 2.6. Let n ¥ 2 and let G be a marked graph of F n . Let f : G Ñ G be a completely split train track (CT) map. Let H r be an NEG stratum and let e r be the edge of H r . Let u r be such that f pe r q e r u r . The edge e r is called a fixed edge if u r is trivial, a linear edge if u r is a Nielsen path and a superlinear edge otherwise.

Lemma 2.7. [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Fact 1.39] Let n ¥ 2 and let G be a marked graph of F n . Let f : G Ñ G be a CT map. Let γ be a Nielsen path. Then γ is completely split, and all terms in the complete splitting of γ are fixed edges and INPs.

Lemma 2.8. [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Fact 1.41] Let n ¥ 2 and let G be a marked graph of

F n . Let f : G Ñ G be a CT map.
p1q Let H r be a zero stratum and let H be the EG stratum given by Proposition 2.5 p4q.

There does not exist an INP of height .

p2q Let H r be an EG stratum and let ρ r be an INP of height r. Then ρ r has a decomposition ρ r a 0 b 1 a 1 . . . b k a k where, for every i t0, . . . , ku, the subpath a i is a nontrivial path contained in H r and for every i t1, . . . , ku, the subpath b i is a Nielsen path contained in G r¡1 .

An INP is an EG INP if the maximal stratum it intersects is an EG stratum and is an NEG INP otherwise. Note that, by Proposition 2.5 p9q, there exists only finitely many EG INPs.

Lemma 2.9. Let n ¥ 2. Let φ OutpF n q. Suppose that there exists a CT map f : G Ñ G representing a power of φ. Let γ I be a nontrivial path in a zero stratum. There does not exist a reduced edge path γ αγ I where α is either an INP or a fixed edge. Proof. Suppose towards a contradiction that such a path γ αγ I exists. Let H r be the zero stratum containing γ I . Note that, by Proposition 2.5 p10q, the path α does not contain edges in H r . By Proposition 2.5 p4q, there exists ¡ r such that H is an EG stratum and such that any edge adjacent to a vertex in H r and not contained in H r is in H . Hence α has height at least . Since H is an EG stratum, the path α is not a fixed edge. Hence α is an INP. By Lemma 2.8 p1q, the height of α is not equal to . Let j ¡ be the height of α. We distinguish between three cases according to the nature of the stratum H j . By Proposition 2.5 p10q, the stratum H j is not a zero stratum. Hence, by Proposition 2.5 p1q, the stratum H j is irreducible. By Proposition 2.5 p11q, if H j is an NEG stratum, then α is of the form α e j w k e ¡1 j , where e j H j , k is an integer and w is a closed Nielsen path in G j¡1 . But then e ¡1 j is adjacent to a vertex in H r . This contradicts Proposition 2.5 p4q since j ¡ . If H j is an EG stratum, then by Lemma 2.8 p2q, the path α is the concatenation of subpaths in H j and Nielsen paths of height at most j ¡ 1, and α ends with an edge in H j . By Proposition 2.5 p4q, we see that j . This contradicts Lemma 2.8 p1q.

The next theorem due to Feighn and Handel is the main existence theorem of the CT maps.

Theorem 2.10. [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Theorem 4.28,Lemma 4.42] Let n ¥ 3. There exists a uniform constant M M pnq ¥ 1 such that for every φ OutpF n q and every φ M -invariant filtration C of F n , there exists a CT map f : G Ñ G that represents φ M and realizes C.

Relative currents

In this section, we define the notion of currents of F n relative to a malnormal subgroup system. The section follows [START_REF] Guerch | Currents relative to a malnormal subgroup system[END_REF] (see the work of Gupta [Gup1] for the particular case of free factor systems and Guirardel and Horbez [GH] in the context of free products of groups). It is closely related to the notion of conjugacy classes of A-nonperipheral elements of F n .

Let f V F n be the Gromov boundary of F n . The double boundary of F n is the quotient topological space

f 2 F n pf V F n ¢ f V F n z∆q { ,
where is the equivalence relation generated by the flip relation px, yq py, xq and ∆ is the diagonal, endowed with the diagonal action of F n . We denote by tx, yu the equivalence class of px, yq.

Let T be the Cayley graph of F n with respect to a free basis B. The boundary of T is naturally homeomorphic to f V F n and the set f 2 F n is then identified with the set of unoriented bi-infinite geodesics in T . Let γ be a finite geodesic path in T . The path γ determines a subset in f 2 F n called the cylinder set of γ, denoted by Cpγq, which consists in all unoriented bi-infinite geodesics in T that contain γ. Such cylinder sets form a basis for a topology on f 2 F n , and in this topology, the cylinder sets are both open and closed, hence compact. The action of F n on f 2 F n has a dense orbit.

For every nontrivial subgroup A of F n , let T A be the minimal A-invariant subtree of T . Let A trA 1 s, . . . , rA r su be a malnormal subgroup system of F n . By malnormality of A, there exists L N ¦ such that for all distinct subgroups A, B of F n such that rAs, rBs A, the diameter of the intersection T A T B is at most L (see for instance [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Section I.1.1.2]). Let i t1, . . . , ru. Let Γ i be the set of subgroups B of F n such that there exists g B F n such that B g B A i g ¡1

B and the tree T B contains the base point e of T . Note that, by malnormality of A, for every i t1, . . . , ru, the set Γ i is finite. For an element w F n , let x γ w be the geodesic path in T starting at e and labeled by w. Let C i be the set of elements w of F n such that the length of x γ w is equal to L 2 and, for every

B Γ i , the path x γ w is not contained in T B . Let C r i1 C i .
Since we are looking at geodesic paths of length equal to L 2, the set C is finite. Moreover, it only depends on the choice of A, B and L.

Lemma 2.11. [Gue1, Lemma 2.3] Let B, T , A trA 1 s, . . . , rA r su, L N ¦ , Γ 1 , . . . , Γ r , C be as above. The finite set C C pA 1 , . . . , A k q is nonempty. Moreover, it satisfies the following properties: p1q every A-nonperipheral cyclically reduced element g F n has a power which contains an element of C as a subword; p2q for every A-nonperipheral cyclically reduced element g F n , if c g is the geodesic ray in T starting from e obtained by concatenating infinitely many edge paths labeled by g, there exists an edge path in c g labeled by a word in C at distance at most L 2 from r i1

BΓ i T B ;
p3q if γ is a path in T which contains a subpath labeled by an element of C , then for every i t1, . . . , ru and every g F n , the path γ is not contained in T gA i g ¡1.

Let A be a nontrivial subgroup of F n of finite rank. The induced A-equivariant

inclusion f V A ãÑ f V F n induces an inclusion f 2 A ãÑ f 2 F n . Let f 2 A r ¤ i1 ¤ gFn f 2 gA i g ¡1 ¨.
Let f 2 pF n , Aq f 2 F n ¡ f 2 A be the double boundary of F n relative to A. This subset is invariant under the action of F n on f 2 F n and inherits the subspace topology of f 2 F n . Lemma 2.12. [Gue1, Lemma 2.5] Let CylpC q be the set of cylinder sets of the form Cpγq,

where the element of F n determined by the geodesic edge path γ contains an element of C as a subword. We have

f 2 pF n , Aq ¤ CpγqCylpC q Cpγq.
In particular, the space f 2 pF n , Aq is an open subset of f 2 F n . Lemma 2.13. [Gue1, Lemma 2.6, Lemma 2.7] Let n ¥ 3 and let A be a malnormal subgroup system of F n . The space f 2 pF n , Aq is locally compact and the action of F n on f 2 pF n , Aq has a dense orbit.

We can now define a relative current. Let n ¥ 3 and let A be a malnormal subgroup system of F n . A relative current on pF n , Aq is a (possibly zero) F n -invariant Radon measure µ on f 2 pF n , Aq. The set CurrpF n , Aq of all relative currents on pF n , Aq is equipped with the weak-¦ topology: a sequence pµ n q nN in CurrpF n , Aq N converges to a current µ CurrpF n , Aq if and only if for all disjoint clopen subsets S, S I f 2 pF n , Aq, the sequence pµ n pS ¢ S I qq nN converges to µpS ¢ S I q.

The group OutpF n , Aq acts on CurrpF n , Aq as follows. Let φ OutpF n , Aq, let Φ be a representative of φ, let µ CurrpF n , Aq and let C be a Borel subset of f 2 pF n , Aq. Then, since φ preserves A, we see that Φ ¡1 pCq f 2 pF n , Aq. Then we set φpµqpCq µpΦ ¡1 pCqq,

which is well-defined since µ is F n -invariant.
Every conjugacy class of nonperipheral element g F n determines a relative current η rgs as follows. Suppose first that g is root-free, that is g is not a proper power of any element in F n . Let γ be a finite geodesic path in the Cayley graph T . Then η rgs pCpγqq is the number of axes in T of conjugates of g that contain the path γ. If g h k with k ¥ 2 and h root-free, we set η rgs k η rhs . Such currents are called rational currents.

Let G be a pointed connected graph whose fundamental group is isomorphic to F n . Let r G be the universal cover of G. There exists a (nonunique, but fixed) F nequivariant quasi-isometry r m : r G Ñ T which extends uniquely to a homeomorphism Let γ be a reduced edge path in G and let r γ be a lift of γ in r G. Let µ CurrpF n , Aq.

p m : f V G Ñ f V F n . Therefore, if r γ is a reduced edge path in r G,
We define the number of occurrences of γ in µ as xγ, µy r m µpC r m pr γqq.

(2)

For every such graph G, we fix once and for all the quasi-isometry r m : r G Ñ T . Therefore, when the graph G is fixed, we will generally omit the mention of r m. We also define the simplicial length of µ as:

µ ȩ EG xe, µy .
For any given reduced edge path γ, the functions xγ, .y and . are continuous, linear functions of CurrpF n , Aq.

Let µ CurrpF n , Aq. The support of µ, denoted by Supppµq, is the support of the Borel measure µ on f 2 pF n , Aq. We recall that Supppµq is a closed subset of f 2 pF n , Aq.

In the rest of the article, rather than considering the space of relative currents itself, we will consider the set of projectivized relative currents, denoted by PCurrpF n , Aq pCurrpF n , Aq ¡ t0uq{ , where µ ν if there exists λ R ¦ such that µ λν. The projective class of a current µ CurrpF n , Aq will be denoted by rµs. We have the following properties. Lemma 2.14. [START_REF] Guerch | Currents relative to a malnormal subgroup system[END_REF]Lemma 3.3] Let n ¥ 3 and let A be a malnormal subgroup system of F n . The space PCurrpF n , Aq is compact.

Proposition 2.15. [Gue1, Theorem 1.1] Let n ¥ 3 and let A be a malnormal subgroup system of F n . The set of projectivised rational currents about nonperipheral elements of F n is dense in PCurrpF n , Aq.

The polynomially growing subgraph of a CT map

In this section, let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq. Let f : G Ñ G be a CT map with filtration ∅ G 0 G 1 . . . G k G representing a power of φ and such that there exists p t1, . . . , k ¡ 1u such that FpG p q F. We construct a subgraph of G, called the polynomially growing subgraph of G and denoted by G P G , which encaptures the information regarding polynomial growth in the graph G. We then define a notion of length relative to G P G , called the exponential length, which measures the time spent by an edge path outside of G P G . Finally, we construct a subspace of PCurrpF n , Fq which consists in the currents whose support maps to G P G .

Definitions and first properties

We define in this section the polynomially growing subgraph G P G of G and proves some of its properties.

Definition 3.1. p1q Let G P G be the (not necessarily connected) subgraph of G whose edges are the edges e of G in an NEG stratum such that for every k N ¦ , the path rf k peqs does not contain a splitting unit which is an edge in an EG stratum. p2q Let N I P G be the set of all Nielsen paths in G.

p3q Let N P G be the subset of N I P G consisting in all Nielsen paths which are either EG INPs or concatenations of (at least 2) nonclosed EG INPs.

p4q Let Z be the subgraph of G whose edges are the edges contained in a zero stratum.

Note that, by Lemma 2.7, every path in N I P G (and hence every path in N P G ) has a complete splitting consisting in fixed edges and INPs. Since a complete splitting is unique by Proposition 2.5 p7q, if γ is a reduced path in N P G , then the splitting of γ given in Definition 3.1 p3q is the complete splitting of γ. Moreover, γ is either an EG INP or the complete splitting of γ has at least two splitting units and all of them are nonclosed EG INPs. In particular, the set N P G does not contain Nielsen paths such that one of their splitting units is either a fixed edge or an NEG INP. Moreover, a Nielsen path which is a concatenation of at least 2 splitting units and such that one of them is a closed EG INP is not in N P G . Excluding such paths from N P G ensures a finiteness result for N P G (see Lemma 3.4 p1q). Informally, paths in N P G play the role of lowdynamics bridges between connected components of G P G (see Figure 1). We will see in Proposition 3.13 that a cycle in G has polynomial growth under iteration of f if and only if is a concatenation of paths in G P G and paths in N P G .

G P G G P G γ Figure 1: A path γ in N P G between two connected components of G P G .
Note that, with p defined at the beginning of Section 3, one can similarly define the polynomially growing subgraph of G p , denoted by G P G,F , which is the subgraph G P G G p . We can also define similarly N I P G,F , N P G,F and Z F by considering the paths of N I P G , N P G and Z contained in G p . We now recall a lemma due to Bestvina and Handel regarding r-legal paths.

Lemma 3.2. [START_REF] Bestvina | Train tracks and automorphisms of free groups[END_REF]Lemma 5.8] Let f : G Ñ G be a relative train track map. Let H r be an EG stratum. Suppose that σ a 1 b 1 a 2 . . . a b is the decomposition of an r-legal path into subpaths a j H r and b j G r¡1 (where a 1 and b might be trivial). Then for every i t1, . . . , u, the path f pa q is a reduced edge path and rfpσqs f pa 1 qrfpb 1 qsfpa 2 q . . . f pa qrfpb qs.

Note that, if H r is an EG stratum and if σ a 1 b 1 a 2 . . . a b is an r-legal path as in Lemma 3.2, then for every i t1, . . . , u, as a i H r , the path a i grows exponentially fast under iteration of f . Hence, by Lemma 3.2 the path σ grows exponentially fast under iteration of f . We now prove some results regarding paths in N P G .

Lemma 3.3. Let σ be an EG INP.

p1q There do not exist nontrivial subpaths c, d of σ such that σ cdc. p2q Let γ tσ ¨1u. There do not exist paths γ 1 , γ 2 , γ 3 such that γ 2 is nontrivial, γ 1 or γ 3 is nontrivial and σ γ 1 γ 2 and γ γ 2 γ 3 . Proof. p1q Let r be the height of σ. Suppose towards a contradiction that such a decomposition σ cdc exists. By [START_REF] Bestvina | Train tracks and automorphisms of free groups[END_REF]Lemma 5.11], there exist two distinct r-legal paths α and β such that σ αβ and such that the turn tDfpα ¡1 q, Df pβqu is the only height r illegal turn. Moreover, there exists a path τ such that rfpαqs ατ and rfpβqs τ ¡1 β. Hence c is contained in α and in β and is r-legal. Thus, there exist two paths d 1 and d 2 such that α cd 1 and β d 2 c.

First we claim that for every k N ¦ , there exists a path τ k such that rf k pαqs ατ k and rf k pβqs τ ¡1 k β. The proof is by induction on k. The base case follows from the existence of τ . Suppose now that τ k¡1 exists. We have:

rf k pαqs rfpατ k¡1 qs rfpαqsrfpτ k¡1 qs ατ rfpτ k¡1 qs ατ k , where the second equality comes from the fact that α is r-legal, that α ends with an edge in H r and from Lemma 3.2. Similarly, we have rf k pβqs τ ¡1 k β. This proves the claim.

We now claim that, up to taking a power of f , there exists a cycle e such that rfpcqs αeβ. Indeed, by Proposition 2.5 p9q, the path σ starts and ends with an edge in H r . Hence the path c starts and ends with an edge in H r . Since c is r-legal, we see that the length of rf k pcqs goes to infinity as k goes to infinity by Lemma 3.2. But, for every k N ¦ , there exists a path τ k such that rf k pαqs ατ k and rf k pβqs τ ¡1 k β. By Lemma 3.2, since c is the initial segment of α and since α is r-legal, there is no identification between rfpcqs and rfpd 1 qs. Thus, there exists k 1 N ¦ such that rf k 1 pcqs starts with α. Similarly, there exists k 2 N ¦ such that rf k 2 pcqs ends with β. Thus, up to taking a power of f , and since the paths α and β are r-legal, we may suppose that there exists a (reduced) cycle e such that rfpcqs αeβ.

Finally, we claim that the cycle e is trivial. Indeed, since the paths α and β are r-legal, and since c starts and ends with an edge in H r , we see that rfpαqs rfpcqsrfpd 1 qs αeβrf pd 1 qs and rfpβqs rfpd 2 qsrfpcqs rfpd 2 qsαeβ.

Recall that there exists k N ¦ such that rfpαqs ατ k and rfpβqs τ ¡1 k β. This implies that τ k eβrf pd 1 qs and that τ ¡1

k rfpd 2 qsαe, that is τ k e ¡1 α ¡1 rfpd 2 qs ¡1 . This shows that e e ¡1 , that is, e is trivial. This proves the claim.

Therefore, we see that rfpcqs αβ σ. But σ contains a height r illegal turn, whereas c is an r-legal path. This contradicts Proposition 2.5 p1q and Definition 2.1 p3q. This concludes the proof of p1q. p2q Let σ, γ be as in the assertion of the lemma. Suppose towards a contradiction that there exist three paths γ 1 , γ 2 , γ 3 such that γ 2 is nontrivial and σ γ 1 γ 2 and γ γ 2 γ 3 . Suppose first that γ σ. Then either a nontrivial initial segment of γ 2 is its terminal segment or there exists a path γ 4 such that σ γ 2 γ 4 γ 2 . The first case is not possible as otherwise σ would contain two illegal turns. This contradicts the fact that σ contains a unique illegal turn (see [START_REF] Bestvina | Train tracks and automorphisms of free groups[END_REF]Lemma 5.11]). The second case is not possible by Lemma 3.3 p1q. Suppose now that γ σ ¡1 . But σ ¡1 γ ¡1 2 γ ¡1

1 . Therefore we see that γ ¡1 2 γ 2 , that is, γ 2 is trivial. This leads to a contradiction. This concludes the proof.

Lemma 3.4. p1q There are only finitely many paths in N P G . p2q Let γ, γ I be paths in N P G . Suppose that γ has a decomposition γ γ 1 γ 2 such that γ 2 is an initial segment of γ I . Then γ 1 , γ 2 N P G and γ 1 γ I N P G . p3q Let γ, γ I be paths in N P G . Suppose that γ I γ. Then one of the following holds:

paq there exist (possibly trivial) paths γ 1 , γ 2 N P G such that γ γ 1 γ I γ 2 ; pbq there exists an INP σ in the complete splitting of γ such that γ I σ and γ I is not an initial or a terminal segment of σ.

p4q Let γ, γ I be two paths in N P G . Suppose that there exist three paths γ 1 , γ 2 and γ 3 such that γ γ 1 γ 2 , γ I γ ¡1 2 γ 3 and the path γ 1 γ 3 is reduced. Then γ 2 N P G and γ 1 γ 3 N P G . Proof. p1q First note that, since there are only finitely many EG strata in G, there are only finitely many EG INPs by Proposition 2.5 p9q. Let γ be a path in N P G which is a concatenation of at least 2 nonclosed EG INPs. Let γ σ 1 . . . σ k be the complete splitting of γ given by Lemma 2.7. As γ is a concatenation of nonclosed EG INPs, every splitting unit of γ is a nonclosed EG INP. By Proposition 2.5 p9q, an INP contained in the complete splitting of γ is entirely determined by the highest stratum H r such that γ contains an edge of H r . For every i t1, . . . , ku, let r i be the height of σ i . Let i t2, . . . , ku. Since σ i is not closed, by [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Fact 1.42(1)(a)], one of the endpoints of σ i is not contained in G r i ¡1 . Since there exists a unique INP of height r i by Proposi- tion 2.5 p9q, either r i¡1 r i or r i r i¡1 . We treat the case r 1 r 2 , the case r 2 r 1 being similar. We claim that, for every i t1, . . . , k ¡ 1u, we have r i 1 ¡ r i . The proof is by induction on i. The base case is true by hypothesis. Let i t2, . . . , k ¡ 1u. Since r i¡1 r i , the origin of σ i is contained in G r i ¡1 and the terminal point of σ i is not contained in G r i ¡1 . Thus, the first edge of σ i 1 is contained in G ¡ G r i ¡1 . Since there exists a unique INP of height r i we necessarily have r i r i 1 . Thus, the sequence of maximal heights of INPs in γ is (strictly) monotonic. Since there are only finitely many EG strata, there are only finitely many paths in N P G . This concludes the proof of p1q. p2q Let γ I N P G and let γ γ 1 γ 2 be as in the assertion of the lemma. We claim that γ 2 N P G and that the splitting units of γ 2 are splitting units of both γ and γ I . This will conclude the proof of Assertion p2q because γ 1 will be a concatenation of splitting units of γ, that is, it will be either an EG INP or a concatenation of nonclosed EG INPs (cf Definition 3.1 p3q). Hence we will have γ 1 N P G and γ 1 γ I N P G . We show that γ 2 is a concatenation of INPs which are splitting units of γ I . A similar proof will show that the splitting units of γ 2 will also be splitting units of γ. Indeed, the path γ I 1 tσ, σ ¡1 u. Note that, if σ 1 is nontrivial, there exist reduced paths τ 1 , τ 2 such that σ σ 1 τ 1 and σ I 1 τ 1 τ 2 . This contradicts Lemma 3.3 p2q applied to σ and σ I

1 .

Thus, we see that σ σ I 1 and σ I 1 γ 2 . If r I r, then by Lemma 2.8 p2q, the path σ has a decomposition σ a 1 b 1 . . . b k¡1 a k such that, for every i t1, . . . , ku, the path a i is a path in H r and for every i t1, . . . , k ¡ 1u, the path b i is a Nielsen path in G r¡1 . Hence there exists i t1, . . . , k ¡ 1u such that σ I 1 is contained in b i . Therefore, we see that σ I 1 σ γ. As σ I 1 γ I , we see that σ I 1 γ γ I γ 2 . If γ 2 σ I

1 , then we are done. Otherwise, the path γ 2 contains an edge of σ I 2 . As σ I

2 is an EG INP, the same argument as for σ I 1 shows that σ I 2 γ 2 , and an inductive argument shows that γ 2 is a concatenation of INPs in the splitting of γ I . Hence γ 2 is a Nielsen path. Therefore, we see that γ 2 N P G and that γ 2 is composed of splitting units of γ I . Similarly, we see that γ 2 is composed of splitting units which are splitting units of both γ and γ I . Hence γ 1 is composed of splitting units of γ. This concludes the proof of p2q. p3q Let γ, γ I be as in the assertion of the lemma. Let γ σ 1 . . . σ k be the complete splitting of γ and let γ I σ I 1 . . . σ I m be the complete splitting of γ I , which exist by Lemma 2.7. Recall that every splitting unit of both γ and γ I is an EG INP. There exists i t1, . . . , ku such that σ i contains an initial segment of σ I 1 . We claim that σ I 1 is either equal to σ i or γ I is strictly contained in σ i . Indeed, let r be the height of σ i and let r I be the height of σ I 1 . Since the first edge of σ I 1 is of height r I , we cannot have r I ¡ r.

Suppose first that r I r. By Lemma 2.8 p2q, the path σ i has a decomposition σ i a 1 b 1 . . . b p¡1 a p such that, for every i t1, . . . , pu, the path a i is a path in H r and for every j t1, . . . , p ¡ 1u, the path b j is a Nielsen path in G r¡1 . Hence there exists j t1, . . . , p ¡1u such that σ I 1 is contained in b j . We claim that, for every t1, . . . , mu, the splitting unit σ I is contained in b j . The proof is by induction on . For the base case, we already know that σ I 1 b j . Suppose that for some t2, . . . , mu, the path σ I ¡1 is contained in b j . By Proposition 2.5 p9q, the path σ i ends with an edge in H r . Hence the path a p is nontrivial. Since σ I ¡1 is contained in b j , the path σ I intersects σ i nontrivially.

Let r be the height of σ I . Recall that σ I is an EG INP. By Proposition 2.5 p9q, the path σ I starts with an edge in H r . Hence r ¤ r. Suppose towards a contradiction that r r. Then, by the uniqueness statement of Proposition 2.5 p9q, we see that σ I tσ ¨1 i u.

As σ i contains an initial segment of σ I , there exist three paths γ 1 , γ 2 and γ 3 of G such that γ 2 is nontrivial and σ i γ 1 γ 2 and σ I γ 2 γ 3 . Since σ I ¡1 is contained in σ i , the path γ 1 is nontrivial. This contradicts Lemma 3.3 p2q. Therefore we have r r. But then σ I cannot intersect a j 1 . This implies that σ I is contained in b j . This proves the claim and the fact that γ I σ i and γ I is not an initial or a terminal segment of σ i . Suppose now that r r I . By the uniqueness statement of Proposition 2.5 p9q, we see that σ I 1 tσ ¨1 i u. As σ i contains an initial segment of σ I 1 , there exist three paths γ 1 , γ 2 and γ 3 of G such that γ 2 is nontrivial and σ i γ 1 γ 2 and σ I 1 γ 2 γ 3 . By Lemma 3.3 p2q, we necessarily have that γ 1 and γ 3 are trivial. Thus, we see that σ i σ I 1 . Therefore, γ I is an initial segment of σ i . . . σ k and is a Nielsen path. By [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Corollary 4.12], for every j t1, . . . , mu, we have σ i j¡1 σ I j . Thus, there exist (possibly trivial) paths γ 1 , γ 2 N P G such that γ γ 1 γ I γ 2 . This concludes the proof of p3q. p4q Let γ, γ I , γ 1 , γ 2 and γ 3 be as in the assertion of the lemma. Let γ α 1 . . . α k and γ I β 1 . . . β be the complete splittings of γ and γ I given by Lemma 2.7. By definition of N P G , every splitting unit of γ and γ I is an EG INP. Let i t1, . . . , ku be such that α i contains the first edge of γ 2 . Let j t1, . . . , u be such that β j contains the last edge of γ ¡1

2 . We claim that α i γ 2 and that β j γ ¡1 2 . By [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Corollary 4.12] applied to γ ¡1 2 and γ ¡1 , there exists a path δ i contained in α i such that the decomposition γ 2 δ i α i 1 . . . α k is a splitting of γ 2 . Similarly, there exists a path δ I j in β j such that γ ¡1 2 β 1 . . . β j¡1 δ I j is a splitting of γ ¡1 2 . By Proposition 2.5 p9q, an EG INP starts with an edge of highest height and an EG INP is entirely determined by its height.

Hence α k β ¡1

1 . Note that the paths δ i α i 1 . . . α k¡1 and β 2 . . . β j¡1 δ I j satisfy the same hypotheses as δ i α i 1 . . . α k and β 1 . . . β j¡1 δ I j . Applying the same arguments, we see that i j and for every s t1, . . . , j ¡1u, we have β s α ¡1 k¡s 1 . Hence we see that δ i δ I¡1

j .

Let r be the height of α i and let r I be the height of β j . Note that by Proposition 2.5 p9q applied to α i and β j , the path δ i ends with an edge in H r and δ I¡1 j ends with an edge in H r I. Therefore, we see that r r I . By uniqueness of EG INPs of height r i given by Proposition 2.5 p9q, and since γ 1 γ 3 is reduced, we see that α i β ¡1 j , that α i γ 2 and that β j γ ¡1

2 . This shows that γ 2 is a path in N P G . By Assertion p2q applied to γ and γ 2 , the path γ 1 is contained in N P G . Similarly, we see that the path γ 3 is contained in N P G . Since the path γ 1 γ 3 is reduced, we see that γ 1 γ 3 N P G . This concludes the proof.

Lemma 3.5. Let γ and γ I be two reduced edge paths in G which are concatenations of paths in G P G and N P G . Suppose that there exist three paths γ 1 , γ 2 and γ 3 such that

γ γ 1 γ 2 , γ I γ ¡1
2 γ 3 and γ 1 γ 3 is reduced. Then γ 2 and γ 1 γ 3 are concatenations of paths in G P G and N P G .

Proof. Let γ b 0 a 1 b 1 . . . a k b k be the decomposition of the path γ such that for every i t0, . . . , ku, the path b i is in G P G and for every i t1, . . . , ku, the path a i is a maximal subpath of γ contained in N P G . The existence of the paths a i follows from Lemma 3.4 p2q. Let γ I d 0 c 1 d 1 . . . c d be the similar decomposition of γ I . Let e be the initial edge of γ 2 .

Claim. There exists i t0, . . . , ku such that b i contains e if and only if there exists j t0, . . . , u such that the edge e ¡1 is contained in d j .

Proof. The proof of the two directions being similar, we only prove one direction.

Suppose that there exists i t0, . . . , ku such that b i contains e. Suppose towards a contradiction that there exists j t1, . . . , u such that e ¡1 is contained in c j . It follows that there exists an EG INP σ of c j such that e ¡1 is contained in σ. Let r be the height of σ. Let δ ¡1 be the subpath of σ contained in γ ¡1

2 . Note that, as γ ¡1

2 is an initial segment of γ I , the path δ ¡1 is an initial segment of σ. By Proposition 2.5 p9q, the path δ ¡1 starts with an edge in H r . As δ is contained in γ, the terminal edge of δ is an edge in an EG stratum. Since every edge in G P G is contained in an NEG stratum, there exists s t1, . . . , ku such that a s contains a terminal segment of δ. Since the initial edge e of γ 2 is not contained in a s by hypothesis, the path δ contains the initial segment δ I of a s . Hence the terminal segment δ I¡1 of a ¡1 s is the initial segment δ I¡1 of σ. By Lemma 3.4 p2q applied to a ¡1

s and σ and [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Corollary 4.12], the path δ I¡1 is contained in N P G and is a concatenation of splitting units of σ. As σ contains a unique splitting unit, this implies that δ I σ. As δ I δ ¡1 σ, we see that δ ¡1 σ. Note that the edge δ ¡1 ends with e ¡1 . But σ ends with an edge in an EG stratum by Proposition 2.5 p9q, that is, e ¡1 is an edge in an EG stratum. But every edge in b i is contained in an NEG stratum by definition of G P G . This contradicts the fact that e b i . This concludes the proof of the claim.

Suppose first that there exists i t1, . . . , ku, such that e is contained in b i . By the above claim, there exists j t0, . . . , u such that e ¡1 is contained in d j . Let τ and τ I be such that γ b 0 a 1 b 1 . . . a i τ γ 2 and γ I γ ¡1 2 τ I c j 1 . . . d . Note that τ b i and τ I d j . Then we have γ 1 b 0 a 1 b 1 . . . a i τ and γ 3 τ I c j 1 . . . d . Since the path γ 1 γ 3 is reduced, so is τ τ I . Moreover the reduced edge path τ τ I is contained in G P G and γ 1 γ 3 b 0 a 1 b 1 . . . a i τ τ I c j 1 . . . d is a concatenation of paths in G P G and in N P G . Moreover, let δ P be the maximal subpath of b i contained in γ 2 . Then γ 2 δ P a i 1 . . . b k is a concatenation of paths in G P G and in N P G . Suppose now that there exists i t1, . . . , ku such that the initial edge e of γ 2 is contained in a i . By the above claim, there exists j t1, . . . , u such that e ¡1 is contained in c j . Let δ I be the terminal segment of a i contained in γ 2 . By Proposition 2.5 p9q, the terminal edge e I of δ I is an edge in an EG stratum. Since G P G does not contain any edge in an EG stratum, there exists s ¤ j such that c s contains e I¡1 . We claim that s j.

Indeed, suppose towards a contradiction that s j. Let δ ¡1 be the terminal segment of c s whose first edge is e I¡1 . Then δ is a terminal segment of a i and δ is an initial segment of c ¡1 s . By Lemma 3.4 p2q applied to a i and c ¡1 s , the path δ is a concatenation of splitting units of a i and c ¡1

s . If δ is properly contained in δ I , there exists an EG INP σ which is a splitting unit of a i and such that the last edge of σ is the last edge of δ I not contained in δ. But, by Proposition 2.5 p9q, the terminal edge e σ of σ is in an EG stratum. However, the first edge of d s (which is the edge e ¡1 σ ) is in G P G . This leads to a contradiction. Hence δ δ I . But δ intersects c j nontrivially. Hence we have s j.

Therefore, δ I¡1 is contained in c j . We claim that δ I¡1 is an initial segment of c j . Indeed, otherwise let I be the initial segment of c j whose endpoint is the origin of δ I¡1 . By Proposition 2.5 p9q, the first edge of I is an edge in an EG stratum. Hence there exists p ¡ i such that a p contains the terminal edge of I¡1 . Let ¡1 be the subpath of I¡1 contained in a p . Then ¡1 is an initial segment of a p and is an initial segment of c j . By Lemma 3.4 p2q applied to a ¡1 p and c j , the path is a concatenation of splitting units of a ¡1

p and c j . But since is properly contained in c j as it does not intersect δ I¡1 , the path is adjacent to a splitting unit of c j . Since an EG INP starts with an edge in an EG stratum by Proposition 2.5 p9q, the path b p¡1 ends with an edge in an EG stratum. This contradicts the fact that b p¡1 is contained in G P G .

Hence δ I¡1 is an initial segment of c j and δ I is a terminal segment of a i . Let τ and τ I be two paths such that a i τ δ I and c j δ I¡1 τ I . By Lemma 3.4 p4q applied to a i and c j , the path δ I is in N P G and the path τ τ I is in N P G . Hence γ 2 τ b i a i 1 . . . b k and γ 1 γ 3 b 0 a 1 b 1 . . . a i τ τ I c j 1 . . . d are concatenations of paths in G P G and in N P G . This concludes the proof.

Lemma 3.6. Let γ be a closed Nielsen path of G. Then γ is a concatenation of paths in G P G and in N P G .

Proof. Let γ be a closed Nielsen path of G. We prove the result by induction on the height r of γ. If r 0, there is nothing to prove. Assume that r ¥ 1. By Lemma 2.7, the path γ is completely split, and every splitting unit in its complete splitting is either an INP or a fixed edge. Let γ σ 1 . . . σ k be the complete splitting of γ. For every i t1, . . . , ku, let r i be the height of σ i . We prove that for every i t1, . . . , ku, the path σ i is a concatenation of paths in G P G and in N P G . Let i t1, . . . , ku. If σ i is a fixed edge, it is contained in G P G . Suppose that σ i is an NEG INP. By Proposition 2.5 p11q, there exists an edge e r i EH r i , a Nielsen path w in G r i ¡1 and an integer s Z ¦ such that σ i e r i w s e ¡1 r i . Moreover, we have f pe r i q e r i w. Hence for every j N ¦ , we have rf j pe r i qs e r i w j . Since w is a Nielsen path, by Lemma 2.7, the path w is completely split and its complete splitting is made of fixed edges and INPs. Thus, for every j N ¦ , the complete splitting of rf j pe r i qs does not contain splitting units which are edges in EG strata. By definition of G P G , we have e r i EG P G . Moreover, by the induction hypothesis, the path w s is a concatenation of paths in G P G and in N P G . Hence σ i is a concatenation of paths in G P G and in N P G . Finally, if σ i is an EG INP, then it is contained in N P G . Hence γ is a concatenation of paths in G P G and in N P G .

Lemma 3.7. Let γ be either an NEG INP or an exceptional path. Then γ is a concatenation of paths in G P G and in N P G .

