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Conductances between confined rough walls

F. Plouraboué, S. Geoffroy, and M. Prat
Institut de Mécanique des Fluides de Toulouse, UMR CNRS-INPT/UPS No. 5502,
Avenue du Professeur Camille Soula, 31400 Toulouse, France

Two- and three-dimensional creeping flows and diffusion transport through constricted and possibly

rough surfaces are studied. Asymptotic expansions of conductances are derived as functions of the

constriction local geometry. The validity range of the proposed theoretical approximations is

explored through a comparison either with available exact results for specific two-dimensional

aperture fields or with direct numerical computations for general three-dimensional geometries. The

large validity range of the analytical expressions proposed for the hydraulic conductivity ~and to a
lesser extent for the electrical conductivity! opens up interesting perspectives for the simulation of
flows in highly complicated geometries with a large number of constrictions.

I. INTRODUCTION

In this article we analytically determine the conduc-

tances of the incompressible, steady, noninertial flow of a

Newtonian fluid through a constriction using the lubrication

approximation. Such a flow can be found in various systems

or processes, such as rough fractures,1,2 static seals formed

by the compression of two rough metallic surfaces,3 or

micro-fluidic systems.4 Another interesting context involving

a similar problem is the Plateau borders fluid film formed at

foam lamela crossings. The swelling of these fluid films has

a drastic influence on the mechanical behavior of the foam,

the geometry of which is directly related to its hydraulic

conductance and, thus, to its swelling dynamic. In all these

systems, the local slope is small and the variations of the

local aperture are slow, so that one can rely on the ~Rey-
nolds! lubrication approximation to analyze the flow. For all
confined fluid films in two- or three-dimensional geometries

pressure gradients are predominant in localized regions. In

two dimensions, these regions are naturally located in the

vicinity of the aperture minima @see Fig. 1~a!# while in three
dimensions constrictions are located in the vicinity of saddle

points. Figure 1~b! shows a schematic representation of such
a three-dimensional geometry where constrictions, associ-

ated with saddle points of the aperture field, are illustrated.

When the mean distance between the two surfaces is suffi-

ciently small for the aperture at a saddle point to be signifi-

cantly smaller than the mean aperture within the two adja-

cent valleys, it is expected that the hydraulic flow resistance

will be mainly controlled by the saddle point region. Such

lubricated flow between confined surfaces has already re-

ceived a considerable amount of attention in the literature.

In two dimensions, the creeping flow between two cyl-

inders is an old lubrication problem that was first considered

by Martin5 and was later reexamined through lubrication

theory by Keller.6 The generalization of this leading order

lubrication analysis to any general elliptic cylinder is trivial.

Numerous other studies have considered two-dimensional

geometries, with7,8 or without9–15 inertia effects. Neverthe-

less, most of these theoretical investigations were interested

in the weakly perturbed limit of large constrictions for which

the amplitude of variations is small when compared to the

mean diameter.7–9,16,17 On the other hand, some of them bore

on the opposite situation of small constrictions, for which the

macroscopic behavior of the flow can display singularities,

as first shown by Richardson.10,15,18–21 Hence, in this case, it

is interesting to develop analytical solutions that can be use-

ful either to match numerical boundary conditions, or to di-

rectly provide a good approximation for the macroscopic hy-

drodynamical behavior. As emphasized in Refs. 22 and 23,

macroscopic singularities strongly depend on the local geom-

etry of the surfaces which are close to contact. If the surface

mean slope ~defined as the surface average of the aperture
gradient! is zero, the leading order singularities will depend
on the surface curvature at the minimum gap. But if the

curvature is zero at the minimum gap, then the lubrication

leading order will be controlled by higher order surface de-

rivatives as first noticed in Ref. 23. This study focuses on the

simple situation of constant applied potential ~i.e., pressure
or electrical potential! for static solid surfaces. This article
investigates the correction to the leading order lubrication

theory in two dimensions.

In three dimensions, there has also been a considerable

amount of literature regarding creeping flow between solid

surfaces in different contexts such as sedimentation and sus-

pension. The hydrodynamical interaction between close par-

ticles is strongly dominated by lubrication, the result of

which is generally singular with the minimum gap distance.

Hence, the detailed hydrodynamic of this confined flow is

worth being considered analytically to provide useful bound-

ary conditions for numerical methods.24 An extensive litera-

ture reviewed in Ref. 25 has been devoted to the analysis of

three-dimensional lubricated flows. To cite only a few, the

analysis of the forces and couple acting on a rotating sphere

was first investigated by Dean and O’Neil26 using matched

asymptotic expansion technique. The case of a moving

sphere with constant velocity near a wall was then solved by



O’Neill and Stewartson27 and Goldman et al.28 The case in

which the particle is confined inside a tube has been treated

by Bungay and Brenner29 while other more complex solid

surfaces have also been considered.30,31 The most general

case of two oblate spheroids in relative translation was fi-

nally addressed by Cox.32 To the authors’ knowledge, how-

ever, all these studies have considered two surfaces with

positive curvature, for they were mainly addressed in the

context of the relative motion of particles. This article fo-

cuses on the hydrodynamics of the confined flow between

two surfaces with curvatures of opposite sign, as displayed in

Fig. 1~b!. Nevertheless, such saddle point geometries have
already been studied in the context of electro-magnetic trans-

port properties19–21 ~such as equivalent impedance! for
which it has been shown that the macroscopic transport pa-

rameter depends on the principal curvatures at the saddle.

