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Development of an object-oriented �nite element program:
application to metal-forming and impact simulations
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L.G.P C.M.A.O-E.N.I.T, 47 Av d’Azereix BP 1629, Tarbes 65016, Cedex, France

Abstract

During the last 50 years, the development of better numerical methods and more powerful computers

has been a major enterprise for the scienti�c community. In the same time, the �nite element method has

become a widely used tool for researchers and engineers. Recent advances in computational software have

made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high

strain and high-strain rate problems. In this �eld, an accurate analysis of large deformation inelastic problems

occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of

plastic ow.

In this presentation, the object-oriented implementation, using the C++ language, of an explicit �nite

element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured

codes for the �nite element method and facilitates the development, the maintainability and the expandability

of such codes. The most signi�cant advantage of OOP is in the modeling of complex physical systems such

as deformation processing where the overall complex problem is partitioned in individual sub-problems based

on physical, mathematical or geometric reasoning.

We �rst focus on the advantages of OOP for the development of scienti�c programs. Speci�c aspects of

OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes

are detailed. Then we present the approach used for the development of our �nite element code through

the presentation of the kinematics, conservative and constitutive laws and their respective implementation in

C++. Finally, the e�ciency and accuracy of our �nite element program are investigated using a number of

benchmark tests relative to metal forming and impact simulations.

Keywords: Nonlinear �nite-element; Explicit integration; Large deformations; Plasticity; Impact; C++; Object-oriented

programming
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1. Introduction

After a long time of intensive developments, the �nite element method has become a widely

used tool for researchers and engineers. An accurate analysis of large deformation inelastic problems

occurring in metal-forming or impact simulations is extremely important as a consequence of a high

amount of plastic ow. This research �eld has been widely explored and a number of computational

algorithms for the integration of constitutive relations have been developed for the analysis of large

deformation problems.

In this presentation an object-oriented implementation of an explicit �nite element program called

DynELA is presented. This �nite element method (FEM) program is written in C++ [10]. The

development of object-oriented programming (OOP) leads to better structured codes for the �nite

element method and facilitates the development and maintainability [1]. A signi�cant advantage of

OOP concerns the modeling of complex physical systems such as deformation processing where the

overall complex problem is partitioned in individual subproblems based on physical, mathematical

or geometric reasoning.

2. Governing equations and integration

The conservative laws and the constitutive equations for path-dependent material are formulated

in an updated Lagrangian �nite element method in large deformations. Both the geometrical and

material nonlinearities are included in this setting. In the next paragraph, we summarize some basic

results concerning nonlinear mechanics relevant to our subsequent developments.

2.1. Basic kinematics and constitutive equations

One of the most important aspects in the development of a �nite element code for nonlinear

mechanics involves the proper determination of the kinematic description. In a Lagrangian description

let
→

X be the reference coordinates of a material point in the reference con�guration 
X ⊂ R
3 at

time t = 0, and
→

x be the current coordinates of the same material point in the current con�guration


x ⊂ R
3 at time t. The motion of the body is then de�ned by

→

x = �(
→

X ; t). Let F = @
→

x =@
→

X
be the deformation gradient with respect to the reference con�guration 
X and C = F

TF the left

Cauchy–Green tensor. According to the polar decomposition theorem, F=RU=VR; U and V are

the right and left stretch tensors, respectively, and R is the rotation tensor. By computing the rate

of change of the deformation gradient F, one may introduce the spatial velocity gradient L=
•

FF−1

where
•

() is the time derivative of (). The symmetric part of L, denoted by D, is the spatial rate

of deformation and its skew-symmetric part W is the spin tensor. According to this kinematics, the

mass, momentum and energy equations which govern the continuum are given below:

•

�+ � div
→

v = 0; (1)

�

•

→

v = �
→

f + div �; (2)



�
•

e = � :D− div
→

q + �r; (3)

where � is the mass density,
→

v the material velocity,
→

f the body force vector, � the Cauchy stress

tensor, e the speci�c internal energy, r the body heat generation rate and
→

q the heat ux vector.

The symbol ‘:’ denotes the contraction of a pair of repeated indices which appear in the same order,

so A : B= AijBij.