Proof. We claim that there exist edges e 1 , e 2 and a closed Nielsen path w such that γ e 1 we ¡1 2 and, for every i t1, 2u, we have f pe i q e i w d i for some p2q Let γ be an edge path contained in G P G (resp. an edge path in G P G,F ). The path rfpγqs is a concatenation of paths in G P G and in N P G (resp. a concatenation of paths in G P G,F and in N P G,F ).

d i Z ¦ .
p3q Let γ be an edge path which is a concatenation of paths in G P G and in N P G (resp. a concatenation of paths in G P G,F and in N P G,F ). The path rfpγqs is a concatenation of paths in G P G and in N P G (resp. a concatenation of paths in G P G,F and in N P G,F ).

Proof. We prove Assertions p1q, p2q, p3q for paths in G P G and in N P G , the proofs for paths in G P G,F and N P G,F being similar, using the fact that f pG p q G p . p1q Let γ be an edge of G P G . By definition of G P G , the edge γ is an edge in an NEG stratum. By Proposition 2.5 p6q, the path rfpγqs is completely split. Let rfpγqs γ 1 . . . γ m be the complete splitting of rfpγqs. Since γ is an edge in an NEG stratum, by Proposition 2.5 p2q, we have γ 1 γ. Suppose towards a contradiction that rfpγqs is not a concatenation of paths in G P G and in N P G . It follows that there exists i t1, . . . , mu and an edge e of γ i which is not contained in G P G and is not contained in a subpath of rfpγqs contained in N P G . Hence γ i is not an EG INP nor a fixed edge. By Lemma 3.7, the path γ i cannot be an NEG INP or an exceptional path. Hence γ i is either an edge in an irreducible stratum or a maximal taken connecting path in a zero stratum. Suppose first that γ i is a maximal taken connecting path in a zero stratum. By Proposition 2.5 p4q, the path γ i cannot be adjacent to an edge in an NEG stratum nor an edge in a zero stratum. As γ 1 γ, we see that i ¥ 3 and that γ i¡1 ends with an edge in an EG stratum. By Lemma 2.9 (applied to γ γ i¡1 γ i ), the path γ i¡1 is not an EG INP. Therefore we see that γ i¡1 is an edge in an EG stratum. This contradicts the definition of the edges in G P G . Hence we are reduced to the case where γ i is an edge in an irreducible stratum.

Therefore, we have γ i e. By definition of G P G and as e EG P G , there exists k N ¦ such that rf k pγ i qs contains a splitting unit which is an edge in an EG stratum. This contradicts the fact that γ is contained in G P G . This concludes the proof of p1q. p2q Let γ be a path in G P G . We prove by induction on the length of γ that rfpγqs is a concatenation of paths in G P G and in N P G . The case where γ is an edge follows from p1q. Suppose now that the length of γ is at least equal to 2. Let e be the last edge of γ and let γ I be an edge path such that γ γ I e. Hence γ I and e are paths in G P G . By the induction hypothesis, the paths rfpγ I qs and rfpeqs are concatenations of paths in G P G and in N P G . It remains to show that identifications between rfpγ I qs and rfpeqs do not create paths which are not concatenations of paths in G P G and in N P G . Let α, β and σ be paths such that rfpγ I qs ασ, rfpe I qs σ ¡1 β and αβ is reduced. By Lemma 3.5 applied to rfpγ I qs and rfpe I qs, the path rfpγqs is a concatenation of paths in G P G and in N P G . This concludes the proof of p2q. p3q Let γ be a concatenation of paths in G P G and in N P G . Let γ γ I 0 γ 1 γ I 1 . . . γ k γ I k be a decomposition of γ such that for every i t1, . . . , ku, the path γ i is a maximal subpath of γ in N P G and for every i t0, . . . , ku, the path γ I

i is a path in G P G . Such a decomposition is possible by Lemma 3.4 p2q. We prove the result by induction on k. If k 0, the proof follows from Assertion p2q. Suppose that the result is true for k I k.

Then the paths γ I γ I 0 γ 1 γ I 1 . . . γ k¡1 γ I k¡1 and γ P γ k γ I k satisfy the induction hypothesis.

Hence the paths rfpγ I qs and rfpγ P qs are concatenations of paths in G P G and in N P G . Let α, β and σ be three paths such that rfpγ I qs αβ, rfpγ P qs β ¡1 σ and αβ is reduced. By Lemma 3.5, the path rfpγqs ασ is a concatenation of paths in G P G and in N P G .

This concludes the proof.

For the next lemma, we recall a definition due to Bestvina,Feighn and Handel ([BFH1,Section 6], see also [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Definition III.1.2]). Let H r be the EG stratum of G of maximal height r . By Proposition 2.5 p9q, there exists at most one unoriented INP ρ r of height r (we suppose that ρ r is a point if such a nontrivial INP does not exist). Following [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Definition III.1.2], let Z r be the subgraph of G consisting in all edges e I such that for every m N ¦ and every splitting unit σ of rf m pe I qs, the path σ is not an edge in H r . Let Let e be an edge in G P G . By definition of G P G , for every k N ¦ , the complete splitting of rf k peqs does not contain a splitting unit which is an edge in an EG stratum. In particular, for every k N ¦ , the complete splitting of rf k peqs does not contain a splitting unit which is an edge in H r . Hence e Z r and G P G is a subgraph of Z r . Let ρ be an EG INP and let r be the height of ρ. By definition of r , we have r ¤ r . If r r , by Proposition 2.5 p9q, we have ρ tρ r , ρ ¡1 r u, hence we have

ρ d Z r , ρ r h . If r r , then ρ is contained in G r ¡1 . Hence ρ is contained in d Z r , ρ r h
by the above remark.

We now define a graph which will be used in the proof of Lemma 3.12. Let G ¦ be the finite, not necessarily connected, graph defined as follows:

paq vertices of G ¦ are the vertices in G P G and the endpoints of EG INPs in G which are not in G P G ; pbq we add one edge between two vertices corresponding to vertices in G P G if there exists an edge in G P G between the corresponding vertices of G P G ; pcq we add one edge between two vertices corresponding to the endpoints of an EG INP.

Note that we have a natural continuous application p G ¦ : G ¦ Ñ G which sends an edge as defined in pbq to the corresponding edge in G P G and which sends an edge as defined in pcq to the corresponding EG INP in

G. Let x V G ¦ . Lemma 3.11. p1q If γ is a nontrivial reduced path in G ¦ , so is p G ¦pγq. p2q The homomorphism p I G ¦ : π 1 pG ¦ , xq Ñ π 1 pG, p G ¦pxqq induced by p G ¦ is injective.
Proof. p1q Let γ be a reduced path in G ¦ . Suppose towards a contradiction that p G ¦pγq is not a reduced path in G. Thus, there exist an edge e EG and two paths a and b such that p G ¦pγq aee ¡1 b. Let e ¦ be an arc in γ such that p G ¦pe ¦ q ee ¡1 . Note that, by definition of p G ¦, the application p G ¦ sends edges of G ¦ to reduced edge paths in G. In particular, the path e ¦ is not contained in a single edge of G ¦ . As the image of an edge in G ¦ by p G ¦ is either an edge in G or an edge path, we see that the path e ¦ is contained in at most two edges of G ¦ . Let e 1 , e 2 G ¦ be such that e ¦ e 1 e 2 . Suppose first that p G ¦pe 1 q and p G ¦pe 2 q are edges in G P G . Then p G ¦pe 1 q e and p G ¦pe 2 q e ¡1 . But, as γ is reduced, we have e 1 $ e ¡1

2 . Thus we have p G ¦pe 1 q $ p G ¦pe 2 q ¡1 . Suppose now that p G ¦pe 1 q is an edge in G P G and p G ¦pe 2 q is an EG INP. By Proposition 2.5 p9q, the first edge of p G ¦pe 2 q is an edge in an EG stratum. By definition, every edge in G P G is an edge in an NEG stratum. Hence the turn tp G ¦pe 1 q ¡1 , p G ¦pe 2 qu is nondegenerate. Therefore, we see that p G ¦pe ¦ q $ ee ¡1 . Finally, suppose that p G ¦pe 1 q and p G ¦pe 2 q are EG INPs. for every i t1, 2u, let r i be the height of p G ¦pe i q. By Proposition 2.5 p9q, the last edge of p G ¦pe 1 q is in H r 1 whereas the first edge of p G ¦pe 2 q is in H r 2 . Hence if r 1 $ r 2 , there is no identification between p G ¦pe 1 q and p G ¦pe 2 q. Hence p G ¦pe ¦ q $ ee ¡1 . If r 1 r 2 , then by the uniqueness statement in Proposition 2.5 p9q, we have p G ¦pe 2 q tp G ¦pe 1 q, p G ¦pe 1 q ¡1 u. Hence e 2 te 1 , e ¡1 1 u. As γ is a reduced path, we see that e 2 e 1 . Hence e 1 is a loop and p G ¦pe 1 q is a closed EG INP. By Proposition 2.5 p9q, the initial and terminal edges of p G ¦pe 1 q are distinct unoriented edges. Hence the path p G ¦pe 1 qp G ¦pe 2 q is a reduced path and p G ¦pe ¦ q $ ee ¡1 . As we have ruled out every case, we see that such a path e ¦ does not exist. This concludes the proof of Assertion p1q. p2q Let γ be a nontrivial reduced closed path in G ¦ based at x. By Assertion p1q, the path p G ¦pγq is a nontrivial reduced closed path in G. Hence the kernel of p I G ¦ is trivial.

Lemma 3.12. The application rfs which sends a circuit α in G to rfpαqs preserves the set of circuits which are concatenations of paths in G P G and in N P G . Moreover, rfs restricts to a bijection on the set of circuits which are concatenations of paths in G P G and in N P G .

Proof. The first part follows from Lemma 3.9 p3q. By [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Lemma III.1.6 p2q, p5q], the application rfs preserves . By Lemma 3.9, the application rfs preserves concatenations of paths in G P G and in N P G . In particular, this shows that rfs is injective when restricted to the set of paths which are concatenations of paths in G P G and in N P G .

For surjectivity, let α be a circuit in G which is a concatenation of paths in G P G and in N P G and let x be a vertex in α which is either an endpoint of an edge in G P G or an endpoint of an EG INP contained in α. Note that by Proposition 2.5 p2q, the endpoint of every edge in G P G is fixed by f . Moreover, the endpoint of every EG INP is fixed by f . Therefore, f fixes x. The circuit α naturally corresponds to a circuit α I in G ¦ . Let x I be the vertex of α I corresponding to x (which exists by the choices made on x). Since rfs preserves concatenations of paths in G P G and in N P G by Lemma 3.9, the application rfs induces an application rfs G ¦ : π 1 pG ¦ , x I q Ñ π 1 pG ¦ , x I q.

Note that, by Lemma 3.11, the group π 1 pG ¦ , x I q is naturally identified with a subgroup of π 1 pG, xq. By [BFH1, Lemma 6.0.6], the application rfs G ¦ is a bijection. Hence there exists a closed path β I in G ¦ such that rfs G ¦prβ I sq α I . Let β be the circuit corresponding to β I in G. Then β is a concatenation of paths in G P G and in N P G and rfpβqs α. This concludes the proof.

Proposition 3.13. Let n ¥ 3. Let φ OutpF n , Fq be an exponentially growing outer automorphism, let f : G Ñ G be a CT map representing a power of φ. Let w F n .

There exists a subgroup A of F n such that rAs Apφq and w A if and only if the circuit γ w of G associated with w is a concatenation of paths in G P G and in N P G .

Proof. Suppose first that γ w is a concatenation of paths in G P G and in N P G . We claim that γ w has polynomial growth under iteration of f . By Proposition 2.5 p8q, there exists m N ¦ such that rf m pγ w qs is completely split. By Lemma 3.9 p3q, the path rf m pγ w qs is a concatenation of paths in G P G and in N P G . Hence every splitting unit of rf m pγ w qs is either an edge of G P G or an INP. Let rf m pγ w qs γ 1 . . . γ k be the complete splitting of rf m pγ w qs. For every i ¥ m, we have

rf i pγ w qsq k j1 prf i pγ j qsq.
Therefore, it suffices to prove that, for every j t1, . . . , ku, there exists a polynomial P j ZrXs such that for every i N ¦ , we have prf i pγ j qsq OpP piqq.

Claim. There exists a polynomial P ZrXs such that for every edge e EG P G and every i N ¦ , we have prf i peqsq OpP piqq.

Proof. Since there are finitely many edges in G P G , it suffices to prove the claim for a

single edge e EG P G . Let e EG P G . By Proposition 2.5 p2q, there exists a cyclically reduced, completely split circuit w of height less than the one of e and such that f peq ew. By Lemma 3.9 p1q, the path w is a concatenation of paths in G P G and in N P G . We prove the claim by induction on the height of e. Suppose first that e has minimal height in G P G . By minimality of e, the path w does not contain a splitting unit which is an edge in G P G . Hence w is either trivial or a path in N P G , that it, a closed Nielsen path. If w is trivial then e is a fixed edge and P 1 satisfies the claim. Suppose that w is a closed Nielsen path. For every i N ¦ , we have rf i peqs ew i . Hence prf i peqsq ¤ i pwq 1. Then the polynomial P piq i pwq 1 satisfies the assertion of the claim. This proves the base case. Suppose now that e has height r. Let w w 1 . . . w k be the complete splitting of w. Recall that, for every reduced path x in G, we have rfprfpxqsqs rf 2 pxqs. Thus, for every i N ¦ . we have rf i peqs ew 1 . . . w k rfpw 1 qs . . . rfpw k qs . . . rf i¡1 pw 1 qs . . . rf i¡1 pw k qs.

Hence, for every i N ¦ , we have

prf i peqsq 1 k ¸ 1 i¡1 j0
prf j pw qsq.

Hence it suffices, for every t1, . . . , ku, to find a polynomial P ZrXs such that, for every i N ¦ , we have prf i pw qsq OpP piqq.

Let t1, . . . , ku. As w is a concatenation of paths in G P G and in N P G , every splitting unit of w is either an edge in G P G or an INP. If w is an edge in G P G , the polynomial P exists using the induction hypothesis. If w is an INP, then the polynomial P piq pw q satisfies the conclusion of the claim. This proves the existence of the polynomial P .

Let j t1, . . . , ku. If γ k is an edge in G P G which is a splitting unit of rf m pγ w qs, by the above claim, the polynomial P j exists. If γ j is an INP, then the polynomial P pxq pγ j q satisfies the conclusion. Thus, the path γ w has polynomial growth under iteration of rfs. Therefore, rws has polynomial growth under iterates of φ. By the definition of Apφq, there exists a subgroup A of F n such that rAs Apφq and w A.

Conversely, suppose that there exists a subgroup A of F n such that rAs Apφq and w A. Let m N ¦ be such that rf m pγ w qs is completely split, which exists by Proposition 2.5 p7q. Since rws has polynomial growth under iteration of φ, there does not exist a splitting unit of rf m pγ w qs which is an edge in an EG stratum or a superlinear edge with exponential growth. Suppose towards a contradiction that a splitting unit σ of rf m pγ w qs is contained in a zero stratum. By Proposition 2.5 p3q, every zero stratum of G is contractible. As rf m pγ w qs is a cycle, it is not contained in a zero stratum. By Proposition 2.5 p4q, every edge adjacent to σ and not contained in the same stratum as σ is in an EG stratum. Hence there exists a splitting unit σ I of rf m pγ w qs such that σσ I rf m pγ w qs and σ I the first edge of σ is in an EG stratum. Hence σ I is either an edge in an EG stratum or an INP. But, by Lemma 2.9, the path σ I is not an INP.

Hence σ I is an edge in an EG stratum. This contradicts the fact that rws has polynomial growth under iteration of φ. Hence every splitting unit of rf m pγ w qs is either an INP, an exceptional path or an edge in an NEG stratum whose iterates by f do not contain splitting units which are edges in EG strata. Edges in the last category are precisely the edges in G P G . By Lemma 3.7 and Lemma 3.8 every INP and every exceptional path is a concatenation of paths in G P G and in N P G . Thus, the path rf m pγ w qs is a concatenation of paths in G P G and in N P G . By Lemma 3.12, the circuit γ w is a concatenation of paths in G P G and in N P G .

Let F be a nonsporadic free factor system of F n and let φ OutpF n , Fq. We say that φ is fully irreducible relative to F if no power of φ preserves a proper free factor system F I of F n such that F F I . The following corollary will be used in [START_REF] Guerch | Polynomial growth and subgroups of OutpF n q[END_REF]. It is a well-known result but we did not find a precise statement in the literature.

Corollary 3.14. Let n ¥ 3 and let F be a nonsporadic free factor system of F n . Let φ OutpF n , Fq be a fully irreducible outer automorphism relative to F. There exists at most one (up to taking inverse) conjugacy class rgs of root-free F-nonperipheral element of F n which has polynomial growth under iteration of φ. Moreover, the conjugacy class rgs is φ-periodic.

Proof. Let f : G Ñ G be a CT map representing a power of φ and let G I be a subgraph of G such that FpG I q F. Since φ is irreducible relative to F and since F is nonsporadic, we see that G ¡ G I is an EG stratum H r . Let rgs be the conjugacy class of a root-free F-nonperipheral element g of F n . Then γ g has height r. Suppose that rgs has polynomial growth with respect to φ. By Proposition 3.13, the circuit γ g is a concatenation of paths in G P G and in N P G . Since γ g has height r and since H r is an EG stratum, every subpath α of γ g contained in H r is contained in a concatenation of INPs of height r.

By Proposition 2.5 p9q, there exists at most one INP σ of height r. Moreover, one of its endpoints is not contained in G I G r¡1 (see [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]I.Fact 1.42]). Hence σ is necessarily a closed EG INP. Since the endpoint of σ is not in G r¡1 and since γ g is a concatenation of paths in G P G and N P G , we see that γ g is an iteration of the closed path σ. Since g is root-free, we have γ g σ ¨1. This concludes the proof.

The exponential length of a CT map

In this section, we define the exponential length function exp , and its relative version F , of paths in CT maps. We compute its value for some paths in G.

Let G I P G G P G Z (see Definition 3.1) and let G I P G,F G P G,F Z F .
Let γ be a reduced edge path in G. By Lemma 3.4 p2q, every path of N P G which is contained in γ is contained in a unique maximal subpath of γ contained in N P G . Thus, the path γ has a unique decomposition into edge paths γ γ 0 γ I 1 γ 1 . . . γ k γ I k where: p1q for every i t0, . . . , ku, the path γ i is a maximal path in N P G contained in γ (where γ 0 and γ I k might be trivial); p2q for every γ I N P G contained in γ, there exists i t1, . . . , ku such that γ I γ i . Such a decomposition of γ is called the exponential decomposition of γ. Note that the exponential decomposition of γ is not necessarily a splitting of γ. We denote by N max P G pγq the set consisting in all paths γ i , with i t0, . . . , ku. Similarly, γ has a decomposition γ α 0 α I 1 α 1 . . . α m α I m , where for every i t0, . . . , mu, the path α i is a maximal path in N P G,F and for every γ I N P G,F contained in γ, there exists i t1, . . . , ku such that γ I α i . Such a decomposition is called the F-exponential decomposition of γ. We denote by N max P G,F pγq the set consisting in all paths α i , with i t0, . . . , mu. Definition 3.15. p1q Let γ be a reduced edge path in G. The exponential length of γ, denoted by exp pγq is:

exp pγq ¡ γ G ¡ G I P G © ¡ αN max P G pγq ¡ α G ¡ G I P G © .
p2q Let γ be a reduced edge path in G. The F-exponential length of γ, denoted by F pγq is:

F pγq ¡ γ G ¡ G I P G,F © ¡ αN max P G,F pγq ¡ α G ¡ G I P G,F © .
p3q Let γ be a reduced edge path in G and let γ γ 0 γ I 1 γ 1 . . . γ I k γ k be the exponential decomposition of γ. A P G-relative complete splitting of the path γ is a splitting γ δ 1 . . . δ m such that for every i t1, . . . , mu, the path δ i is one of the following paths: a splitting unit of positive exponential length not contained in some γ i for i t0, . . . , ku;

a maximal taken connecting path in a zero stratum; a subpath of γ which is a concatenation of subpaths contained in G P G and Nielsen paths in N P G .

We call the above paths P G-relative splitting units. If γ is a circuit, a P G-relative circuital complete splitting of γ is a circuital splitting of γ which is a P G-relative complete splitting of γ.

p4q A factor of a P G-relative completely split edge path γ is a concatenation of P Grelative splitting units of some given P G-relative complete splitting of γ.

Note that if γ is an edge path of G, then exp pγq ¥ 0. Indeed, two paths γ 1 and γ 2 contained in N max P G pγq are either equal or disjoint. Let γ γ 0 γ I 1 γ 1 . . . γ I k γ k be the exponential decomposition of γ. For every i t1, . . . , ku, we have

exp pγ I i q pγ I i G ¡ G I P G q and exp pγq k i1 exp pγ I i q.
We prove the existence of P G-relative complete splittings in Lemma 3.19. Note that a P G-relative complete splitting of a reduced edge path γ is not necessarily unique. Indeed, it might be possible that one can split a P G-relative splitting unit of γ which is a concatenation of paths in G P G and in N P G into two P G-relative splitting units which are concatenations of paths in G P G and in N P G .

In the rest of the section, we describe some properties of the exponential length.

Lemma 3.16. Let γ be a reduced edge path in G and let γ γ 1 γ 2 be a decomposition of γ into two edge paths. We have:

exp pγq ¤ exp pγ 1 q exp pγ 2 q.

Proof. It is immediate that

pγ G ¡ G I P G q pγ 1 G ¡ G I P G q pγ 2 G ¡ G I P G q. Let i t1, 2u. Let γ I N max P G pγ i q.
Then there exists γ P N max P G pγq such that γ I γ P . In particular, we have

γP N max P G pγq pγ P G ¡ G I P G q ¥ γI N max P G pγ 1 q pγ I G ¡ G I P G q γI N max P G pγ 2 q pγ I G ¡ G I P G q.
By definition of the exponential length, this concludes the proof.

Note that we do not necessarily have equality in Lemma 3.16. Indeed, let γ γ 1 γ 2 be as in Lemma 3.16. Suppose that the endpoint of γ 1 is contained in a path γ I of N max P G pγq. Then γ I is not necessarily a concatenation of paths in N max P G pγ 1 q and N max P G pγ 2 q.

Therefore, we might have:

γI N max P G pγq pγ I G ¡ G I P G q ¡ γI N max P G pγ 1 q pγ I G ¡ G I P G q γI N max P G pγ 2 q pγ I G ¡ G I P G q,
and a strict inequality in Lemma 3.16. In particular, a proper subpath of γ might have greater exponential length than γ itself. For instance, if γ is a reduced path in G such that exp pγq 0, it is possible that there exists a proper subpath γ I of γ such that exp pγ I q ¡ 0. However, there exists a bound, depending only on G, on the difference of the exponential length of a subpath of γ and the exponential length of γ (see Lemma 5.6).

If γ is a path in G such that exp pγq 0, we do not necessarily have exp prfpγqsq 0. Indeed, if γ is an edge in a zero stratum such that rfpγqs contains a splitting unit which is an edge in an EG stratum, we have exp prfpγqsq ¡ 0. However, the following lemma describes an important situation where the map f preserves the property of having zero exponential length.

Lemma 3.17. Let γ be a reduced edge path which is a concatenation of paths in G P G and in N P G . For every n N, we have exp prf n pγqsq 0. Proof. Since the rfs-image of a concatenation of paths in G P G and in N P G is a concatenation of paths in G P G and in N P G by Lemma 3.9, it suffices to prove the result for n 0. Let γ be a concatenation of paths in G P G and in N P G . Let γ γ 0 γ I 1 γ 1 . . . γ k γ I k be the exponential decomposition of γ: for every i t1, . . . , ku, the path γ i is a maximal subpath of γ in N P G and for every i t0, . . . , ku, the path γ I i is a path in G P G . Note that for every i t1, . . . , ku, we have γ i N max P G pγq. By definition of the exponential length, we have exp pγq °k i0 exp pγ I i q 0.

Corollary 3.18. Let γ be a path of N I P G . Then exp pγq 0. In particular, if γ is either a closed Nielsen path, an NEG INP or an exceptional path, we have exp pγq 0.

Proof. By Lemma 3.8, the path γ is a concatenation of paths in G P G and in N P G . By Lemma 3.17, we have exp pγq 0. The second assertion follows from Lemmas 3.6 and 3.7.

Lemma 3.19. Let γ be a completely split edge path and let γ γ 1 . . . γ m be its complete splitting. Let γ I N max P G pγq. Then either γ I is a concatenation of splitting units of γ or there exists i t1, . . . , mu such that γ I γ i . Moreover, the complete splitting of γ is a P G-relative complete splitting of γ.

Proof. Let e be the first edge of γ I and let i t1, . . . , mu be such that e is contained in γ i . Let σ be the splitting unit of γ I containing e. By Proposition 2.5 p9q, the edge e is in an EG stratum. Hence γ i is either an edge in an EG stratum, an exceptional path or an INP. Since γ I is a Nielsen path, and since γ i is a splitting unit of γ, we see that γ i is not an edge in an EG stratum. If γ i is either an NEG INP or an exceptional path, then Proposition 2.5 p11q implies that γ i starts and ends with edges in NEG strata whose height are strictly higher than the one of e. Since the height of e is equal to the height of σ, we see that γ i contains σ. An inductive argument shows that γ I is contained in γ i .

Suppose now that γ i is an EG INP. By Lemma 3.4 p2q applied to γ i and γ I , either γ I is contained in γ i or γ i is the initial segment of γ I . If γ I is contained in γ i , by maximality of γ I , we see that γ I γ i . Suppose that γ I is the initial segment of the completely split edge path γ i . . . γ k . Then [START_REF] Feighn | The recognition theorem for OutpF n q[END_REF]Corollary 4.12] implies that γ I is a factor of γ.

The last assertion of the lemma follows from the following observations. Every splitting unit of γ which is either an INP or an exceptional path is a concatenation of paths in G P G and in N P G by Lemma 3.7. Moreover, by the first assertion of the lemma, every splitting unit of γ which is an edge in an irreducible stratum not contained in G P G does not intersect a path in N max P G pγq. Hence the complete splitting of γ is a P G-relative complete splitting. P G-relative completely split edge paths are well-adapted to the computation of the exponential length as explained by the following lemma.

Lemma 3.20. Let γ be a P G-relative completely split edge path and let γ α 1 . . . α be a P G-relative complete splitting.

p1q For every path γ I N max P G pγq, there exists a minimal concatenation of P G-relative splitting units δ of γ such that γ I δ; every P G-relative splitting unit of δ is a concatenation of paths in G P G and in N P G ; for every P G-relative splitting unit δ I of δ, the intersection δ I γ I is an element of N max P G pδ I q. p2q We have exp pγq ° i1 exp pα i q and F pγq ° i1 F pα i q. Proof. p1q Let γ γ 0 γ I 1 γ 1 . . . γ I k γ k be the exponential decomposition of γ where, for every i t0, . . . , ku, we have γ i N max P G pγq. Let i t0, . . . , ku. Let j t1, . . . , u be such that α j contains an initial segment of γ i . By Proposition 2.5 p10q, the splitting unit α j is not contained in a zero stratum. Moreover, by definition of the P G-relative splitting units, if α j is an edge in an irreducible stratum of positive exponential length, it is not contained in γ i . Hence, by the description of P G-relative splitting units, the path α j is a concatenation of paths in G P G and in N P G . By Proposition 2.5 p9q, the path γ i starts with an edge in an EG stratum. Hence there exists a path β j in N max P G pα j q which contains an initial segment of γ i . By maximality of γ i , we see that β j γ i . Suppose first that β j γ i . Then setting δ α j proves the first assertion. Suppose now that β j γ i . By Lemma 3.4 p2q applied to γ γ ¡1 i and γ I β ¡1 j , the path rβ ¡1 j γ i s is a path in N P G . Therefore, by Proposition 2.5 p9q, the path rβ ¡1 j γ i s starts with an edge in an EG stratum. Note that, as α j is a concatenation of paths in G P G and in N P G , if α j contains the first edge e of rβ ¡1 j γ i s, then e would be contained in an EG INP contained in α j . Since β j is a maximal subpath of α j in N P G , we see that rβ ¡1 j γ i s is contained in γ P α j 1 . . . α and is in N max P G pγ P q. We can thus apply the same arguments to the paths rβ ¡1 j γ i s and γ P . This concludes the proof of p1q. The proof of p2q follows as the exponential length and the F-length are computed by removing paths in G P G and in N P G . As all subpaths in G P G are contained in a splitting unit of γ and as subpaths in N P G are obtained by concatenating paths in b j1 N max P G pα j q, we see that exp pγq ° i1 exp pα i q and F pγq ° i1 F pα i q.

The following property of the exponential length allows us to pass, if needed, to a further iterate of the CT map f . Lemma 3.21. For every edge e of G ¡ G I P G , we have lim nÑV exp prf n peqsq V and lim nÑV F prf n peqsq V. Moreover, the sequences p exp prf n peqsqq nN and p F prf n peqsqq nN grows exponentially fast.

Proof. We prove the result concerning exp , the proof of the result concerning F follows from the fact that for every reduced edge path γ in G, we have exp pγq ¤ F pγq. Let e be an edge of G ¡ G I P G . Since every iterate of e is completely split by Proposition 2.5 p6q

and since there exists an iterate of e which contains a splitting unit which is an edge in an EG stratum, we may suppose that e is an edge in an EG stratum H r . Since H r is an EG stratum, the number of edges in rf n peqs H r grows exponentially fast as n goes to infinity. Therefore the number of splitting units of rf n peqs which are edges of H r grows exponentially fast and lim nÑV exp prf n peqsq V. Lemma 3.22. Let γ be a P G-relative completely split edge path. There exists n 0 N ¦ such that for every k ¥ n 0 , we have exp prf k pγqsq ¥ exp pγq.

Proof. Let γ γ 1 . . . γ k be a P G-relative complete splitting of γ. By Lemma 3.20, it suffices to prove the assertion for every subpath γ i , with i t1, . . . , ku. Let i t1, . . . , ku.

If γ i is a concatenation of paths in G P G and in N P G , then exp prfpγ i qsq exp pγ i q 0 by Lemma 3.17. If γ i is a maximal taken connecting path in a zero stratum, we have exp pγ i q 0. Hence exp prfpγ i qsq ¥ exp pγ i q. In the other cases, γ i is an edge in an irreducible stratum which is not contained in G P G . By Lemma 3.21, we have lim nÑV exp prf n pγ i qsq V. Hence there exists n 0 N ¦ such that, for every k ¥ n 0 , we have exp prf k pγ i qsq ¥ exp pγ i q, and n 0 may be chosen to be independent of γ i with i t1, . . . , ku.

The last lemma in this section shows that the exponential length of a P G-relative completely split edge path encaptures the splitting units which are edges with exponential growth under iterates of f . Lemma 3.23. Let γ be a P G-relative completely split edge path, let γ γ 1 . . . γ k be a P G-relative complete splitting and let i t1, . . . , ku. Then exp pγ i q ¡ 0 if and only if γ i is an edge in an irreducible stratum not contained in G P G . In particular, the value exp pγq is the number of splitting units which are edges in G ¡ G I P G .

Proof. Suppose first that γ i is either a concatenation of paths in G P G and in N P G or a maximal taken connecting path in a zero stratum. By Lemma 3.17, we have exp pγ i q 0. Suppose that γ i is an edge in an irreducible stratum which is not contained in G P G . Since there does not exist an EG INP of length 1, by definition of the exponential length, we have exp pγ i q 1 ¡ 0. This concludes the proof of the first part of the lemma. The computation of exp pγq follows from Lemma 3.20 p2q.

The space of polynomially growing currents

In this section, let F be a free factor system and let φ OutpF n , Fq be an exponentially growing outer automorphism. Recall the definition of Apφq and F Apφq from Section 2.1. We define a subspace of PCurrpF n , F Apφqq, called the space of polynomially growing currents. It consists in the currents whose support is contained in f 2 Apφq (see Lemma 3.27). In order to define it, we first need to show that the exponential length extends to a continuous function Ψ : PCurrpF n , F Apφqq Ñ R. The space of polynomially growing currents will then be defined as a level set of Ψ.

We first need some preliminary results concerning paths in N P G . For a path γ N P G , let N P G pγq be the subset of N P G which consists in all paths γ I N P G such that γ γ I and γ I is minimal for this property. Let γ I N P G pγq. By Lemma 3.4 p3q, either γ is properly contained in an INP σ of the complete splitting of γ I , or there exist (possibly trivial) paths γ 1 , γ 2 N P G such that γ I γ 1 γγ 2 . By minimality, either γ 1 or γ 2 is trivial.

Moreover, a result of Feighn and Handel ([FH,Corollary 4.12]) shows that, in this case, splitting units of the complete splittings of γ 1 , γ 2 and γ are splitting units of γ I . Thus the set N P G pγq can be partitioned into three disjoint subsets:

N P G pγq N P G,IN P pγq b N P G,lef t pγq b N P G,right pγq,
where N P G,IN P pγq is the set of paths in N P G pγq such that one of their splitting units properly contains γ, N P G,lef t pγq is the set of paths γ I N P G pγq such that γ I γ 1 γ and N P G,right pγq is the set of paths γ I N P G pγq such that γ I γγ 2 . One can also define similarly the three sets N P G,IN P,F pγq, N P G,lef t,F pγq and N P G,right,F pγq as the restriction to the paths in N P G,IN P pγq, N P G,lef t pγq and N P G,right pγq contained in G p . We emphasize on the fact that a path in N P G,IN P pγq might contain several occurrences of the path γ. However, a path in N P G,lef t pγq or in N P G,right pγq contains a unique occurrence of γ. Indeed, let γ I N P G,lef t pγq (the proof for N P G,right pγq being similar). Then γ I γ 1 γ 2 with γ 1 N P G and γ 2 γ. Let γ 3 be an occurrence of γ which contains an edge of γ 1 . By Lemma 3.3 p2q, the path γ 3 cannot intersect γ 2 nontrivially. Hence γ 3 γ 1 . Hence γ 1 N P G and γ 1 contains an occurrence of γ. This contradicts the minimality of γ I .

Lemma 3.24. Let γ be a path in N P G . Let γ 1 , γ 2 be two distinct paths in N P G pγq.

Suppose that there exist three paths µ 1 , µ 2 , µ 3 such that γ 1 µ 1 µ 2 , γ 2 µ 2 µ 3 and γ is contained in µ 2 . Then γ 1 N P G,lef t pγq, γ 2 N P G,right pγq and µ 2 γ. Proof. By Lemma 3.4 p2q, the path µ 2 belongs to N P G and contains γ. Since γ 1 and γ 2 are minimal paths of N P G for the property of properly containing γ, we have µ 2 γ. Therefore, we see that γ 1 µ 1 γ and γ 2 γµ 3 . This shows that γ 1 N P G,lef t pγq and that γ 2 N P G,right pγq.

Lemma 3.24 implies that an occurrence of γ in the intersection of paths in N P G pγq is well-controlled. Following Lemma 3.24, we then define N P G,lr pγq to be the set of paths of the form γ 1 γγ 2 , where γ 1 γ N P G,lef t pγq and γγ 2 N P G,right pγq. We define similarly the set N P G,lr,F pγq to be the set of all paths in N P G,lr pγq contained in G p . As for N P G,lef t pγq and N P G,right pγq, a path in N P G,lr pγq contains a unique occurrence of γ.