This problem turns out to be different from those previously

examined in the lubrication theory context because it brings

to the fore a specific geometrical rescaling of longitudinal,

transverse and vertical directions.

The purpose of this work is to give an analytical ap-

proximation of conductances associated with a constant ap-

plied potential ~pressure or electrical potential! between two
confined surfaces, as well as their validity range in two and

three dimensions.

II. GOVERNING EQUATIONS AND DEFINITIONS

A. Governing equation

Let us define the aperture field h̃ as being the local dis-

tance between two smoothly spatially varying surfaces.

We will first solve the Poisson problem for the electrical

potential f̃ ,

¹2f̃50, ~1!

with no-flux boundary conditions at the side walls,

]nf̃50 on z̃50 and z̃5 h̃ , ~2!

associated with nonconducting boundaries. The local electri-

cal flux density reads I5D¹f̃ where D is the electrical

conductivity. This problem is analogous to the problem of

binary diffusion of a species in the dilute limit and heat con-

duction when the solid walls are of electrical or thermal neg-

ligible conductivity. In the context of diffusion ~resp. heat
conduction! D is the binary diffusion coefficient ~resp. the

thermal conductivity! and f̃ the concentration ~resp. the tem-

perature!. The results obtained in this article will be pre-
sented in the context of electrical conductance. There can

nevertheless be directly applied to the thermal conductance

problem when it is decoupled from the solid wall.

The electrical conductance G is then related to the elec-

trical flux I and the potential difference DF̃5F̃(X2)

2F̃(X1) applied at the aperture maxima X1 and X2 ~see Fig.
1! apart from distance uX22X1u5L:

I52DG
DF̃

L
. ~3!

In two dimensions I is the total current per unit width, while

in three dimensions the total current is IL . The purpose of

the analysis is to look for an asymptotic estimate for this

conductance as the aperture at the saddle point becomes

small ~compared to the apertures of the adjacent valleys!.
We will then address the Stokes problem, defined on the

pressure p̃ and velocity ũ5( ũ , ṽ ,w̃),

2¹ p̃1m¹2ũ50, ~4!

where m is the fluid dynamic viscosity. This momentum

equation is complemented by incompressibility:

¹•ũ50. ~5!

We apply no slip boundary conditions at the side walls:

ũ50 on z̃50, and z̃5 h̃ . ~6!

These boundary conditions restrict the presented analysis to

nonmobile walls, and excludes the case of surface-driven

flows. The hydraulic conductance K is related to the fluid

flux Q and the pressure difference D P̃5 P̃(X2)2 P̃(X1) ap-

plied at the aperture maxima X1 and X2 apart from distance

L:

Q52

K

m

D P̃

L
. ~7!

With this definition, in two dimensions Q is the total flux per

unit width, while in three dimensions the total injected flux is

QL .

B. Nondimensionalization

In the vicinity of the aperture minimum a Taylor expan-

sion of the two-dimensional aperture field gives

h̃~x !5h01
1
2 h x̃ x̃x̃

2
1

1
6 h x̃ x̃ x̃x̃

3
1

1
24 h x̃ x̃ x̃ x̃x̃

4
1¯ . ~8!

This expression can be much simplified using the proper

nondimentionalization associated with standard lubrication

problems.22 We define e as the ratio of the minimum gap h0
to its longitudinal curvature 1/h x̃ x̃ , e5Ah0h x̃ x̃. This article
mainly investigates geometrical situations where e,1. The

horizontal direction is then scaled with a slowly varying vari-

able x5e x̃/h0 while the vertical direction is simply scaled

by the minimum aperture (z5 z̃/h0 , h5 h̃/h0). Then, x has

been rescaled so that the aperture field in the inner region

has, at leading order, a simple parabolic shape,

h~x !511
1
2 x
2
1eg3x

3
1e2g4x

4
1O~e3!1¯ , ~9!

FIG. 1. ~a! Schematic representation of a two-dimensional constriction. ~b!
Schematic representation of a three-dimensional constriction, for which the

aperture saddle point is associated with a positive and a negative curvature.

Boundary conditions are applied at the aperture field maxima 1 and 2.



where we have introduced coefficients g35h x̃ x̃ x̃ /(6h x̃ x̃
2
) and

g45h x̃ x̃ x̃ x̃ /(24h x̃ x̃
3
). In the following, we will sometimes use

notation ĥ for ĥ(x)511
1
2x
2.

In three dimensions, a Taylor expansion in the vicinity of

the aperture saddle point keeping only the first quadratic

terms reads

h̃~x ,y !5h01
1
2 h x̃ x̃x̃

2
1

1
2 h ỹ ỹ ỹ

2
1¯ , ~10!

where h x̃ x̃.0 and h ỹ ỹ,0. The simple nondimensionalization

choice for ỹ in the case of two solid convex surfaces with

positive curvature should have been identical to the one used

in the x direction ~see, for example Ref. 32!. This simple
choice should also correspond to nondimensionalizing using

the gap span ,5Ah0 /h ỹ ỹ. Nevertheless, a more careful in-
spection of the specificity of the geometry depicted on Fig.