The FEM is used for the discretization of the conservative equations. An explicit integration

scheme is then adopted for time discretization of those equations. The matricial forms of Eqs. (1)–

(3) are obtained, according to the �nite element method, by subdividing the domain of interest 
x
into a �nite number of elements 
he . This leads to the following matricial forms of the conservative

equations below:

M�
•

�+ K��= 0; (4)

Mv

•

→

v + Fint = Fext ; (5)

Me•e + g= r: (6)

If we use the same form ’() for the shape and test functions (as is usually done for a serendipity

element), one may obtain the following expressions for the elementary matrices of Eqs. (4)–(6):

M� =

∫


x

’�
T

’� d
x;

K� =

∫


x

’�
T

∇v’� d
x; (7)

Mv =

∫


x

�’v
T

’v d
x;

Fint =

∫


x

∇’v
T

� d
x;

Fext =

∫


x

�’v
T→

b d
x +

∫

!x

’v
T→

t d!x; (8)

Me =

∫


x

�’e
T

’e d
x;

g=

∫


x

∇’e
T→

q d
x;

r=

∫


x

’e
T

(� : D+ �r) d
x −

∫

!x

’e
T

� d!x: (9)

In the previous equations, M() are consistent mass matrices, Fext is the external force vector and Fint

is the internal force vector. As is usually done, we associate the explicit integration scheme with the



use of lumped mass matrices in calculations, therefore the quantities
•

() are directly obtained from

(4)–(6) without the need of any matrix inversion algorithm.

2.2. Constitutive law

Concerning the constitutive law, we use a J2 plasticity model with nonlinear isotropic/kinematic

hardening. The algorithm presented here applies to both the three-dimensional, axially symmetric and

plane strain cases. The simplicity of the von Mises yield criterion allows the use of the radial-return

mapping strategy briey summarized hereafter.

2.2.1. Elastic prediction

According to the decomposition of the Cauchy stress tensor � into a deviatoric part s and an

hydrostatic term p, the elastic stresses are calculated using Hooke’s law, by the following equations:

ptrialn+1 = pn + K tr[�e]; (10)

strialn+1 = sn + 2G�e; (11)

where �e is the strain increment tensor between increment n and increment n + 1; K is the Bulk

modulus of the material, tr[�e] is the trace of the strain increment tensor and G is the shear modulus.

Hence, the deviatoric part of the predicted elastic stress is given by

�trialn+1 = s
trial
n+1 − �n; (12)

where �n is the back-stress tensor (in our case, the center of the von Mises sphere in the stresses

space). The von Mises criterion f is de�ned by

ftrialn+1 =

√

2
3
�trialn+1 : �

trial
n+1 − �v; (13)

where �v is the yield stress in the von Mises sense. Hence, if f
trial
n+16 0, the predicted solution is

physically admissible, and the whole increment is assumed to be elastic.

2.2.2. Plastic correction

If the predicted elastic stresses do not correspond to a physically admissible state, a plastic correc-

tion has to be performed. The previous trial stresses serves as the initial condition for the so-called

return mapping algorithm. This one is summarized by the following equation:

sn+1 = s
trial
n+1 − 2Gn; (14)

where n = �trialn+1=‖�
trial
n+1‖ is the unit normal to the von Mises yield surface, and  is the consistency

parameter de�ned as the solution of the one scalar parameter () nonlinear equation below:

f() = ‖�trialn+1‖ − 2G−
√

2
3
(�v()− ‖�()‖) = 0: (15)

Eq. (15) is e�ectively solved by a local Newton iterative procedure [9]. Since f() is a convex

function, convergence is guaranteed. Only very few iterations are needed to obtain the �nal solution,

so the algorithm is not cost expensive.



2.3. Time integration

As briey presented earlier, the coupled equations will be integrated by an explicit scheme associ-

ated with lumped mass matrices. The integration algorithm is based on the central di�erence scheme

given hereafter

→

v t+�t=2 =
→

v t−�t=2 +

•

→

v t�t; (16)

xt+1 = xt +�t
→

v t+�t=2: (17)

This integration scheme is conditionally stable, hence, the time increment value �t is subjected

to the Courant stability criterion. The owchart for explicit time integration of the Lagrangian mesh

is given in algorithm 1.

Algorithm 1. Flowchart for explicit time integration

(1) Initial conditions and initialization: n= 0; �0 = �(t0); x0 = x(t0); v0 = v(t0)

(2) Update quantities: n := n+ 1; �n = �n−1; xn = xn−1; vn+1=2 = vn−1=2
(3) Compute the time-step and update current time: tn = tn−1 +�t

(4) Update nodal displacements: xn = xn−1 +�tvn−1=2
(5) Compute internal and external force vector f intn ; f

ext
n

(6) Integrate the conservative equations and compute accelerations:
•

vn =M
−1(fextn − f intn )

(7) Update nodal velocities: vn+1=2 = vn−1=2 +�t
•

vn
(8) Enforce essential boundary conditions: if node I on !v
(9) Output; if the simulation not complete goto 2.