Given two paths γ and γ I of G let N pγ I , γq be the number of occurrences of γ and γ ¡1 in γ I . Using the finiteness of N P G (see Lemma 3.4 p1q), we denote by

Ψ I 0 : CurrpF n , F Apφqq Ñ R the continuous function Ψ I 0 pνq γN P G ¡ xγ, νy¡ γI N P G pγq d γ I , ν h N pγ I , γq γI N P G,lr pγq d γ I , ν h © ¡ γ G ¡ G I P G © ,
and by Ψ 0 : CurrpF n , F Apφqq Ñ R the continuous linear function Lemma 3.26. Let w F n be a nonperipheral element with conjugacy class rws, associated rational current η rws and associated reduced edge path γ w in G. Then Ψ 0 pη rws q exp pγ w q;

Ψ 0 pνq 1 2 ¡ °e EpG¡G I P G q xe, νy ¡ Ψ I 0 pνq © 1 2 ¡ °e EpG¡G I P G q ¡ xe, νy ¡ °γN P G ,eγ
η rws F F pγ w q. Therefore η rws K P G pfq if and only if exp pγ w q 0. In particular, there exist a basis B of F n and a constant C ¡ 0 such that, for every F Apφq-nonperipheral element g F n , we have η rgs F N ¦ and B prgsq ¥ C η rgs F .

Proof. We prove the result for Ψ 0 , the proof for η rws F being similar. First note that

ȩ EpG¡G I P G q d e, η rws h 2 pγ w G ¡ G I P G q,
where the factor 2 follows from the fact that the sum on the left hand side is over oriented edges. Therefore, it remains to prove that Note that in the proof of Lemma 3.26, we show that, for every edge e EpG ¡ G I P G q and every nonperipheral element w F n , the value: N pγ, eq ¥ 0.

Ψ I 0 pη rws q γN max P G pγwq ¡ γ G ¡ G I P G © . (3) 
The density of rational currents given by Proposition 2.15 and the continuity of x., .y then shows that for every current ν CurrpF n , F Apφqq and every edge e EpG ¡ G I P G q, N pγ, eq ¥ 0.

Lemma 3.27. Let n ¥ 3 and let F be a free factor system. Let φ OutpF n , Fq be an exponentially growing outer automorphism. Let f : G Ñ G be a CT map representing a power of φ.

p1q If rνs K P G pfq, then Supppνq f 2 pF n , F Apφqq f 2 Apφq. In particular, if φ is expanding relative to F, then K P G pfq ∅. p2q Conversely, if ν CurrpF n , F Apφqq is such that the support Supppνq of ν is contained in f 2 pF n , F Apφqq f 2 Apφq, then rνs K P G pfq. Thus we have K P G pfq trµs PCurrpF n , F Aq | Supppµq f 2 pF n , F Apφqq f 2 Apφqu. p3q If ν CurrpF n , F Apφqq, we have ν F 0 if and only if ν 0.
Proof. The proof of p3q being identical to the proof of p1q and p2q replacing G I P G and N P G by G I P G,F and N P G,F , we only prove p1q and p2q. For the proof of both p1q and p2q, let B be a free basis of F n and let T be the Cayley graph of F n associated with B. Let C pApφqq be the set of elements of F n associated with Apφq given by Lemma 2.11. Recall that CylpC pApφqqq is the set of cylinder subsets of the form Cpγq, where γ is a geodesic edge path in T starting at the base point whose associated element w F n contains a word of C pApφqq as a subword. p1q Let ν CurrpF n , F Apφqq nonzero be such that Supppνq is not contained in f 2 pF n , F Apφqq f 2 Apφq. Then Supppνq f 2 pF n , Apφqq $ ∅. Hence the restriction of ν to f 2 pF n , Apφqq induces a nonzero current ν I CurrpF n , Apφqq. By Lemma 2.12 applied to A Apφq and ν I , there exists Cpγq C pApφqq such that νpCpγqq ¡ 0. Let w be the element of F n associated with γ, and let γ I w be the reduced circuit in G associated with the conjugacy class of w. Up to taking a larger geodesic edge path γ P γ in T such that νpCpγ P qq ¡ 0 (which exists by additivity of ν), we may suppose that w is cyclically reduced. By Lemma 2.11 p3q, the path γ is not contained in any tree T A such that rAs Apφq. As w is cyclically reduced, the translation axis in T of w contains γ. Hence tw V , w ¡V u f 2 Apφq and w is not contained in any subgroup A such that rAs Apφq.

By Proposition 3.13, the circuit γ I w is not a concatenation of paths in G P G and in N P G . Therefore, there exists an edge e of G such that xe, νy ¡ γN

P G ,eγ ¡ xγ, νy ¡ γI N P G pγq d γ I , ν h N pγ I , γq γI N P G,lr pγq d γ I , ν h © N pγ, eq ¡ 0.
Thus, we see that Ψ 0 pνq ¡ 0 and that rνs K P G pfq. The second part of p1q follows from the fact that, if φ is expanding relative to F, then f 2 Apφq f 2 F. This proves p1q.

p2q Let ν CurrpF n , F Apφqq be such that Supppνq f 2 pF n , F Apφqqf 2 Apφq. Let e be an edge such that xe, νy ¡ 0. By Lemma 3.4 p1q, there exists a constant C 1 ¡ 0 such that, for every path γ I N P G , we have pγ I q ¤ C 1 . Recall the definition of the graph G ¦ and the application p G ¦ : G ¦ Ñ G. from Lemma 3.11. Let C 2 be the length of a maximal path in a maximal forest of p G ¦pG ¦ q. Let C maxt2C 1 , C 2 u. Claim. Let γ, δ 1 and δ 2 be reduced paths such that γ δ 1 eδ 2 , pδ 1 q, pδ 2 q ¥ 2C and xγ, νy ¡ 0. Let γ γ 0 γ I 1 γ 1 . . . γ k γ I k be the exponential decomposition of γ (where, for every i t0, . . . , ku, the path γ i is contained in N P G ). Either e EG I P G or e is contained in an EG stratum and there exists i t0, . . . , ku such that e γ i . Proof. Since Supppνq f 2 pF n , F Apφqq f 2 Apφq, there exists a subgroup A of F n such that rAs Apφq, and two elements a and b of A such that the geodesic path in r Hence there exist reduced circuits α and β in G ¦ and reduced arcs τ, τ e in G ¦ such that p G ¦pαq γ I a and p ¦ pβq γ I b and such that p G ¦pτ q γ and p G ¦pτ e q e. By the choice of C, and as pδ 1 q, pδ 2 q ¥ 2C, one can remove an initial and a terminal segment of τ so that the resulting path τ I is nontrivial, is contained in a subgraph of G ¦ with no leaf and is such that pp G ¦pτ I qq ¥ 2C 1. Thus, there exist subpaths τ I 1 , τ P 1 , τ I 2 , τ P 2 of τ and a reduced circuit δ of G ¦ such that:

G representing ta V , b V u f 2 A contains a lift of γ. If b a ¡1 , then γ is contained
piq pp G ¦pτ I 1 qq, pp G ¦pτ I 2 qq ¥ C, piiq τ τ P 1 τ I 1 eτ I 2 τ P 2 , piiiq τ I τ I 1 eτ I 2 δ. By Lemma 3.11 p1q, the path p G ¦pδq is a reduced ciruit which contains e. Since pp G ¦pτ I 1 qq, pp G ¦pτ I 2 qq ¥ C ¥ 2C 1 , if γ I N max P G pp G ¦pδqq is such that e γ I , then γ I τ I 1 eτ I 2 .
Hence it suffices to prove the claim for γ p G ¦pδq. As δ is a concatenation of paths in G P G and in N P G , the claim follows.

Suppose towards a contradiction that there exists an edge e G ¡ G I P G such that:

xe, νy ¡ γN P G ,eγ ¡ xγ, νy ¡ γI N P G pγq d γ I , ν h N pγ I , γq γI N P G,lr pγq d γ I , ν h © N pγ, eq ¡ 0.
(4) By additivity of ν, there exists a reduced path γ of length 4C 1 such that the path γ has a decomposition γ γ 1 eγ 2 , where for every i t1, 2u, the path γ i has length equal to 2C and we have νpCpγqq ¡ 0. By Equation 4, we can choose γ such that if γ I N max P G pγq, then γ I does not contain e. Hence e G I P G and e is not contained in a subpath of N max P G pγq. This contradicts the above claim and this concludes the proof. Let F be a free factor system and let φ OutpF n , Fq be an exponentially growing outer automorphism. Note that, by Lemma 3.27 and since for every k N ¦ , we have Apφq Apφ k q, the space K P G pfq does not depend on the CT map f and does not depend on the chosen power of φ. Therefore, we will simply write K P G pφq instead. Moreover, since Apφq Apφ ¡1 q, we see that K P G pφq K P G pφ ¡1 q.

For the next proposition, let C 1 ¡ 0 be a constant such that for every path γ N P G , we have pγq ¤ C 1 . It exists since N P G is finite by Lemma 3.4 p1q. Let L be the malnormality constant associated with Apφq as defined above Lemma 2.11 and let C 0 maxtC 1 , Lu. Let C be the set of elements of F n associated with F Apφq given above Lemma 2.11. Let PpF Apφqq be the set of reduced paths γ in G such that Cpγq CylpC q, pγq ¡ C 0 and γ is not contained in a concatenation of paths in G P G,F and N P G,F .

Lemma 3.28. Let n ¥ 3, let F be a free factor system of F n and let φ OutpF n , Fq be an exponentially growing outer automorphism. We have

f 2 pF n , F Apφqq ¤ γPpF Apφqq Cpγq.
Proof. Let A 1 , . . . , A r be subgroups of F n such that F Apφq trA 1 s, . . . , rA r su and C C pA 1 , . . . , A r q. By Lemma 2.12, we have

f 2 pF n , F Apφqq ¤ CpγqCylpC q Cpγq.
Note that, for every path γ G, we have Cpγq ¤ e EG, pγeq¡ pγq

Cpγeq.

Hence we have

f 2 pF n , F Apφqq ¤ CpγqCylpC q, pγq¡C 0 Cpγq.
So it suffices to prove that we can restrict our considerations to paths γ which are not contained in a concatenation of paths in G P G,F and N P G,F . Let γ be a path such that Cpγq CylpC q and pγq ¡ C 0 . By Lemma 2.11 p3q, the path γ is not contained in any tree T gA i g ¡1 with g F n and i t1, . . . , ru. Moreover, it is not contained in any path of

N P G since pγq ¡ C 1 . Suppose that γ is contained in a concatenation of paths in G P G,F
and N P G,F . Suppose first that there does not exist a circuit which contains γ and which is a concatenation of paths in G P G,F and N P G,F . Recall the definition of G ¦ and p G ¦ from Lemma 3.11 and let G ¦ F p ¡1 G ¦ pG p q. By assumption, either there does not exist an immersed path (not necessarily an edge path) γ ¦ in G ¦ F such that p G ¦pγ ¦ q γ or there exists an immersed path γ ¦ in G ¦ F such that p G ¦pγ ¦ q γ and γ ¦ is not contained in a circuit of G ¦ F (recall that G ¦ might contain univalent vertices). In the first case, we have F pγq ¡ 0. In the second case, since G ¦ is finite, by Lemma 3.11, up to considering γ ¡1 , there exists d N ¦ such that for every path of γ I such that γγ I is a reduced path in G and pγγ I q pγq d, the path γγ I is not the image by p G ¦ of an immersed path in G ¦

F .

Thus we have F pγγ I q ¡ 0. Using the fact that

Cpγq ¤ e EG, pγeq¡ pγq Cpγeq,
we can replace γ by paths γ P such that γ γ P and γ P is not contained in a concatenation of paths in G P G,F and N P G,F . This concludes the proof.

Let ν be a nonzero current in CurrpF n , F Apφqq. By Lemma 3.27 p3q, we have ν F $ 0. The following result characterizes limits in PCurrpF n , F Apφqq. The result is due to Kapovich [START_REF] Kapovich | Topological and asymptotic aspects of group theory[END_REF]Lemma 3.5] for a nonrelative context. Lemma 3.29. Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an exponentially growing outer automorphism. Let prµ n sq nN be a sequence in PCurrpF n , F Apφqq and let rµs PCurrpF n , F Apφqq. Let G be a graph whose fundamental group is isomorphic to F n and such that there exists a subgraph G p of G such that FpG p q F. .

Suppose now that for every reduced edge path γ PpF Apφqq, Equation ( 5) holds. By Lemma 3.28, for every Borel subset B of f 2 pF n , F Apφqq such that µpfBq 0, we have lim

nÑV µ n pBq µ n F µpBq µ F .
Hence we have lim nÑV rµ n s rµs.

Stable and unstable currents for relative atoroidal outer automorphisms

Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an atoroidal outer automorphism relative to F. In this section, under additional hypotheses on φ, we construct two φ-invariant convex subsets of PCurrpF n , Fq. We will then show in the following section that, with respect to these convex subsets, the outer automorphism φ acts with generalized north-south dynamics.

In order to define the extremal points of these simplices, we need some results regarding substitution dynamics.

Substitution dynamics

Let A be a finite set with cardinality at least equal to 2. Let ζ be a substitution on A, that is, a map from A to the set of nonempty finite words on A. The substitution ζ induces a map on the set of all finite words on A by concatenation, which we still denote by ζ. We can therefore iterate the substitution ζ. For a word w on A, we will denote by |w| the length of w on the alphabet A.

To the substitution ζ one can associate its transition matrix M , which is a square matrix whose rows and columns are indexed by letters in A and, for all a, b A, M pa, bq is the number of occurrences of a in ζpbq. Likewise, for n ¥ 1, the matrix M n is the transition matrix for ζ n . We say that a substitution ζ is irreducible if its transition matrix is irreducible, and that the substitution is primitive if its transition matrix is.

Let N ¦ and let A be the set of words on A of length . As defined in [START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF]Section 5.4.1], the substitution ζ induces a substitution ζ on A as follows. Let w x 1 . . . x A . Then ζ pwq w 1 w 2 . . . w |ζpx 1 q| , where, for every i t1, . . . , |ζpx 1 q|u, the word w i is the subword of ζpwq of length starting at the i th position of ζpx 1 q. Therefore, ζ is the concatenation of the |ζpx 1 q| first subwords of ζpwq of length . Note that the number of i t1, . . . , |ζpx 1 q|u such that w i that is not contained in ζpx 1 q is bounded by ¡ 1. Let | ¤ | be the length of words on A . Then |ζ pwq| |ζpx 1 q|. Denote by M the transition matrix of ζ . Note that, for every n, ¥ 1, we have pζ n q pζ q n as applications on the set of words on A and thus pM n q pM q n . Consider now a partition of the alphabet A ² k i0 B i . Suppose that the transition matrix associated with the substitution ζ is lower block triangular with respect to this partition. Therefore, for every i t0, . . . , ku, for every x B i and for every j i, the word ζpxq does not contain letters in B j . In the remainder of the article, for every i t0, . . . , ku the diagonal block in M corresponding to the block B i will be denoted by

M B i .
The partition of A induces a partition of A as follows. For every i t0, . . . , ku, let r B i A be the set of all words on A of length which start with a letter in B i and which, for every j i do not contain a letter in B j . Let B i be the set of all words w on A of length which start with a letter in B i and such that there exists j i such that w contains a letter in B j (note that B 0 is empty). Then r B i B i is the set of all words on A of length which starts with a letter in B i . The hypothesis on the substitution ζ implies that the transition matrix M is lower block triangular with respect to the partition p2q The eigenvalues of M ,B i have absolute value at most equal to 1.

r B 0 b B 1 b r B 1 b . . . b B k b r B k of A .
Fix an integer p t0, . . . , ku. For every i ¥ p, let B ppq i be the subset of B i consisting in all words w of length which start with a letter in B i and such that there exists j p such that w contains a letter in B j . Then, for every i ¥ p, the block M ,B i decomposes into a lower triangular block matrix where the columns and rows corresponding to B ppq i are on the top left. Let M ,B ppq i be the corresponding block matrix. By Lemma 4.1 p2q, the eigenvalues of M ,B ppq i have absolute value at most 1. Moreover, for every i, j ¥ p, for every word w contained in r B j B j ¡ B ppq j , the word ζ pwq considered as a word on

A does not contain any word of B ppq i . Let M ppq be the matrix obtained from M by deleting, for every i ¥ p, every row and column corresponding to elements in r B i , and every row and columns corresponding to elements of B i which do not belong to B ppq i .

Note that, by Lemma 4.1 p1q, the eigenvalues of M ppq are those of every block M B j with j p with possibly additional eigenvalues of absolute value at most 1.

We can now prove a result concerning the number of occurrences of words in iterates of a letter. For words w, v on A, we denote by pw, vq the number of occurrences of w in v, so that M ppa, ζpbqq a,bA . For a word w on A, we denote by ||w|| ppq the number of letters in w which are contained in some B j for j p.

Proposition 4.2. Let A be an alphabet equipped with a partition A b k i0 B i . Let ζ be a substitution on A and let M be its transition matrix. Suppose that M is lower triangular by block with respect to the partition of A. Let p N ¦ . Let a j p B j be such that ζpaq starts with a. Suppose that there exists j p such that M B j is a primitive block whose Perron-Frobenius eigenvalue is greater than 1 and such that there exists n j ¥ 1 such that ζ n j paq contains a letter of B j . Let w be a word such that w contains a letter in B j . Then

lim nÑV pw, ζ n paqq ||ζ n paq|| ppq
exists and is finite. Furthermore there exists a word w containing a letter in some B j with j p such that this limit is positive.

Proof. The proof follows [START_REF] Gupta | Relative currents[END_REF]Lemma 8.9] (see also [START_REF] Lustig | Perron-Frobenius theory and frequency convergence for reducible substitutions[END_REF] for similar statements). First, up to replacing A by the smallest ζ-invariant subalphabet of A containing a (which still satisfies the hypotheses of Proposition 4.2), we may suppose that, for every letter

x A, there exists n x ¥ 1 such that ζ nx paq contains the letter x. Let α be a word on A with length ¥ 1 that starts with a. Note that, since a j p B j , the word α defines a column and a row in M ppq. Recall that for every n the number of occurrences of a word w in ζ n paq differs from the number of occurrences of the letter w A in ζ n pαq by at most ¡ 1. Moreover, we have pw, ζ n pαqq M n ppqpw, αq.

Let S be the set of all s p such that M Bs is a primitive block with associated Perron-Frobenius eigenvalue greater than 1. By assumption, the set S is a nonempty finite set. Let S I be the subset of S consisting in all such B s such that the associated Perron-Frobenius eigenvalue is maximal. Call this eigenvalue λ. By Lemma 4.1, the eigenvalue λ is also the maximal eigenvalue of the matrix M ppq. Let d λ be the size of the maximal Jordan block of M ppq associated with λ. Then the growth under iterates of the maximal Jordan block of M ppq λ is polynomial of degree d λ . Therefore, we have

lim nÑV pw, ζ n paqq λ n n d λ lim nÑV pw, ζ n pαqq λ n n d λ lim nÑV M n ppqpw, αq λ n n d λ d w,a ,
where d w,a is a real number. Moreover, the limit does not depend on the choice of α since, for any n, and for any two columns of M n ppq corresponding to words starting with the same letter, the sum of the values of each column differ by at most ¡ 1 (see [START_REF] Gupta | Relative currents[END_REF]Lemma 8.6]). Moreover, there exists a word w such that the limit is positive since we quotiented by the growth of the iterates of the Jordan block with maximal eigenvalue.

Let || ¤ || exists for all words w on A and is positive for some word w.

Proof. Recall that two sequences pu n q nN and pv n q nN with values in R are equivalent if there exists a sequence p n q nN tending to zero such that u n p1 n qv n . Recall that there exists C I ¡ 0 such that the sequence p M n ppqpαq q nN is equivalent to pC I λ n n d λ q nN . Recall also that for every n, the value of ζ n paq ppq is the norm of M n ppqpv a q, where v a is the vector whose coordinates is 1 on the coordinate associated with a and 0 otherwise. Hence, since the matrix M n ppq is nonnegative and not the zero matrix, there exist C a , λ a R ¦ and d a N such that the sequence p ζ n paq ppq q nN is equivalent to pC a λ n a n da q nN . Thus, by the assumption of the 

Construction of the attractive and repulsive currents for relative almost atoroidal automorphisms

Let n ¥ 3 and let F trA 1 s, . . . , rA k su be a free factor system of F n . We first define a class of outer automorphisms of F n which we will study in the rest of the article. If φ OutpF n , Fq and φ preserves the conjugacy class of every A i with i t1, . . . , ku, we denote by φ| F the element prφ 1 | A 1 s, . . . , rφ k | A k sq, where, for every i t1, . . . , ku, the element φ i is a representative of φ such that φ i pA i q A i and rφ i | A i s is an element of OutpA i q. Note that the outer class of φ i | A i in OutpA i q does not depend on the choice of φ i .

Definition 4.3. Let n ¥ 3 and let F trA 1 s, . . . , rA k su be a free factor system of F n . Let φ OutpF n , Fq. The outer automorphism φ is almost atoroidal relative to F if φ preserves the conjugacy class of every A i with i t1, . . . , ku and φ is one of the following: p1q an atoroidal outer automorphism relative to F. p2q an outer automorphism which preserves a sequence of free factor systems F ¤ F 1 ¤ tF n u with F 1 trB 1 s, . . . , rB su and such that: paq F 1 ¤ tF n u is sporadic, pbq φ preserves the conjugacy class of every B i with i t1, . . . , u, the element φ| F 1 is an expanding atoroidal outer automorphism relative to F and φ is not expanding relative to F (F might be equal to F 1 ).

The main example of an almost atoroidal automorphism is the following. Suppose that F 1 rAs and let φ OutpF n , Fq be such that φprAsq rAs. Then φ is almost atoroidal if φ| rAs is expanding relative to F. Indeed, either φ is expanding relative to F and in this case φ satisfies p1q or φ is not expanding relative to F and φ satisfies p2q.

Almost atoroidality allows us to deal with sporadic extensions.

Let φ OutpF n , Fq be an almost atoroidal outer automorphism relative to F. In this section, we construct a nontrivial convex compact subset in PCurrpF n , F Apφqq associated with φ. We follow the construction of [START_REF] Uyanik | Hyperbolic extensions of free groups from atoroidal ping-pong[END_REF] in the context of atoroidal automorphisms. By Theorem 2.10, there exists M ¥ 1 such that φ M is represented by a CT map f : G Ñ G with filtration ∅ G 0 G 1 . . . G k G and such that there exists p t1, . . . , ku such that FpG p q F. For a splitting unit σ in G, we say that σ is expanding if lim mÑV exp prf m pσqsq V. Note that, by Lemma 3.23, this is equivalent to saying that there exists N N ¦ such that rf N pσqs contains a splitting unit which is an edge in an EG stratum. Moreover, a splitting unit σ which is an expanding splitting unit is either an edge in G ¡ G I P G or a maximal taken connecting path in zero stratum such that a reduced iterate of σ contains an edge in G ¡ G I P G as a splitting unit. In particular, there are finitely many expanding splitting units by Proposition 2.5 p3q.

Let γ and γ I be two finite reduced subpaths of G. We denote by #pγ, γ I q the number of occurrences of γ in γ I and by xγ, γ I y the sum d γ, γ I h #pγ, γ I q #pγ ¡1 , γ I q.

(6)

The next proposition shows the existence of relative currents associated with relative atoroidal outer automorphisms. Once we have constructed these currents for relative atoroidal outer automorphisms, we will also be able to construct attractive and repulsive simplices for every almost atoroidal outer automorphisms relative to F. The proposition and its proof are inspired by the same result in the absolute context due to Uyanik ([Uya2, Proposition 3.3]) and by the proof due to Gupta in the relative fully irreducible context [START_REF] Gupta | Relative currents[END_REF]Proposition 8.13]). Recall the definition of PpF Apφqq before Lemma 3.28 and C before Lemma 2.11.

Proposition 4.4. Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an atoroidal outer automorphism relative to F. Let f : G Ñ G be a CT map that represents a power of φ with filtration ∅ G 0 G 1 . . . G k G and such that there exists p t1, . . . , ku such that FpG p q F. Let γ PpF Apφqq and let σ be an expanding splitting unit with fixed initial direction. p2q There exists a unique current η σ CurrpF n , F Apφqq such that, for every finite reduced edge path γ PpF Apφqq, we have:

η σ pCpγqq σ γ . Proof. p1q
We may suppose that γ occurs in a reduced iterate of σ as otherwise σ γ 0.

We first treat the case where σ is an expanding splitting unit which is an edge in an irreducible stratum. Let r be the height of σ. In order to prove the proposition in this case, we want to apply Proposition 4.2 to the CT map f seen as a substitution on the set of splitting units contained in iterates of σ. However, the set of splitting units might be infinite since exceptional paths may have arbitrarily large widths and INPs arbitrarily large lengths. Instead, we construct a finite alphabet A γ depending on γ. The alphabet is constructed as follows by associating a letter to every splitting unit occurring in a reduced iterate of σ. However some letters will correspond to infinitely many splitting units.

paq We add one letter for each of the finitely many edges in irreducible strata that are contained in a reduced iterate of σ.

pbq We add one letter for each reduced maximal taken connecting path in a zero stratum contained in a reduced iterate of σ.

pcq We add one letter for each INP contained in a reduced iterate of σ and such that the stratum of maximal height it intersects is an EG stratum.

pdq Let δ be an INP such that the stratum of maximal height it intersects is an NEG stratum and such that it appears in a reduced iterate of σ. By Proposition 2.5 p11q, there exist an edge e, an integer s Z and a closed Nielsen path w such that δ ew s e ¡1 . Note that γ is not contained in w s since γ PpF Apφqq and w s is a concatenation of paths in G P G,F and N P G,F by Lemma 3.7 and the fact that φ is atoroidal relative to F. Hence if γ is contained in δ, it is either an initial or a terminal segment of δ. Let M 1 be the maximal integer |d| such that γ contains an INP of the form ew d e ¡1 . Let M 2 be the minimal integer |d| such that γ pew d e ¡1 q is either an initial or a terminal segment of ew d e ¡1 . Let M 3 be the maximal integer |d| such that ew d e ¡1 is contained in rfpσ I qs with σ I a splitting unit which is either an edge in an irreducible stratum or a maximal taken connecting path in a zero stratum. Let M maxtM 1 , M 2 , M 3 u. We add one letter for each ew d e ¡1 with |d| ¤ M 1. We add exactly one letter representing every ew d e ¡1 with |d| ¡ M 1.

peq Let δ be an exceptional path appearing in a reduced iterate of σ. There exist edges e 1 , e 2 , a nonzero integer s and a closed Nielsen path w such that δ e 1 w s e ¡1 2 .

Note that γ is not contained in w s since γ PpF Apφqq and w s is a concatenation of paths in G P G,F and N P G,F by Lemma 3.7 and the fact that φ is atoroidal relative to F. Let M 4 be the maximal integer |d| such that γ contains an exceptional path of the form e 1 w d e ¡1

2 . Let M 5 be the minimal integer |d| such that γ e 1 w d e ¡1

2 is either a proper initial or terminal segment of e 1 w d e ¡1

2 . Let M 6 be the maximal integer |d| such that e 1 w d e ¡1

2 is contained in rfpσ I qs with σ I a splitting unit which is either an edge in an irreducible stratum or a maximal taken connecting path in a zero stratum. Let M I maxtM 4 , M 5 , M 6 u. We add one letter for each e 1 w d e ¡1

2 with |d| ¤ M I 1. We add one letter representing every e 1 w d e ¡1

2 with |d| ¡ M I 1.

We claim that the alphabet A γ is finite. Indeed, since the graph G is finite, so is the number of letters in the first category. By Proposition 2.5 p3q, the zero strata of We claim that if a A γ represents several paths in G, then, for every representative α of a, the path rfpαqs is represented by a. Indeed, the claim is immediate when a represents several INPs, so we focus on the case where a represents several exceptional paths. Let e 1 , e 2 be edges in G, let w be a closed Nielsen path in G and let d Z be such that e 1 w d e ¡1

G
2 is represented by the letter a. There exist a splitting unit σ I of a reduced iterate of σ by rfs, an integer N N ¦ and an integer d 1 Z such that e 1 w d 1 e ¡1

2 is a subpath of rf N pσ I qs. Thus, using the constants given in peq, we have

|d 1 | ¤ M 6 ¤ M .
By the construction of the alphabet A γ , there exists a letter a I in A γ corresponding to the path e 1 w d 1 e ¡1

2 and a I represents a unique path. For every n N, let d n Z be such that rf n pe 1 w d 1 e ¡1

2 qs e 1 w dn e ¡1 2 . Then the sequence pd n q nN is monotonic. Let m 0 be the minimal integer such that the path e 1 w dm 0 e ¡1

2 is represented by a. Note that m 0 ¡ 1 as a I represents a unique path. By monotonicity,

d m 0 $ d 1 . Thus, if d m 0 ¡ d 1 , then for every m ¥ m 0 , we have d m ¥ d m 0 and if d m 0 d 1 , then for every m ¥ m 0 , we have d m ¤ d m 0 . Hence for every m ¥ m 0 , the path e 1 w d m 1 e ¡1
2 is represented by a. This shows that if α a then rfpαqs a. This concludes the proof of the claim. Hence ζ only depends on the function rfp.qs.

By reordering columns and rows, we may suppose that, if M is the matrix associated with ζ, then columns and rows of M with index greater than p are precisely the letters in A γ representing splitting units which are concatenations of paths in G P G,F and N P G,F . By Lemma 3.9, iterates by ζ of letters of A γ representing concatenations of paths in G P G,F and N P G,F are words on A γ whose letters represent concatenations of paths in G P G,F and N P G,F . Thus, the matrix M is a lower block triangular matrix, where every block of index at most p corresponds to either edges in a common stratum, or the 0 matrix when the associated letter is a maximal taken connecting path in a zero stratum.

Since σ is expanding, it has a reduced iterate which contains splitting units which are edges in EG strata. Hence if a σ is the letter in A γ corresponding to σ, the iterates ζ n pa σ q contain letters of A γ in a Perron-Frobenius block with eigenvalue greater than 1. Since the initial direction of σ is fixed by Proposition 4.2, for every word w in the alphabet A γ , the limit Claim. There exists a matrix M I obtained from M by multiplying rows and columns by positive scalars and such that, for every m N ¦ , we have F prf m pσqsq M Im pσq ppq .

Proof. Remark that if e 1 w s e ¡1

2 is an exceptional path, and if e 1 w d e ¡1

2 is an exceptional path with distinct width, then their F-lengths are equal and at most equal to 2. Indeed, since φ is an atoroidal outer automorphism relative to F, every closed Nielsen path of G is contained in G p . Since w is a closed Nielsen path, we see that w is a concatenation of paths in G P G,F and N P G,F by Lemma 3.6. Hence we have F pe 1 w s e ¡1 2 q F pe 1 q F pe 2 q ¤ 2.

Similarly, if ew s e ¡1 and ew d e ¡1 are INP intersecting the same maximal NEG stratum, then their F-length are equal and at most equal to 2. Let M I be the matrix obtained from M by multiplying every row correponding to either an exceptional path not contained in G p , an INP not contained in G p , a collection of exceptional paths not contained in G p , a collection of INPs not contained in G p or a maximal taken connecting path not contained in G p , by the corresponding F-length. Note that, by the above remarks, this does not depend on the choice of a representative when the letter corresponds to a collection of paths. Then for every m N ¦ , the value M Im pσq ppq corresponds to the sum of the F-length of every splitting unit in rf m pσqs not contained in G p . By Lemma 3.19, complete splittings are P G-relative complete splittings. By Lemma 3.20 p2q, we have F prf m pσqsq M Im pσq ppq . This proves the claim. By the claim, we see that for every m N ¦ , there exists a constant K such that we have 1 K

||ζ m pσq|| ppq ¤ F prf m pσqsq ¤ K||ζ m pσq|| ppq .
Using the claim in the proof of Proposition 4.2 (replacing M n ppqpαq by F prf n pσqsq which is possible since F prf n pσqsq is the norm of a matrix by the claim), the limit lim mÑV xw, rf m pσqsy F prf m pσqsq exists and is finite. We now construct a finite set of words W pγq in the alphabet A γ such that for every m N ¦ , there exists a bijection between occurrences of γ in rf m pσqs and occurrences of a word w W pγq in rζ m pσqs. This will conclude the proof of Case 2. Let W pγq be the set of words in A γ consisting in every path contained in a reduced iterate of σ which contains γ, which is completely split and which is minimal for these properties. By construction, every occurrence of γ in a reduced iterate of σ is contained in a word in W pγq. We claim that the set W pγq is finite. Indeed, let w be a word in W pγq. Then w corresponds to a path in a reduced iterate of σ which is a concatenation of splitting units w σ 1 . . . σ k . By minimality of w, if w I W pγq is distinct from w I , then the number of splitting units in w I is at most equal to k and w I might differ from w by changing σ 1 and σ k . Thus, W pγq is finite. For every w W pγq, let m w be the number of occurrences of γ in w. Since γ is not contained in G p , the value m w does not depend on the choice of a representative of w if w represents a collection of paths. Therefore, for every m N ¦ , we have xγ, f m pσqy wW pγq m w xw, f m pσqy . This shows that the limit σ γ lim mÑV xγ, f m pσqy F pf m pσqq exists and is finite. This proves Assertion p1q of the proposition when σ is an edge in an irreducible stratum.

Suppose now that σ is a maximal taken connecting path in a zero stratum. We prove the proposition by induction on the height r of the splitting unit σ. Suppose first that σ is an expanding splitting unit which is a maximal taken connecting path in a zero stratum of minimal height r. Then rfpσqs has height r ¡ 1, hence it does not contain splitting units which are maximal taken connecting path in zero strata. In this case, the proof follows from the above case. Suppose now that σ is a maximal taken connecting path in a zero stratum. Then its reduced image is completely split and has height at most r ¡ 1. In this case the claim follows by induction applied to rfpσqs. This concludes the proof of Assertion p1q. p2q Let us prove that for every element γ PpF Apφqq, we have: piq 0 ¤ σ γ V; piiq σ γ σ γ ¡1; piiiq σ γ °eE σ γe , where E is the subset of EG consisting in all edges that are incident to the endpoints of γ and distinct from the inverse of the last edge of γ.

The point piq follows from Assertion p1q. The second point follows from the definition of xγ, f m pσqy. In order to prove the third point, remark that xγ, f m pσqy and °eE xγe, f n pσqy differ only when rf m pσqs ends with γ or γ ¡1 . Therefore the difference between xγ, f m pσqy and °eE xγe, f m pσqy is at most 2. This implies that xγ, f m pσqy F pf m pσqq ¡ ȩE xγe, f m pσqy F pf m pσqq Ñ 0 as n Ñ V. This proves the third point. By [Gue1, Lemma 3.2], since the map γ Þ Ñ σ γ satisfies the conditions piq¡piiiq, it determines a projective relative current n σ PCurrpF n , Fq. This current is unique since a relative current is entirely determined by its set of values on cylinders of finite paths γ PpF Apφqq by Lemma 3.28. This concludes the proof. Definition 4.5. Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an almost atoroidal outer automorphism relative to F and let F 1 be a free factor system such that F ¤ F 1 and such that the extension F 1 ¤ tF n u is sporadic and such that φ| F 1 is atoroidal relative to F. In the case that φ is atoroidal relative to F, we assume that

F 1 trF n su. Let f : G Ñ G be a CT map representing a power of φ with filtration ∅ G 0 G 1 . . . G k G,
such that there exists i t1, . . . , k ¡ 1u with FpG i q F 1 . We define the simplex of attraction of φ, denoted by ∆ pφq, as the set of projective classes of nonnegative linear combinations of currents µ σ obtained from Proposition 4.4 applied to φ| F 1 and f and which correspond to splitting units σ whose exponential length grows exponentially fast under iteration of f . The simplex of repulsion of φ, denoted by ∆ ¡ pφq, is ∆ pφ ¡1 q.

Remark 4.6. The definitions of attractive and repulsive currents given in Definition 4.5 rely on the choice of CT maps representing powers of the almost atoroidal outer automorphisms φ and φ ¡1 . However, it will be a consequence of Proposition 4.12 and Proposition 5.24 that the attractive and repulsive currents depend only on φ.