1~b! rather suggests another choice, because the flow is re-
stricted in the transverse y direction by boundary conditions.

Lubrication involves the ratio between the surface curvature

and the typical small length-scale in the y direction which is

the half-width ,. Hence there is a new intrisic small param-

eter in the problem based on the ratio between the gap span

and the transverse curvature A,h ỹ ỹ which scales as ;Ae .
Then, rescaling y5Ae ỹ /h0 , the three-dimensional aperture
field is simplified into

h~x ,y !511
1
2 x
2
1e~ 12 g2y

2
1g3x

3!1O~e3/2!, ~11!

where we have introduced coefficient g25hyy /hxx,0 which
is O(1). The potential and pressure are nondimensionalized

using the usual choice:

f5

f̃Dh0
ILe

, u5

ũh0
d21

QL
, p5

h0
3 p̃

mQLe
, ~12!

where d is the space dimension, e.g., d52,3, and the pres-

sure follows the viscous standard lubrication

nondimensionalization.22

In the following, lower case letters refer to the inner

region, while upper case ones refer to the outer region far

from the aperture minimum. Using such nondimensionaliza-

tion, the diffusion problem ~1! becomes

~]z
2
1e]y

2
1e2]x

2!f50, ~13!

exhibiting different scaling behaviors in the directions x ,y

and z . Nondimensional Stokes equation ~4! also scales as

2e]xp1~]z
2
1e]y

2
1e2]x

2!u50,

2Ae]yp1~]z
2
1e]y

2
1e2]x

2!v50, ~14!

2]zp1~]z
2
1e]y

2
1e2]x

2!w50.

III. TWO-DIMENSIONAL GEOMETRIES

A. Electrical problem

1. Inner expansion

The governing equation ~13! has the standard feature of
boundary layer equations that the potential must be constant

at leading order across the inner region. This feature follows

from the different scaling of its spatial variations on different

directions. Thus we seek an expansion in small e:

f5f01e2f21O~e3!. ~15!

This choice derives from the realization that, in two dimen-

sions, the governing equation for the O(e) perturbation f1 is
only a copy of the leading order. The boundary condition

being also identical, this perturbation term must be equal to

zero. Each perturbation then follows the governing equa-

tions:

]z
2f050, ~16!

with boundary condition

]zf050, on z50 and z5 ĥ . ~17!

This problem is easily solved from stating a constant vertical

potential gradient. The potential variation along the x direc-

tion is thus deduced by imposing a constant integrated flux

along the vertical direction. In nondimensional form this

simply writes h(x)]xf051, which can then be integrated, at
leading order:

f0~x !5E
0

x dx

11
1
2 x
2

5& arctanS x
&

D . ~18!

The second order can thus be computed from this leading

order using the governing equation:

]z
2f21]x

2f050. ~19!

The boundary condition at O(e2) order is given by expand-
ing ~2!:

]zf250 on z50,

~20!
2

1
2 ]zf0z

2
2x]xf01]zf250 on z5 ĥ .

The solution can be computed up to a function of x only.

This function can be found by imposing a zero flux associ-

ated with this second order potential:

f2~x ,z !52

1

2

xz2

ĥ2
2

x

2
1

2&

3
arctan

x

&
. ~21!

2. Outer expansion

Similarly the length scale for variations in the vertical

direction far from the constricted region is no longer the gap

thickness but becomes the curvature hxx of the aperture field.

In this far-field region, horizontal variations are of the order

of L , the distance between the aperture maxima. This re-

quires rescaling

~z ,h !5e22~Z ,H !,

~22!
x5e21e8

21X ,

where we introduce a new small parameter e851/(Lhxx)

which is the typical slope of the aperture field. This rescaled



region can be considered to be the outer region of large inner

variations, if the slope fulfills e!e8,1. Using scaling ~22!,
the governing equations become

]Z
2F1e8

2]X
2F50. ~23!

It will be confirmed by examining the matching of boundary

conditions coming from the inner region that the outer solu-

tion should be expanded as

F5F01

e

e8
F1 . ~24!

The leading order outer potential must fulfill

]Z
2F050 ~25!

with boundary conditions

]ZF050, on Z50 and Z5H . ~26!

The leading order outer solution is thus a constant,

F0(X ,Z)5F0 , the value of which has to be matched with

the inner region. The next order outer problem depends on

the value of the ratio e/e8. Let us first consider the case

e/e8@e8
2.

In this case, the first perturbation F1 will fulfill the same

problem and boundary conditions as the leading order. A

general solution of this problem will be a function F1(X) of

X only. This function must verify the conservation of flux,

integrated along the vertical direction, which imposes that

H]XF1 is a constant. Hence, it is defined up to an initial flux

that has to be matched with the inner region. Hence, contrary

to the leading order, there will be some supplementary flux

coming out of the inner region associated with this corrective

term.

