Olivier Pantalé
email: pantale@enit.fr

Serge Caperaa

Roger Rakotomalala

O Pantal

C M A N I O-E

Development of an object-oriented nite element program: application to metal-forming and impact simulations

Keywords: Nonlinear nite-element, Explicit integration, Large deformations, Plasticity, Impact, C++, Object-oriented programming

come

Introduction

After a long time of intensive developments, the nite element method has become a widely used tool for researchers and engineers. An accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of a high amount of plastic ow. This research eld has been widely explored and a number of computational algorithms for the integration of constitutive relations have been developed for the analysis of large deformation problems.

In this presentation an object-oriented implementation of an explicit nite element program called DynELA is presented. This nite element method (FEM) program is written in C++ [START_REF] Stroustrup | The C++ Programming Language, 2nd Edition[END_REF]. The development of object-oriented programming (OOP) leads to better structured codes for the nite element method and facilitates the development and maintainability [START_REF] Cross | Why you should consider object-oriented programming techniques for nite element methods[END_REF]. A signicant advantage of OOP concerns the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual subproblems based on physical, mathematical or geometric reasoning.

Governing equations and integration

The conservative laws and the constitutive equations for path-dependent material are formulated in an updated Lagrangian nite element method in large deformations. Both the geometrical and material nonlinearities are included in this setting. In the next paragraph, we summarize some basic results concerning nonlinear mechanics relevant to our subsequent developments.

Basic kinematics and constitutive equations

One of the most important aspects in the development of a nite element code for nonlinear mechanics involves the proper determination of the kinematic description. In a Lagrangian description let → X be the reference coordinates of a material point in the reference conguration X ⊂ R 3 at time t = 0, and → x be the current coordinates of the same material point in the current conguration x ⊂ R 3 at time t. The motion of the body is then dened by

→ x = (→ X ; t). Let F = @ → x =@ → X
be the deformation gradient with respect to the reference conguration X and C = F T F the left Cauchy-Green tensor. According to the polar decomposition theorem, F = RU = VR; U and V are the right and left stretch tensors, respectively, and R is the rotation tensor. By computing the rate of change of the deformation gradient F, one may introduce the spatial velocity gradient L =

• F F -1
where • () is the time derivative of (). The symmetric part of L, denoted by D, is the spatial rate of deformation and its skew-symmetric part W is the spin tensor. According to this kinematics, the mass, momentum and energy equations which govern the continuum are given below:

• + div → v = 0;
(1)

• → v = → f + div ; (2)
• e = : Ddiv

→ q + r; (3)
where is the mass density, → v the material velocity, → f the body force vector, the Cauchy stress tensor, e the specic internal energy, r the body heat generation rate and → q the heat ux vector. The symbol ':' denotes the contraction of a pair of repeated indices which appear in the same order, so A :

B = A ij B ij .
The FEM is used for the discretization of the conservative equations. An explicit integration scheme is then adopted for time discretization of those equations. The matricial forms of Eqs. (1)-(3) are obtained, according to the nite element method, by subdividing the domain of interest x into a nite number of elements h e . This leads to the following matricial forms of the conservative equations below:

M • + K = 0; (4)
M v • → v + F int = F ext ; (5)
M e • e + g = r: (6)
If we use the same form ' () for the shape and test functions (as is usually done for a serendipity element), one may obtain the following expressions for the elementary matrices of Eqs. (4)-(6):

M = x ' T ' d x ; K = x ' T ∇v' d x ; (7)
M v = x ' v T ' v d x ; F int = x ∇' v T d x ; F ext = x ' v T → b d x + x ' v T → t d x ; (8)
M e =
x ' e T ' e d x ;

g = x ∇' e T → q d x ; r =
x ' e T (:

D + r) d x - x ' e T d x : (9)
In the previous equations, M () are consistent mass matrices, F ext is the external force vector and F int is the internal force vector. As is usually done, we associate the explicit integration scheme with the use of lumped mass matrices in calculations, therefore the quantities • () are directly obtained from (4)-(6) without the need of any matrix inversion algorithm.

Constitutive law

Concerning the constitutive law, we use a J 2 plasticity model with nonlinear isotropic/kinematic hardening. The algorithm presented here applies to both the three-dimensional, axially symmetric and plane strain cases. The simplicity of the von Mises yield criterion allows the use of the radial-return mapping strategy briey summarized hereafter.

Elastic prediction

According to the decomposition of the Cauchy stress tensor into a deviatoric part s and an hydrostatic term p, the elastic stresses are calculated using Hooke's law, by the following equations:

p trial n+1 = p n + K tr[e]; (10)
s trial n+1 = s n + 2Ge; (11
)
where e is the strain increment tensor between increment n and increment n + 1; K is the Bulk modulus of the material, tr[e] is the trace of the strain increment tensor and G is the shear modulus. Hence, the deviatoric part of the predicted elastic stress is given by

trial n+1 = s trial n+1 -n ; (12
)
where n is the back-stress tensor (in our case, the center of the von Mises sphere in the stresses space). The von Mises criterion f is dened by

f trial n+1 = 2 3 trial n+1 : trial n+1 -v ; (13
)
where v is the yield stress in the von Mises sense. Hence, if f trial n+1 6 0, the predicted solution is physically admissible, and the whole increment is assumed to be elastic.