We now prove properties of the subsets ∆ ¨pφq. As explained above Proposition 4.4, there are only finiely many expanding splitting units. Hence the subsets ∆ ¨pφq are closed. Since PCurrpF n , F Apφqq is a Hausdorff, compact space by Lemma 2.14 and since ∆ ¨pφq are closed subsets, we have the following.

Lemma 4.7. Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an atoroidal outer automorphism relative to F. The subsets ∆ ¨pφq are compact and contain finitely many extremal points.

Note that one compute µpσq F by counting the number of occurrences of every P G-relative splitting unit of positive F-length in a reduced iterate of σ and taking the limit. This is precisely the limit of the F-length of reduced iterates of σ by Lemma 3.20. Hence we have the following result. atoroidal outer automorphism relative to F. We have µpσq F 1.

We now prove that the subsets ∆ ¨pφq are φ-invariant. We first recall some lemmas. Lemma 4.9. [Coo, Bounded Cancellation] Let n ¥ 2 and let G be a marked graph of F n . Let f : G Ñ G be a graph map. There exists a constant C f such that for any reduced path ρ ρ 1 ρ 2 in G we have prfpρqsq ¥ prfpρ 1 qsq prfpρ 2 qsq ¡ 2C f .

Lemma 4.10. [LU2, Lemma 5.7] For any graph G without valence 1 vertices there exists a constant K ¥ 0 such that for any finite reduced edge path γ in G there exists an edge path γ I of length at most K such that the concatenation γγ I exists and is a reduced circuit.

Lemma 4.11. Let f : G Ñ G be as in Proposition 4.4. Let K 1 ¥ 0 be any constant, let σ be an expanding splitting unit and let η σ be the current associated with σ given by Proposition 4.4 p2q. Let m N and let γ I m be a reduced edge path of length at most K 1 .

Let γ m rf m pσqs ¦ γ I m , where rf m pσqs ¦ is obtained from rf m pσqs by erasing an initial and a terminal subpath of length K 1 . For every element γ PpF Apφqq, we have

lim mÑV xγ, γ m y F pγ m q xγ, η σ y . Proof. The proof follows [LU2, Lemma 5.8]. Since pγ I m q ¤ K 1 , we have F prf m pσqs ¦ q ¥ F prf m pσqsq ¡ 2K 1 .
Since σ is expanding, we have lim mÑV F prf m pσqsq V. Hence we have lim mÑV xγ, γ m y xγ, rf m pσqsy 1 and lim mÑV F pγ m q F prf m pσqsq 1. Hence the result follows from Proposition 4.4 p1q. Proposition 4.12. Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an almost atoroidal outer automorphism relative to F. Let f : G Ñ G be as in Proposition 4.4. Let σ be an expanding splitting unit and let η σ be the current associated with σ given by Proposition 4.4 p2q. There exists λ σ ¡ 0 such that φpη σ q λ σ η σ .

Proof. The proof follows [LU2, Proposition 5.9]. Let K ¥ 0 be the constant associated with G given by Lemma 4.10. Let m N, and let γ I m be the path of length at most K given by Lemma 4.10 such that γ m rf m pσqsγ I m is a reduced circuit. Since lim tÑV exp prf t pσqsq V, for large values of m, we have exp pγ m q ¡ 0. Let w m be an element of F n whose conjugacy class is represented by γ m . Note that, by Lemma 3.26, we have F pγ m q η wm F . By Proposition 3.13, since exp pγ m q ¡ 0, we see that w m is F Apφq-nonperipheral, hence w m defines a current η rwms CurrpF n , F Apφqq.

Let α m rf m 1 pσqsrfpγ I m qs. Note that since pγ I m q ¤ K, the value prfpγ I m qsq is bounded by a constant K 0 which only depends on K. Let C I be the constant given by Lemma 4.9 and let K 1 maxtK 0 , C I u. From the continuity of the OutpF n q-action on PCurrpF n , F Apφqq and from φpη η rwms q η φprwmsq , we see that lim mÑV η φprwmsq η rwms F φpη σ q.

Since the reduced circuit γ P m represents the conjugacy class φprw m sq, the second of the above equalities implies that lim mÑV η φprwmsq η φprwmsq F η σ .

Recall that lim mÑV F pγmq F prf m pσqsq 1, that lim mÑV F pγ P m q F prf m 1 pσqsq 1, that F pγ m q η rwms F and that F pγ P m q η φprwmsq F . Recall from the claim in the proof of Proposition 4.4 that F prfpσqsq is the norm of a matrix. The conclusion of Proposition 4.12 then follows from the fact (see [START_REF] Lustig | Perron-Frobenius theory and frequency convergence for reducible substitutions[END_REF]Remark 3.3]) that there exists λ σ ¡ 0 such that

lim mÑV F prf m 1 pσqsq F prf m pσqsq λ σ .
We now prove a lemma which will be used in [START_REF] Guerch | Polynomial growth and subgroups of OutpF n q[END_REF].

Lemma 4.13. Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an expanding outer automorphism relative to F. Let f : G Ñ G be as in Proposition 4.4.

Let σ be an expanding splitting unit and let η σ be the current associated with σ given by Proposition 4.4 p2q. p1q There exists a projective current rηs PCurrpF n , F Apφqq whose support is contained in the support of η σ and such that Supppηq is uniquely ergodic. In particular, the support of every extremal current of ∆ ¨pφq contains a closed subset which is uniquely ergodic.

p2q There exists only finitely many projective currents rηs PCurrpF n , F Apφqq whose support is contained in the support of η σ and such that Supppηq is uniquely ergodic.

Proof. p1q Note that, since φ is expanding relative to F, we have F Apφq Apφq. Let r N be the minimal integer such that H r is an EG stratum and a reduced iterate of σ contains an edge of H r . Such a stratum H r exists since σ is expanding. Let e be an edge of H r with fixed initial direction and let η e be the current in PCurrpF n , Apφqq associated with e given by Proposition 4.4 p2q.

Claim. The support of η e is uniquely ergodic.

Proof. By minimality of r, every edge contained in a reduced iterate of e is either in H r or in G I P G . Let G I be the minimal subgraph of G which contains every reduced iterate of e and let A be a subgroup of F n such that π 1 pG I q is a conjugate of A when π 1 pGq is identified with F n . Then G I is f -invariant and hence rAs is φ-invariant. Let G I 1 , . . . , G I k be the connected component of G I ¡ H r and let F I be the free factor system of F n determined by G I 1 , . . . , G I k . Let Φ φ be such that ΦpAq A. Note that rΦ| A s OutpAq is fully irreducible relative to F I . For every i t1, . . . , ku, we have G I i G I P G . By Proposition 2.5 p3q, for every i t1, . . . , ku, either G I

i is contractible or G I i G P G . By Proposition 3.13 for every subgroup H of F n such that rHs F I , there exists a subgroup H I of F n such that rH I s Apφq and H H I . Hence we have F I ¤ Apφq. Moreover by Proposition 3.13 and Proposition 2.5 p9q, if γ is a cyclically reduced circuit of G I of height r whose growth under iteration of f is polynomial, then γ contains (up to taking inverse) the only height r EG INP σ r . As one of the endpoints of σ r is not contained in G r¡1 by [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Fact I.1.42], we see that either σ r is not closed and γ does not exist or σ r is closed and γ is an iterate of σ r or σ ¡1 r . Let b F n be the (possibly trivial) element associated with σ r . Then, we have

f 2 A f 2 pF n , Apφqq f 2 pA, F I trbsuq.
Let PCurrpSupppη e qq be the set of projective currents in PCurrpF n , F Apφqq whose support is contained in Supppη e q. We now construct an injective application Θ : PCurrpSupppη e qq Ñ PCurrpA, F I q such that for every projective current µ PCurrpSupppη e qq we have SupppΘprµsqq Suppprµsq f 2 A.

Let PpF I q be the set of paths in a Cayley tree of F n defined above Lemma 3.28 (replacing F Apφq by F I ). Let P A pF I q be the set of paths in PpF I q contained in G I . By Lemma 3.28, the set consisting in elements Cpγq with γ PpF I q covers f 2 pA, F I q.

Thus, by [START_REF] Guerch | Currents relative to a malnormal subgroup system[END_REF]Lemma 3.2], it suffices to prove that for every projective current

η PCurrpSupppη e qq, we can associate a function r η : P A pF I q Ñ R such that for every γ P A pF I q, we have piq 0 ¤ r ηpγq V; piiq r ηpγq σ γ ¡1; piiiq r ηpγq °eE σ γe , where E is the subset of EG I consisting in all edges that are incident to the endpoints of γ and distinct from the inverse of the last edge of γ.

Let η PCurrpSupppη e qq. If γ P A pF I q is not contained in the axis of a conjugate of b, we may set r ηpγq ηpCpγqq. Since σ e is r-legal, a reduced iterate of σ e cannot contain the only height r EG INP. Thus, we may set, for every path γ P A pF I q contained in the axis of a conjugate of b: r ηpγq 0. The function r η satisfies conditions piq ¡ piiiq as η is a relative currents, hence it defines a unique current in PCurrpA, F I q, which we still denote by r η. Note that for every element γ P A pF I q, we have r ηpCpγq f 2 A f 2 pF n , Apφqqq ηpCpγq f 2 A f 2 pF n , Apφqqq, so that the application PCurrpSupppη e qq Ñ PCurrpA, F I q is injective. Moreover, we have Supppr ηq Supppηqq f 2 A.

Hence η e defines a current r η e PCurrpA, F I q. This current coincides with the attractive projective current associated with rΦ| A s defined by Gupta in [START_REF] Gupta | Relative currents[END_REF]Proposition 8.12]. By [START_REF] Gupta | Loxodromic elements for the relative free factor complex[END_REF]Lemma 4.17], the support of r η e is uniquely ergodic. Thus the support of η e is uniquely ergodic.

By the claim, it remains to prove that Supppη e q Supppη σ q. But an element η f 2 pF n , Apφqq is contained in the support of η σ if for every element γ PpF Apφqq such that β Cpγq, we have η σ pCpγqq ¡ 0. Thus, the support of η σ contains all the cylinder sets of the form Cpγq where γ PpF Apφqq and γ is contained in a reduced iterate of σ. In particular, since e is contained in a reduced iterate of σ, we have Supppη e q Supppη σ q. This proves Assertion p1q. p2q Suppose towards a contradiction that there exist infinitely many pairwise distinct projective currents prη m sq mN PCurrpF n , F Apφqq whose support is contained in the support of η σ and such that for every m N, the support Supppη m q is uniquely ergodic. By compactness of PCurrpF n , F Apφqq (see Lemma 2.14) up to passing to a subsequence, there exists a projective current rηs PCurrpF n , F Apφqq such that lim mÑV rη m s rηs. Let K N ¦ be such that PpF Apφqq contains reduced edge paths of length equal to K. By additivity of η, there exists γ , . . . , γ t PpF Apφqq of length equal to K such that the support Supppηq is contained in t j1 Cpγ j q and for every j t1, . . . , mu, we have ηpCpγ j qq ¡ 0. Then, there exists N N ¦ such that, for every m ¥ N and every j t1, . . . , tu, we have η m pCpγ j qq ¡ 0. Hence for every m ¥ N , we have Supppηq t ¤ j1 Cpγ j q Supppη m q.

By unique ergodicity, for every m ¥ N , we have rηs rη m s, a contradiction.

North-South dynamics for almost atoroidal outer automorphisms

Let X be a compact metric space and let G be a group acting on X by homeomorphisms.

We say that an element g G acts on X with generalized north-south dynamics if the action of g on X has two invariant disjoint closed subsets ∆ ¡ and ∆ such that, for every open neighborhood U ¨of ∆ ¨and every compact set K ¨ X ¡ ∆ © , there exists M ¡ 0 such that, for every n ¥ M , we have

g ¨nK ¨ U ¨.
In this section we prove the following theorem. Recall that a relative expanding outer automorphism is relative atoroidal, hence relative almost atoroidal.

Theorem 5.1. Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be a relative expanding outer automorphism. Let ∆ pφq and ∆ ¡ pφq be the simplexes of attraction and repulsion of φ. Then φ acts on PCurrpF n , Fq with generalized north-south dynamics with respect to ∆ pφq and ∆ ¡ pφq.

Theorem 1.2 in the introduction follows from Theorem 5.1 since every exponentially growing element of OutpF n q is expanding relative to its polynomial part.

Relative exponential length and goodness

Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an almost atoroidal outer automorphism relative to F. In this section we define and prove the properties of the objects needed in order to prove Theorem 5.1. Let f : G Ñ G be a CT map representing a power of φ with filtration ∅ G 0 G 1 . . . G k G and let p t1, . . . , ku be such that FpG p q F. The proof of Theorem 5.1 relies on the study of P G-relative completely split edge paths. More precisely, given a reduced circuit γ of G, we study the proportion of subpaths of γ which have P G-relative complete splittings. This proportion will be measured using the exponential length. However, the lack of equality in Lemma 3.16 shows that the exponential length is not well-adapted to study the exponential length of a path by comparing it with the exponential length of its subpaths. Instead, we define a notion of exponential length of a subpath relative to γ. We first need some preliminary results regarding splittings of edge paths. Definition 5.2. Let γ be a reduced edge path in G and let γ γ 0 γ I 1 γ 1 . . . γ k γ I k be the exponential decomposition of γ (see the beginning of Section 3.2). Let α be a subpath of γ. The exponential length of α relative to γ, denoted by γ exp pαq is:

γ exp pαq k i1 exp pα γ I k q.
We define the F-length of α relative to γ similarly replacing exp by F and the exponential decomposition by the F-exponential decomposition.

Note that, for every reduced edge path γ of G, we have γ exp pγq exp pγq. The exponential length relative to a path γ is well-adapted to compute the exponential length of γ using its subpaths, as shown by the following lemma.

Lemma 5.3. Let γ be a reduced edge path and let γ I αβ γ be a subpath of γ. Then γ exp pγ I q γ exp pαq γ exp pβq. In particular, when γ I γ, we have exp pγq γ exp pαq γ exp pβq.

The same statement is true replacing γ exp by γ F . Proof. The proof is similar for both γ exp and γ F , so we only do the proof for γ exp . Let

γ γ 0 γ I 1 γ 1 . . . γ k γ I
k be the exponential decomposition of γ. Then, for every i t1, . . . , ku, the paths α γ I i and β γ I i do not contain a subpath of a path in N max P G pγq. In particular, for every i t1, . . . , ku, one computes exp pα γ I i q and exp pβ γ I i q by removing edges from G I P G . Since γ exp pγ I q is computed by removing edges in G I P G from every γ I i with i t1, . . . , ku, the proof follows.

In Lemma 5.6, we will show that if γ is a reduced edge path in G and that α is a subpath of γ, then exp pαq and γ exp pαq differ by a uniform additive constant. This will allow us to compute directly exp pαq rather than γ exp pαq. Let γ be a reduced edge path in G and let γ γ 1 . . . γ m be a splitting of γ. Let J CS,P G tγ 1 , . . . , γ m u be the subset consisting in all subpaths which have a P G-relative complete splitting. If exp pγq ¡ 0, let g CT,P G pγ, γ 1 , . . . , γ m q °γi J CS,P G γ exp pγ i q exp pγq . The goodness of γ, denoted by gpγq, is the least upperbound of g CT,P G pγq over all splittings of γ if exp pγq ¡ 0, and is equal to 0 otherwise. When γ is a circuit, the value g CT,P G pγq is defined using only circuital splittings.

Since there are only finitely many decompositions of a finite edge path into subpaths, the value gpγq is realized for some splitting of γ. A splitting for which gpγq is realized is called an optimal splitting of γ, and an optimal circuital splitting when γ is a circuit.

A subpath of γ which is the concatenation of consecutive splitting units of an optimal splitting of γ is called a factor of γ. When exp pγq 0, we use the convention that the only factor of γ is γ itself. The factors of γ that admit a P G-relative complete splitting are called complete factors. The factors in an optimal splitting which do not admit P G-relative complete splittings are said to be incomplete. Remark that, by Proposition 2.5 p6q, p8q and by Lemma 3.9, the rfs-image of a P G-relative complete path is P G-relative complete, and the reduced iterates of an incomplete factor are eventually P G-relative complete.

Using Lemma 5.3, we have the following result.

Lemma 5.4. Let γ be a reduced edge path and let γ γ I 0 γ 1 γ I 1 . . . γ m γ I m be an optimal splitting of γ, where, for every i t0, . . . , mu, the path γ I

i is an incomplete factor of γ and, for every i t1, . . . , mu, the path γ i is complete. Then gpγq °m i1 γ exp pγ i q °m i1 γ exp pγ i q °m j0 γ exp pγ I i q . Definition 5.5. Let n, F, φ, f, p be as in the beginning of Section 5.1. Let K ¥ 1. The CT map f is 3K-expanding if for every edge e of G ¡ G I P G , we have exp prfpeqsq ¥ 3K. Note that, by Lemma 3.21, for every K ¥ 1, the CT map f has a power which is 3K-expanding. Note that, since φ is exponentially growing, we have G $ G I P G , so that the definition of 3K-expanding is not empty.

In the rest of the section, let K ¥ 1 be a constant such that, for every reduced edge path σ which is either in N P G or a path in a zero stratum, we have pσq ¤ K 2 . Such a K exists since N P G is finite by Lemma 3.4 p1q and since every zero stratum is contractible by Proposition 2.5 p3q. We fix a constant C f given by Lemma 4.9. Let C maxtK, C f u.

(7)

Recall that, if σ is a P G-relative splitting unit, σ is either an edge in an irreducible stratum, a path in a zero stratum or a path in N P G . Thus, the choice of K implies that for every P G-relative splitting unit σ, we have exp pσq ¤ K 2 .

Lemma 5.6. Let γ be a reduced edge path in G and let γ I be a subpath of γ. Let γ γ 0 γ I 1 γ 1 . . . γ k γ I k be the exponential decomposition of γ. There exist three (possibly empty) subpaths δ 1 , δ 2 and τ of γ such that for every i t1, 2u, the path δ i is a proper subpath of a splitting unit of some γ j , we have exp pτq γ exp pτq γ exp pγ I q and γ I δ 1 τ δ 2 . In particular, we have γ exp pγ I q ¤ exp pγ I q ¤ γ exp pγ I q 2C ¤ exp pγq 2C.

The same statement is true replacing exp by F and γ exp by γ F .

Proof. The proof is similar for both exp and F , so we only do the proof for exp . Since γ I is a subpath of γ, there exist three (possibly trivial) paths δ I 1 , τ I and δ I 2 such that:

paq for every i t1, 2u, there exists k i t0, . . . , ku such that the path δ I

i is a subpath of some γ k i ; pbq for every j t0, . . . , ku, either γ j is contained in τ I or γ j does not contain edges of τ I ; pcq we have γ I δ I

1 τ I δ I 2 .
The path δ I 1 has a decomposition δ I 1 δ 1 f 1 , where f 1 is a (possibly trivial) factor of γ k 1 and δ 1 is properly contained in a splitting unit of γ k 1 for some fixed choice of optimal splitting of γ k 1 . Similarly, the path δ I 2 has a decomposition δ I 2 f 2 δ 2 , where f 2 is a (possibly trivial) factor of γ k 2 and δ 2 is properly contained in a splitting unit of γ k 2

for some fixed choice of optimal splitting of γ k 2 . Let τ f 1 τ I f 2 . Then γ I δ 1 τ δ 2 . It remains to show that exp pτq γ exp pτq γ exp pγ I q. Since for every i t1, 2u, the path f i is a path in N P G , we have exp pτq exp pτ I q. By pbq, one obtains exp pγ I q by deleting edges in G I P G and every path of N max P G pγq contained in τ I . Hence we have

γ exp pτ I q k i1 exp pτ I γ I k q k i1 exp pτ γ I k q γ exp pτq.
Since δ 1 and δ 2 are contained in paths of N max P G pγq, we have γ exp pγ I q γ exp pτq, that is, the second equality holds. We now prove the final inequalities in the lemma. The first inequality follows from the fact that every path in N max P G pγ I q is a subpath of some γ i for i t0, . . . , ku. Thus, we have γ exp pγ I q ¤ exp pγ I q. By Lemma 3.16, we have exp pγ I q ¤ exp pδ 1 q exp pτq exp pδ 2 q ¤ γ exp pγ I q pδ 1 q pδ 2 q. By definition of the constant K and the fact that K ¤ C, we have: γ exp pγ I q pδ 1 q pδ 2 q ¤ γ exp pγ I q 2C ¤ exp pγq 2C, where the last inequality follows from Lemma 5.3. Since f is 3K-expanding, for every i t1, . . . , mu, we have

exp prfpγ i qsq ¥ 3K exp pγ i q.
Since the reduced image of a P G-relative complete splitting is a P G-relative complete splitting by Lemma 3.9, by Lemma 3.20 p2q, we see that

exp prfpγqsq ¥ m i1 exp prfpγ i qsq ¥ m i1
3K exp pγ i q ¥ 3 exp pγq.

This concludes the proof.

Lemma 5.8. Let f : G Ñ G be a 3K-expanding CT map. Let γ γ 1 γ 2 be a (not necessarily reduced) edge path of positive exponential length, where γ 1 and γ 2 are reduced edge paths. Let γ 1 a 1 b 1 . . . a k b k be an optimal splitting of γ 1 where for every i t1, . . . , ku, the path a i is an incomplete factor and for every i t1, . . . , ku the path b i is complete. For every i t1, 2u, let γ I i be the subpath of γ i contained in rγs. Let γ I 1 γ ¡ 1 γ 1 be a decomposition of γ I 1 into two subpaths where γ 1 is the maximal terminal segment of γ I

1 such that °k i1 exp pγ 1 b i q 2C. Then every P G-relative complete factor b I of γ 1 contained in γ ¡ 1 (for the given optimal splitting) is also a P G-relative complete factor of rγs.

Remark 5.9. p1q We emphasize that, in the statement of Lemma 5.8, if the path γ 1 is P G-relative completely split, the path γ I 1 is not necessarily P G-relative completely split. Indeed, there might be some identification with the path γ 2 that might create incomplete factors in γ I 1 .

p2q Lemma 5.8 also implies that if γ 1 is P G-relative completely split, the intersection of an incomplete factor of rγs with γ I 1 is contained in a terminal segment of γ I 1 of exponential length at most equal to 2C (see Figure 2). Indeed, the claim in the proof of Lemma 5.8

shows that the path γ ¡ 1 is a complete factor of γ 1 , hence a complete factor of rγs by Lemma 5.8. Moreover, we have k 1, a 1 is trivial and exp pγ 1 q exp pγ 1 b 1 q. Proof. Let t t1, . . . , ku be the minimal integer such that γ ¡ 1 is contained in δ I a 1 b 1 . . . a t b t . Let b t δ 1 . . . δ s I be a P G-relative complete splitting of b t . Let s t1, . . . , s I u be the minimal integer such that γ ¡ 1 is contained in δ a 1 b 1 . . . a t δ 1 . . . δ s . The integer s exists since, by maximality of γ 1 , for every i t1, . . . , ku, either γ 1 a i a i or γ 1 a i ∅. Claim. We have δ γ ¡ 1 .

Proof. By minimality of t and s, the path γ ¡ 1 contains an edge of δ s . We claim that δ s is contained in γ I 1 . Indeed, it is clear if δ s is an edge. Suppose towards a contradiction that δ s is not contained in γ I 1 . Then the concatenation point of γ I 1 and γ I 2 is contained in δ s . If δ s is a maximal taken connecting path in a zero stratum, then, by the choice of K, we have pδ s q ¤ K 2 ¤ C 2 . Since pγ 1 q ¥ 2C, the path δ s γ I 1 would be contained in γ 1 , contradicting the fact that γ ¡ 1 contains the first edge of δ s . Suppose that δ s is a concatenation of paths in G P G and N P G . Then δ s has a decomposition δ s β psq 1 α psq 1 β psq 1 . . . α psq ks¡1 β psq ks α psq ks , where for every i t1, . . . , k s u, the path

β psq i is contained in G P G , for every i t1, . . . , k s ¡ 1u, the path α psq i is contained in N max P G pσq and α psq
ks is a subpath of a path in N max P G pδ s q. By the choice of K, we have exp pδ s q ¤ pα ks q ¤ K 2 ¤ C 2 . Since exp pγ 1 q ¥ 2C, the path δ s γ I

1 would be contained in γ 1 , contradicting the fact that γ ¡ 1 contains the first edge of δ s . Hence, in every case, the path δ s is contained in γ I 1 . Note that, since γ 1 is the maximal subpath of γ I 1 for the property that °k i1 exp pγ 1 b i q 2C, the P G-relative splitting unit δ s is not a concatenation of paths in G P G and in N P G or a maximal taken connecting path in a zero stratum. Indeed, otherwise it is properly contained in γ 1 , contradicting the fact that γ ¡ 1 intersects δ s . Hence δ s is an edge and δ γ ¡

1 .

By the claim, we see that γ ¡ 1 a 1 b 1 . . . a t δ 1 . . . δ s is an optimal splitting of γ ¡

1 . Let r t1, . . . , ku be the minimal integer such that γ I

1 is contained in a 1 b 1 . . . a r b r . The last edge of γ I

1 is either contained in a r or in b r . In the first case, for every i t1, . . . , ku,

either b i is contained in γ I 1 or b i γ I
1 is at most a point. In the second case, it is possible that b r γ I 1 $ b r and that b r γ I

1 contains an edge. Let α I be the (possibly trivial) terminal segment of γ 1 which is properly contained in a splitting unit σ of b r . If σ is a maximal taken connecting path in a zero stratum, then, by the choice of K, we have exp pα I q ¤ pα I q ¤ pσq ¤ K 2 ¤ C 2 . Suppose that σ is a concatenation of paths in G P G and N P G . Then α I has a decomposition α I β 1 α 1 β 1 . . . α ¡1 β α , where for every i t1, . . . , u, the path β i is contained in G P G , for every i t1, . . . , ¡ 1u, the path α i is contained in N max P G pσq and α is a subpath of a path in N max P G pσq. By the choice of K, we have exp pα I q ¤ pα q ¤ K 2 ¤ C 2 . Since exp pγ 1 q ¥ 2C, there exists a P G-relative complete factor α 0 of b r such that

γ 1 δ s 1 . . . δ s Ia t 1 b t 1 . . . a r α 0 α I αα I and k i1 exp pα b i q ¥ C.
We now prove that every P G-relative complete factor of γ 1 contained in γ ¡ 1 is a P Grelative complete factor of γ. Note that the decomposition γ ¡ 1 α is a splitting. Thus, it suffices to prove that, for every k N ¦ , the path rf k pγ ¡ 1 qs is contained in rf k pγqs as any identification in order to obtain rf k pγqs which involves a path in f k pγ ¡ 1 q will be induced by an identification in order to obtain rf k pγ ¡ 1 qs from f k pγ ¡ 1 q. By Lemma 5.7 applied to δ s 1 , . . . , δ s I, to the paths b i with i t1, . . . , ku such that b i α and to α 0 , we have °k i1 exp prfpαqs rfpb i qsq ¥

s I °is 1 exp prfpδ i qsq r¡1 °it 1 exp prfpb i qsq exp prfpα 0 qsq ¥ 3 °k i1 exp pα b i q ¥ 3C,
where the first inequality follows from the fact that the decomposition α δ s 1 . . . δ s Ia t 1 b t 1 . . . a r α 0 is an optimal splitting of α. Note that, since the decomposition γ ¡ 1 α is a splitting, for every k N ¦ , the path rf k pαqs is contained in rf k pγ ¡ 1 αqs. Remark that Lemma 4.9 implies that the segment of rfpγ ¡ 1 αqs which is C away from the concatenation point between rfpγ ¡ 1 αqs and rfpα I γ I 2 qs remains in rfprγsqs. In particular, the edges of rfpγ ¡ 1 αqs which are cancelled with edges of rfpα I γ I 2 qs are contained in rfpαqs. Recall that °k i1 exp prfpαqs rfpb i qsq ¥ 3C and that the subpath of rfpαqs which is contained in rfprγsqs is obtained by the concatenation of at most C edges of rfpαqs. Thus, we see that the sum over i of the exponential length of the subpaths of rfpαqs rfpb i qs which are contained in rfprγsqs is at least equal to 2C. Hence the path rfpγ ¡ 1 qs is a subpath of rfprγsqs and °k i1 exp prfpγ 1 qs rfpb i qs rfprγsqsq ¥ 2C. Thus, we can apply the same arguments to show that for every k ¥ 1, the path rf k pγ ¡ 1 qs is contained in rf k prγsqs and the exponential length of the subpath of rf k pαqs contained in rf k prγsqs is at least equal to 2C.

Hence every P G-relative complete factor of the path γ 1 contained in γ ¡ 1 is a complete factor of an optimal splitting of rγs. Lemma 5.10. p1q Let γ αβ be a reduced path. Let N N ¦ be such that rf N pαqs has a P G-relative complete splitting and that rf N pβqs is a concatenation of paths in G P G and in N P G . For every m ¥ N , let α m , β m and σ m be paths such that rf m pαqs α m σ m and rf m pβqs σ ¡1 m β m . For every m ¥ N , we have exp pσ m q ¤ C, exp pα m q ¥ exp prf m pαqsq ¡ C and exp pβ m q ¤ C. p2q Let γ β p1q αβ p2q be a reduced path. Let N N ¦ be such that rf N pαqs has a P Grelative complete splitting and, for every i t1, 2u, the path rf N pβ piq qs is a concatenation of paths in G P G and in N P G . For every m ¥ N , let α m , β p1q For every m ¥ N , either exp pα m q ¤ 2C or we have exp pσ p1q m q, exp pσ p2q m q ¤ C, exp pα m q ¥ exp prf m pαqsq ¡ 2C and exp pβ p1q m q, exp pβ p2q m q ¤ C. Proof. The proof of Assertion p2q follows from Assertion p1q by applying Assertion p1q twice: one with γ αβ p2q and one with γ α ¡1 β p1q . If for some m N ¦ , exp pα m q ¥ 2C, there is no identification between rf m pβ p1q qs and rf m pβ p2q qs, so Assertion p2q follows from Assertion p1q. Therefore, we focus on the proof of Assertion p1q. Let m ¥ N . When σ m is reduced to a point, we have exp pα m q exp prf m pαqsq and exp pβ m q exp prf m pβqsq 0 by Lemma 3.17. This concludes the proof in this case. So we may suppose that σ m is nontrivial. Let rf m pαqs a 1 . . . a k be a P G-relative complete splitting of rf m pαqs. Suppose that, for every i t1, . . . , ku such that a i is a concatenation of paths in G P G and N P G , the path a i is a maximal subpath of rf m pαqs for the property of being a factor which is a concatenation of paths in G P G and N P G . For every j t1, . . . , ku, let r j be the height of a j . Let i t1, . . . , ku be such that a i contains the first edge of σ m . Let σ I N max P G pσ m q. Note that there exists σ P N max P G prf m pαqsq such that σ I σ P . By Lemma 3.20 p1q applied to σ P and rf m pαqs, the path σ P is contained in a factor which is a concatenation of paths in G P G and N P G . By the maximality assumption, there exists j t1, . . . , ku such that σ I σ P a j . Hence we can compute exp pσ m q by removing, for every j t1, . . . , ku, paths in the intersection σ m a j . Thus, we have, exp pσ m q j¡i exp pa j q exp pa i σ m q.

Note that, by Lemma 3.9, the path rf m pβqs σ ¡1 m β m is a concatenation of paths in G P G and in N P G . Let j ti, . . . , ku. Claim. If j ¡ i, then either a j is not an edge in an EG stratum and exp pa j σ m q 0, or exp ppa i . . . a j q σ m q ¤ C. If j i, then exp pa j σ m q ¤ C.

Proof. We distinguish several cases, according to the nature of a j .

piq Suppose that a j is maximal taken connecting path in a zero stratum. By definition we have exp pa j σ m q 0. piiq Suppose that a j is a concatenation of paths in G P G and in N P G . If j ¡ i, we have a j σ m a j . By Lemma 3.17 applied to a j , we have exp pa j σ m q 0. Suppose that i j. Suppose that the first edge of σ m is not contained in a path in N max P G pa i q. Then a i has a decomposition a i a 0 i a 1 i a 2 i where a 1 i is a path contained in G P G such that the first edge of σ m is contained in a 1 i and such that, for every path δ N max P G pa i q, either δ a 0 i or δ a 2 i . Note that a terminal segment of a i whose first edge is contained in a 1 i is a concatenation of paths in G P G and in N P G . In particular, the path a i σ m is a concatenation of paths in G P G and in N P G . By Lemma 3.17 applied to a i σ m , we have exp pa i σ m q 0. Suppose now that the first edge of σ m is contained in a path δ N max P G pa i q. Then a i has a decomposition a 1 i δa 2 i , where the first edge of σ m is contained in δ. Note that a 2 i is a concatenation of paths in G P G and in N P G which is contained in σ m . By Lemma 3.16 applied to a i σ m pδ σ m qa 2 i , by Lemma 3.17 applied to a 2 i and by definition of the constant K, we have exp pσ m a i q ¤ exp pσ m δq exp pa 2 i q exp pδ σ m q ¤ pδq ¤ K ¤ C. piiiq Suppose that a j is an edge in an irreducible stratum with positive exponential length. Since rf m pβqs is a concatenation of paths in G P G and in N P G , there exists a path γ I N max P G prf m pβqsq such that a j is contained in γ I . By Lemma 3.20 p1q, every path in N max P G prf m pαqsq is contained in a minimal factor of rf m pαqs consisting in P Grelative splitting units which are concatenation of paths in G P G and N P G . Since a j is a P G-relative splitting unit of rf m pαqs which is not a concatenation of paths in G P G and in N P G , the path a j is not contained in a path of N max P G prf m pαqsq. Hence the path γ I

is not contained in σ m as otherwise it would be contained in a path of N max P G prf m pαqsq. Therefore, we see that pa i . . . a j q σ m γ I . Hence, by the choice of K, we have exp ppa i . . . a j q σ m q ¤ ppa i . . . a j q σ m q ¤ pγ I q ¤ C. This proves the claim as we considered all possible P G-relative splitting units.

Let m N ¦ . By the claim, either exp ppa i . . . a j q σ m q ¤ C or, for every j ¡ i, we have exp pa j σ m q 0. In the second case, we have exp pσ m q j¡i exp pa j q exp pa i σ m q exp pa i σ m q ¤ C, where the las inequality follows from the case j i of the claim. Hence, for every m N ¦ , we have exp pσ m q ¤ C. Note that, by Lemma 3.16 applied to rf m pαqs α m σ m , we have exp pα m q ¥ exp prf m pαqsq ¡ exp pσ m q ¥ exp prf m pαqsq ¡ C. It remains to prove that exp pβ m q ¤ C. But β m can be written as β m δ 1 δ 2 where δ 2 is a concatenation of paths in G P G and in N P G and δ 1 is a (possibly trivial) path contained in a path of N max P G prf m pβqsq. By Lemma 3.17 applied to δ 2 and by the choice of K (since δ 1 is a subpath of a path in N P G ), we have exp pβ m q ¤ exp pδ 1 q exp pδ 2 q exp pδ 1 q ¤ pδ 1 q ¤ C. This concludes the proof.

Lemma 5.11. Let L ¥ 1. There exists n 0 n 0 pLq N ¦ which satisfies the following properties. Let γ be a reduced edge path of G such that exp pγq ¤ L. For every n ¥ n 0 and every optimal splitting of rf n pγqs, either rf n pγqs is a concatenation of paths in G P G and in N P G or the following two assertions hold: paq the path rf n pγqs contains a complete factor of exponential length at least equal to 10C; pbq the exponential length of an incomplete factor of rf n pγqs is at most equal to 8C.