In the case where e/e85e8
2, the problem looks some-

what different for the first perturbation. It is precisely similar

with the previously first perturbation problem in the inner

~21!:

]Z
2F11]X

2F050. ~27!

The boundary condition is given by expanding ~2!:

]ZF150 on Z50,

~28!
2

1
2 ]ZF0Z

2
2X]XF01]ZF150 on Z5H ,

Nevertheless, the leading order being constant, this problem

degenerates, and we can recognize the previously examined

problem for the leading order. We thus reach the same con-

clusion that H]XF1 is a constant that has to be matched with

the inner region.

3. Matching

We match the inner and outer solutions with the inter-

mediate variable method, the result of which gives

F05f0~` !52

&p

2
, F1~0 !50,

~29!
]XF1~0 !5]xf2~` !52

1
2 .

A symmetrical result holds when matching the first maxi-

mum region with the inner in the limit x→2` . From this
solution, we deduce a simple expression for the first correc-

tion to the outer, H]XF152
1
2H(0), which, from ~22! and

~9!, leads to

F1~X2!2F1~X1!52

1

2
E
X1

X2 e2dX

H~X !

52

1

2
ee8E

X1 /ee8

X2 /ee8 dx

h~x !

52

p

2
ee81O~e2e8,e2e8

2!. ~30!

From ~30! and ~24! one can infer the asymptotic expansion
for the potential drop between the two maxima,

DF52&p2

p

2
e2. ~31!

This finally leads to the asymptotic expansion of the electri-

cal conductance,

G5

1

&p

h0

e S 12

e2

2&
D , ~32!

which is the main result of this section. It is interesting to

note that the O(e2) correction has an intrinsic algebraic
form. In particular, there is no geometrical contribution com-

ing from the conductance higher curvatures in the inner re-

gion. It will not be the case for permeability, as will be seen

in the next section.

B. Stokes problem

1. Inner expansion

Following similar lines, the inner problem for Stokes

pressure and flow-fields is expanded:

p5e21p01p11ep2 ,

~33!
~u ,w !5~u0 ,ew0!1e~u1 ,ew1!1e2~u2 ,ew2!.

The rescaling for the velocity field gives a self-consistent

divergence-free flow field at each order. As in the diffusion

problem, governing equations ~14! give the same problem
for the leading order and first perturbation i50,1:

2]xp i1]z
2u i50,

~34!
2]zp i50,

while the second order governing equations reads

2]xp21]z
2u21]x

2u050,

~35!
2]zp21]z

2w050.

This expansion has to be completed with consistent bound-

ary conditions. In keeping with notation ĥ511
1
2x
2, bound-

ary conditions ~6! are expanded,



u0~x , ĥ !50,

u1~x , ĥ !52g3
x3

ĥ
]zu0~x , ĥ !, ~36!

u2~x , ĥ !52g4
x4

ĥ
]zu0~x , ĥ !2

1

2
g3
2
x6

ĥ2
]z
2u0~x , ĥ !

2g3
x3

ĥ
]zu1~x , ĥ !,

so that each order can be deduced from the previous one.

Hence, in the case of the Stokes problem, the first perturba-

tion is not a copy of the leading order because it fulfills

different boundary conditions. At leading order, the Reynolds

approximation is found again,

u0~x ,z !5
1
2 ]xp0~x !z~z2 ĥ !. ~37!

The resulting flux being unity in this nondimensional formu-

lation, the pressure is thus obtained from integrating the

pressure gradient coming from the Darcy-type pressure-flux

relation ]xp0(x)5212/ĥ3:

p0~x !52

3

ĥ2
2

9x

2 ĥ
2

9&

2
arctan

x

&
, ~38!

where the pressure reference is chosen as equal to zero at x

50. The next order solution for the velocity field is as simple

as the leading order, to solve a boundary layer problem with

uniform pressure along the vertical direction:

u1~x ,z !5

1

2
]xp1~x !z~z2 ĥ !2

1

2

zx3

ĥ
g3]xp0~x !. ~39!

The first perturbation pressure gradient is then easy to get

from imposing a zero flux on the first velocity perturbation.

The integration of this pressure gradient gives

p1~x !526g3S 2

3

ĥ4
1

4

ĥ3
D . ~40!

In principle, solving the next order problem ~35! requires the
solution for the vertical component of the velocity at leading

order. Even though it is easy to compute, computation is not

necessary; instead one can use incompressibility in order to

find a relation between the velocity components derivative in

each direction. This leads to a simple decomposition of the

second order pressure p2(x ,z), which depends on the verti-

cal direction, as p2(x ,z)5]xu0(x ,z)1 p̂2(x) with a yet un-
known boundary layer additional contribution p̂2(x). From

this decomposition we solve the first momentum equation of

~35! and find the formal solution for the velocity field second
order perturbation:

u2~x ,z !5

1

2
]x p̂2z~z2 ĥ !2

x3zg3

2 ĥ
]xp12

z

2 ĥ
]xp0g4x

4

2

1

12
]x
3p0z~z2 ĥ !~z22 ĥz2 ĥ2!. ~41!

Imposing a zero flux from this second order perturbation

leads to defining the second perturbation boundary layer

pressure gradient as

]x p̂252

1

5
ĥ2]x

3p02
1

2
]xp0S 6x4g4ĥ2218x6g32

ĥ4
D . ~42!