3. Object-oriented programming

Traditionally, numerical softwares are based on the use of a procedural programming language

such as C or Fortran, in which the �nite element algorithm is broken down into procedures that

manipulate data. When developing a large application, the procedures are wrapped up in libraries

which are used as modules and sometimes linked with external libraries such as the well-known

Blas [4] one for linear algebra. OOP uses user de�ned classes which can be seen as the association

of data and methods (remembering that what we call an object is in fact an instance of a class).

The use of OOP, and here the C++ language, has been criticized because its computational ef-

�ciency is commonly believed to be much lower than the one of comparable Fortran codes, but

studies on relative e�ciency of C++ numerical computations [2] have shown that there’s a perfor-

mance increase with optimized codes. A survey of the main object-oriented features is presented here

after:

• Inheritance is a mechanism which allows the exploitation of commonality between objects. For

example, as illustrated in Fig. 1, we can de�ne many classes derivated from the class Element



Element
+material
+nodes
+integration points

Element 2D

+integration()

Element 3D

+integration()

Element Axi

+integration()

Quad 4N

+shape()

Tri 3N

+shape()

Tri 6N

+shape()

Fig. 1. UML diagram of the element class (simpli�ed representation).

which di�er by the level of specialization that they present. Therefore, only the highly specialized

code, as shape functions calculations for example, are implemented in those derived classes.

• Member and operator overload allows an easy writing of mathematical functions such as matrix
products using a generic syntax of the form A = B ∗ C where A; B and C are three matrices of

compatible sizes. The same kind of operation also is possible when the parameters are instances

of di�erent classes.

• Template classes are generic ones, for example generic lists of any kind of object (nodes, ele-
ments, integration points, etc.). Templates are the fundamental enabling technology that supports

construction of maintainable highly abstract, high performance scienti�c codes in C++ [3].

For further details concerning OOP we refer to Stroustrup [10].

3.1. Basic classes used in our FEM application

In a FEM application, the most logical point of departure will be the creation of a basic and

mathematical class library. In this project, we have made the choice of developing our own basic and

linear algebra classes. Other projects described in literature are usually based on free or commercial

libraries of C++ as the work done by Zabaras [11] with Di�pack. This choice has been done because

we need linear algebra classes optimized for an explicit FEM program and in order to distribute the

FEM program with the GNU general public license. In the linear algebra part, we use low level C

and Fortran routines coming from the Lapack and Blas [4] libraries. Highly optimized C and Fortran

routines collected in libraries are easily called from within a C++ method.

3.2. Overview of �nite element classes

As it can be found in many other papers dealing with the implementation of FEM [5,6,11] some

basic FEM classes have been introduced in this work. In this paragraph, an overview of the FEM

classes is presented. The FEM represented by the class Domain is mainly composed by the modules

represented by the abstract classes Node, Element, Material, Interface and ioDomain as shown

in Fig. 2.

• The class Node contains nodal data, such as node number, nodal coordinates: : :. Two instances

of the NodalField class containing all nodal quantities at each node are linked to each node of



Node

NodalField
2

Domain

1..*

Material

Element

Mat_Elastic Mat_El_Plastic

IntegrationPoint

Element2D Element3D ElementAx

ElBi4n2D ElTri8n3D ElBi4nAx

ref

1..*

1..*

ioDomain

ioDataInputData

Select

nodeSet

elementSet

1..*

ContactLaw

Interface

CoulombLaw

Side

SideFace
1..*

1..*

1..*

1

3

1..*

1..*

1..*

1..*

1

2

BoundaryCondition

Boundary

BoundarySpeed

BoundaryForce

BoundaryDisp BoundaryAcc

BoundaryTemp

initial

0..* constant

0..*

SideFace2D SideFace3D

Mat_El_Plas_Tabular

1..*

1..*

Fig. 2. Simpli�ed UML diagram of the object oriented framework.

the structure. At the end of the increment we just have to swap the references to those objects to

transfer all quantities from one step to another (see step 2 of the explicit time integration owchart

in algorithm 1). Boundary conditions through the BoundaryCondition class a�ect the behavior

of each node. Those boundary conditions appears through a dynamic list attached to each node,

thus, one may attach or detach any type of condition during the main solve loop.

• The class Element is a virtual class that contains the de�nition of each element of the structure
(we refer to Fig. 1 for a more detailed description of the Element class). This class serves as

a base class for a number of other classes depending on the type of analysis and the nature of

elements needed. Of course, it is possible to mix together various types of elements in the same

computation. Each element of the structure contains a number of nodes, depending on its shape,

may have an arbitrary number of integration points (see IntegrationPoint class) and refers an

associate constitutive law through the Material class.