Proof. By Lemma 3.21, there exists an integer m I N ¦ depending only on f such that for every edge e of G ¡ G I P G and every n ¥ m I , we have exp rf n peqs ¥ 16C 1. Let γ γ 0 γ I 1 γ 1 . . . γ γ I be the exponential decomposition of γ. Let γ β 0 α 1 β 1 . . . α k β k be a nontrivial decomposition of γ such that, for every i t0, . . . , ku, the path β i is a concatenation of paths in G P G and in N P G and for every i t1, . . . , ku, the path α i is a concatenation of edges in irreducible strata not contained in some γ j with j t0, . . . , u and paths in zero strata. The main point of the proof is to show that, up to applying an iterate of rfs, there is no cancellation between the subpaths α i . By definition of the exponential length, for every i t1, . . . , ku, we have exp pγq °k i1 exp pα i q. Therefore, since exp pγq ¤ L, for every i t1, . . . , ku, we have exp pα i q ¤ L. Note that, for every i t1, . . . , ku, we have exp pα i q pα i q ¡ pα i Zq where Z is the subgraph of G consisting in all zero strata. By the choice of C the length of every path contained in a zero stratum is at most equal to C. Hence for every i t1, . . . , ku, we have pα i q ¤ CL. By Proposition 2.5 p8q there exists m P N ¦ depending only on L such that, for all i t1, . . . , ku and m ¥ m P , the path rf m pα i qs is completely split. Let m m I m P . By Lemma 3.20 p2q, for every n ¥ m and every i t1, . . . , ku, since rf n¡m I pα i qs is completely split, one compute its exponential length by adding the exponential length of all its splitting units. Thus, if rf n¡m I pα i qs contains a splitting unit which is an edge e in G ¡ G I P G , we have

exp prf n pα i qsq ¥ exp prf m I peqsq ¥ 16C 1. (8)
Let C m be a bounded cancellation constant for f m given by Lemma 4.9. Note that, if there exists i t1, . . . , k ¡ 1u such that pβ i q C m , then there might exist some identifications between rf m pα i¡1 qs and rf m pα i qs when reducing the paths in order to obtain rf m pγqs. This is why we replace the decomposition γ β 0 α 1 β 1 . . . α k β k of γ by a new one. This new decompostion is defined as follows. Since every lift of f m to the universal cover of G is a quasi-isometry, there exists M m ¡ 0 depending only on m such that, for every reduced edge path of length pβq ¡ M m , we have prf

m pβqsq ¥ 2C m 1. Let Γ m tβ i | pβ i q ¤ M m u. Note that |Γ m | ¤ k 1.
Note that, by Lemma 2.9 and Proposition 2.5 p4q and Lemma 2.9, for every i t1, . . . , ku, if β i¡1 or β i is not trivial, then α i is not contained in a zero stratum. In particuliar, we may suppose that, for every i t1, . . . , ku, we have exp pα i q ¡ 0. Thus, since exp pγq °k i1 exp pα i q ¤ L, and, for every i t1, . . . , ku, we have exp pα i q ¡ 0, we see that k ¤ L. Hence we have

|Γ m | ¤ k 1 ¤ L 1.
Claim. There exist m 1 ¥ m depending only on |Γ m | (and hence on L) and a decomposition γ β p1q 0 α p1q 1 β p1q 1 . . . α p1q k 1 β p1q k 1 such that: pa I q for every i t1, . . . , k 1 u, the path rf m 1 pα p1q i qs is completely split; pb I q for every i t0, . . . , k 1 u, the path β p1q i is a concatenation of paths in G P G and in N P G ; pc I q for every i t0, . . . , k 1 u, the subpath of rf m 1 pβ p1q i qs contained in rf m 1 pγqs is not reduced to a point; pd I q for every i t1, . . . , k 1 u, for every n ¥ m I , if rf n¡m I pα p1q i qs contains a splitting unit which is an edge in G ¡ G I P G then exp prf n pα p1q i qsq ¥ 16C 1. Proof. The proof is by induction on |Γ m |. Suppose first that Γ m ∅. By the definition of |Γ m | and M m , for every i t0, . . . , ku, the path rf m pβ i qs has length at least equal to 2C m 1. By Lemma 4.9, for every i t0, . . . , ku, the subpath of rf m pβ i qs contained in rf m pγqs is not reduced to a point. So the integer m 1 m and the decomposition γ β 0 α 1 β 1 . . . α k β k satisfy the assertions of the claim (Assertion pd I q follows from Equation ( 8)).

Suppose now that Γ

m $ ∅. Then k i1 pα i q βi Γm pβ i q ¤ kCL M m L ¤ CL 2 M m L.
Let m I 2 ¥ m be such that for every path β of length at most equal to CL 2 M m L and every n ¥ m I 2 , the path rf n pβqs is completely split. Then γ has a decomposition γ β p2q

0 α p2q 1 β p2q 2 . . . α p2q k 2 β p2q
k 2 such that, for every i t1, . . . , k 2 u, the path rf m I 2 pα p2q i qs is completely split and for every i t0, . . . , k 2 u, the path β p2q i is a concatenation of paths in G P G and in N P G of length greater than M m . Let m 2 m I 2 m I . Then for every i t1, . . . , k 2 u, the paths rf m 2 pα p2q i qs and rf m 2 ¡m I pα p2q i qs are completely split. Moreover, if rf m 2 ¡m I pα p2q

i qs contains a splitting unit which is an edge in G ¡ G I P G , then exp prf m pα p2q i qsq ¥ 16C 1 as in Equation ( 8). Let C m 2 be a bounded cancellation constant associated with f m 2 and let M m 2 ¥ M m be such that, for every reduced edge path of length pβq ¡ M m 2 , we have prf

m 1 pβqsq ¥ 2C m 2 1. Let Γ m 2 tβ p2q i | pβ i q ¤ M m 2 u. Note that |Γ m 2 | |Γ m |.
Hence we can apply the induction hypothesis to the decomposition γ β p2q

0 α p2q 1 β p2q 2 . . . α p2q k 2 β p2q
k 2 to obtain the desired decomposition of γ. This concludes the proof of the claim.

Let m 1 and γ β p1q

0 α p1q 1 β p1q 1 . . . α p1q k 1 β p1q
k 1 be as in the assertion of the claim. By

Assertion pc I q of the claim, for every i t1, . . . , k 1 u, there is no identification between edges of rf m 1 pα p1q i qs, rf m 1 pα p1q i¡1 qs and rf m 1 pα p1q i 1 qs when reducing in order to obtain rf m 1 pγqs.

For every i t1, . . . , k 1 u, since rf m 1 pα p1q i qs is P G-relative completely split, we can distinguish three possible cases for rf m 1 pα p1q i qs: piq the path rf m 1 pα p1q

i qs contains a P G-relative splitting unit which is an edge in G ¡ G I P G (by Lemma 3.23 this case happens exactly when exp prf m 1 pα p1q i qsq ¡ 0); piiq exp prf m 1 pα p1q i qsq 0 and the path rf m 1 pα p1q i qs is a concatenation of paths in G P G and in N P G ;

piiiq exp prf m 1 pα p1q i qsq 0 and rf m 1 pα p1q i qs contains a maximal taken connecting path in a zero stratum.

We claim that if there exists i t1, . . . , k 1 u such that rf m 1 pα p1q i qs satisfies piiiq, then rf m 1 pγqs is contained in a zero stratum. Indeed, suppose that rf m 1 pα p1q i qs satisfies piiiq. By Lemma 3.23 applied to the P G-relative completely split edge path rf m 1 pα p1q i qs, since exp prf m 1 pα p1q i qsq 0 the path rf m 1 pα p1q i qs does not contain an edge in G ¡ G I P G .

Therefore, the path rf m 1 pα p1q i qs is a concatenation of paths in G I P G and in N P G . By Proposition 2.5 p4q and Lemma 2.9, there is no path in a zero stratum which is adjacent to a concatenation of paths in G P G and in N P G . Hence rf m 1 pα p1q i qs σ, where σ is a maximal taken connecting path in a zero stratum not contained in G P G . But the endpoints of σ are the endpoints of rf m 1 pβ p1q i¡1 qs and rf m 1 pβ p1q i qs, which are concatenation of paths in G P G and in N P G . As above, this implies that rf m 1 pγqs σ. Since zero strata are contractible, there exists m 3 N ¦ such that rf m 3 pγqs is P G-relative completely split. Hence Assertion pbq of Lemma 5.11 follows. Applying a further power of rfs (which can be chosen uniformly as there are finitely many reduced edge paths contained in a zero stratum), there exists m 4 N ¦ such that rf m 4 pγqs is a concatenation of paths in G P G and in N P G or it satisfies Assertion paq of Lemma 5.11. This concludes the proof of Lemma 5.11 in case piiiq.

Hence we may suppose that for every i t1, . . . , k 1 u, the path rf m 1 pα p1q i qs satisfies either piq or piiq. Note that, if i t1, . . . , k 1 u is such that the path rf m 1 pα p1q i qs satisfies piq, then rf m 1 pα p1q i qs also satisfies the hypothesis of Assertion pd I q of the claim. Thus exp prf m 1 m I pα p1q i qsq ¥ 16C 1.

Let m I 1 m 1 m I and let n I ¥ m I 1 . Let Λ exp tα p1q i | exp prf n I pα p1q i qsq ¥ 16C 1u. For every j t1, . . . , k 1 u and every n N ¦ , let α pnq j be the subpath of rf n pα p1q j qs contained in rf n pγqs. For every j t0, . . . , k 1 u and every n N ¦ , let β pnq j be the subpath of rf n pβ p1q j qs contained in rf n pγqs. Suppose first that Λ exp is not empty and let α p1q i Λ exp . By Lemma 5.10 p2q applied to β p1q rf n I pβ p1q i¡1 qs, α rf n I pα p1q i qs and β p2q rf n I pβ p1q

i qs, we have exp pα pn I q i q ¥ 14C 1. By Remark 5.9 p2q applied twice (once with γ 1 rf n I pα p1q i qs and γ 2 rf n I pβ p1q i . . . α p1q k 1 β p1q k 1 qs, and once with γ 1 rf n I pα p1q i qs ¡1 and γ 2 rf n I pβ p1q 0 . . . α p1q i¡1 β p1q i¡1 qs ¡1 ), the path α pn I q i contains a complete factor of rf n I pγqs of exponential length at least equal to 14C 1¡4C 10C 1. This proves Assertion paq of Lemma 5.11. Moreover, Remark 5.9 p2q implies that the intersection of an incomplete factor of rf n I pγqs with α pn I q i is contained in the union of an initial and a terminal segment of α pn I q i of exponential lengths at most 2C. For every i t1, . . . , k 1 u such that α p1q i Λ exp , let τ 1 i be the maximal initial segment of α pn I q i of exponential length equal to 2C and let τ 2 i be the maximal terminal segment of α pn I q i of exponential length equal to 2C.

We now prove Assertion pbq of Lemma 5.11. Suppose that there exists i t1, . . . , k 1 u such that α p1q i Λ exp , so that in particular rf m 1 pα p1q i qs does not satisfy piq. Then rf m 1 pα p1q i qs satisfies piiq and is a concatenation of paths in G P G and in N P G . By Lemma 3.9 p3q, the path rf n I pα p1q i qs is a concatenation of paths in G P G and in N P G . By Lemma 3.5, the path rrf n I pβ p1q i¡1 qsrf n I pα p1q i qsrf n I pβ p1q i qss is a concatenation of paths in G P G and in N P G . Thus, the path β pn I q i¡1 α pn I q i β pn I q i is a subpath of a concatenation of paths in G P G and in N P G . Hence rf n I pγqs has a decomposition rf n I pγqs 1 α pn I , q 1 2 . . . α pn I , q

k 2 k 2
where for every j t1, . . . , k 2 u, the path α pn I , q j is in Λ exp and for every j t0, . . . , k 2 u, the path j is contained in a path ι j which is a concatenation of paths in G P G and in N P G . Hence, for every j t0, . . . , k 2 u, we have exp pι j q 0 by Lemma 3.17 and, by Lemma 5.6, we have exp p j q ¤ 2C. If γ I is an incomplete factor of rf n I pγqs, as explained above, there exists i t1, . . . , k 2 u such that γ I is contained in τ 2 i¡1 i¡1 τ 1 i . By Lemma 5.6, we have

exp pγ I q ¤ exp pτ 2 i¡1 i¡1 τ 1 i q 2C.
By Lemma 3.16, the exponential length of γ I is at most equal to exp pτ 2 i¡1 q exp p i¡1 q exp pτ 1 i q 2C ¤ 6C exp p i¡1 q ¤ 8C. This proves pbq.

Finally, suppose that Λ exp is empty. For every j t1, . . . , k 1 u, the path rf m 1 pα p1q j qs is a concatenation of paths in G P G and in N P G . By Lemma 3.5, the path rf m 1 pγqs is a concatenation of paths in G P G and in N P G . By Lemma 3.9, for every n I ¥ m 1 , the path rf n I pγqs is a concatenation of paths in G P G and in N P G . This concludes the proof.

Lemma 5.12. Let f : G Ñ G be a 3K-expanding CT map. There exists N N ¦ such that for every reduced edge path γ and every m ¥ N , the total exponential length of incomplete factors in any optimal splitting of rf m pγqs is uniformly bounded by 8C exp pγq. Proof. By Proposition 2.5 p8q, there exists N N ¦ such that, for every reduced edge path α of length at most equal to C 1, the path rf N pαqs is completely split. Suppose first that exp pγq 0. Then, by definition of the exponential length, the path γ is a concatenation of paths in G I P G and in N P G . By Proposition 2.5 p4q, every edge in a zero stratum is adjacent to either an edge in a zero stratum or an edge in an EG stratum. Moreover, by Lemma 2.9, there does not exist a subpath of γ contained in a zero stratum which is adjacent to a Nielsen path. Hence γ is either a concatenation of paths in G P G and in N P G or a path in a zero stratum. In the first case, the path γ is P G-relative completely split. In the second case, by the definition of the constant K and Equation ( 7), we have pγq ¤ K ¤ C. By the choice of N , for every m ¥ N , the path rf m pγqs is completely split. By Lemma 3.19, for every m ¥ N , the path rf m pγqs is P G-relative completely split. By Lemma 3.17, for every m ¥ N , we have exp prf m pγqsq 0.

So we may suppose that exp pγq ¡ 0. Let γ γ 0 γ I 1 γ 1 . . . γ γ I be the exponential decomposition of γ (see the beginning of Section 3.2). By Lemma 2.9, there does not exist a subpath of γ contained in a zero stratum which is adjacent to a Nielsen path.

Therefore, the path γ has a decomposition α 0 β 1 α 1 . . . β k α k where, for every i t0, . . . , ku, the path α i is a (possibly trivial) concatenation of paths in G P G and in N P G and, for every i t1, . . . , ku, the path β i is a concatenation of a (possibly trivial) maximal reduced path in a zero stratum and an edge in an irreducible stratum not contained in G P G or in some γ i . By construction of K, for every i t1, . . . , ku, we have pβ i q ¤ C 1. By the choice of N , for every m ¥ N , the path rf m pβ i qs is completely split. Note that, for every i t1, . . . , ku, we have exp pβ i q 1 and that

exp pγq k i1 exp pβ i q k.
By Lemma 3.9, for every i t0, . . . , ku and every m ¥ M , the path rf m pα i qs is a concatenation of paths in G P G and in N P G . By Lemma 3.17, for every m ¥ M , we have exp prf m pα i qsq 0. By Lemma 5.6, the exponential length of the subpath of rf m pα i qs contained in rf m pγqs is at most equal to 2C. For every i t0, . . . , ku (resp. i t1, . . . , kuq and every m ¥ N , let α i,m (resp. β i,m ) be the subpath of rf m pα i qs (resp. rf m pβ i qs) contained in rf m pγqs. By Remark 5.9 p2q, for every i t1, . . . , ku and every m ¥ N , the exponential length of any incomplete factor in β i,m is at most equal to 4C. By Lemma 3.16, for every m ¥ N , the sum of the exponential lengths of the incomplete factors in rf m pγqs is at most equal to

k i0 exp pα i,m q 4Ck ¤ 2Cpk 1q 4kC ¤ 4Ck 4Ck 8Ck 8C exp pγq.
The conclusion of the lemma follows.

Lemma 5.13. Let f : G Ñ G be a 3K-expanding CT map. Let γ be a reduced edge path in G. Suppose that γ has a splitting γ b 1 ab 2 where, for every i t1, 2u, the path b i is a possibly trivial P G-relative completely split. If γ exp paq 0 then exp paq 0. Proof. Let γ γ 0 γ I 1 γ 1 . . . γ k γ I k be the exponential decomposition of γ. By Lemma 5.6, there exist three (possibly trivial) paths δ 1 , δ 2 and τ such that for every i t1, 2u, the path δ i is a proper initial or terminal subpath of a splitting unit of some γ j , we have exp pτq γ exp pτq γ exp paq and a δ 1 τ δ 2 . Since γ exp paq 0, we have exp pτq 0.

Hence τ is a concatenation of paths in G I P G and in N P G . By Proposition 2.5 p4q, every edge in a zero stratum is adjacent to either an edge in a zero stratum or an edge in an EG stratum. Moreover, by Lemma 2.9, there does not exist a subpath of γ contained in a zero stratum which is adjacent to a Nielsen path. Hence τ is either a concatenation of paths in G P G and in N P G or a path in a zero stratum. If τ is contained in a zero stratum, by Lemma 2.9, we see that δ 1 and δ 2 are trivial, that is, a τ . Thus, we have exp paq exp pτq 0.

So we may suppose that τ is a concatenation of paths in G P G and in N P G . Suppose towards a contradiction that there exists i t1, 2u such that δ i is not trivial. For every i t1, 2u such that δ i $ ∅, let σ i be the splitting unit of some γ j containing δ i and let r i be the height of σ i . By [BH, Lemma 5.11], for every i t1, 2u such that δ i is not trivial, there exist two distinct r i -legal paths α i and β i such that σ i α i β i and such that the turn tDfpα ¡1 i q, Df pβ i qu is the only height r i illegal turn. Moreover, there exists a

path τ I i such that rfpα i qs α i τ I i and rfpβ i qs τ I¡1 i β i . Let p1q 1 , p2q
1 be two paths such that σ 1 p1q 1 p2q 1 , the path p1q 1 is contained in b 1 and the path p2q

1 is contained in a.
Similarly, let p1q 2 , p2q

2 be two paths such that σ 2 p1q 2 p2q 2 , the path p2q

2 is contained in b 2 and the path p1q

2 is contained in a.

Claim. p1q For every path b N max P G pb 1 q (resp. b N max P G pb 2 q), the path b does not contain edges of p1q 1 (resp. p2q

2 ).

p2q

The path p1q

1 is r 1 -legal and the path p2q

2 is r 2 -legal.

Proof. We prove the claim for b 1 , the proof for b 2 being similar.

p1q Let b N max P G pb 1 q. There exists c N max P G pγq such that b c. Moreover, by Lemma 3.4 p3q applied to γ I b and γ c, either b is a concatenation of splitting units of c, or b is properly contained in a splitting unit of c and is not an initial or a terminal segment of c. Since b 1 is an initial segment of γ, the second case cannot occur. Hence b is a concatenation of splitting units of c. Since σ 1 is not contained in b 1 , the path b cannot contain edges of σ 1 . Since p1q 1 σ 1 , the path b cannot contain edges of p1q 1 .

p2q Suppose towards a contradiction that p1q

1 is not r 1 -legal. Then it contains the illegal turn tDfpα ¡1

1 q, Df pβ 2 qu. Recall that the path b 1 is P G-relative completely split. By the description of P G-relative splitting units, the illegal turn must be contained in a P G-relative splitting unit of b 1 which is a concatenation of paths in G P G and in N P G .

Since the last edge of α 1 is an edge in an EG stratum, the last edge of α 1 must be contained in a path contained in N P G . Hence 1 intersects a path in N max P G pb 1 q. This contradicts Assertion p1q.

By Assertion p2q of the claim, for every i t1, 2u such that σ i is not trivial, the path 2 . Therefore, there exists a (possibly trivial) path τ 1 such that, up to taking a power of f so that the length of rfpb 1 qs is greater than α 1 , we have rfpb 1 qs α 1 τ 1 and rfp p2q 1 qs τ ¡1

1 β 1 . Similarly, there exists a path τ 2 such that rfp p1q 2 qs α 2 τ 2 and rfpb 2 qs τ ¡1 2 β 2 .

Since γ splits at the concatenation points of b 1 , a and b 2 , the paths τ ¡1

1 and τ 2 contained in rfp p2q 1 qsrfpτqsrfp p1q 2 qs must be identified when passing to rfpaqs. Suppose first that rfpτqs is a point. Then since the EG INPs σ 1 and σ 2 are uniquely determined by their initial and terminal edges by Proposition 2.5 p9q, we see that σ 1 σ ¡1 2 . But then there are some identifications between b 1 and b 2 , which contradicts the fact that b 1 ab 2 is a splitting. Thus, we may suppose that rfpτqs is nontrivial. By Lemma 3.9, since τ is a concatenation of paths in G P G and in N P G so is rfpτqs. Note that, since an EG INP is completely determined by its initial and terminal edges by Proposition 2.5 p9q, if rfpτqs contains the initial or the terminal edge of an EG INP σ, then σ is contained in rfpτqs. Note that there are identifications between edges of rfp p2q

1 qs and rfpτqs or between edges of rfpτqs and rfp p1q 2 qs. Therefore, rfpτqs starts with σ ¡1 1 or rfpτqs ends with σ ¡1

2 . Thus, one of the following holds: paq rfpτqs σ ¡1 1 τ I with τ I a (possibly trivial) path which is a concatenation of paths in G P G and in N P G which does not end by σ ¡1 2 ; pbq rfpτqs τ I σ ¡1

2 with τ I a (possibly trivial) path which is a concatenation of paths in G P G and in N P G which does not start by σ ¡1 1 ;

Let n 0 maxtN 0 , N 1 , N 2 u.

Let γ be a closed reduced edge path in G. All splittings of γ are circuital splittings in what follows. Let γ α 0 β 1 α 1 . . . β k α k be an optimal splitting of γ, where for every i t0, . . . , ku, the path α i is an incomplete factor of γ and for every i t1, . . . , ku, the path β i is a P G-relative complete factor of γ. First note that, for every i t1, . . . , ku, and for every n ¥ 1, the path rf n pβ i qs is P G-relative completely split by Proposition 2.5 p6q and Lemma 3.9. Therefore, if n ¥ n 0 ¥ N 0 , the total exponential length of such P Grelative complete segments is nondecreasing under rf n s. We now distinguish two cases, according to the growth of the paths β i . Suppose first that for every i t1, . . . , ku, the exponential length of β i relative to γ is equal to zero. Since the splitting γ α 0 β 1 α 1 . . . β k α k is optimal and since for every i t1, . . . , ku, we have γ exp pβ i q 0, we have gpγq 0. Therefore, for every n N ¦ , we have gprf n pγqsq ¥ gpγq.

Suppose now that there exists i t1, . . . , ku such that the exponential length of β i relative to γ is positive. By Lemma 3.21, the sequence p exp prf n pβ i qsqq nN ¦ grows exponentially with n. We can now modify the splitting of γ into the following splitting:

γ α I 0 β I 1 α I 1 . . . β I m α I
m where:

paq for every j t0, . . . , mu, the path α I

i is a concatenation of incomplete factors and complete factors of zero exponential length relative to γ of the previous splitting; pbq for every j t1, . . . , mu, the path β I i is a complete factor of positive exponential length relative to γ of the previous splitting.

Note that, by definition of the exponential length relative to γ, for every i t1, . . . , mu and every path γ I N max P G pγq, the path β I i is not contained in γ I . Therefore, if there exists j t0, . . . , mu and γ I N max P G pγq such that α I j intersects γ I nontrivially, then γ I is contained in β I j¡1 α I j β I j . In particular, Lemma 5.13 applies and for every j t0, . . . , mu, if γ exp pα I j q 0, then exp pα I j q 0. Let Λ be the subset of t0, . . . , mu such that for every j Λ, we have γ exp pα I j q ¡ 0. By Lemma 5.6 and Lemma 5.7, for every j t1, . . . , mu and every M N ¦ , we have

rf M pγqs exp prf M pβ I i qsq ¥ exp prf M pβ I i qsq ¡ 2C ¥ 3 M exp pβ I i q ¡ 2C I ¥ p3 M ¡ 2Cq γ exp pβ I i q.
By Lemma 5.6, for every j t0, . . . , mu, we have γ exp pα I j q ¤ exp pα I j q. Note that, for every i t1, . . . , mu, and every n N ¦ , the path rf n pβ I i qs is P G-relative completely split. In particular, for every n N ¦ , any incomplete factor of rf n pγqs is contained in a reduced iterate of some α I i . Thus, by Lemma 5.12, for every n ¥ n 0 ¥ N 1 , the total exponential length of incomplete segments in rf n pγqs is bounded by 8C °k j1 exp pα I j q 8C °jΛ exp pα I j q. Note that the function x Þ Ñ

x x 8C °jΛ exp pα I j q is nondecreasing. Recall that, for every n N ¦ , the goodness function is a supremum over splittings of rf n pγqs. Thus, by Lemma 5.4, for every n ¥ n 0 , we have:

gprf n pγqsq ¥ p3 n ¡ 2Cq °m i1 γ exp pβ I i q p3 n ¡ 2Cq °m i1 γ exp pβ I i q 8C °jΛ exp pα I j q .
By Lemma 5.6, we have

8C jΛ exp pα I j q ¤ 8C jΛ p γ exp pα I j q 2Cq ¤ 8Cp1 2Cq jΛ γ exp pα I j q,
where the last inequality follows from the fact that, for every j Λ, we have γ exp pα I j q ¥ 1. Therefore, since n 0 ¥ N 2 , for every n ¥ n 0 , we have:

p3 n ¡ 2Cq °m j1 γ exp pβ I j q p3 n ¡ 2Cq °m j1 γ exp pβ I j q 8Cp1 2Cq °jΛ γ exp pα I j q ¥ °m j1 γ exp pβ I j q °m j1 γ exp pβ I j q °jΛ γ exp pα I j q .
By Lemma 5.3, we have

exp pγq m j1 γ exp pβ I j q m j0 γ exp pα I j q m j1 γ exp pβ I j q jΛ γ exp pα I j q.
Thus, we see that

°m j1 γ exp pβ I j q °m j1 γ exp pβ I j q °jΛ γ exp pα I j q gpγq,
which gives the result.

Remark 5.15. In the next lemmas, we will adopt the following conventions.

Let φ OutpF n , Fq be an almost atoroidal outer automorphism relative to F. Let f : G Ñ G be a CT map representing a power of φ with filtration ∅ G 0 . . . G k G. Let p t1, . . . , k ¡ 1u be such that FpG p q F. By Lemma 3.21, up to taking a power of f , we may suppose that f is 3K-expanding. By Lemma 5.14, up to passing to a power of f , we may suppose that for every closed reduced edge path γ of G, we have gprf pγqsq ¥ gpγq. Lemma 5.16. Let f : G Ñ G be as in Remark 5.15. p1q For every δ ¡ 0, there exists m N ¦ such that for every reduced edge path γ such that gpγq ¥ δ and every n ¥ m, the total exponential length relative to rf n pγqs of complete factors in rf n pγqs denoted by T ELpn, γq is at least T ELpn, γq ¥ gpγq exp pγqp3 n ¡ 2Cq. p2q For every δ ¡ 0 and every ¡ 0, there exists m N ¦ such that for every cyclically reduced circuit γ such that exp pγq ¡ 0, gpγq ¥ δ and every n ¥ m, we have gprf n pγqsq ¥ 1 ¡ .

Proof. Let γ α 0 β 1 α 1 . . . α k β k be an optimal splitting, where for every i t0, . . . , ku, the path α i is an incomplete factor of γ and for every i t1, . . . , ku, the path β i is a P G-relative complete factor of γ. We may assume that exp pγq ¡ 0, otherwise gpγq 0 and the result is immediate. Note that, since gpγq ¥ δ ¡ 0, there exists i t1, . . . , ku such that γ exp pβ i q ¡ 0. Let Λ γ be the set consisting in all complete factors β i of γ whose exponential length relative to γ is positive. Let γ exp pΛ γ q be the sum of the exponential lengths relative to γ of all factors that belongs to Λ γ . Note that γ exp pΛ γ q β i Λγ γ exp pβ i q gpγq exp pγq.

Note that, for every n N ¦ , the value T ELpn, γq is a supremum over all splittings of rf n pγqs. Thus, by Lemma 5.6 and Lemma 5.7, for every n N ¦ , we have:

T ELpn, γq ¥ β i Λγ rf n pγqs exp prf n pβ i qsq ¥ p3 n ¡ 2Cq γ exp pΛ γ q ¥ p3 n ¡ 2Cqgpγq exp pγq.
This proves p1q. We now prove p2q. By Lemma 5.12, there exists n 0 N ¦ such that for every n ¥ n 0 , the total exponential length of incomplete segments in rf n pγqs is bounded by 8C exp pγq. By Lemma 5.6, the total exponential length relative to γ of incomplete segments in rf n pγqs is hence bounded by 10C exp pγq. Note that, for every n N ¦ , the value gprf n pγqsq is a supremum over all splittings of rf n pγqs. Thus, by Lemma 5.4, for every n ¥ n 0 , we have:

gprf n pγqsq ¥ gpγq exp pγqp3 n ¡ 2Cq 10C exp pγq gpγq exp pγqp3 n ¡ 2Cq gpγqp3 n ¡ 2Cq 10C gpγqp3 n ¡ 2Cq ¥ δp3 n ¡ 2Cq 10C δp3 n ¡ 2Cq .
The last term is independent of γ and converges to 1 as n goes to infinity. Therefore the conclusion of Lemma 5.16 holds for some n large enough which does not depend on γ.

This proves p2q and this concludes the proof.

North-South dynamics for a relative atoroidal outer automorphisms

Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an almost atoroidal automorphism relative to F. In this subsection we prove Theorem 5.1. The proof of Theorem 5.1 is inspired by the proof of the same result due to Uyanik ([Uya2])

in the context of an atoroidal outer automorphism for OutpF n q, that is, in the special case when F ∅. The proof relies on the study of splittings of reduced edge paths in the graph associated with a CT map representing a power of φ. Indeed, we show that, when a cyclically reduced edge path representing w F n has a splitting which is close to a complete splitting, then some iterate of φ sends rws into an open neighborhood of ∆ pφq (see Definition 4.5), and this iterate can be chosen uniformly (see Lemma 5.20).

Lemma 5.18. Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an almost atoroidal outer automorphism which satisfies Definition 4.3 p2q. Let F ¤ F 1 ¤ F 2 tF n u be a sequence of free factor systems given in this definition. Let f : G Ñ G be a CT map representing a power of φ with filtration ∅ G 0 G 1 . . . G k G and such that there exist p and i in t0, . . . , k ¡ 1u such that FpG p q F and FpG i q F 1 .

p1q The graph G ¡ G i either is a topological arc whose endpoints are in G i or it retracts onto a circuit C and there exists exactly one topological arc that connects C and G i .

p2q There do not exist an EG stratum or a zero stratum of height greater than i.

If G ¡ G i is a topological arc, every edge in G ¡ G i is contained in G P G . Otherwise every edge of the circuit C in G ¡ G i is contained in G P G .
p3q Let γ be a path of G i which is not contained in a concatenation of paths of G P G,F 1 and N P G,F 1 . Then γ is not contained in a concatenation of paths in G P G and in N P G .

p4q We have f 2 pF n , F Apφqq

¤ γPpF 1 Apφqq Cpγq.
In particular, we have

PCurrpF n , F Apφqq PCurrpF n , F 1 Apφqq. p5q For every edge path γ in G, the value F 1 pγq ¡ exp pγq is the number of edges of G ¡ G i contained in γ. In particular, for every path γ contained in G i , we have F 1 pγq exp pγq and for every current µ CurrpF n , F Apφqq whose support is contained in f 2 F 1 , we have

Ψ 0 pµq µ F 1 .
p6q Let γ be a circuit in G. For every m N ¦ , we have

F 1 prf m pγqsq ¡ exp prf m pγqsq F 1 pγq ¡ exp pγq.
p7q Suppose that F Apφq trA 1 s, . . . , rA r su. One of the following holds.

There exist distinct i, j t1, . . . , ru such that Apφq pF Apφqq ¡ trA i s, rA j suq trA i ¦ A j su.

There exists i t1, . . . , ru and an element g F n such that Apφq pF Apφqq ¡ trA i suq trA i ¦ xgysu. In that case, there exists a subgroup A of F n such that F trAsu and F n A ¦xgy.

There exists g F n such that Apφq F Apφq trxgysu. In that case, there exists a subgroup A of F n such that F trAsu and F n A ¦ xgy. Proof. p1q It is a consequence of [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Lemma II.2.5]. Note that, in the terminology of [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Lemma 2.2.5], the first case is called a one-edge extension and the second case is called a lollipop extension.

p2q By Proposition 2.5 p4q, it suffices to show that there does not exist an EG stratum of height greater than i. This follows from [START_REF] Bestvina | The Tits alternative for OutpF n q I: Dynamics of exponentially growing automorphisms[END_REF]Corollary 3.2.2] (where the stratum described in it is the whole graph G ¡ G i ) We now prove the second part of Assertion p2q.

Let w be an element of F n represented by γ. Then there exists a subgroup A of F n such that rAs Apφq and w A. Since φ| F 1 is expanding relative to F but φ is not expanding relative to F by Definition 4.3 p2q, there exists a reduced circuit γ in G which is not contained in G i which has polynomial growth under iterates of f . By Proposition 3.13, the circuit γ is a concatenation of paths in G P G and in N P G . By the first part of Assertion p2q, the intersection γ G ¡ G i does not contain EG INPs, hence consists in edges in

G P G . Hence if G ¡ G i is a lollipop, then the circuit C in G ¡ G i is contained in γ, hence is contained in G P G . If G ¡ G i is a topological arc, the graph G ¡ G i is contained in γ,
hence consists in edges in G P G . This proves p2q. p3q Let γ be as in Assertion p3q. By Assertion p2q, every edge of G ¡ G i is contained in an NEG stratum. In particular, there does not exist an EG INP of height greater than i. Hence N P G N P G,F 1 . Since γ is contained in G i and since G P G G i G P G,F 1 , the path γ is not contained in a concatenation of paths in G P G and N P G .

p4q Since φ| F 1 is expanding relative to F, we see that F 1 Apφq F Apφq. Thus, we have f 2 pF n , F Apφqq f 2 pF n , F 1 Apφqq. Assertion p4q then follows from Lemma 3.28 applied to F 1 Apφq. p5q By Assertion p2q, there does not exist an EG INP of height at least i 1. Hence F 1 pγq differs from exp pγq by the number of edges in G P G of height at least i 1. Since every edge in G ¡ G i is in G P G by Assertion p2q, the conclusion of the first claim of Assertion p5q follows. The claim about paths contained in G i is then a direct consequence. Let µ be a current in CurrpF 1 , F 1 Apφqq. By Lemma 5.17, there exists pµ 1 , µ 2 q XpF 1 q such that µ µ ¦ 1 µ ¦ 2 . Since rational currents are dense in CurrpH 1 , trA 1 s, . . . , rA s suq and CurrpH 2 , trB 1 s, . . . , rB t suq by Proposition 2.15, linear combination of rational currents are dense in CurrpF 1 , F 1 Apφqq. The last claim of Assertion p5q then follows from the linearity and continuity of Ψ 0 and . F 1 .

p6q Let m N ¦ . By Assertion p5q, it suffices to prove that the number of edges in G ¡ G i contained in rf m pγqs is equal to the number of edges in G ¡ G i contained in γ.