From this pressure gradient we found an expression for the

second order perturbation pressure. As will be outlined in the

next section, the matching will only require the asymptotic

limit as x→` of this perturbed pressure. Integrating ~42!
with zero reference pressure at x50 leads to

lim
x→`

p25 lim
x→`

p̂25
9
4 p&~ 45 1

3
4 g42

15
16 g3

2!. ~43!

2. Outer expansion and matching

Rescaling ~22! is similarly applied in the outer domain
for the Stokes problem. The governing equation ~14! thus
becomes

2]XP1S e3

e8
]Z
2
1e3e8]X

2 DU50,

~44!
2]ZP1~e2]Z

2
1~ee8!2]X

2 !W50.

The first perturbation of the outer problem must then be ex-

panded in the following form:

P5P01
e3

e8
P1 ,

~45!

~U ,W !5~U0 ,e8W0!1

e3

e8
~U1 ,e8W1!.

Being interested in an O(e2) correction, we will restrict our
attention to the leading order of the outer perturbation, as

usual for lubrication problems,22 while, moreover, since here

e/e8!1, it is not necessary to compute the next order.

The matching for the far-right outer region then gives the

following outer pressure:

P0~X2!5p0~` !1e2p2~` !

5
9
4 p&~11e2~ 45 1

3
4 g42

15
16 g3

2!!. ~46!

A symmetrical result holds for matching the left outer region

in the limit x→2` , so that the hydraulic conductance can
finally be computed:

K5

&

9p

h0
3

e S 12e2S 4
5

1

3

4
g42

15

16
g3
2D D , ~47!

where we recall that g35h x̃ x̃ x̃ /(6h x̃ x̃
2
) and g4

5h x̃ x̃ x̃ x̃ /(24h x̃ x̃
3
). The leading order exhibits the

well-known10,14,15 small gap dependence on h0
5/2 . The O(e2)

correction has an intrinsic dependence on the third and fourth

derivative at the gap minimum. It is worthwhile comparing

this result with other lubrication results associated with mov-

ing particles. When considering the resistance matrix associ-

ated with the relation between forces and velocities it is well

known that cubic and quartic terms do not generally contrib-

ute to the same correction order.29–32 This is not the case



here, where both third and quartic derivatives fulfill a qua-

dratic e correction. Moreover, one can see that, depending on
the sign of the quartic derivative, the correction could either

increase or decrease the hydraulic conductance. Unsurpris-

ingly, positive quartic derivative associated with profiles that

are flatter than cylinders will decrease the hydraulic conduc-

tance. More surprisingly, any third derivative associated with

an asymmetrical profile will lead to a hydraulic conductance

increase.

These asymptotic results are interesting to compare with

some approximate results obtained from saddle point ap-

proximations as studied by Borcea and Papanicolaou.20,21

The Appendix shows that in two dimensions the saddle point

approximation can be a rather precise estimate for the lead-

ing order.

IV. THREE-DIMENSIONAL GEOMETRIES

In the case of three-dimensional geometries we are in-

terested in throat-like geometries @see Fig. 1~b!# resulting
from the contact between a concave and a convex solid sur-

face. The horizontal plane coordinate systems (x ,y) associ-

ated with the principal direction at the saddle point are con-

sidered. They coincide with the Hessian eigenvectors

directions at the saddle point. In this section we will focus on

the leading order of the asymptotic expansion of conduc-

tances.

A. Asymptotic scaling

1. Diffusion problem

In three dimensions, the potential expansion must be

taken in its general form:

f5f01ef11¯ . ~48!

From now on, we will center on the first two perturba-

tive terms. There should be an additional term of the order

O(e3/2) before the previously examined O(e2) because of
the scaling of additional perturbation on the nondimensional

aperture ~11!. Here we are following the same steps as in
Sec. III A seeking the leading order potential f0 first. Ex-
panding ~48! in ~13! leads to the same governing equation
~16! and boundary conditions ~17!. Formally, the solution is
the same and leads to a uniform potential over the vertical

boundary layer, as well as along the transverse direction.

This longitudinally varying potential gradient ]xf0(x) can
thus be deduced from the imposed flux. Nevertheless, in

three dimensions the flux should now be integrated over the

vertical and the transverse directions. Expanding the aperture

half-width y0 from ~11! leads to

y05A 2 ĥ

2eg2
S 11e

g3x
3

2 ĥ
1O~e3/2!D . ~49!

From nondimensionalization ~12!, integrating the potential
gradient along z and y direction at leading order with a con-

stant current intensity leads to

e21/2
5E

2y0

y0
dyE

0

h

dz]xf0~x !

5

4&

3
A2eg2ĥ

3/2]xf0~x !, ~50!

from which the potential solution at leading order can be

integrated:

f0~x !5

3

4A22g2e

x

ĥ1/2
. ~51!