Plastic correction

If the predicted elastic stresses do not correspond to a physically admissible state, a plastic correction has to be performed. The previous trial stresses serves as the initial condition for the so-called return mapping algorithm. This one is summarized by the following equation:

s n+1 = s trial n+1 -2Gn; (14
)
where n = trial n+1 = trial n+1 is the unit normal to the von Mises yield surface, and is the consistency parameter dened as the solution of the one scalar parameter () nonlinear equation below:

f() = trial n+1 -2G -2 3 (v () -()) = 0: (15)
Eq. (15) is eectively solved by a local Newton iterative procedure [START_REF] Simo | Computational Inelasticity[END_REF]. Since f() is a convex function, convergence is guaranteed. Only very few iterations are needed to obtain the nal solution, so the algorithm is not cost expensive.

Time integration

As briey presented earlier, the coupled equations will be integrated by an explicit scheme associated with lumped mass matrices. The integration algorithm is based on the central dierence scheme given hereafter

→ v t+t=2 = → v t-t=2 + • → v t t;
(16)

x t+1 = x t + t → v t+t=2 : (17)
This integration scheme is conditionally stable, hence, the time increment value t is subjected to the Courant stability criterion. The owchart for explicit time integration of the Lagrangian mesh is given in algorithm 1.

Algorithm 1. Flowchart for explicit time integration

(1) Initial conditions and initialization: n = 0; 0 = (t 0);

x 0 = x(t 0); v 0 = v(t 0) (2) Update quantities: n := n + 1; n = n-1 ; x n = x n-1 ; v n+1=2 = v n-1=2 (3)
Compute the time-step and update current time:

t n = t n-1 + t (4) Update nodal displacements: x n = x n-1 + tv n-1=2
(5) Compute internal and external force vector f int n ; f ext n (6) Integrate the conservative equations and compute accelerations: [START_REF] Rakotomalala | An ale three-dimensional model of orthogonal and oblique metal cutting processes[END_REF] Enforce essential boundary conditions: if node I on v [START_REF] Simo | Computational Inelasticity[END_REF] Output; if the simulation not complete goto 2.

• v n = M -1 (f ext n -f int n) (7) Update nodal velocities: v n+1=2 = v n-1=2 + t • v n

Object-oriented programming

Traditionally, numerical softwares are based on the use of a procedural programming language such as C or Fortran, in which the nite element algorithm is broken down into procedures that manipulate data. When developing a large application, the procedures are wrapped up in libraries which are used as modules and sometimes linked with external libraries such as the well-known Blas [START_REF] Lawson | Basic linear algebra subprograms for fortran usage[END_REF] one for linear algebra. OOP uses user dened classes which can be seen as the association of data and methods (remembering that what we call an object is in fact an instance of a class).

The use of OOP, and here the C++ language, has been criticized because its computational efciency is commonly believed to be much lower than the one of comparable Fortran codes, but studies on relative eciency of C++ numerical computations [START_REF] Haney | Is C++ fast enough for scientic computing?[END_REF] have shown that there's a performance increase with optimized codes. A survey of the main object-oriented features is presented here after:

• Inheritance is a mechanism which allows the exploitation of commonality between objects. For example, as illustrated in Fig. 1, we can dene many classes derivated from the class Element which dier by the level of specialization that they present. Therefore, only the highly specialized code, as shape functions calculations for example, are implemented in those derived classes. • Member and operator overload allows an easy writing of mathematical functions such as matrix products using a generic syntax of the form A = B * C where A; B and C are three matrices of compatible sizes. The same kind of operation also is possible when the parameters are instances of dierent classes. • Template classes are generic ones, for example generic lists of any kind of object (nodes, elements, integration points, etc.). Templates are the fundamental enabling technology that supports construction of maintainable highly abstract, high performance scientic codes in C++ [START_REF] Haney | How templates enables high-performance scientic computing in C++[END_REF].

For further details concerning OOP we refer to Stroustrup [START_REF] Stroustrup | The C++ Programming Language, 2nd Edition[END_REF].

Basic classes used in our FEM application

In a FEM application, the most logical point of departure will be the creation of a basic and mathematical class library. In this project, we have made the choice of developing our own basic and linear algebra classes. Other projects described in literature are usually based on free or commercial libraries of C++ as the work done by Zabaras [START_REF] Zabaras | A continuum lagrangian sensitivity analysis for metal forming processes with applications to die design problems[END_REF] with Dipack. This choice has been done because we need linear algebra classes optimized for an explicit FEM program and in order to distribute the FEM program with the GNU general public license. In the linear algebra part, we use low level C and Fortran routines coming from the Lapack and Blas [START_REF] Lawson | Basic linear algebra subprograms for fortran usage[END_REF] libraries. Highly optimized C and Fortran routines collected in libraries are easily called from within a C++ method.