In the case that G ¡ G i is a lollipop extension and that γ is the circuit C in G ¡ G i , then γ is fixed by f by [START_REF] Handel | Subgroup Decomposition in OutpF n q[END_REF]Definition I.1.29 p3q] (that is the filtration associated with f is reduced ). Hence rf m pγqs γ and the claim follows. Otherwise, if G ¡ G i is either a one-edge extension or a lollipop extension, the circuit γ is not contained in G ¡ G i . Moreover, if γ or rf m pγqs contains an edge in G ¡ G i , then it contains G ¡ G i . Hence it suffices to count the number of occurrences of G ¡ G i in γ and rf m pγqs. Since f preserves G i , the result follows from Assertion p1q and [BFH1, Corollary 3.2.2] (where the stratum in it is the graph G ¡ G i ). p7q Note that since φ| F 1 is expanding relative to F, we have F 1 Apφq F Apφq. Recall the definition of the graph G ¦ and the map p G ¦ : G ¦ Ñ G from above Lemma 3.11. By Proposition 3.13 and Lemma 3.11 p2q, the malnormal subgroup system Apφq is precisely the subgroup system associated with the fundamental groups of the connected components of G ¦ . Moreover, the malnormal subgroup system associated with F 1 Apφq F Apφq is the subgroup system associated with the connected components of p ¡1 G ¦ pG i q. By Assertion p1q, the graph G ¡ G i is either a topological arc or a lollipop. Suppose first that G ¡ G i is a topological arc. By Assertion p2q, the graph G ¡ G i consists in edges in G P G . Thus, the graph G ¦ is obtained from p ¡1

G ¦ pG i q by adding a topological arc τ . If the endpoints of τ are in two distinct connected compo- G ¦ pG i q by adding a lollipop extension, or G ¦ is obtained from p ¡1

nents of G ¦ ,
G ¦ pG i q by adding a connected component which is homotopy equivalent to a circle. If G ¦ is obtained from p ¡1

G ¦ pG i q by adding a lollipop extension, the second case of Assertion p7q occurs. If G ¦ is obtained from p ¡1

G ¦ pG i q by adding a connected component which is homotopy equivalent to a circle, the third case of Assertion p7q occurs. The proof of the fact about HNN extension is similar to the proof for the one-edge extension case. This concludes the proof.

Remark 5.19. By Lemma 5.18 p1q, G ¡ G i is either a topological arc or it retracts onto a circuit C and there exists exactly one topological arc that connects C and G i . In the second case, we will adopt the convention that G ¡ G i C, so that, by Lemma 5.18 p2q, in both cases of Lemma 5.18 p1q, every edge in G ¡ G i is in G P G . Lemma 5.20. Let φ OutpF n , Fq and let f : G Ñ G be as in Remark 5.15. p1q Let U be an open neighborhood of ∆ pφq, let V be a neighborhood of K P G pφq (see Definition 3.25). There exist N N ¦ and δ p0, 1q such that for every m ¥ 1 and every w F n with gpγ w q ¡ δ and η rws V , we have pφ N q m pη rws q U.

p2q Suppose that φ is an almost atoroidal outer automorphism relative to F as in Definition 4.3 p2q. Let F ¤ F 1 ¤ F 2 be an associated sequence of free factor systems.

For every ¡ 0 and L ¡ 0, there exists δ p0, 1q and M ¡ 0 such that, for every n ¥ M , for every reduced edge path γ PpF Apφqq of length at most L contained in G i , for every nonperipheral element w F n with gpγ w q ¡ δ, there exists rµ w s ∆ pφq .

Proof. The proof is similar to the one of [START_REF] Lustig | North-South dynamics of hyperbolic free group automorphisms on the space of currents[END_REF]Lemma 6.1]. By Lemma 5.3 and Lemma 5.16 p1q, up to passing to a power of f , we may assume that for every w F n such that gpγ w q ¥ 1 2 , and every n N ¦ , we have gprf n pγ w qsq ¥ gpγ w q and exp prf n pγ w qsq ¥ T ELpn, γq ¥ p3 n ¡ 2Cqgpγ w q exp pγ w q.

(9)

Let N N ¦ be such that 3 N ¡ 2C. Let λ ¡ 0 be such that, for every edge e EG and every n N ¦ , we have prf n peqsq ¤ λ n .

(10) By Lemma 3.29, a sequence prν m sq mN of projective relative currents tends to a projective current rνs PCurrpF n , F Apφqq if for every ¡ 0 and R ¡ 0 there exists M N ¦ such that, for every m ¥ M and every reduced edge path γ PpF Apφqq with pγq ¤ R, we have §

§ § § xγ, νy ν F ¡ xγ, ν m y ν m F § § § § . (11) 
For every F-expanding splitting unit σ, we denote by µpσq the corresponding current given by Proposition 4.4. By Lemma 4.8, we have µpσq F 1. Since ∆ pφq is compact by Lemma 4.7, there exist , R ¡ 0 such that for every m ¥ M , if there exists ν ∆ pφq such that ν m , ν, R, satisfy Equation ( 11), then ν m U . Since there are only finitely many expanding splitting units of positive exponential length and finitely many edge paths γ PpF Apφqq such that pγq ¤ R, there exists M 0 N ¦ such that for every m ¥ M 0 , for every expanding splitting unit σ and for every reduced edge path γ PpF Apφqq with pγq ¤ R, we have:

§ § § § xγ, rf m pσqsy F prf m pσqsq ¡ xγ, µpσqy § § § § 6 .
Recall that xγ, µpσqy is equal to µpσqpCpγqq by definition of the number of occurrences of γ in µpσq. Let γ I be a reduced edge path in G. By Lemma 5.6, for every reduced edge path σ of G contained in γ I , we have F pσq ¥ γ I F pσq ¥ F pσq ¡ 2C. Hence there exists M 1 N ¦ such that for every m ¥ M 1 , for every expanding splitting unit σ, for every edge path γ I containing σ as a splitting unit and for every reduced edge path γ PpF Apφqq with pγq ¤ R, we have:

§ § § § § xγ, rf m pσqsy rf m pγ I qs F prf m pσqsq ¡ xγ, µpσqy § § § § § 6 . ( 12 
)
Recall the definition of the continuous function Ψ 0 : CurrpF n , F Apφqq Ñ R given above Definition 3.25. Recall that, by Lemma 3.27 p3q, for every current µ CurrpF n , F Apφqq, we have µ

F ¡ 0. Let Ψ : CurrpF n , F Apφqq Ñ R rνs Þ Ñ Ψ 0 pνq ν F .
Since Ψ is continuous and since PCurrpF n , F Apφqq ¡ V is compact, there exists s ¡ 0 such that for every ν PCurrpF n , F Apφqq ¡ V , we have: Ψprνsq ¥ s. In particular, by Lemma 3.26, for every nonperipheral element w F n such that η rws V , we have exp pγ w q F pγ w q Ψ 0 pη rws q η rws F Ψprη rws sq ¥ s.

(13) Now let w F n be a nonperipheral element such that gpγ w q ¥ 1 2 and η rws V . Let γ w α 0 β 1 α 1 . . . α k β k be an optimal splitting of γ w , where for every i t0, . . . , ku, the path α i is an incomplete factor of γ w and for every i t1, . . . , ku, the path β i is a complete factor of γ. Using this optimal splitting, we construct another decomposition of γ w (which is not necessarily a splitting of γ w ). Since concatenations of paths in G P G and in N P G have zero exponential length by Lemma 3.18, we change the decomposition in such a way that every subpath of γ w which is a concatenation of paths in G P G and in N P G is in some α i for i t1, . . . , ku. In particular, for every i t1, . . . , ku, the exponential lengths of β i and α i are equal to their exponential lengths relative to γ w .

Let i t0, . . . , ku. The path α i has a decomposition α i α p1q i α p1 I q i . . . α pk i q i α pk I i q i where, for every j t1, . . . , k i u, the path α pjq i is a concatenation of paths in G P G and N P G and, for every j t1, . . . , k i u, the path α pj I q i is a path in G ¡ G P G such that every edge of α pj I q i either has positive exponential length relative to γ w or is in a zero stratum. Note that, by Proposition 2.5 p4q, for every j t1, . . . , k i u and every maximal subpath τ of α pj I q i contained in some zero stratum, the path τ is adjacent to a path in γ w of positive exponential length. Suppose that τ is nontrivial. Since no zero path is adjacent to a path which is a concatenation of paths in G P G and N P G by Lemma 2.9 and Proposition 2.5 p4q, either α i τ or exp pα pj I q i q ¡ 0. In the first case, we have pτq ¤ C by definition of C. Thus, there exists n N ¦ such that rf n pτqs is completely split. Thus, if the first case occurs, we may suppose, up to taking a power of f , that α i is a completely split and is a splitting unit of some β j . Let i t1, . . . , ku. Since β i does not contain splitting units which are concatenation of paths in G P G and N P G , every splitting unit of β i is an edge in G ¡ G I P G or a maximal taken connecting path in a zero stratum. By Lemma 3.21, every splitting unit of β i which is an edge in G ¡ G I P G is expanding. Let σ I be a splitting unit of β i which is a maximal taken connecting path in a zero stratum and which is not expanding. Let n N ¦ be such that rf n pσ I qs is completely split. By Lemma 3.21 and Lemma 3.20, the path rf n pσ I qs does not contain splitting units which are edges in G ¡ G P G . If rf n pσ I qs contains a splitting unit which is contained in a zero stratum, then an inductive argument shows that, up to taking a larger n, the path rf n pσ I qs is a concatenation of paths in G P G and N P G . Thus, the F-length of σ I grows at most polynomially fast under iterates of f . Thus, we see that γ w has a decomposition paq for every i t0, . . . , t 2u, the path a i is either possibly trivial, a concatenation of paths in G P G and in N P G or a maximal taken connecting path whose F-length grows at most polynomially fast; pbq for every i t0, . . . , t 1u, the path b i is a subpath of positive exponential length relative to γ w of an incomplete path of γ w such that every edge of b i either has positive exponential length relative to γ w or is in a zero stratum; pcq for every i t1, . . . , tu and every j t1, . . . , k i u, the path c piq j is a (possibly trivial) expanding splitting unit of a complete factor of γ w .

Recall that the length of every path in a zero stratum is bounded by C. Thus, for every i t0, . . . , t 1u, we have pb i q ¤ C exp pb i q.

We claim that the exponential length relative to γ w of one of the edges at the concatenation point of two consecutive nontrivial paths of the form

a i b i , b i a i 1 , a i c piq 1 , c piq j c piq j 1
or c piq k i a i 1 is positive. Indeed, for every i t1, . . . , tu(resp. i t0, . . . , t 1u) and every j t1, . . . , k i u, the path c piq j (resp. b i ) either has positive exponential length relative to γ w or is contained in a zero stratum. Note that by hypothesis, for every i t0, . . . , t 1u, the path b i is not contained in a zero stratum. Moreover, if b i is adjacent to a path a i , then the first edge of b i is not in a zero stratum by Proposition 2.5 p4q, Lemma 2.9 and the fact that the paths in zero strata that we consider in our subdivision are maximal. Hence one of the edges at the concatenation point of every path of the form a i b i , b i a i 1 has positive exponential length relative to γ w . By maximality of the splitting units contained in zero strata, one of the splitting unit in a path c exp pc piq j q exp pγ w qgpγ w q.

Note that the length of reduced iterates of edges in G P G grows at most polynomially fast, hence the F-length of reduced iterates of edges in G P G grows at most polynomially fast. Let C I ¡ 0 and k N ¦ be such that, for every splitting unit σ I which is either an edge in G P G or a maximal taken connecting path in a zero stratum whose F-length grows at most polynomially fast, and every m N ¦ , we have:

F prf m pσ I qsq ¤ C I m k
F pσ I q. The constants C I and k exist by the claim in Proposition 3.13. Let i t0, . . . , t 2u and let a i α 0 . . . α i be a decomposition of a i such that, for every j t0, . . . , i u, α i is either an edge in G P G , a path in N max P G pa i q or a maximal taken connecting path in a zero stratum whose F-length grows at most polynomially fast. By Lemma 3.16, for every m N ¦ , we have

F prf m pa i qsq ¤ i j0 F prf m pα j qsq ¤ C I m k i j1 F pα j q C I m k F pa i q,
where the last equality follows from the fact that a path in N P G is contained in some subpath α j by hypothesis. In particular,

t 2 i0 F prf n pa i qsq ¤ C I m k t 2 i0 F pa i q ¤ C I F pγ w qn k , (14) 
where the last inequality follows from the fact that, by hypothesis, every path in N max P G pγq is contained in some a i . Thus, if gpγ w q ¥ 1 2 , there exists C P ¡ 0 such that, for every n ¥ N , by Equations ( 9), ( 14) and ( 13), we have:

°t 2 i0 F prf n pa i qsq exp prf n pγ w qsq ¤ C I F pγ w qn k p3 n ¡ 2Cqgpγ w q exp pγ w q ¤ C I 1 s exp pγ w qn k p3 n ¡ 2Cqgpγ w q exp pγ w q ¤ C P n k p3 n ¡ 2Cqgpγ w q .
Recall that, for every reduced edge path γ of G, we have exp pγq ¤ F pγq. Up to taking a larger N N ¦ , we may suppose that, for every n ¥ N , we have

C P n k p3 n ¡ 2Cqgpγ w q ¤ 48gpγ w qR . (15) 
For every n ¥ N and every nonperipheral element w F n such that gpγ w q ¥ 1 2 , by Equation ( 9), we have 2R exp pγ w q F prf n pγ w qsq ¤ 2R exp pγ w q p3 n ¡ 2Cqgpγ w q exp pγ w q 2R p3 n ¡ 2Cqgpγ w q . Up to taking a larger N , we may assume that for every n ¥ N and every w F n such that gpγ w q ¥ 1 2R exp pγ w q F prf n pγ w qsq ¤ 2R p3 n ¡ 2Cqgpγ w q ¤ 12gpγ w q .

(16)

Let

δ max 6 8 7 1 1 6 , 1 1 2RC λ N p3 N ¡2Cq6 , 1 2 D F E .
Thus, in order to prove the first assertion of Lemma 5.20, it suffices to show that for every m ¥ N and every w F n such that gpγ w q ¡ δ and η rws V , the projective current rν m s φ m prη w sq is close to an element rνs in ∆ pφq in the sense of Equation ( 11). Since the goodness function is monotone by Remark 5.15, it suffices to prove it for m N . Let w F n such that gpγ w q ¡ δ and η rws V . By Equation ( 15) and the fact that gpγ w q ¥ δ ¥ 1 2 , we have

°t 2 i0 F prf N pa i qsq F prf N pγ w qsq ¤ °t 2 i0 F prf N pa i qsq exp prf n pγ w qsq ¤ C P n k p3 N ¡ 2Cqgpγ w q ¤ C P n k p3 N ¡ 2Cqδ ¤ 24R . (17) 
Moreover, by Equation ( 16) and the fact that gpγ w q ¥ δ ¥ 1 2 , we have

2R exp pγ w q F prf N pγ w qsq ¤ 6 . (18) 
Note that, for every w F n such that gpγ w q ¡ δ and η rws V , we have:

2RCλ N p1 ¡ gpγ w qq exp pγ w q p3 N ¡ 2Cqgpγ w q exp pγ w q 2RC λ N 3 N ¡ 2C ¢ 1 gpγ w q ¡ 1 ¤ 2RC λ N 3 N ¡ 2C ¢ 1 δ ¡ 1 ¤ 6 , (19) 
where the last inequality follows from the definition of δ.

Let γ PpF Apφqq be of length at most R. By the triangle inequality, we have § § § § § §

x γ,rf N pγ w qs y

F prf N pγ w qsq ¡ f γ, °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsqµpc pjq i q p °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § ¤ § § § § x γ,rf N pγ w qs y F prf N pγ w qsq ¡ °t i1 °ki j1 e γ,rf N pc piq j qs i F prf N pγ w qsq § § § § § § § § °t i1 °ki j1 e γ,rf N pc piq j qs i F prf N pγ w qsq ¡ °t i1 °ki j1 e γ,rf N pc piq j qs i °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § § § § § °t i1 °ki j1 e γ,rf N pc piq j qs i °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq ¡ f γ, °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsqµpc pjq i q p °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § . ( 20 
)
Note that an occurrence of γ or γ ¡1 in rf N pγ w qs might happen either in some rf N pc piq j qs or in some rf N pa i qs or in some rf N pb i qs or it might cross over the concatenation points. Recall that one of the edges at the concatenation point of paths of the form

a i b i , b i a i 1 , a i c piq 1 , c piq j c
piq j 1 or c piq k i a i 1 has positive exponential length relative to γ w . Recall also that the length of γ is at most equal to R. Thus the number of such crossings is at most 2R exp pγ w q. Thus:

§ § § § § § d γ, rf N pγ w qs h F prf N pγ w qsq ¡ t i1 ki j1 e γ, rf N pc piq j qs i F prf N pγ w qsq § § § § § § ¤ 2R exp pγ w q F prf N pγ w qsq t 2 i0 d γ, rf N pa i qs h F prf N pγ w qsq t 1 i0 d γ, rf N pb i qs h F prf N pγ w qsq .
Since γ is not contained in a concatenation of paths in G P G,F and N P G,F , if γ is contained in rf N pa i qs for i t1, . . . , t 1u, then γ contains an edge of rf N pa i qs of positive F-length relative to rf N pa i qs. Hence we have d γ, rf N pa i qs h ¤ F prf N pa i qsq. By Equations ( 18) and ( 17) with n N , we have

2R exp pγ w q F prf N pγ w qsq t 2 i0 d γ, rf N pa i qs h F prf N pγ w qsq ¤ 2R exp pγ w q F prf N pγ w qsq °t 1 i0 F prf N pa i qsq F prf N pγ w qsq ¤ 4 .
Moreover, since for every i t0, . . . , t 1u, we have pb i q ¤ C exp pb i q and by Equations ( 9), ( 13) and ( 19), we see that:

t 1 °i0 x γ,rf N pb i qs y F prf N pγ w qsq ¤ t 1 °i0 prf N pb i qsq F prf N pγ w qsq ¤ t 1 °i0
Cλ N exp pb i q p3 N ¡2Cqgpγ w q exp pγ w q ¤ Cλ N p1¡gpγ w qq exp pγ w q p3 N ¡2Cqgpγ w q exp pγ w q ¤ 6 .

For the third term of Inequality (20), note that, since γ PpF Apφqq, it is not contained in a concatenation of paths in G P G,F and in N P G,F . Hence an occurrence of γ always appear with an edge e of c such that 

F prf N pc piq j qsq § § § § § § § § § § § ¡ °t i1 °ki j1 e γ,rf N pc piq j qs i© ¢ °t 1 i0 rf N pγwqs F prfpa i b i a i 1 qsq ¢ °t i1 °ki j1 rf N pγwqs F prfpc piq j qsq ¢ °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq °t 1 i0 rf N pγwqs F prf N pa i b i a i 1 qsq § § § § § § ¤ § § § § § § ¡ °t i1 °ki j1 e γ,rf N pc piq j qs i© ¢ °t 1 i0 rf N pγwqs F prfpa i b i a i 1 qsq ¢ °t i1 °ki j1 rf N pγwqs F prfpc piq j qsq ¢ °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § ¤ § § § § § § ¡ °t i1 °ki j1 e γ,rf N pc piq j qs i© ¢ °t 1 i0 F prf N pb i qsq 2 t 2 °i0 F prf N pa i qsq ¢ °t i1 °ki j1 rf N pγwqs F prfpc piq j qsq ¢ °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § ¤ 2R § § § § § § °t 1 i0 F prf N pb i qsq 2 t 2 °i0 F prf N pa i qsq °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § §
.

Recall that we have t i1 k i j1 exp pc piq j q exp pγ w qgpγ w q and, for every i t1, . . . , tu and every j t1, . . . , k i u, we have either exp pc piq j q 1 or exp pc piq j q 0. Hence, we have:

°t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq ¥ °t i1 °ki j1 p F prf N pc piq j qsq ¡ 2Cq ¥ °t i1 °ki j1 p3 N ¡ 2Cq ¥ p3 N ¡ 2Cqgpγ w q exp pγ w q,
where the first inequality follows from Lemma 5.6 and the second inequality follows from the fact that f is 3K-expanding and K ¥ 1. Thus, we have

2R § § § § § § °t 1 i0 F prf N pb i qsq 2 t 2 °i0 F prf N pa i qsq °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § ¤ 2R § § § § °t 1 i0 F prf N pb i qsq 2 °t 2 i0 F prf N pa i qsq °t i1 °ki j1 rf N pγwqss F prf N pc piq j qsq § § § § ¤ 2R § § § °t 1 i0 F prf N pb i qsq p3 N ¡2Cqgpγwq exppγw q § § § 2R § § § 2 °t 2 i0 F prf N pa i qsq p3 N ¡2Cqδ exppγw q § § § .
By Equation ( 10), we have

t 1 i0 F prf N pb i qsq ¤ t 1 i0 prf N pb i qsq ¤ λ N t 1 i0 pb i q ¤ Cλ N t 1 i0 exp pb i q ¤ Cλ N exp pγ w qp1¡gpγ w qq.
Hence we have:

2R § § § °t 1 i0 F prf N pb i qsq p3 N ¡2Cqgpγwq exppγw q § § § 2R § § § 2 °t 2 i0 F prf N pa i qsq p3 n ¡2Cqδ exppγw q § § § ¤ 2R § § § Cλ N p1¡gpγwqq exppγw q p3 N ¡2Cqgpγwq exppγw q § § § 2R § § § 2C I F pγwqn k p3 N ¡2Cqδ exppγw q § § § by Equation (14) ¤ 2R § § § Cλ N p1¡gpγwqq exppγw q p3 N ¡2Cqgpγwq exppγw q § § § 2R § § § 2C P n k p3 N ¡2Cqδ § § § ¤ 2 
6 by Equation ( 17) and ( 19).

Finally, using Equation ( 12) and the fact that for every i t1, . . . , tu and every j t1, . . . , k i u, the splitting unit c piq j is expanding, we have:

§ § § § § § °t i1 °ki j1 e γ,rf N pc piq j qs i °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq ¡ f γ, °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsqµpc pjq i q p °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § § § § § § § § § § °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq ¤ ¥ B γ,rf N pc piq j qs F rf N pγwqs F prf N pc piq j qsq ¡ e γ,µpc pjq i q i °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § § § § ¤ 6 °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq 6 .
Combining all inequalities, we have §

§ § § § § d γ, rf N pγ w qs h F prf N pγ w qsq ¡ e γ, °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsqµpc pjq i q i °t i1 °ki j1 rf N pγwqs F prf N pc piq j qsq § § § § § § ¤ 4 6 2 6 6 ¤ .
This concludes the proof of Assertion p1q of Lemma 5.20 since for every i t1, . . . , tu and every j t1, . . . , k i u, we have µpc piq j q ∆ pφq. The proof of Assertion p2q is the same one as the proof of Assertion p1q, replacing is the same decomposition of γ w as in the proof of Assertion p1q, then for every m N and every i t1, . . . , t 2u, the path γ is not contained in rf m pa i qs by Lemma 3.9. Similarly, for every m N ¦ and every i t1, . . . , t 2u, we have exp prf m pa i qsq 0. Hence we do not need Equation (17). By Lemma 5.18 p5q, we have exp pγq F 1 pγq. Moreover, by Lemma 5.18 p5q, for every current rµs ∆ pφq, we have Ψ 0 pµq µ F 1 .

Replacing F and γ F by exp and γ exp in the equations in the proof of Assertion p1q concludes the proof.

For the next lemma, we need to compute the exponential length of incomplete segments in a circuit γ in G. Let exp pIncpγqq be the sum of the exponential lengths of the incomplete segments of an optimal splitting of γ. Let γ exp pIncpγqq be the sum of the exponential lengths relative to γ of the incomplete segments of an optimal splitting of γ.

Note that γ exp pIncpγqq do not depend on the choice of an optimal splitting. Note that p1¡δqR exp pγ w q.

Therefore, it suffices to prove that there exists n 0 N ¦ such that for every n ¥ n 0 , if gprf n pγ w qsq δ, then i is an incomplete factor of γ w and for every i t0, . . . , mu, the path β I

i is a P G-relative complete factor of γ w . We can modify the splitting of γ w in a new splitting γ w α 0 β 1 α 1 . . . β k α k where: piq for every i t0, . . . , ku, the path α i is a concatenation of incomplete factors and complete factors of zero exponential length relative to γ w of the old splitting; piiq for every i t1, . . . , ku, the path β i is a complete factor of positive exponential length relative to γ w of the old splitting.

In the remainder of the proof, we still refer to the paths α i as incomplete factors. By the last claim of Remark 5.15, we may suppose that gpγ w q δ, that is:

γw exp pIncpγ w qq k i0 γw exp pα i q ¥ p1 ¡ δq exp pγ w q. (21)
Claim. For every i t0, . . . , ku and every m N ¦ , we have rf m pγwqs exp pIncprf m pα i qsqq ¤ 24C 2 γw exp pα i q. Similarly, for every m N ¦ , we have rf m pγwqs exp pIncprf m pγ w qsqq ¤ 24C 2 exp pγ w q.

Proof. Since a reduced iterate of a complete factor is complete, every incomplete factor of rf m pγ w qs is contained in a reduced iterate of some α i . Thus, we have Hence it suffices to prove the result for the paths α i with i t0, . . . , ku. By Property piiq for every i t1, . . . , ku, the path β i has positive exponential length relative to γ w . Therefore, if there exists γ I N max P G pγ w q such that α i intersects γ I nontrivially, then γ I is contained in β i α i β i 1 . In particular, Lemma 5.13 applies and for every i t0, . . . , ku, if γw exp pα i q 0, then exp pα i q 0. Let i t0, . . . , ku. Suppose first that γw exp pα i q 0. By the above, we have exp pα i q 0. By Lemma 5.12, there exists N N ¦ such that for every m ¥ N , such that the total exponential length of incomplete factors in any optimal splitting of rf m pα i qs is equal to 0. Hence for every m ¥ N , the path rf m pα i qs is P G-relative completely split. Up to taking a power of f , we may assume that N 1. So this concludes the proof of the claim in the case when γw exp pα i q 0. So we may assume that γw exp pα i q ¡ 0. By Lemma 5.12, for every m N ¦ , the total exponential length of incomplete factors in rf m pα i qs is at most equal to 8C exp pα i q. By Lemma 5.6, for every i t1, . . . , ku, we have exp pα i q ¤ γw exp pα i q 2C ¤ 3C γw exp pα i q.

Hence again by Lemma 5.6, we have rf m pγwqs exp pIncprf m pα i qsqq ¤ exp pIncprf m pα i qsqq ¤ 24C 2 γw exp pα i q.

This proves the claim.

Let Λ γw be the set consisting in all incomplete factors α i of γ w whose exponential length relative to γ w is at least equal to p3.10 8 qR 6 C 12 1. Let Λ I γw be the set consisting in all incomplete factors α i of γ w which are not in Λ γw . Let γw exp pΛ γw q (resp. γw exp pΛ I γw q)

be the sum of the exponential lengths relative to γ w of all incomplete factors of γ that belongs to Λ γw (resp. Λ I γw ). We distinguish between two cases, according to the proportion of γw exp pΛ γw q in the exponential length relative to γ w of incomplete factors in γ w .

Case 1 Suppose that γw exp pΛ γw q γw exp pIncpγ w qq

1 p24C 2 Rq 2 .
This implies that γw exp pΛ I γw q γw exp pIncpγ w qq ¥ p24C 2 Rq 2 ¡ 1 p24C 2 Rq 2 .

(

) 22 
Note that, by Lemma 5.6, every path in Λ I γw has exponential length at most equal to p3.10 8 qC 12 R 6 1 2C. By Lemma 5.11, there exists n 0 N ¦ such that, for every edge path β of exponential length at most equal to p3.10 8 qR 6 C 12 1 2C and every n ¥ n 0 either rf n pβqs is a concatenation of paths in G P G and in N P G or rf n 0 pβqs contains a complete factor of exponential length at least equal to 10C. By Lemma 5.6, in the second case, the path rf n 0 pβqs has a complete factor of positive exponential length relative to rf n 0 pβqs. Let Γ γw be the set consisting in all incomplete paths α i of γ w such that α i Λ I γw and rf n 0 pα i qs is a concatenation of paths in G P G and in N P G . Let Γ I γw be the set consisting in all incomplete paths α i of γ w such that α i Λ I γw and rf n 0 pα i qs has at least one complete factor of positive exponential length relative to rf n 0 pα i qs. Note that Λ I γw Γ γw Γ I γw . Let γw exp pΓ γw q (resp. γw exp pΓ I γw q) be the sum of the exponential lengths relative to γ w of paths in Γ γw (resp. Γ I γw ). Subcase 1 Suppose that

γw exp pΓ γw q γw exp pΛ I γw q ¥ 24C 2 R 24C 2 R 1 . Then γw exp pΓ γw q ¥ 24C 2 R 24C 2 R 1 γw exp pΛ I γw q ¥ 24C 2 R ¡ 1 24C 2 R
γw exp pIncpγ w qq. Note that, for every n ¥ n 0 and every path α i Γ γw , we have exp prf n pα i qsq 0 by Lemma 3.17. By the claim, for every path α i such that α i Λ I γw and α i Γ γw , and for every n N ¦ , the total exponential length of incomplete factors in rf n pα i qs relative to rf n pα i qs is at most equal to 24C 2 γw exp pα i q. Thus, for every n ¥ n 0 , we have:

rf n pγwqs exp pIncprf n pγ w qsqq ¤ °αi Λγ w Λ I γw rf n pγwqs exp pIncprf n pα i qsqq ¤ °αi Λγ w pΛ I γw ¡Γγ w q 24C 2 γw exp pα i q ¤ 24C 2 γw exp pIncpγ w qq ¡ 24C 2 24C 2 R¡1 24C 2 R γw exp pIncpγ w qq ¤ 1 R γw exp pIncpγ w qq.
This concludes the proof of Lemma 5.21 when Subcase 1 occurs.

Subcase 2 Suppose that exp pΓ γw q exp pΛ I γw q

24C 2 R 24C 2 R 1 .
Note that the assumption of Subcase 2 and Equation ( 22) imply that

γw exp pΓ I γw q ¥ 1 24C 2 R 1 γw exp pΛ I γw q ¥ p24C 2 Rq 2 ¡ 1 p24C 2 Rq 2 1 24C 2 R 1 γw exp pIncpγ w qq.
Since every path in Γ I γw has exponential length at most equal to p3.10 8 qR 6 C 12 1 2C, by Lemma 5.7, up to taking a larger n 0 , for every path α i Γ I γw such that exp pα i q ¡ 0 and every n ¥ n 0 , the exponential length of a complete factor in rf n pα i qs is at least equal to 3 n¡n 0 exp pα i q. Moreover, for every path α i Γ I γw such that exp pα i q 0 and every n ¥ n 0 , the exponential length of a complete factor in rf n pα i qs is at least equal to 3 n¡n 0 . By Lemma 5.6, for every n ¥ n 0 and every path α i Γ I γw such that exp pα i q ¡ 0, the exponential length relative to rf n pα i qs of a complete factor in rf n pα i qs is at least equal to 3 n¡n 0 exp pα i q ¡ 2C ¥ p3 n¡n 0 ¡ 2Cq exp pα i q. Thus, for every n ¥ n 0 and every path α i Γ I γw , the exponential length relative to rf n pα i qs of a complete factor in rf n pα i qs is at least equal to p3 n¡n 0 ¡ 2Cq exp pα i q.

Therefore, for every n ¥ n 0 , the sum of the exponential lengths of complete factors in rf n pγ w qs is at least equal to

p3 n¡n 0 ¡ 2Cq γw exp pΓ I γw q ¥ p3 n¡n 0 ¡ 2Cq p24C 2 Rq 2 ¡ 1 p24C 2 Rq 2 1 24C 2 R 1 γw exp pIncpγ w qq. (23)
By the claim, for every n N ¦ , we have rf n pγwqs exp pIncprf n pγ w qsqq ¤ 24C 2 γw exp pIncpγ w qq.

Recall that the goodness function is a supremum over splittings of the considered path.

Thus, by Equation ( 23) for every n ¥ n 0 , since the maps t Þ Ñ t t a are nonincreasing for every a ¡ 0, we have

gprf n pγ w qsq ¥ p3 n¡n 0 ¡2Cq p24C 2 Rq 2 ¡1 p24C 2 Rq 2 1 24C 2 R 1 γw exp pIncpγwqq p3 n¡n 0 ¡2Cq p24C 2 Rq 2 ¡1 p24C 2 Rq 2 1 24C 2 R 1 γw exp pIncpγwqq rf n pγwqs exp pIncprf n pγwqsq ¥ p3 n¡n 0 ¡2Cq p24C 2 Rq 2 ¡1 p24C 2 Rq 2 1 24C 2 R 1 γw exp pIncpγwqq p3 n¡n 0 ¡2Cq p24C 2 Rq 2 ¡1 p24C 2 Rq 2 1 24C 2 R 1 γw exp pIncpγwqq 24C 2 γw exp pIncpγwqq ¥ p3 n¡n 0 ¡2Cq p24C 2 Rq 2 ¡1 p24C 2 Rq 2 1 24C 2 R 1 p3 n¡n 0 ¡2Cq p24C 2 Rq 2 ¡1 p24C 2 Rq 2 1 24C 2 R 1 24C 2 ,
which goes to 1 as n goes to infinity. Hence there exists n 1 N which is independent of γ w , such that, for every path γ w as in Subcase 2 and every n ¥ n 1 , we have: gprf n pγ w qsq ¥ δ.

This concludes the proof of Lemma 5.21 when Case 1 occurs.

Case 2 Suppose that, contrarily to Case 1, we have γw exp pΛ γw q γw exp pIncpγ w qq ¥ 1 p24C 2 Rq 2 .

Let α Λ γw and consider the decomposition of the reduced path α into maximal subsegments α p1q . . . α pkαq of exponential length relative to γ w equal to 2000R 3 C 6 , except possibly the last one of exponential length relative to γ w less than or equal to 2000R paq there exists a complete factor of rf n pαqs whose exponential length is at least equal to 10C;

pbq the exponential length of an incomplete factor of rf n pαqs is at most equal to 8C.

This applies in particular to every element α Λ p1q γw Λ p2q

γw and to every element α Λ I γw . For every α pjq Λ p1q γw and every n ¥ M , let α pj,nq be the (possibly degenerate) subpath of rf n pα pjq qs contained in rf n pαqs. Let Λ p3q γw be the subset of Λ p1q γw consisting in all α pjq Λ p1q

γw such that exp pα pj,Mq q ¤ 80C 2 , and let Λ p4q γw Λ p1q γw ¡ Λ p3q

γw . Suppose first that

|Λ p4q

γw | ¡ for some constant K I 0 depending only on C and R.