It is interesting to note that the leading order potential is not

of order one, but it rather scales as O(1/e) from the chosen
nondimensionalization. This means that the three-

dimensional diffusion conductance will scale linearly with

h0 . As a matter of fact, the matching with the outer region, at

leading order, will be as simple as adjusting the outer re-

gion’s potential values to the limit of the inner potential ~51!
as x goes to infinity. It is then easy to find the asymptotic

leading order for the three-dimensional electrical conduc-

tance:

G5

2

3
h0A hxx

2hyy
. ~52!

This result is very similar to the one obtained in Refs. 19 and

20 with a combination of reciprocity and extremal principle

considerations. It is possible to compute the next perturba-

tion order. One has first to realize that there will be O(e)
correction to the flux coming from the leading order, due to

some geometrical contribution of ~49! from integrating over
small O(e) correction to the gap width. This O(e) contribu-
tion to the flux necessitates a nonzero first order correction to

the potential in order to annihilate this flux correction. Using

the same boundary conditions as the leading order one can

compute the first order correction to the potential which is

now not zero in three dimensions. It turns out that this cor-

rection is still localized inside the inner region, and does not

bring any further contribution to the outer potential. The next

possible correction should then be of order O(e3/2).

2. Stokes problem

In three dimensions the pressure and velocity field have

now to be expanded in the same way as in Sec. III B:

p5e21p01p1 ,

~53!
~u ,v ,w !5~u0 ,Aev0 ,ew0!1e~u1 ,Aev1 ,ew1!.

The leading order still corresponds to a boundary layer prob-

lem, for which the pressure is uniform over the vertical and

transverse directions. The longitudinal velocity field u0 can

then be obtained from the first momentum equation of ~34!,
so as to find the lubrication parabolic profile ~37! again. This
result can then be integrated to find the relation between the

uniform imposed flux and the leading order pressure gradient

]xp0(x):



e21/2
5E

2y0

y0
dyE

0

h

dzz~z2h !]xp0~x !

5
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105&
Aeg2ĥ

7/2]xp0~x !. ~54!

The longitudinally varying pressure p0 can then be inte-

grated from taking the reference pressure equal to zero at x

50:

p0~x !5

7

8&

1

A2g2e

x~2x4110x2115!

ĥ5/2
. ~55!

Here again the leading order pressure is scaling as e21 due to

nondimensionalization ~12!. This means from examining

previous results ~47! that the three-dimensional conductance
will scale as h0

3, as expected. As previously examined in Sec.

III B 2, the matching of the pressure inner region with the

outer pressure has in common with lubrication problems that

the outer pressure leading order does not show any spatial

variation. The outer pressure value is simply given by the x

→` limit of the inner pressure. From ~55! the leading order
for the asymptotic hydraulic conductance thus reads

K5

1

14
h0
3A hxx

2hyy
. ~56!

This leading order asymptotic estimate should give a good

approximation of the pressure drop from imposing the flux in

Fig. 1~b! throat. As was done previously, it is possible to
compute further corrections. We focus on the first O(e)
terms, which still fulfill a simple boundary layer problem, as

the leading order longitudinal velocity u0 only shows a small

O(e) span-wise variation. Furthermore, as in the previous
section, the leading order hydraulic flux has a small O(e)
contribution due to the integral over small O(e) geometrical
variations of the gap width. It is thus easy to find the inner

pressure correction resulting from imposing a zero O(e)
flux. As for the diffusion problem, this pressure remains lo-

calized inside the inner region and does not bring any con-

tribution to the outer pressure. The expected further contri-

butions are of O(e3/2) and O(e2).
The next section will present a numerical comparison

between asymptotic results ~52! and ~56! with direct numeri-
cal computation.

B. Numerical computations

There are very few known exact results for the pressure

in three-dimensional geometries and none of them can be

used to test the validity of the proposed expression. Hence,

numerical computation is necessary to check their accuracy

and validity range. It is interesting to proceed from a simple

aperture field to more complex ones. Hence, we first inves-

tigate a simple sinusoidal aperture field defined by

h8~X ,Y !5«1

1

&
F2

1

g2
cos~X !2cos~Y !2S 11

1

g2
D G ,
~57!

h~X ,Y !5H~h8~X ,Y !!h8~X ,Y !,

where H is the Heaviside function which imposes zero aper-

ture at wherever the solid surfaces are in contact. The saddle

point located at ~0, 0! has an aperture equal to e, with an
associated Hessian eigenvalue ratio g25hyy /hxx . Hence,
this sinusoidal aperture geometry has two free parameters e
and g2 for comparison with the proposed scaling. It is nev-
ertheless worthwhile extending these tests to more general

geometries. Hence we also have investigated randomly gen-

erated smooth aperture fields. This study is interested in short

range correlated aperture fields with smooth derivative de-

fined everywhere. For this Markovian family of random

fields, a Gaussian short range correlation function has been

chosen, the Fourier transform of which has a Gaussian power

spectrum. From imposing such power spectrum on randomly

generated aperture field in Fourier space one can back-

transform them to generate aperture fields with prescribed

correlation functions. Restricting our investigation to isotro-

pic Gaussian correlation functions, several random fields

have been generated with a high spectral accuracy ~i.e.,
2563256 points!. In the following, two examples will be
considered. The first is a closely isotropic aperture field as-

sociated with a Hessian eigenvalue ratio at the considered

saddle point very close to one while the second is highly

deformed in the y direction with g2'22.59 as represented

in Fig. 1~b!.
Numerical computation is performed with a standard fi-

nite volume technique on a Cartesian grid with a uniform

grid spacing D in both (x ,y) directions. The aperture field

being periodic, (x ,y) coordinates are rescaled between

@0,2p# . Instead of solving full three-dimensional problems,

we have rather chosen to investigate the aforementioned

small-slopes limit where either the diffusion problem or the

Stokes problem still does not exhibit potential or pressure

variations. As already mentioned in earlier sections, these

boundary layer problems can be formally solved concerning

their vertical variations, while the in-plane potential or pres-

sure will fulfill a heterogeneous Poisson problem:

¹•~h~X ,Y !¹F !50,

~58!