• The Interface class contains all de�nitions concerning the contact interfaces of the model in-

cluding the contact law through the ContactLaw class and the contact de�nition through the Side

class.

• The class ioDomain is used to serve as an interface between the Domain and input/output �les.

The class ioDomain serves as a base class for many other derived classes which implement

speci�c interfaces for various �le formats. The most important of them is the class InputData

used to read the model from the speci�c preprocessor language.



Fig. 3. Graphic user interface of the DynELA FEM code.

• The class Material is used for the de�nition of the materials used in various models. This class
is a generalization for all possible kinds of material de�nition.

3.3. User interface

The very �rst developments we made concerning this project were in C and concerned only

the pre- and post-processing of FEM computations concerning numerical cutting [8]. This work

was based on the RADIOSS �nite volume program. Therefore, this works inherits some methods

developed for those applications, and the pre- and post-processor of DynELA may be seen as a new

version of those two applications. DynELA uses a dedicated graphic post-processor (see Fig. 3 for

a screen-copy). Many features developed earlier were included in this post-processor such as highly

detailed PostScript output, OpenGL rendering, picking interface and curves treatment.

DynELA uses a speci�c language for the pre-processing of �les presenting analogies with C++.

The most important features are summarized here after:

• fully free format language supporting classic features such as comments, �les inclusion through
#include commands;

• supports for various computations between reals or vectors, arithmetic, trigonometric, increments
or variables comparisons;



• includes tests (if, then and else) and loops (for and while),

• i/o functionalities such as cout, fopen, fclose or <<;
• many other useful features (we refer to the DynELA user manual [7]).

4. Numerical application

As an illustration, we present in this paragraph a numerical example concerned with a dynamic

compression of a vertical thin walled cylinder under uniaxial compression. Numerical results obtained

with our FEM application are compared with the one obtained with Abaqus/Explicit. We used an

isotropic linear-elastoplastic constitutive law of the form �v = A + B�p
n
. Initial dimensions of the

specimen and material properties are given as follows:

inner radius = 10:0 mm E = 206 GPa A= 1250 MPa

height = 28:0 mm �= 0:35 B= 685 MPa

thickness = 1:0 mm �= 7836:1 kg=m3 n= 1:0
The corresponding mesh reported on Fig. 4 is composed of 450 axisymmetric elements (6× 75).

The associated boundary conditions are given by

• All nodes located at the top of the cylinder have a prescribed vertical displacement with a constant
speed v= 100 m=s and a null horizontal displacement.

• All nodes located at the bottom of the cylinder are subjected to a frictionless contact with a rigid

horizontal surface.

DynELA v 0.9.5 

Fig. 4. Initial mesh used for the thin walled cylinder under uniaxial compression.



time : 0.150 ms 

plastic strain

1.23E+00

1.14E+00

1.05E+00

9.66E-01

8.78E-01

7.90E-01

7.02E-01

6.15E-01

5.27E-01

4.39E-01

3.51E-01

2.63E-01

1.76E-01

8.78E-02

1.39E-16

Equivalent plastic strain

DynELA v 0.9.5 

Fig. 5. Equivalent plastic strain: DynELA (left) and Abaqus/Explicit (right).

During the simulation, the inner surface of the cylinder may be in contact with the horizontal surface,

so we take it into account and declare this surface as a contact surface in DynELA. We assume

here also a frictionless contact. The top of the cylinder is subjected to a total vertical displacement

of dv = 15 mm, therefore, total height reduction is about 53.6%.

Fig. 5 reports �nal equivalent plastic strain contourplots obtained with DynELA FEM code and

Abaqus/Explicit. On this �gure, the deformed geometry obtained with the DynELA code is in good

agreement with the one obtained with Abaqus/Explicit. Numerical results are also in good agreement.

5. Conclusion

An object-oriented simulator was developed for the analysis of large inelastic deformations and

impact processes. Only one example has been presented, but many other are currently being tested

to ensure the accuracy of the developed algorithms. Some of the bene�ts of using an OOP approach

in comparison with traditional programming language were proposed in this presentation The main

purpose of this FEM development is to serve as a testbed for new and more e�cient algorithms

related to various parts of a FEM program, such as new contact algorithms (here, the contact is

included but has not been presented) or more e�cient constitutive integration schemes.

Current developments of this FEM code concerns the ability to use a multigrid resolution algorithm.

To do so, we are currently adding new features in the linear algebra library to include sparse matrix,

various preconditioners and iterative solving methods such as the conjugate gradient, the biconjugate

gradient and other iterative methods.
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