Recall that if α pjq Λ p4q γw , then exp pα pj,Mq q ¡ 80C 2 . Suppose towards a contradiction that rf M pα pjq qs is a concatenation of paths in G P G and in N P G . Since α pj,Mq is a subpath of rf M pα pjq qs, we have rf M pα pjq qs exp pα pj,Mq q 0. By Lemma 5.6, we see that exp pα pj,Mq q ¤ rf M pα pjq qs exp pα pj,Mq q 2C 2C, which leads to a contradiction. Hence rf M pα pjq qs satisfies paq and pbq. Note that α pj,Mq is a subpath of rf M pα pjq qs. Since exp pα pj,Mq q ¡ 80C 2 , since every incomplete factor of rf M pα pjq qs has exponential length at most equal to 8C by pbq and since an incomplete factor of rf M pα pjq qs is followed by a complete factor of rf M pα pjq qs, we see that α pj,Mq contains a subpath of a complete factor of rf M pα pjq qs. Since exp pα pj,Mq q ¡ 80C 2 and since every incomplete subpath of rf M pα pjq s has exponential length at most equal to 8C, the path α pj,Mq must contain a subpath α pj,Mq I such that the total exponential length of complete fac- tors of α pj,Mq I is at least equal to 10C. Let α pj,Mq 0 be the minimal concatenation of splittings of a fixed optimal splittings of rf m pα pjq qs which contains α pj,Mq I . Let τ pj,Mq ), we see that α pj,Mq contains a complete factor of rf M pγ w qs of exponential length at least equal to 10C ¡ 4C 6C. By Lemma 5.6, the path α pj,Mq contains a complete factor of rf M pγ w qs of exponential length relative to rf M pγ w qs at least equal to C. By Lemma 5.7 (with γ a complete factor contained in α pj,Mq ), for every n ¥ M and every α pjq Λ p4q

γw , the path α pj,nq contains a com- plete subpath of rf n pγ w qs of exponential length at least equal to 3 n¡M C. By Lemma 5.6, for every n ¥ M and every α pjq Λ p4q

γw , the path α pj,nq contains a complete subpath of rf n pγ w qs of exponential length relative to rf n pγ w qs at least equal to 3 n¡M C ¡2C. Hence for every n ¥ M , the sum of the exponential length relative to rf n pγ w qs of complete factors contained in rf n pγ w qs is at least equal to p3 n¡M C ¡ 2Cq|Λ p4q γw |. By the claim, for every n ¥ M , we have

rf n pγwqs exp pIncprf n pγ w qsqq ¤ 24C 2 γw exp pγ w q ¤ 24C 2 1 1 ¡ δ γw exp pIncpγ w qq,
where the last inequality holds by Equation ( 21). Using the above equations and the assumptions of Case 2, we see that

rf n pγwqs exp pIncprf n pγ w qsqq ¤ 24C 2 1 1¡δ γw exp pIncpγ w qq ¤ 24C 2 1 1¡δ p24C 2 Rq 2 γw exp pΛ γw q ¤ 24C 2 1 1¡δ p24C 2 Rq 2 K I 0 |Λ p4q γw | K 1 |Λ p4q γw |,
where K 1 is a constant depending only on C, R and δ. Thus, since the goodness function is a supremum over all splittings of the considered path, for every n ¥ M , we have:

gprf n pγ w qsq ¥ p3 n¡M C¡2Cq|Λ p4q γw | p3 n¡M C¡2Cq|Λ p4q γw | rf n pγwqs exp pIncprf n pαqsqq ¥ p3 n¡M C¡2Cq|Λ p4q γw | p3 n¡M C¡2Cq|Λ p4q γw | K 1 |Λ p4q γw | 3 n¡M C¡2C 3 n¡M C¡2C K 1 ,
which converges to 1 as n goes to infinity. Hence there exists M I N ¦ depending only on f such that for every n ¥ M , we have gprf n pγ w qsq ¥ δ. This proves Lemma 5.21 in this case.

Suppose now that contrarily to Equation (25), we have

|Λ p4q γw | ¤ 1 30000R 3 C 6 |Λ p3q γw |. (26) 
Then

|Λ p1q γw | |Λ p3q γw | |Λ p4q γw | ¤ ¢ 1 1 30000R 3 C 6 |Λ p3q γw |. Claim 2 Let n ¥ M , let α pjq Λ p2q γw Λ p4q
γw . The total exponential length of incomplete factors of rf n pγ w qs contained in α pj,nq is at most equal to 12C exp pα pjq q.

Proof. Let σ be an incomplete factor of rf n pγ w qs which is contained in α pj,Mq . Then one of the following holds:

piq the path σ is an incomplete factor of rf n pα pjq qs; piiq the path σ contains a subpath which is complete in rf n pα pjq qs.

Note that the total exponential length of incomplete factors of rf n pγ w qs which satisfy piq is bounded by the total exponential length of incomplete factors of rf n pα pjq qs. Thus, by Lemma 5.12, the total exponential length of incomplete factors of rf n pγ w qs which satisfy piq is bounded by 8C exp pα pjq q. Suppose that σ satisfies piiq. Let α pj,nq a 1 ca 2 be a decomposition of α pj,nq where for every i t1, 2u, the total exponential length of complete factors of rf n pα pjq qs contained in a i is equal to 2C. By Lemma 5.8 applied to γ rf n pα pjq qsrf n pα pj 1q . . . α pkα k q k qs and γ 1 rf n pα pjq qs and to γ ¡1 rf n pα p1q 1 . . . α pj¡1q qsrf n pα pjq qs and γ ¡1 1 rf n pα pjq qs, the path σ is contained in either a 1 or a 2 . For every t t1, 2u, let a t b ptq st be a decomposition of a t where, for every i t1, . . . , s t u, the path b ptq i is an incomplete factor of rf n pα pjq qs and for every i t1, . . . , s t u, the path b ptq I i is a complete factor of rf n pα pjq qs contained in a t . Suppose that there exists i t1, . . . , s 1 u such that b p1q I i is a complete factor of rf n pγ w qs. We claim that for every j ¥ i 1, the path b p1q I j is a complete factor of rf n pγ w qs. Indeed, let n I ¥ n and let j ¥ i 1. Then there is no identification between an initial segment of rf n I pb p1q I i qs and an initial segment of rf n pγ w qs not intersecting α pj,n I q as otherwise there would exist identifications with rf n I pb p1q I i qs, contradicting the fact that b p1q I i is complete. Similarly, there is no identification between a terminal segment of rf n I pb p1q I i qs and a terminal segment of rf n pγ w qs not intersecting α pj,n I q as otherwise there would exist identifications with rf n I pcqs. The claim follows. Similarly, if there exists i t1, . . . , s 2 u such that b p2q I i is a complete factor of rf n pγ w qs, then for every j i, the path b p2q I j is a complete factor of rf n pγ w qs. Hence we may assume that for every t t1, 2u and every s t1, . . . , s t u, the path b ptq I s is incomplete in rf n pγ w qs. Therefore, for every t t1, 2u, the whole path a t is incomplete in rf n pγ w qs. Therefore, in order to prove the claim, it suffices to bound the exponential lengths of a 1 and a 2 . Let t t1, 2u. By Lemma 3.16, we have exp pa t q ¤ st i1 exp pb ptq i q exp pb ptq I i q.

For every i t1 . . . , s t u, the path b ptq i satisfies piq and we already have a bound on the total exponential length of such paths. Moreover, since the total exponential length of complete factors of α pj,nq contained in a t is at most equal to 2C, we have st i1 exp pb ptq I i q ¤ 2C.

Thus, the total exponential length of incomplete factors of rf n pγ w qs contained in α pj,Mq is at most equal to 8C exp pα pjq q 2 ţ1 st i1 exp pb ptq I i q ¤ 8C exp pα pjq q 4C ¤ 12C exp pα pjq q,

where the last inequality follows from the fact that every element of Λ p2q γw Λ p4q

γw has positive exponential length.

By Claim 2 and Lemma 5.6, for every n ¥ M and every α pjq Λ p2q γw Λ p4q

γw , the total exponential length relative to rf n pγ w qs of incomplete factors in the subpath of rf n pγ w qs contained in rf n pα pjq qs is at most equal to 12C γw exp pα pjq q 2C ¤ 14C γw exp pα pjq q. Hence by definition, for every n ¥ M and every path α pjq Λ p2q γw Λ p4q

γw , we have rf n pγwqs exp pIncprf n pγ w qsq α pj,nq q ¤ 14C exp pα pjq q.

We claim that, for every n ¥ M , every element in Λ rf n pγwqs is contained in an iterate of an element in Λ γw . Indeed, note that, by the choice of M (in the above application of Lemma 5.11), for every element α Λ I γw , the exponential length of an incomplete factor in rf n pαqs is at most equal to 8C. Hence an incomplete factor of rf n pαqs whose exponential length is at least equal to p3.10 8 qR 6 C 12 1 cannot be contained in an iterate of an element of Λ γw . The claim follows. Therefore, using Equation ( 26) for the third inequality, the value of exp pΛ rf M pγwqs q is at most equal to °αpjq Λ p3q γw exp pα pj,Mq q °αpjq Λ p4q This concludes the proof of Lemma 5.21.

In the next proposition, we need to work with CT maps that represent both an almost atoroidal outer automorphism and its inverse. We therefore introduce the following conventions:

Let f I : G I Ñ G I be a CT map representing φ ¡M , which exists by Theorem 2.10. We denote by K I the constant similar to the constant K given above Lemma 5.6 and by C f I the bounded cancellation constant given by Lemma 4.9. We set C I maxtK I , C f Iu as in Equation (7). We denote by G p I the invariant subgraph of G I such that FpG p Iq F, by We also need a result which shows that the exponential length is invariant by F nequivariant quasi-isometry. In order to prove this, we need some additional definitions. Let G be a connected (pointed) graph whose fundamental group is isomorphic to F n and let r G be the universal cover of G. Let φ OutpF n q be an exponentially growing outer automorphism. Let p G be the graph obtained from r G as follows. We add one vertex v gA for every left class gA, with g F n and A is a subgroup of F n such that rAs Apφq and we add one edge between v gA and a vertex v of r G if and only if the vertex v is contained in the tree T gAg ¡1. The graph p G is known as the electrification of r G (see for instance [Bow]). For a path γ in G, we denote by r γ a lift of γ in r G. Let p γ be the path in p G constructed as follows. Let r γ a 1 b 1 . . . a k b k be the decomposition of r γ such that, for every i t1, . . . , ku, the path b i is contained in some tree T g i A i g ¡1 i with g i F n , A i a subgroup of F n such that rA i s Apφq and b i is maximal for the property of being contained in such a tree T g i A i g ¡1 i . Then p γ is a path p γ a 1 c 1 . . . a k c k where, for every i t1, . . . , ku, the path c i is the two-edge path whose endpoints are the endpoints of b i and the middle vertex of c i is v g i A i . Note that the path p γ is not uniquely determined.

Indeed, it is possible that there exists i t1, . . . , ku such that b i is contained in two distinct trees T A and T B with rAs, rBs Apφq. However, if p γ and p γ I are two such paths associated with r γ, then pp γq pp γ I q. Proposition 5.22. Let n ¥ 3, let φ OutpF n q and let f : G Ñ G be a CT map representing a power of φ.

p1q There exists a constant B 0 ¥ 1 such that, for every element w F n with exp pγ w q ¡ 0, we have:

1 B 0 exp pγ w q ¤ px γ w q ¤ B 0 exp pγ w q. p2q Let f I : G I Ñ G I be a CT map representing a power of φ ¡1 . There exists a constant B ¡ 0 such that, for every element w F n , we have:

1 B exp Ipγ I
w q ¤ exp pγ w q ¤ B exp Ipγ I q. Proof. p1q Recall the definition of the graph G ¦ from just above Lemma 3.11. We can turn the graph G ¦ into a metric graph by assigning, to every edge e EG ¦ , the length equal to the length of the path p G ¦peq in G. Since the graph G ¦ is finite, there exists a constant B I such that the diameter of every maximal subtree of G ¦ is at most B I . Let

B 0 2B I 2.
Let w F n . Let γ w a 1 b 1 . . . a k b k be the decomposition of γ w with a 1 and b k possibly empty such that, for every i t1, . . . , ku, the path b i is a maximal concatenation of paths in G I P G and in N P G and, for every i t1, . . . , ku and every edge e of a i , we have γw exp peq 1. Note that by the definition of the exponential length we have exp pγ w q k i1 pa i q.

Let A be a subgroup of F n such that rAs Apφq. Let i t1, . . . , ku and let α be a subpath of a i whose lift is contained in T A . By Proposition 3.13, the subpath α is contained in a concatenation of paths in G P G and in N P G . Since a i does not contain any concatenation of paths in G P G and N P G , the path α is a proper subpath of an EG INP. By the definition of C (see Equation ( 7)), we see that pαq ¤ C. Thus, we have: pa i q ¤ C pp a i q and exp pγ w q ¤ C k i1 pp a i q.

Claim. Let A be a subgroup of F n such that rAs Apφq. Let β be a subpath of γ w such that a lift of β is contained in T A . There does not exist i t1, . . . , ku such that both β b i and β b i 1 are not reduced to a point. Proof. Suppose towards a contradiction that such an element i t1, . . . , ku exists. Then a i 1 is contained in β. By the above, the path a i 1 is contained in an EG INP σ. Since both b i and b i 1 are concatenations of paths in G I P G and N P G , the path a i 1 must contain the initial or the terminal segment of σ. Since β is contained in a concatenation of paths in G P G and in N P G by Proposition 3.13, the EG INP σ must be contained in β and β a i 1 σ. This contradicts the maximality of the paths b i and b i 1 .

Hence β is either contained in b i a i 1 or in a i 1 b i 1 . Let i t1, . . . , ku and let β be a maximal subpath of γ w containing edges of a i and such that a lift of β is contained in some T A with A a subgroup of F n such that rAs Apφq. By the claim, the path a i has a decomposition a i c i d i c ¡ i such that c i and c ¡ i are possibly trivial, lifts of c i and c ¡ i are contained in trees T A and T A ¡ with A and A ¡ subgroups of F n such that rA s, rA ¡ s Apφq and one of the following holds: paq β d i ; pbq β a i $ β and β a i tc i , c ¡ i u. Note that for every i t1, . . . , ku, we have pp a i q ¤ p p d i q 4. Then

px γ w q ¥ k i1 p p d i q ¥ k i1 p pp a i q ¡ 4q k i1 pp a i q ¡ 4k.
Moreover, if β is a path which satisfies the hypothesis of the claim, then there exists at most one i t1, . . . , ku such that β b i is not reduced to a point. Therefore, we see that px γ w q ¥ k. Thus, we have

exp pγ w q ¤ C k i1
pp a i q ¤ Cp pp γ w q 4kq ¤ 5C pp γ w q.

This proves the first inequality of Assertion p1q. We now prove the second inequality. For every i t1, . . . , ku, there exists a unique edge path b ¦ i G ¦ such that p ¦ pb ¦ i q b i . Let i t1, . . . , ku. Since G ¦ is a finite graph, there exist (possibly trivial) reduced paths β ¦ i , δ ¦ i and δ ¦ I 

¦ i δ ¦ i β ¦ i δ ¦ I i .
By Lemma 3.11 p1q, the paths p ¦ pδ ¦ i q, p ¦ pβ ¦ i q and p ¦ pδ ¦ I i q are reduced edge paths of G. By definition of B I , we have pδ ¦ i q, pδ ¦ I i q ¤ B I . Since p ¦ pβ ¦ i q is a circuit which is a concatenation of paths in G P G and in N P G , by Proposition 3.13, there exists a subgroup H i of F n such that rH i s Apφq and the conjugacy classes of elements of F n represented by p ¦ pβ ¦ i q are contained in rH i s. Hence the length of { p ¦ pβ ¦ i q is bounded by 2. Hence the length of the path p b i is bounded by 2 2B I B 0 . Therefore, since exp pγ w q ¡ 0, we have pp γ w q k i1 pa i q p p b i q ¤ k i1 p pa i q B 0 q ¤ pB 0 1q k i1 pa i q pB 0 1q exp pγ w q.

This proves Assertion p1q.

p2q Let f I be as in Assertion p2q and let w F n . Suppose first that exp pγ w q 0. Then γ w is a concatenation of paths in G I P G and in N P G . By Proposition 2.5 p4q and Lemma 2.9, there does not exist an edge in a zero stratum which is adjacent to a concatenation of paths in G P G and in N P G . Since zero strata are contractible by Proposition 2.5 p3q, it follows that γ w is a concatenation of paths in G P G and in N P G . By Proposition 3.13, there exists a subgroup A of F n such that rAs Apφq and w A. Since Apφq Apφ ¡1 q by Equation (1), by Proposition 3.13, we have exp Ipγ I w q 0. So we may suppose that exp pγ w q ¡ 0 and that exp Ipγ I w q ¡ 0. By Assertion p1q, in order to prove Assertion p2q, it suffices to prove that p G and p G I are F n -equivariantly quasi-isometric. Since Apφq is a malnormal subgroup system, this follows from [START_REF] Bowditch | Relatively hyperbolic groups[END_REF]Theorem 7.11] and [Hru, proof of Theorem 5.1].

Proposition 5.23. Let φ OutpF n , Fq and let f : G Ñ G be as in Remark 5.15. Let f I : G I Ñ G I be as in the above convention. Let δ p0, 1q and let W be a neighborhood of K P G pφq in PCurrpF n , F Apφqq. There exists n 0 N ¦ such that for every n ¥ n 0 and every nonperipheral element w F n such that η rws W , one of the following holds: gprf n pγ w qsq ¥ δ or g I prf In pγ I w qsq ¥ δ. Proof. Let w F n be a nonperipheral element such that η rws W . Let R 10C p1¡δq 2 8C I B 2 .

We use the alternative given by Lemma 5.21 with the constants δ and R. If the first alternative of Lemma 5.21 occurs, then we are done. Suppose that gprf n pγ w qsq δ. There exists n 0 N ¦ depending only on f such that for every n ¥ n 0 , we have rf n pγwqs exp pIncprf n pγ w qsqq ¤ 10C R γw exp pIncpγ w qq. By Lemma 5.14, since gprf n pγ w qsq δ, we have gpγ w q δ. Thus, we see that γw exp pIncpγ w qq ¥ p1 ¡ δq exp pγ w q. Let γ P be the reduced circuit in G such that rf n 0 pγ P qs γ w . Since gpγ w q δ and rη rws s K P G pφq, by Lemma 5.21, we see that By Lemma 5.16, we see that there exists n 1 ¥ n 0 depending only on f I such that for every n ¥ n 1 , g I prf In pγ I w qsq ¥ δ.

This concludes the proof.

Proposition 5.24. Let φ OutpF n , Fq and let f : G Ñ G be as in Remark 5.15. Let U be a neighborhood of ∆ pφq, let U ¡ be a neighborhood of ∆ ¡ pφq, let V be a neighborhood of K P G pφq. There exists N N ¦ such that for every n ¥ 1 and every F Apφqnonperipheral w F n such that η rws V , one of the following holds φ N n pη rws q U or φ ¡Nn pη rws q U ¡ . Proof. Let δ p0, 1q and let w F n be a nonperipheral element with η rws V . By Proposition 5.23, there exists n 0 N ¦ such that for every n ¥ n 0 , we have gprf n pγ w qsq ¥ δ or g I prf In pγ I w qsq ¥ δ. By Lemma 5.20 p1q, there exists n 1 ¥ n 0 such that for every n ¥ n 1 , we have φ N n pη rws q U or φ ¡Nn pη rws q U ¡ .

This concludes the proof.

The above proposition gives a result of North-South dynamics outside of a neighborhood of K P G pφq. As K P G pφq is empty for a relative expanding outer automorphism by Lemma 3.27 p1q, we can now prove Theorem 5.1.

Proof of Theorem 5.1. Let φ OutpF n , Fq be an expanding outer automorphism relative to F. By Lemma 3.27, we have K P G pφq ∅. Let U be a neighborhood of ∆ pφq and let U ¡ be a neighborhood of ∆ ¡ pφq. By Proposition 5.24, there exists N N ¦ such that for every n ¥ 1 and every nonperipheral element w F n , we have φ N n pη rws q U or φ ¡Nn pη rws q U ¡ . Recall that, by Proposition 2.15, the rational currents are dense in PCurrpF n , F Apφqq.

Hence we can apply [START_REF] Lustig | North-South dynamics of hyperbolic free group automorphisms on the space of currents[END_REF]Proposition 3.3] to see that φ 2N has generalized North-South dynamics. Then, using [LU2, Proposition 3.4], we conclude that φ has generalized North-South dynamics. exponential length at least equal to 4C N 1. Therefore, Lemma 5.8 implies that the path rf N pγ w qs contains a subpath of rf N pp γqs of exponential length at least 1 which is a complete factor of rf N pγ w qs relative to G P G . Hence we have: By Lemma 3.26, we have Ψ 0 pφ N pη rws qq exp prf N pγ w qsq Ψ 0 pη rφ N pwqs q exp pγ φ N prwsq q.

Therefore, we have gprf N pγ w qsq ¥ gpη rws q. p2q Let rµs ∆ pφq. Since rµs is a convex combination of extremal points of ∆ pφq and since for every element γ P cs , the application xγ, .y is linear, it suffices to prove the result for every extremal point of ∆ pφq. So we may suppose that rµs is an extremal point of ∆ pφq. Let G i be the minimal subgraph of G such that FpG i q F 1 . Since rµs is extremal and since φ| F 1 is expanding relative to F, by Proposition 4.4, there exists an expanding splitting unit σ in G i whose initial direction is fixed by f and such that, for every path γ PpF 1 Apφqq, we have xγ, µy µpCpγqq lim nÑV xγ, rf n pσqsy F 1 prf n pσqsq . By Lemma 5.18 p5q, since the path rf n pσqs is contained in G i and, for every path γ PpF Apφqq, the above limit is finite, we have lim nÑV xγ, rf n pσqsy F 1 prf n pσqsq lim nÑV xγ, rf n pσqsy exp prf n pσqsq . Hence it suffices to prove that there exists γ P cs such that lim nÑV xγ, rf n pσqsy exp prf n pσqsq ¡ 0. Let e be an edge of G ¡ G I P G . Note that, since σ is a splitting unit, for every m N ¦ , the path rf m pσqs is completely split. Hence an occurrence of e in lim mÑV rf m pσqs is contained in a splitting unit of lim mÑV rf m pσqs which is either an INP or is equal to e. By Lemma 3.7 if an INP γ I contains e, there exists γ I 0 N P G such that e γ I 0 γ I . For every m N ¦ , we denote by N pm, eq the number of occurrences of e or e ¡1 in rf m pσqs which are splitting units of rf m pσqs and by EGIN P peq the set of all EG INPs containing e. Note that, since the set N P G is finite by Lemma 3.4, so is the limit lim nÑV γEGINP peq xγ, rf n pσqsy exp prf n pσqsq .

Since for every m N ¦ , we have xe, rf m pσqsy N pm, eq γEGINP peq xγ, rf n pσqsy , we see that the limit lim mÑV N pm, eq exp prf m pσqsq exists. We claim that there exists an edge e of G ¡ G I P G such that lim mÑV N pm, eq exp prf m pσqsq ¡ 0. Indeed, note that, by Lemma 3.23 since rf m pσqs is P G-relative completely split, we have exp prf m pσqsq ȩ EpG¡G I P G q N pm, eq.

Hence ȩ

EpG¡G I P G q lim mÑV N pm, eq exp prf m pσqsq 1, which implies the claim. Let e 0 be an edge of G ¡ G I P G which satisfies the claim. Since, for every m N ¦ , the path rf m pσqs is completely split, if an occurrence of e 0 or e ¡1 0 in rf m pσqs is a splitting unit and if γ is a path in rf m pσqs of the form γ γ 1 e 0 γ 2 or γ γ 1 e ¡1 0 γ 2 , then such a decomposition of γ is a splitting of γ. Thus, if pγ 1 q pγ 2 q L, then the path γ is in P cs and it contains the occurrence of e 0 . Hence since µ µpσq, we Proof. The proof is similar to the one of [START_REF] Clay | Atoroidal dynamics of subgroups of OutpF N q[END_REF]Lemma 4.13]. We prove the result for ∆ pφq, the proof for ∆ ¡ pφq being symmetric. By Lemma 6.1 p2q, for every rµs ∆ pφq, we have gprµsq ¡ 0. By compactness of ∆ pφq and continuity of g, there exists δ 0 ¡ 0 such that, for every µ ∆ pφq, we have gpµq ¥ δ 0 . Let δ p0, δ 0 q. Let U be a neighborhood of ∆ pφq. Since the function g is continuous, there exists an open neighborhood U 0 U of ∆ pφq such that, for every rµs U 0 , we have gprµsq ¡ δ. Up to taking a smaller U 0 , we may suppose that K P G pφq U 0 ∅ (this is possible since K P G pφq is compact and ∆ pφqK P G pφq ∅). In particular, by Lemma 3.26, for every nonperipheral element w F n such that η rws U 0 , we have exp pγ w q ¡ 0.

Let w F n be a nonperipheral element such that η rws U 0 . By Lemma 6.1 p1q, we have gprf N pγ w qsq ¥ gpη rws q ¡ δ. By Lemma 5.20 p1q, there exists M ¥ N such that, for every w F n such that η rws U 0 , we have φ M prη rws sq U 0 . Let U I M ¡1 £ i0 φ i pU 0 q.

Since φp∆ pφqq ∆ pφq by Proposition 4.12, the set U I is an open neighborhood of ∆ pφq which is stable by φ by density of rational currents (see Proposition 2.15) and continuity of φ. This concludes the proof. Lemma 6.3. Let f : G Ñ G be as in Remark 5.15. Suppose that the outer automorphism φ is of type p2q in Definition 4.3. Let F ¤ F 1 ¤ F 2 tF n u be as in the beginning of Section 6. Let i t1, . . . , k ¡ 1u be such that FpG i q F 1 . Let V I ¨.

Proof. The proof follows [START_REF] Clay | Atoroidal dynamics of subgroups of OutpF N q[END_REF]Lemma 4.14]. We prove the result for p ∆ pφq, the proof for p ∆ ¡ pφq being symmetric. Given rµs PCurrpF n , F Apφqq ¡ K P G pφq, a finite set of reduced edge paths P in G and some ¡ 0 determine an open neighborhood N prµs, P, q of rµs in PCurrpF n , F Apφqq ¡ K P G pφq as follows: Since K P G pφq is compact, if is small enough, this defines an open neighborhood of rµs in PCurrpF n , F Apφqq. For a subset X PCurrpF n , F Apφqq ¡ K P G pφq, let N pX, P, q ¤ rµsX N prµs, P, q.

For L ¡ 0, let P pLq be the set of reduced edge paths in G i of length at most equal to L which are not contained in any concatenation of paths in G P G,F 1 and N P G,F 1 . By Lemma 5.18 p3q, the set P pLq is also the set of reduced edge paths in G i of length at most equal to L which are not contained in any concatenation of paths in G P G and N P G . Let rµs ∆ pφq and let t r0, 1s. Let K P G prµs, tq trp1 ¡ tqν tµs | rνs K P G pφq, ν F 1 µ F 1 1u.

Remark that p ∆ pφq ¤ rµs∆ pφq, tr0,1s

K P G prµs, tq.

Consider a decomposition of γ a 1 b 1 . . . a k b k where, for every j t1, . . . , ku, the path a j is contained in G ¡ G i and, for every j t1, . . . , ku, the path b j is contained in G i with a 1 and b k possibly empty. By Lemma 5.18 p1q, p2q and Remark 5.19, up to taking a larger path γ, we may suppose that b 1 is nontrivial. By Lemma 5.18 p2q and Remark 5.19, for every j t1, . . . , ku, the path a j is contained in G P G . Since γ is not contained in a concatenation of paths in G P G and N P G , there exists j t1, . . . , ku such that b j is not contained in a concatenation of paths in G P G and N P G . But then xb j , νy xb j , λtµy, that is xb j , ν ¡ λtµy 0. By additivity of ν ¡ λtµ, we have xγ, ν ¡ λtµy ¤ xb j , ν ¡ λtµy 0.

This contradicts the choice of γ. Hence rν ¡ λtµs K P G pφq. Therefore, we have Ψ 0 pν ¡ λtµq 0. Since rνs V V prµs, tq and since ν F 1 µ F 1 1, we see that Ψ 0 pνq tΨ 0 pµq. By linearity of Ψ 0 and the fact that Ψ 0 pµq 1, we have t tΨ 0 pµq Ψ 0 pνq λtΨ 0 pµq λt. Since t ¡ 0 and Ψ 0 pµq 1, we have λ 1. Suppose first that t $ 1. Let ν I 1 1¡t pν¡tµq, so that rν I s K P G pφq and ν I F 1. Then rνs rp1 ¡ tqν I tµs K P G prµs, tq. Thus, we have V V prµs, tq K P G prµs, tq.

Suppose now that t 1. Then Ψ 0 pνq 1 ν F . We claim that if γ PpF 1 Apφqq is such that νpCpγqq ¡ 0, then γ G i . Indeed, otherwise there would exist an edge e contained in G ¡ G i such that νpCpeqq ¡ 0. By the description of G ¡ G i given in Lemma 5.18 p1q, p2q and additivity of the current ν, we can choose the edge e G ¡ G i in such a way that e G P G . This would imply that ν F 1 ¡ Ψ 0 pνq, a contradiction. The claim follows. But, since for every path γ PpF 1 Apφqq such that γ G i , we have νpCpγqq µpCpγqq, we see that ν µ and that ν K P G prµs, 1q. This concludes the proof of the claim.

Since p ∆ pφq is compact, there exist L ¡ 0 and ¡ 0 such that, for every rµs ∆ pφq and every t p0, 1s, we have V prµs, t, L, q N pK P G prµs, tq, P pLq, q V poly pt, q p V .

When t 0, there exists ¡ 0 such that V poly p q p V . Let s p0, 1q, and let V be an open neighborhood of K P G pφq such that, for every rνs V with ν F 1 1, we have: Ψ 0 pνq s.

(

) 27 
For every rµs ¡ N p p ∆ pφq, p P pLq, q ¡ V © p ∆ pφq, there exist rµ poly s K P G pφq, rµ exp s ∆ pφq and t p0, 1s such that rµs rtµ exp p1 ¡ tqµ poly s.

  we can define the cylinder set in f 2 F n defined by r γ as C r m pr γq Cpr r mpr γqsq.

  has a splitting γ I σ I 1 σ I 2 . . . σ I k which consists in EG INPs. Let r I be the height of σ I 1 . By Proposition 2.5 p9q, there exists a unique unoriented INP of height r I and this INP starts and ends with an edge in H r I. Let σ be the INP of γ which has a decomposition σ σ 1 σ 2 , where σ 2 is a nontrivial initial segment of γ I . As every splitting unit of γ is an EG INP, so is σ. Let r be the height of σ. Since the first edge of σ I 1 is of height r I , we cannot have r I ¡ r. If r r I , then by the uniqueness statement in Proposition 2.5 p9q, we have σ I

  consisting in the following paths: piq paths in Z r ; piiq paths in tρ r , ρ ¡1 r u; piiiq concatenations of paths in Z r and in tρ r , ρ ¡1 r u. which is a concatenation of paths in G P G and in N P G . Proof. It suffices to prove that d Z r , ρ r h contains every edge of G P G and every EG INP.

d

  Z r , ρ r h and restricts to a bijection on the set of circuits of d Z r , ρ r h . By Lemma 3.10 concatenations of paths in G P G and in N P G are contained in d Z r , ρ r h

.

  ¡ xγ, νy ¡ °γI N P G pγq xγ I , νy N pγ I , γq °γI N P G,lr pγq xγ I , νy © N pγ, eq ©© . Definition 3.25. The space of polynomially growing currents, denoted by K P G pfq, is the compact subset of PCurrpF n , F Apφqq consisting in all projective classes of currents rνs PCurrpF n , F Apφqq such that: Ψ 0 pνq 0. Finally, we define the F-simplicial length function . F : CurrpF n , F Apφqq Ñ R as ν F 1 2 ¡ °e EpG¡G I P G,F q xe, νy ¡ °γN P G,F ¡ xγ, νy ¡ °γI N P G,F pγq xγ I , νy N pγ I , γq °γI N P G,lr,F pγq xγ I , νy

N

  Let γ N P G . Then the value d pγ I , γq γI N P G,lr pγq d γ I , η rws h measures the number of occurrences of γ or γ ¡1 in γ w which are not induced by an occurrence of a path γ I N P G containing properly γ or γ ¡1 and contained in γ w . Indeed, an occurrence of γ in a path γ I N P G containing properly γ will be counted in °γI N P G pγq d γ I , η rws h N pγ I , γq. Moreover, if an occurrence of γ is contained in two distinct paths γ 1 , γ 2 N P G pγq, Lemma 3.24 ensures that this occurrence is contained in a path γ 3 N max P G,lr pγq. Therefore, the value ¡ γI N P G pγq d γ I , η rws h N pγ I , γq γI N P G,lr pγq d γ I , η rws h measures an occurrence of γ or γ ¡1 in a larger path, and each such occurrence will be counted exactly once. Therefore, the equation below Equation (3) measures the number of occurrences of γ and γ ¡1 in N max P G pγ w q. Thus, the equality (3) holds. The last assertions of Lemma 3.26 then follows by definition of K P G pfq and of F .

  pγq d γ I , η rws h N pγ I , γq γI N P G,lr pγq d γ I , η rws h ©N pγ, eq measures the number of occurrences of e in γ w which are not contained in a path of N max P G pγ w q. Thus, for every nonperipheral element and every edge e EpG ¡ G I P G q,

  in an iterate of a and, by Proposition 3.13, γ is contained in a concatenation of paths in G P G and N P G . The claim follows in this case. So we may assume that b $ a ¡1 . Suppose first that the axes Axpaq and Axpbq of a and b are disjoint. Then γ is contained in the axis of a ¡1 b. Thus, by Proposition 3.13, γ is contained in a concatenation of paths in G P G and N P G and the claim follows in this case. Suppose now that Axpaq Axpbq $ ∅. Let γ I a and γ I b be the reduced circuit in G associated with a and b. Then γ is contained in the union of γ I a γ I b . Recall that, by Proposition 3.13, the paths γ I a and γ I b are concatenation of paths in G P G and N P G .

  m pσqsy F prf m pσqsq exists and is finite.

  lim mÑV pw, rζ m pσqsq ||ζ m pσq|| ppq exists and is finite. Hence the limit lim mÑV xw, rζ m pσqsy ||ζ m pσq|| ppq exists and is finite.

Lemma 5. 7 .

 7 Let f : G Ñ G be a 3K-expanding CT map. Let γ be a P G-relative completely split edge path of positive exponential length. Thenexp prfpγqsq ¥ 3 exp pγq. Proof. Consider a P G-relative complete splitting γ γ I 0 γ 1 γ I 1 . . . γ m γ I m of γ,where, for every i t0, . . . , mu, the path γ Ii is either a (possibly trivial) concatenation of paths in G P G and in N P G or a (possibly trivial) reduced maximal taken connecting path in a zero stratum and, for every i t1, . . . , mu, the path γ i is an edge in an irreducible stratum of positive exponential length. By Lemma 3.23, we have exp pγq m i1 pγ i q.

Figure 2 :

 2 Figure 2: Illustration of Lemma 5.8. If a complete factor of γ 1 contained in rγs is not contained in γ 2 , then it is a complete factor of rγs.

m

  , β p2q m , and σ p1q m , σ p2q m be paths such that rf m pαqs σ p1q m α m σ p2q m , rf m pβ p1q qs β p1q

  piq i is r i -legal. Moreover, by Assertion p1q of the claim an INP contained in b i cannot intersect the path piq i . Since the paths b 1 and b 2 are P G-relative completely split, the paths b 1 and b 2 split respectively at the origin of p1q 1 and at the end of p2q 2 . So we may suppose that b 1 p1q 1 and b 2 p2q

  kt a t 1 b t 1 a t 2 ,where:

  an edge in G ¡ G I P G , hence has positive exponential length relative to γ w . Since paths in zero strata and concatenations of paths in G P G and N P G cannot be adjacent by Proposition 2.5 p4q and Lemma 2.9, paths of the form a i c piq 1 and c piq k i a i 1 have positive exponential length since in this case c piq 1 or c piq k i is an edge in G ¡ G I P G . This proves the claim. Remark that, by construction and the definition of goodness of a reduced path, we have

F

  and γ F by exp and γ exp , adding the following arguments. Let γ and w F n be as in Assertion p2q. Then γ is not contained in a contenation of paths in G P G and in N P G by Lemma 5.18 p3q. If γ w a 0 b 0 a 1 c p1q 1 b t 1 a t 2 ,

  rf n pγwqs exp pIncprf n pγ w qsqq ¤ 10C R γw exp pIncpγ w qq. Consider an optimal splitting γ w α I 0 β I 1 α I 1 . . . α I m β I m , where for every i t0, . . . , mu, the path α I

  exp pIncprf m pα i qsqq.