¹•~h3~X ,Y !¹P !50.

Both equations ~58! have been solved with associated uni-
form Dirichlet boundary conditions (F ,P)50 at y50 and

(F ,P)51 at y52p . The nodes associated with zero aper-
ture are obviously disregarded by the solving procedure. The

numerical solver uses a direct solving method. The influence

of discretization is first investigated to quantify the validity

range of the numerical results. Figure 2~a! illustrates the grid
mesh influence when computing the hydraulic conductance

for isotropic (g2521) sinusoidal aperture ~57!. As ex-
pected, the numerical computation diverges from the

asymptotic limit as e gets smaller. We thus define a critical ec
associated with a given grid size N3N as the value of e for
which the relative error uK2K512u/K512 becomes greater than
10%. Better numerical results would have been obtained if

more refined numerical methods33 had been used. Figure

2~b! displays the ec variations with the discretization N . As



can be seen, ec}N
22, i.e., ec}D2, as expected from the

chosen discretization method. Misorientation may have a

considerable effect on numerical results with finite volume

methods. These effects should be taken into account when

saddle point principal directions are different from the mesh

orientation. All these results indicate that any direct compu-

tation of conductances associated with a complicated

aperture field with an increasing number of saddle points

would rapidly become difficult, if not impossible, owing to

the discretization level which is necessary for accurate

results.

Figure 3~a! compares the numerical computation of the
hydraulic conductance ~for a grid mesh size N5512) to its

asymptotic approximation. Three different geometries are

represented, corresponding to the isotropic case (g2521)

of Eq. ~57! and the previously introduced randomly gener-
ated short-range correlated aperture fields. It is first interest-

ing to note that for small values of e, the hydraulic conduc-
tance reaches the asymptotic behavior ~56!, up to the

expected numerical drift. One can observe that the difference

between the predicted prefactor and the numerical results is

smaller than 0.5%.

It is interesting to note the similarities in behavior be-

tween the sinusoidal aperture and the isotropic short-range

correlated aperture for e values as large as 10. While the
anisotropic short-range correlated aperture clearly differs

from the two other ones for e values larger than 1021, it

hardly differs from more than 30% for saddle point gap val-

ues as large as 10. This quantitative observation emphasizes

the robustness of the leading order approximation ~56!. As a

matter of fact, the results displayed in Fig. 3~a! suggest that
when the upper and lower surfaces have only few contact

points ~with associated saddle point gap close to one!, the
proposed approximation is approximately 10%. Moreover,

the Hessian eigenvalue ratio appears as the main parameter

accounting for deviations from the asymptotic leading order.

The numerical results sketched in Fig. 3~b! for the dif-
fusive case qualitatively agree with those obtained for the

hydraulic conductances. No numerical drift from the

asymptotic behavior ~52! is observed as e gets smaller. This
is due to the smoother behavior of the local conductance that

is much easily captured by the numerical discretization. It

could be clearly observed that the prefactor leading order is

within 1% of numerical results. These numerical results are

very similar to those obtained by Borcea and Papanicolaou20

for which the comparison between numerical computation

for the electrical resistance of a saddle point geometry was

found to be very close to asymptotical results derived from

extremal principle. Moreover, the results shown in Fig. 3~b!
indicate that the asymptotic behavior ~52! is also robust over
quite a significant range of e values.

These numerical results obtained from either determinis-

tic analytical aperture fields or randomly generated ones

show the fact that the proposed general conductances can

provide a correct evaluation of any general saddle point ge-

ometry, as long as the surface slopes remain small.

V. CONCLUSION

Newtonian lubrication flow and diffusion transport

through a constriction have been studied. Asymptotic expan-

sion for electrical and hydraulic conductances has been ob-

tained for two-dimensional ~i.e., one-dimensional geometry!
flow. Standard leading order results and the first asymptotic

correction have been obtained. These results are simply ex-

pressed in terms of the minimum local geometry and do not

depend on the far-field boundary conditions. Asymptotic ex-

pansion has also been used to study three-dimensional ~i.e.,
two-dimensional lubricated flow! constrictions, the scaling of
which has been obtained as a function of the saddle point

eigenvalues ratio. The prefactors of the leading order have

been analytically obtained and successfully compared with

direct numerical computation. This leading order lubrication

approximation has proved valid over a quite large range of

constriction apertures. These results open up interesting per-

spectives to compute the flow through highly complicated

geometries with a large number of constrictions.