Overview of nite element classes

As it can be found in many other papers dealing with the implementation of FEM [START_REF] Mackie | Object oriented programming of the nite element method[END_REF][START_REF] Miller | An object oriented approach to structural analysis and design[END_REF][START_REF] Zabaras | A continuum lagrangian sensitivity analysis for metal forming processes with applications to die design problems[END_REF] the structure. At the end of the increment we just have to swap the references to those objects to transfer all quantities from one step to another (see step 2 of the explicit time integration owchart in algorithm 1). Boundary conditions through the BoundaryCondition class aect the behavior of each node. Those boundary conditions appears through a dynamic list attached to each node, thus, one may attach or detach any type of condition during the main solve loop. • The class Element is a virtual class that contains the denition of each element of the structure (we refer to Fig. 1 for a more detailed description of the Element class). This class serves as a base class for a number of other classes depending on the type of analysis and the nature of elements needed. Of course, it is possible to mix together various types of elements in the same computation. Each element of the structure contains a number of nodes, depending on its shape, may have an arbitrary number of integration points (see IntegrationPoint class) and refers an associate constitutive law through the Material class. • The Interface class contains all denitions concerning the contact interfaces of the model including the contact law through the ContactLaw class and the contact denition through the Side class.

• The class ioDomain is used to serve as an interface between the Domain and input/output les.

The class ioDomain serves as a base class for many other derived classes which implement specic interfaces for various le formats. The most important of them is the class InputData used to read the model from the specic preprocessor language. • The class Material is used for the denition of the materials used in various models. This class is a generalization for all possible kinds of material denition.

User interface

The very rst developments we made concerning this project were in C and concerned only the pre-and post-processing of FEM computations concerning numerical cutting [START_REF] Rakotomalala | An ale three-dimensional model of orthogonal and oblique metal cutting processes[END_REF]. This work was based on the RADIOSS nite volume program. Therefore, this works inherits some methods developed for those applications, and the pre-and post-processor of DynELA may be seen as a new version of those two applications. DynELA uses a dedicated graphic post-processor (see Fig. 3 for a screen-copy). Many features developed earlier were included in this post-processor such as highly detailed PostScript output, OpenGL rendering, picking interface and curves treatment.

DynELA uses a specic language for the pre-processing of les presenting analogies with C++. The most important features are summarized here after:

• fully free format language supporting classic features such as comments, les inclusion through #include commands; • supports for various computations between reals or vectors, arithmetic, trigonometric, increments or variables comparisons;

• includes tests (if, then and else) and loops (for and while),

• i/o functionalities such as cout, fopen, fclose or <<;

• many other useful features (we refer to the DynELA user manual [START_REF] Pantal | User manual of the nite element code DynELA v. 0. 9. 5[END_REF]).

Numerical application

As an illustration, we present in this paragraph a numerical example concerned with a dynamic compression of a vertical thin walled cylinder under uniaxial compression. Numerical results obtained with our FEM application are compared with the one obtained with Abaqus/Explicit. We used an isotropic linear-elastoplastic constitutive law of the form v = A + B p n . Initial dimensions of the specimen and material properties are given as follows: During the simulation, the inner surface of the cylinder may be in contact with the horizontal surface, so we take it into account and declare this surface as a contact surface in DynELA. We assume here also a frictionless contact. The top of the cylinder is subjected to a total vertical displacement of d v = 15 mm, therefore, total height reduction is about 53.6%. Fig. 5 reports nal equivalent plastic strain contourplots obtained with DynELA FEM code and Abaqus/Explicit. On this gure, the deformed geometry obtained with the DynELA code is in good agreement with the one obtained with Abaqus/Explicit. Numerical results are also in good agreement.

Conclusion

An object-oriented simulator was developed for the analysis of large inelastic deformations and impact processes. Only one example has been presented, but many other are currently being tested to ensure the accuracy of the developed algorithms. Some of the benets of using an OOP approach in comparison with traditional programming language were proposed in this presentation The main purpose of this FEM development is to serve as a testbed for new and more ecient algorithms related to various parts of a FEM program, such as new contact algorithms (here, the contact is included but has not been presented) or more ecient constitutive integration schemes.

Current developments of this FEM code concerns the ability to use a multigrid resolution algorithm. To do so, we are currently adding new features in the linear algebra library to include sparse matrix, various preconditioners and iterative solving methods such as the conjugate gradient, the biconjugate gradient and other iterative methods.

Fig. 1 .

 1 Fig. 1. UML diagram of the element class (simplied representation).

Fig. 2 .

 2 Fig. 2. Simplied UML diagram of the object oriented framework.

Fig. 3 .

 3 Fig. 3. Graphic user interface of the DynELA FEM code.

5 Fig. 4 .

 54 Fig. 4. Initial mesh used for the thin walled cylinder under uniaxial compression.

Fig. 5 .

 5 Fig. 5. Equivalent plastic strain: DynELA (left) and Abaqus/Explicit (right).