1

  and τ pj,Mq 2 be paths such that rf M pα pjq qs τ pj,Mq 1 pj 1q . . . α pkα k q k qs and γ 1 α pj,Mq 0 and once with γ ¡1 rf M pα p1q 1 . . . α pj¡1q qsτ pj,

F

  I the corresponding F-length and by exp I the corresponding exponential length. Let g I be the corresponding goodness function. If w F n , we denote by γ I w the corresponding circuit in G I .

i

  such that: piq the path β ¦ i is a circuit; piiq the paths δ ¦ i and δ ¦ I i are contained in maximal trees of G ¦ ; piiiq we have b

  pγ I w qsq exp Iprf In 0 pγ I w qsq ¥ 1 ¡ p1 ¡ δq δ ¡ 0.

  exp prf N pγ w qsqgprf N pγ w qsq ¥

  eq exp prf m pσqsq γPcs,e 0 γ xγ, µy ¡ 0. Therefore, there exists γ P cs such that xγ, µy ¡ 0 and gprµsq ¡ 0. Lemma 6.2. Let f : G Ñ G be as in Remark 5.15. Let U ¨be open neighborhoods of ∆ ¨pφq. There exist open neighborhoods U I ¨ U ¨of ∆ ¨pφq such that φ ¨1pU I ¨q U I ¨.

N

  prµs, P, q 4 rνs PCurrpF n , F Apφqq ¡ K P G pφq §

  There exist two convex compact subsets p ∆ ¨pφq of PCurrpF n , Apφq Aq such that the following holds. Let U ¨be open neighborhoods of ∆ ¨pφq in PCurrpF n , ApφqAq and p V ¨be open neighborhoods of p

  If γ is an exceptional path, it follows from the definition. If γ is an NEG INP, let r be the height of γ. Then H r is an NEG stratum. As γ is a Nielsen path, we can apply Proposition 2.5 p11q to conclude the proof of the claim. Since e 1 and e 2 are linear edges, for every k N ¦ , the paths rf k pe 1 qs and rf k pe 1 qs do not contain splitting units which are edges in EG strata. Thus e 1 and e 2 are contained in G P G . By Lemma 3.6, the path w is a concatenation of paths in G P G and in N P G . Hence γ is a concatenation of paths in G P G and in N P G . This concludes the proof. Let γ be a Nielsen path in G. Then γ is a concatenation of paths in G P G and in N P G .Proof. By Lemma 2.7, the path γ is completely split, and every splitting unit in its complete splitting is either an INP or a fixed edge. Let γ σ 1 . . . σ k be the complete splitting of γ. Let i t1, . . . , ku. If σ i is a fixed edge, then σ i is contained in G P G . If σ i is an NEG INP then, by Lemma 3.7, the path σ i is a concatenation of paths in G P G and in N P G . If σ i is an EG INP then, by definition, we have σ i N P G . Hence γ is a concatenation of paths in G P G and in N P G .

	Lemma 3.8. Lemma 3.9. p1q Let γ be an edge in G P G (resp. an edge in G P G,F ). The path rfpγqs is
	a concatenation of paths in G P G and in N P G (resp. a concatenation of paths in G P G,F
	and in N P G,F ).

  Then lim nÑV rµ n s rµs if and only if, for every reduced edge path γ PpF Apφqq, we

	have	lim nÑV	xγ, µ n y µ n F	xγ, µy µ F	.	(5)
	Proof. Suppose first that lim					
	λ n µ n F	lim nÑV	xγ, µ n y µ n F	xγ, µy µ F	

nÑV rµ n s rµs. Thus there exists a sequence pλ n q nN ¦ of positive real numbers such that lim nÑV λ n µ n µ. By continuity of . F , we have lim nÑV λ n µ n F µ F . By linearity of . F and x., .y in the second variable, for every reduced edge path γ PpF Apφqq, we have lim nÑV xγ, λ n µ n y

  As before, for every i t0, . . . , ku, we will denote by M ,B i the diagonal block in M corresponding to B i and by M , r B i the diagonal block in M corresponding to r B i . Lemma 4.1. [Gup1, Lemma 8.8] Let A be a finite alphabet equipped with a partition A b k i0 B i . Let ζ be a substitution and let M be its transition matrix. Let N ¦ . p1q The eigenvalues of M , r B i are those of M B i with possibly additional eigenvalues of absolute value at most equal to 1.

  αq ||M n ppqpαq|| , where ||M n ppqpαq|| is the norm of the column of M n ppq corresponding to α. Claim. Suppose that there exists C ¥ 1 such that for every n N, we have ||ζ n paq|| ppq ¤ ||M n ppqpαq|| ¤ C||ζ n paq|| ppq .

	Then	lim nÑV	pw, ζ n paqq ||ζ n paq|| ppq

be the L 1 -norm on R |A | . By [LU1, Remark 4.1], since lim nÑV M n ppqpw,αq λ n n d λ exists, so does lim nÑV M n ppqpw,

  Therefore, in order to conclude the proof of the proposition, it remains to prove that the hypothesis of the claim is true in our context. Let ζ n paq x 1 . . . x |ζ n paq| and letζ n pαq w 1 . . . w |ζ n paq| . Let X n paq be the list x 1 , . . . , x |ζ n paq| and let X n p paq be the sublist of X n paq consisting in all letters in p¡1 i1 B i . Let X p ,nq pαq be the list w 1 , . . . , w |ζ n paq| and let X p ,nq p pαq be the sublist of X p ,nq pαq which consists in all elements of X p ,nq pαq that do not belong to i¤p r B i B i ¡B ppq i . Note that |X p ,nq p pαq| ||M n ppqpαq|| and that |X n p paq| ||ζ n paq|| ppq . The fact that ||ζ n paq|| ppq ¤ ||M n ppqpαq|| follows from the fact that we have an injection from X n p paq to X p ,nq p pαq by sending the letter x i X n p paq to w i X p ,nq p pαq. Since every word of length contained in X p ,nq p pαq contains a letter in X n p paq, we have an application from X p ,nq p pαq to X n p paq defined as follows. Let w X p ,nq p pαq and let j w t1, . . . , |ζ n paq|u be the minimal integer such that x jw X n p paq and x jw is a letter in w. Then the application sends w to x jw . By construction, the cardinal of the preimage of any x X n p paq is at most equal to . Therefore, we have ||ζ n paq|| ppq ¤ ||M n ppqpαq|| ¤ ||ζ n paq|| ppq .

				claim, since the limit
	lim nÑV	M n ppqpw, αq ||M n ppqpαq||
	exists, and is not equal to zero for some w, the same is true for
	lim nÑV	pw, ζ n paqq ||ζ n paq|| ppq	.
	This proves the claim.		
	This concludes the proof.		

  r¡1 are exactly the contractible components of G r¡1 . Hence the number of letters in the second category is finite. The number of letters in the third category is finite by Proposition 2.5 p9q. The remaining letters of A γ are finite by definition. Let ζ be the following substitution on A γ . If a A γ represents a unique path in G, we set ζpaq rfpaqs. If a A γ represents several paths in G, we set ζpaq a. We claim that ζ is a well-defined substitution. Indeed, by Proposition 2.5 p6q, if a is a letter in A γ which represents a unique path in G, then rfpaqs is completely split and every splitting unit in rfpaqs is represented by a unique letter by the construction of letters in the fourth and fifth category. Moreover, if a A

γ represents several paths, then the definition of ζ does not depend on the choice of a representative of a. Hence ζ is a well-defined substitution.

  Then, with the notations of Lemma 4.11, the reduced circuit γ P m rα m s can be written as a product γ P m rf m pσqs ¦ β m where pβ m q ¤ K 1 and F prf m pσqs ¦ q ¥ F prf m pσqsq ¡ 2K 1 . Applying Lemma 4.11 twice, we see that, for every element γ PpF Apφqq, we have lim mÑV xγ, γ m y F pγ m q xγ, η σ y

	and	lim mÑV	xγ, γ P m y F pγ P
	By Lemma 3.29, we have		
		lim	

m q xγ, η σ y . mÑV η rwms η rwms F η σ .

  then the first case of Assertion p7q occurs and otherwise the second case of Assertion p7q occurs. Moreover, if the second case occurs, the extension ¤ trF n su is an HNN extension. Thus there exists a subgroup A of F n such that F trAsu. By [BFH1, Corollary 3.2.2], one can obtain an element g of F n such that F n A ¦ g by taking a circuit in the image of p G ¦ which contains G ¡ G i exactly once. Suppose now that G ¡ G i is a lollipop extension. By Assertion p2q, the circuit C in G ¡ G i consists in edges in G P G . Thus, either G ¦ is obtained from p ¡1

  cF peq 1. Since pγq ¤ R, such an edge e can be crossed by at most R occurrences of γ in c. Thus, for every reduced edge path c in G, we have xγ, cy ¤ 2R F pcq. pa i b i a i 1 qsq,

							Hence we have
				§ § § § § §	°t i1 °t i1 °ki °ki j1 j1 rf N pγwqs e γ, rf N pc piq j qs F prfpc piq i j qsq	§ § § § § §	¤ 2R.
	Since						
		F prf N pγ w qsq	t i1	k i j1	rf N pγwqs F	prf N pc piq j qsq	t 1 i0	rf N pγwqs
	using Lemma 5.3 and Lemma 5.6 for the last inequality we have:
	§ § § § § °t i1	°ki j1	e F prf N pγwqsq ¡ °t i1 °ki γ,rf N pc piq j qs i j1 °t i1 °ki j1 rf N pγwqs e γ,rf N pc piq j qs i

F

prf N

  Lemma 5.21. Let φ OutpF n , Fq and let f : G Ñ G be as in Remark 5.15. Let δ p0, 1q, and let R ¡ 1. There exists n 0 N ¦ such that for every n ¥ n 0 and every nonperipheral element w F n such that η rws K P G pφq, we either have gprf n pγ w qsq ¥ δ Let w F n be a nonperipheral element such that η rws K P G pφq. Suppose that n N ¦ is such that gprf n pγ w qsq δ. Assuming for now that we have proved that we deduce that exp prf n pγ w qsq ¤ 10C p1¡δqR exp pγ w q. Indeed, we have rf n pγqs exp pIncprf n pγqsqq p1 ¡ gprf n pγqsqq exp prf n pγqsq ¥ p1 ¡ δq exp prf n pγqsq.

	or			
	rf n pγwqs			
	rf n pγwqs			
	Thus we have			
	exp prf n pγ w qsq ¤ 1 1¡δ ¤ 10C	rf n pγwqs exp	pIncprf n pγ w qsqq ¤ 10C p1¡δqR	γw exp pIncpγ w qq

γ exp pIncpγqq p1 ¡ gpγqq exp pγq ¤ exp pγq. exp pIncprf n pγ w qsqq ¤ 10C R γw exp pIncpγ w qq and exp prf n pγ w qsq ¤ 10C p1 ¡ δqR exp pγ w q. Proof. exp pIncprf n pγ w qsqq ¤ 10C R γw exp pIncpγ w qq,

  Note that, since for every α Λ γw , we have γw exp pαq ¥ p3.10 8 qR 6 C 12 1, we see that |Λ p1q γw | ¥ 120000R 3 C 6 |Λ p2q γw |. has exponential length at most equal to 2000R 3 C 6 1 2C by Lemma 5.6. By Lemma 5.11, there exists M N ¦ depending only on f such that for every n ¥ M and every reduced edge path α of exponential length at most equal to p3.10 8 qR 6 C 12 1 2C, either rf n pαqs is a concatenation of paths in G P G and in N P G or the following holds:

	(24)
	Note that every element in Λ p1q

3 C 6 . Let Λ p1q γw 3 α pjq | α Λ γw , j t1, . . . , k α u, γw exp pα pjq q 2000R 3 C 6 A , Λ p2q γw 3 α pjq | α Λ γw , j t1, . . . , k α u, γw exp pαq 2000R 3 C 6 A . γw Λ p2q γw

  30001R 3 C 6 120000R 3 C 6 |Λ p4q γw | K 0 |Λ p4q γw |, where K 0 is a constant depending only on C and R. Note that Λ γw Λ p2q γw Λ p3q γw Λ p4qγw and for every j t2, 3, 4u, every path in Λ pjq γw has exponential length at most equal to 2000R 3 C 6 . Thus, we see thatγw exp pΛ γw q ¤ 2000R 3 C 6 p|Λ p2q γw | |Λ p3q γw | |Λ p4q γw |q ¤ K I 0 |Λ p4q γw |

	1 30000R 3 C 6 |Λ p3q γw |.	(25)
	Therefore, as |Λ p1q γw | |Λ p3q γw | |Λ p4q γw |, by Equation (24), we have	
	|Λ p2q γw | ¤	

  80C 2 |Λ p3q γw | 14Cp2000R 3 C 6 q|Λ p4q γw | 14C 120000R 3 C 6 |Λ p2q γw |, we have |Λ p3q γw | ¥ 60000R 3 C 6 |Λ p2q γw |. Hence we have rf M pγwqs exp pΛ rf M pγwqs q ¤ 81C 2 |Λ p3q γw | 14C °αΛ p2q γw exp pαq ¤ 81C 2 |Λ p3q γw | p14Cqp2000R 3 C 6 q|Λ p2q γw | ¤ 81C 2 |Λ p3q γw | 2C|Λ p3q γw | 83C 2 |Λ p3q γw |. Let n ¥ M . Suppose first that Rq 2 .93Then we can apply Case 1 to conclude the proof of Lemma 5.21. Otherwise, we have p24C 2 Rq 2 rf n pγwqs exp pΛ rf n pγwqs q ¥ rf n pγwqs exp pIncprf n pγ w qsqq. Lemma 5.12 and Lemma 5.6, we have rf n pγwqs exp pIncprf n pγ w qsq ¤ exp pIncprf n pγ w qsq ¤ 8C exp pIncprf M pγ w qsq ¤ 10C rf M pγwqs exp pIncprf M pγ w qsq. Rq 2 rf n pγwqs Rq 2 rf n pγwqs Rq 2 p83C 2 |Λ p3q

	°αΛ p2q γw p24C 2 By Hence we have ¤ 80C 2 |Λ p3q γw | C|Λ p3q γw | 14C °αΛ p2q γw exp pαq ¤ 81C 2 |Λ p3q γw | 14C Since by Equation (24) ¢ 1 1 30000R 3 C 6 |Λ p3q γw | ¥ |Λ p1q rf n pγwqs exp pΛ rf n pγwqs q rf n pγwqs exp pIncprf n pγ w qsqq 1 rf n pγwqs exp pIncprf n pγwqsqq γw exp pIncpγwqq ¤ p24C 2 exp pIncprf n pγwqsqq rf M pγwqs exp rf M pγwqs exp pαq exp pIncprf M pγwqsqq γw exp pIncpγwqq pIncprf M pγwqsqq ¤ 10Cp24C 2 exp pΛ rf n pγwqs q rf n pγwqs exp pΛγ w q ¤ 10Cp24C 2 γw |q 2000R 3 C 6 |Λ p3q γw | ¤ 10C R .

γw rf M pγwqs exp pIncprf M pγ w qsq α pj,Mq q °αpjq Λ p2q γw rf M pγwqs exp pIncprf M pγ w qsq α pj,Mq q ¤ 80C 2 |Λ p3q γw | 14C

°βΛ p4q γw exp pβq 14C °αΛ p2q γw exp pαq ¤ °αΛ p2q γw exp pαq. γw | ¥
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, we have:

pcq rfpτqs σ ¡1 1 τ I σ ¡1

2 with τ I a (possibly trivial) path. Note that σ ¡1

1 τ I σ ¡1 2 is reduced, so that there is no identification between α ¡1 1 and τ I and between τ I and β ¡1 2 . Let e σ 1 be the terminal edge of σ 1 and let e σ 2 be the initial edge of σ 2 . By Proposition 2.5 p9q, both e σ 1 and e σ 2 are edges in EG strata. Since f is 3K-expanding, for every i t1, 2u, the path rfpe σ i qs has length at least equal to 3K. Recall that, for every i t1, 2u, by definition of K, we have pσ i q ¤ K, so that pα i q, pβ i q ¤ K. Since rfp p2q

1 qs α 1 τ 1 and rfp p1q 2 qs α 2 τ 2 , the path rfpe σ 1 qs contains a nondegenerate terminal segment of τ ¡1

1 and the path rfpe σ 2 qs contains a nondegenerate initial segment of length 2K of τ 2 . As e σ 1 is r 1 -legal and as f is a relative train track by Proposition 2.5 p1q, we see that the last edge of τ ¡1

1 is not the last edge of α 1 . Similarly, the first edge of τ 2 is not the first edge of β 2 . Therefore, we have rτ ¡1

2 τ 2 . Thus we have rrfp p2q 1 qsrfpτqsrfp p1q 2 qss rτ ¡1

and there is no identification between τ ¡1

1 and α ¡1 1 , α ¡1 1 and τ I , τ I and β ¡1 2 and β ¡1 2 and τ 2 . Therefore, if τ I is not trivial, then we have a contradiction as τ ¡1

1 and τ 2 are not identified in rfpaqs. Suppose that τ I is trivial. Then the paths τ ¡1

1 and τ 2 are identified in rfpaqs only if a terminal segment of α ¡1

1 is identified with an initial segment of β ¡1

2 . Since EG INP are uniquely determined by their initial and terminal edges by Proposition 2.5 p9q, we see that σ 1 σ ¡1

2 . Hence α ¡1

1 β 2 and either τ ¡1

1 is an initial segment of τ ¡1

2 or τ 2 is an initial segment of τ 1 . Up to changing the orientation of γ, we

2 , then τ 2 is identified with edges in b 1 , a contradiction. As we have considered every case, we see that δ 1 and δ 2 are trivial and exp paq exp pτq 0.

Lemma 5.14. Let f : G Ñ G be a 3K-expanding CT map. There exists n 0 N ¦ such that for every n ¥ n 0 , and every closed reduced edge path γ of G, we have the following relation between the goodness of γ and the one of rf n pγqs: gprf n pγqsq ¥ gpγq. Proof. By Lemma 3.22, there exists N 0 N ¦ such that, for every n ¥ N 0 and every P Grelative splitting unit σ, the exponential length of the path rf n pσqs is at least equal to the one of σ. By Lemma 5.12, there exists N 1 such that for every n ¥ N 1 and every closed reduced edge path γ of G, the total exponential length of incomplete segments in any optimal splitting of rf n pγqs is bounded by 8C exp pγq. Let N 2 rlog 3 p10C 16C 2 qs N ¦ be such that for every x, y ¥ 0 such that px, yq $ p0, 0q, we have p3

Let φ OutpF n , Fq be an almost atoroidal outer automorphism which satisfies Definition 4.3 p2q. Let F ¤ F 1 ¤ F 2 trF n su be a sequence of free factor system given in this definition. Let f : G Ñ G be a CT map representing a power of φ with filtration ∅ G 0 G 1 . . . G k G and such that there exist p and i in t1, . . . , ku such that FpG p q F and FpG i q F 1 . We denote by CurrpF 1 , F 1 Apφqq the set of currents of CurrpF n , F 1 Apφqq whose support is contained in f 2 F 1 . Note that, since the extension F 1 ¤ trF n su is sporadic, either F 1 trH 1 s, rH 2 su or F 1 trHsu for some subgroups H 1 , H 2 of F n . Up to assuming that H 2 is the trivial group, we may assume that F 1 trH 1 s, rH 2 su. Moreover, we have F 1 Apφq trA 1 s, . . . , rA s s, rB 1 s, . . . , rB t su where, for every j t1, . . . , su, the group A j is contained in H 1 and for every j t1, . . . , tu, the group B j is contained in H 2 . Since F 1 Apφq is a malnormal subgroup system, the set trA 1 s, . . . , rA s su is a malnormal subgroup system of H 1 and the set trB 1 s, . . . , rB t su is a malnormal subgroup system of H 2 .

Let

XpF 1 q CurrpH 1 , trA 1 s, . . . , rA s suq ¢ CurrpH 2 , trB 1 s, . . . , rB t suq. Let µ CurrpF 1 , F 1 Apφqq. We set ψ 1 pµq pµ| f 2 H 1 , µ| f 2 H 2 q XpF 1 q. Since µ is F ninvariant, ψ 1 pµq does not depend on the choice of the representatives of the conjugacy classes of H 1 and H 2 . Let pµ 1 , µ 2 q XpF 1 q. Since the subgroup system F 1 Apφq is malnormal, for every j t1, 2u, the current µ j can be extended in a canonical way to a current µ ¦ j CurrpF n , F 1 Apφqq. The current µ ¦ j is such that, for every Borel subset

By the property of µ ¦ j described above, we see that

The maps ψ 1 and ψ 2 are clearly continuous.

Lemma 5.17. The space CurrpF 1 , F 1 Apφqq is homeomorphic to XpF 1 q.

Proof. We prove that ψ 1 and ψ 2 are inverse from each other. Let µ CurrpF n , F 1 Apφqq.

This concludes the proof.

For every φ OutpF n , Fq, we refer to the definition of PpF Apφqq given above Lemma 3.28.

6 North-South dynamics for almost atoroidal relative outer automorphism

Let n ¥ 3 and let F be a free factor system of F n . Let φ OutpF n , Fq be an almost atoroidal outer automorphism which satisfies Definition 4.3 p2q. Let F ¤ F 1 ¤ F 2 trF n su be a sequence of free factor system given in this definition. We use the convention of Remark 5.19. We will show a result of North-South type dynamics for φ (see Theorem 6.4). Note that, if Apφq $ trF n su the simplices ∆ ¨pφq are still defined. Note that, by Lemma 3.27 p3q and Lemma 5.18 p4q, for every current µ CurrpF n , F Apφqq, we have µ F 1 ¡ 0. Let K P G pφq be the set of polynomially growing currents of φ. Note that, combining Lemma 4.8 and Lemma 5.18 p5q, we have

be the convexes of attraction and repulsion of φ.

In order to promote a global North-South type dynamics, we need to construct contracting neighborhoods of p ∆ pφq. To this end, following [CU], we introduce a notion of goodness for currents of PCurrpF n , F Apφqq.

Let f : G Ñ G be as in Remark 5.15. By Lemma 3.21, let N N ¦ be such that, for every edge e of G ¡ G I P G , we have exp prf N peqsq ¥ 4C 1. Let C N C f N be a constant associated with f N given by Lemma 4.9. Let L ¡ 0 be such that for every path γ of G of length at least L, we have prf N pγqsq ¥ C N 1. The constant L exists since f N lifts to a quasi-isometry on the universal cover of G. Let P cs be the finite set of paths of the form γ γ 1 eγ 2 , where, for every i t1, 2u, the path γ i has length equal to L, the path e is an edge in G ¡ G I P G and γ 1 eγ 2 is a splitting of γ. In Lemma 6.1 p2q, we prove in particular that P cs is not empty. We will denote by p γ the edge e.

Let rµs PCurrpF n , F Apφqq. Recall the definition of Ψ 0 just above Definition 3.25. By Lemma 3.27 p1q, p2q, we have φpK P G pφqq K P G pφq. Hence, for every current rµs K P G pφq, we have Ψ 0 pφpµqq ¡ 0. Thus, for every current rµs PCurrpF n , F Apφqq ¡ K P G pφq, we can define the completely split goodness gpµq of µ by gpµq 1 Ψ 0 pφ N pµqq γ Pcs xγ, µy .

Observe that the function g is continuous and that it defines a well-defined continuous function PCurrpF n , F Apφqq ¡ K P G pφq Ñ R. Lemma 6.1. Let f : G Ñ G be as in Remark 5.15. p1q Let w F n be such that exp pγ w q ¡ 0. We have gprf N pγ w qsq ¥ gpη rws q. p2q For every rµs ∆ pφq, we have gprµsq ¡ 0 Proof. p1q The proof of this assertion is similar to the one of [START_REF] Clay | Atoroidal dynamics of subgroups of OutpF N q[END_REF]Lemma 4.9 (2)]. Let γ P cs be such that d γ, η rws h ¡ 0. Then γ γ w . For every occurrence of γ in γ w , by the choice of L, C N and by Lemma 4.9, the path rf N pγ w qs contains rf N pp γqs, which has Let ¡ 0. Let V poly p q rΨ ¡1 0 pp¡ , qqs. It is clear, by the continuity of Ψ 0 and the definition 3.25 of K P G pφq, that ¡0 V poly p q K P G pφq. Let t p0, 1s and rµs ∆ pφq and let µ be such that µ F 1 1. By Lemma 5.18 p5q, we have Ψ 0 pµq 1. Let

Note that, since Ψ 0 pµq 1, we have rνs V poly prµs, t, q if for rνs such that ν F 1 1, we have

N pK P G prµs, tq, P pLq, q V poly prµs, t, q.

Claim. For every rµs ∆ pφq and every t p0, 1s, we have V V prµs, tsq K P G prµs, tq.

Proof. The inclusion K P G prµs, tq V V prµs, tsq being immediate since Ψ 0 is linear and vanishes on K P G pφq, we prove the converse inclusion. Let ν V V prµs, tq. By definition 4.5 of ∆ pφq, for every rµ I s ∆ pφq and for every reduced edge path γ not contained in G i , we have xγ, µ I y 0. Hence, by Lemma 5.18 p4q, the current rµs is entirely determined by the cylinder sets determined by reduced edge paths contained in G i which are not contained in concatenation of paths in G P G,F 1 and N P G,F 1 . By Lemma 5.18 p3q, the current rµs is entirely determined by the cylinder sets determined by reduced edge paths contained in G i which are not contained in concatenation of paths in G P G and N P G . Let γ be a reduced edge path which is contained in G i and which is not contained in a concatenation of paths in G P G and N P G . By Lemma 3.27, for every projective current rν I s K P G pφq, the support of ν I is contained in f 2 Apφq. By Proposition 3.13, if g F n is such that there exists a subgroup A of F n such that rAs Apφq and g A, then γ g is a concatenation of paths in G P G and N P G . In particular, if γ I is a path of G such that tg V , g ¡V u Cpγ I q, then γ I is contained in a concatenation of paths in G P G and in N P G . In particular, since γ is not contained in a concatenation of paths in G P G and in N P G , for every projective current rν I s K P G pφq, we have xγ, ν I y 0. Suppose that ν F 1 µ F 1 1. By Lemma 5.18 p5q, we also have Ψ 0 pµq 1. There exists λ ¡ 0 such that for every path γ which is contained in G i and which is not contained in a concatenation of paths in G P G and N P G , we have xγ, νy xγ, λtµy. We claim that ν ¡ λtµ CurrpF n , F Apφqq and that rν ¡ λtµs K P G pφq. Indeed, for the first part, it suffices to show that for every path γ PpF 1 Apφqq, we have pν ¡ λtµqpCpγqq ¥ 0. This follows from the fact that, for every path γ PpF 1 Apφqq such that γ G i , the path γ is not contained in a concatenation of paths in G P G and in N P G . Hence we have xγ, νy xγ, λtµy. Moreover, if γ PpF 1 Apφqq, then we have µpCpγqq 0. This shows that ν ¡ λtµ CurrpF n , F Apφqq.

We now prove that rν ¡ λtµs K P G pφq. Otherwise, by Lemma 3.27, the support of ν ¡ λtµ is not contained in f 2 Apφq. By Proposition 3.13, there exists a path γ which is not contained in a concatenation of paths in G P G and in N P G such that xγ, ν ¡ λtµy ¡ 0. By Lemma 6.1 p2q, for every rµs ∆ pφq, we have gprµsq ¡ 0. By compactness of ∆ pφq and continuity of g, there exists δ 1 ¡ 0 such that, for every µ ∆ pφq, we have gpµq ¥ δ 1 . Since N p p ∆ pφq, p P pLq, q ¡ V p ∆ pφq is compact, and since the function g is continuous, there exists δ I 0 ¡ 0 such that the set U g ¡1 ppδ I 0 , Vqq is an open neighborhood of pNp p ∆ pφq, p P pLq, q ¡ V q p ∆ pφq intersecting V . Note that U K P G pφq ∅. We set

V prµs, t, L, q V poly p q pU V q .

Let δ 0 and M 0 be the constants given by Lemma 5.20 p2q for the above choice of ¡ 0 and L ¡ 0. By replacing δ 0 with a smaller constant and M 0 with a larger one, we may suppose that δ 0 and M 0 also satisfy the conclusion of Lemma 5.20 p1q for U as well (where the open neighborhood W of K P G pφq needed in Lemma 5.20 p1q is such that

Claim 2 There exists N N ¦ such that φ N p p V I q p V I .

Proof. Let w F n be a nonperipheral element such that η rws p V I . Suppose first that η rws U p V I . Since η rws K P G pφq, by Lemma 3.26, we have exp pγ w q ¡ 0. By Lemma 6.1 p1q, we have:

gprf N pγ w qsq ¥ gpη rws q ¡ δ I 0 .

By Lemma 5.20 p1q, there exists M ¥ M 0 N such that, for every w F n such that η rws U p V I and every n ¥ 1, we have φ M n prη rws sq U p V I p V I .

Suppose now that η rws V p V I . By Lemma 3.27 p3q and Lemma 5.18 p4q for every projective current rµs PCurrpF n , F Apφqq, we have µ F 1 ¡ 0. For a projective current rµs PCurrpF n , F Apφqq, let

Then, by definition of V and by Lemma 3.26, we have Ψ F 1 prη rws sq exp pγ w q F 1 pγ w q s. If rη rws s K P G pφq, then since φpK P G pφqq K P G pφq, we are done. Therefore, we may suppose that rη rws s K P G pφq and, by Lemma 3.26, for every n N ¦ , we have exp prf n pγ w qsq ¥ 1. Let R ¡ 1 be such that 1 1 Rp1¡δ 0 q 10C p1¡sq ¤ . By Lemma 5.21, one of the following assertion holds:

p1¡δ 0 qR exp pγ w q.

105 First assume that Assertion p1q holds. Let rµ rφ M prwsqs s ∆ pφq be the projective current associated with rφ M prwsqs given by Lemma 5.20 p2q. Let t Ψ F 1 prη rφ M prwsqs sq. We claim that rη rφ M prwsqs s V prµ rφ M prwsqs s, t, L, q. Indeed, we clearly have rη φ M prwsq s V poly prµ rφ M prwsqs s, t, q.

By Lemma 5.20 p2q, for every reduced edge path γ P pLq, we have

.

Therefore we have rη rφ M prwsqs s N pK P G prµ rφ M prwsqs s, tq, P pLq, q. The claim follows by Equation ( 27). By definition of p V I , we see that φ M prη rws sq rη rφ M prwsqs s p V I .

Suppose now that Assertion p2q holds. We claim that rη rφ M prwsqs s V poly p q. By Lemma 5.18 p1q,p2q and Remark 5.19, the graph G ¡ G i consists in edges in G P G . By Lemma 5.18 p6q, we have

Hence we have

Note that ψ ¡1

F 1 pp0, qq V poly p q. Thus, we have Φ M prη rws sq rη rφ M prwsqs s V poly p q p V I . Therefore, by density of the rational currents (see Proposition 2.15) and continuity of φ, we have φ M p p V I q p V I . This proves Claim 2.

Let

Since φp p ∆ pφqq p ∆ pφq, the set p V P is an open neighborhood of p ∆ pφq which is stable by φ by construction. This concludes the proof.

Theorem 6.4. Let n ¥ 3 and let F be a free factor system of F n . Let F ¤ F 1 ¤ F 2 be a sequence of free factor systems such that the extension F 1 ¤ F 2 is sporadic. Let φ OutpF n , Fq be such that φ preserves F ¤ F 1 ¤ F 2 and φ| F 1 is an expanding automorphism relative to F. Let p ∆ ¨pφq be the convexes of attraction and repulsion of φ and ∆ ¨pφq be the simplices of attraction and repulsion of φ. Let U ¨be open neighborhoods of ∆ ¨pφq in PCurrpF n , F Apφqq and p V ¨be open neighborhoods of p ∆ ¨pφq in PCurrpF n , F Apφqq. There exists M N ¦ such that for every n ¥ M , we have φ ¨npPCurrpF n , F Apφqq ¡ p V © q U ¨.

Proof. The proof is similar to [START_REF] Clay | Atoroidal dynamics of subgroups of OutpF N q[END_REF]Theorem 4.15]. We replace φ by a power so that φ satisfies Remark 5.15. By Lemmas 6.2 and 6.3, we may suppose that φpU q U and that φp p V q p V . Let M be the exponent given by Proposition 5.24 by using U U and U ¡ V p V ¡ . For every current rµs PCurrpF n , F Apφqq ¡ φ M p p V © q, we have φ M prµsq U since φ ¡M prµsq p V ¡ . Therefore, for every rµs PCurrpF n , F Apφqq¡ p

V ¡ , we have φ 2M prµsq U and for every n ¥ M , we have φ 2n prµsq U since φpU q U . Therefore for every n ¥ M , we see that

A symmetric argument for φ ¡1 shows that φ 2 acts with generalized North-South dy- namics. By [LU2, Proposition 3.4], we see that φ acts with generalized North-South dynamics. This concludes the proof.

Corollary 6.5. For every open neighborhood p V ¡ PCurrpF n , F Apφqq of p ∆ ¡ , there exist M N ¦ and a constant L 0 such that, for every current rµs PCurrpF n , F Apφqq ¡ p V ¡ , and every m ¥ M , we have φ m pµq F ¥ 3 m¡M L 0 µ F . Proof. Let f : G Ñ G be as in Remark 5.15. By Lemma 6.1 p2q, there exist a constant δ ¡ 0 and an open neighborhood U of ∆ pφq such that, for every projective current rµs U , we have gprµsq ¥ δ. We first prove Corollary 6.5 for currents rµs U . By Proposition 2.15, it suffices to prove the result for rational currents. By Lemma 6.1 p1q, since U K P G pφq ∅, for every element w F n such that rη rws s U , we have gprf N pγ w qsq ¥ δ. By Lemma 5.16 p1q and Lemma 5.3, there exists a constant K 1 ¡ 0 depending on δ such that for every m ¥ N and for every element w F n such that rη w s U , we have exp prf m pγ w qsq ¥ T ELpm ¡ N, rf N pγ w qsq ¥ 3 m¡N K 1 exp prf N pγ w qsq. Since PCurrpF n , F Apφqq¡ p V ¡ is compact and since K P G pφq p V ¡ , by Lemma 3.26 and Lemma 3.27 p3q, there exists a constant K 2 ¡ 0 such that such that for every m ¥ N and for every element w F n such that rη rws s U , we have expprf N pγwqsq F prf N pγwqsq ¥ K 2 . Thus, we have F prf m pγ w qsq ¥ exp prf m pγ w qsq ¥ 3 m¡N K 1 exp prf N pγ w qsq ¥ 3 n¡M K 1 K 2 F prf N pγ w qsq.
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We set K 3 K 1 K 2 . By compactness of PCurrpF n , F Apφqq and Lemma 3.27 p3q, there exists L ¡ 0 such that for every current rµs PCurrpF n , F Apφqq, we have φ N pµq F µ F ¥ L. Hence for every m ¥ N and for every element w F n such that rη rws s U , we have F prf m pγ w qsq ¥ 3 m¡N K 3 L F pγ w q. Hence the proof follows when rµs U .

By Theorem 6.4, there exists M 1 N ¦ such that, for every m ¥ M 1 and every rµs PCurrpF n , F Apφqq¡ p V ¡ , we have φ m prµsq U . Let M M 1 N . By the above, Lemma 3.26, the density of rational currents (see Proposition 2.15) and continuity of φ, for every current rµs p V ¡ , for every n ¥ M , we have φ n pµq F ¥ 3 n¡M K 3 L φ M 1 pµq F . By compactness of PCurrpF n , F Apφqq and Lemma 3.27 p3q, there exists L I ¡ 0 such that for every current rµs PCurrpF n , F Apφqq, we have φ M 1 pµq F µ F ¥ L I . Hence for every n ¥ M , we have φ n pµq F ¥ 3 n¡M K 3 LL I µ F .

This concludes the proof.