The extension of the obtained results to low Mach num-

ber gas flows is a straightforward one. Because the conduc-

tances of compressible gas flows linearly vary with density,

they will depend on the local pressure. As long as the no-slip

boundary condition at the wall can be used ~continuum
flow!, the dependence of the gas conductance on pressure is
directly related to the gas state equation. Hence, even if the

resulting pressure equation is nonlinear, one can easily find a

suitable potential choice to linearize it. The resulting prob-

lem can then be matched with the one studied here, while

FIG. 2. ~a! Evolution of ratio between the theoretical hydraulic conductance

and its numerical computation K/Kn for four different grid sizes N3N . ~b!

Critical gap ec versus the number of grid points N . The dashed line has a
slope equal to 22.

FIG. 3. Comparison between conductance K approximation ~56! with nu-

merical computations Kn . Square symbols are for sinusoidal aperture de-

fined in ~57! with g2521, while circle symbols are for random field short-

range correlated apertures. Dark circles correspond to the aperture field

represented on Fig. 1~b! with associated Hessian eigenvalue ratio equal to

g2522.59, while opened circles are for an associated Hessian eigenvalue

ratio equal to g2521.05. ~b! Same convention as ~a! for G .



adapting the corresponding potential difference to the far-

field pressure difference.
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APPENDIX A: ASYMPTOTIC LEADING ORDER FOR
TWO-DIMENSIONAL CONDUCTANCES

Integrating Eq. ~17! for the electrical potential and ~37!
for the pressure leads to the closed form for leading order

resistances computed from far field aperture maxima at po-

sitions X1 and X2 ,

^h2n&5E
X1

X2
h~x !2n dx , ~A1!

with n51 and n53. For periodic aperture the conductance

is integrated over a period, while for unbounded aperture

h(x) the integral domain is extended to infinity. Using ex-

pansion ~11! in the vicinity of minimum x50, and substitut-

ing this expansion in ~A1!, gives

^h2n&5

h0
2n11

Ae
I0
n
1O~e !

in which coefficients I0
n is given by I0

n
5* @1/(1

1
1
2x
2)n# dx . Carrying out the integrations leads to

^h2n&5

h0
2n11

Ae

~n21 !!~n22 !!22n27/2

~2n23 !!p
1O~e !. ~A2!

Obviously, these prefactors are exactly identical to those ob-

tained from an exact integration of a simple sinusoidal pro-

file:

h~x !511e1cos x .

For this type of aperture field, the integrations can be per-

formed exactly.14,15 Computation of the resistances yields

^h2n&5E
0

2p 1

~11e1cos x !n
dx5

2p

~11e !n
S~C ,n ! ~A3!

in which S(C ,n) is the Sommerfeld integral34 defined by

S(C ,n)5 (1/2p) *0
2p dx/(11C cos x)n with C51/(11e).

For n51,3 it reads

S~C ,1!5

1

A12C2
, S~C ,3!5

21C2

2~12C2!5/2
.

From these exact results, one can derive asymptotic approxi-

mations as e!1,

^h21&5

1

p&
h0e

21/2
1O~e !,

^h23&5

4&

3p
h0
3e21/2

1O~e !,

which hopefully perfectly match the previous result ~A2!.

APPENDIX B: COMPARISON WITH GENERALIZED
SADDLE POINT APPROXIMATION

In this appendix, we use the generalized saddle point

approximation technique to obtain an estimate of the hydrau-

lic conductance in two dimensions. Starting from Eq. ~A1!,

^h2n&5E h~x !2ndx , ~B1!

which is written as

^h2n&5E exp~2n ln~h~x !!!dx .

Changing variable x to X5Aex/h0 leads to expressing the
aperture field in the vicinity of the minima as

h~X !5h0~11
1
2 X

2!,

while neglecting O(e3/2) terms conductances can be written

^h2n&5Cnh0
2n1 1/2

1

Ahxx
,

which, in agreement with the derivations presented in Sec. II,

shows that, to the leading order in e, the conductances de-
pends on the seconds derivative of the aperture at the saddle

point and on a numerical prefactor that is expressed in inte-

gral form as

Cn5E expS 2n lnS 11

1

2
X2D D dX . ~B2!

An approximation of the value of this prefactor can be ob-

tained using a saddle-point approximation. Writing

g2~X !5n ln~11
1
2 X

2!,

the constant Cn defined in ~B2! now becomes a Gaussian
integral:

Cn5E exp~2g2!
1

dg/dX
dg .

From expressing dX/dg in power series of g , dX/dg

5Sm50
` amg

m, one can tackle integration from Gaussian mo-

ments *e2g2g2mdg5Ap(2m21)!!/2m. In the case n53,

one finds

dX

dg
5

A6

3
1

A6

12
g21

25A6

2592
g41¯ ,

from which the leading order prefactor of the hydraulic con-

ductance can be computed:



^h23&5h0
25/2

1

Ahxx
A2p

3
S 11

1

8
2

225

10 268
D .

Numerically, the successive order m50,2,4 gives 1.44,

1.628, 1.661, which can be compared with the exact result

3p/4& , leading respectively to 10%, 1.6% and 0.3% esti-

mate.
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