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I. INTRODUCTION

In this article we analytically determine the conductances of the incompressible, steady, noninertial flow of a Newtonian fluid through a constriction using the lubrication approximation. Such a flow can be found in various systems or processes, such as rough fractures, [START_REF] Zimmerman | Hydraulic conductivity of rock fractures[END_REF][START_REF] Adler | Fractures and Fracture Networks ͑Kluwer Academic[END_REF] static seals formed by the compression of two rough metallic surfaces, [START_REF] Butcher | Fundamental principles for static sealing with metal in high pressure field[END_REF] or micro-fluidic systems. [START_REF] Matthias | Asymmetric pores in a silicon membrane acting as massively parallel Brownian ratchets[END_REF] Another interesting context involving a similar problem is the Plateau borders fluid film formed at foam lamela crossings. The swelling of these fluid films has a drastic influence on the mechanical behavior of the foam, the geometry of which is directly related to its hydraulic conductance and, thus, to its swelling dynamic. In all these systems, the local slope is small and the variations of the local aperture are slow, so that one can rely on the ͑Rey-nolds͒ lubrication approximation to analyze the flow. For all confined fluid films in two-or three-dimensional geometries pressure gradients are predominant in localized regions. In two dimensions, these regions are naturally located in the vicinity of the aperture minima ͓see Fig. 1͑a͔͒ while in three dimensions constrictions are located in the vicinity of saddle points. Figure 1͑b͒ shows a schematic representation of such a three-dimensional geometry where constrictions, associated with saddle points of the aperture field, are illustrated. When the mean distance between the two surfaces is sufficiently small for the aperture at a saddle point to be significantly smaller than the mean aperture within the two adjacent valleys, it is expected that the hydraulic flow resistance will be mainly controlled by the saddle point region. Such lubricated flow between confined surfaces has already received a considerable amount of attention in the literature.

In two dimensions, the creeping flow between two cylinders is an old lubrication problem that was first considered by Martin [START_REF] Martin | The lubrication of gear teath[END_REF] and was later reexamined through lubrication theory by Keller. [START_REF] Keller | Viscous flow through a grating or lattice cylinders[END_REF] The generalization of this leading order lubrication analysis to any general elliptic cylinder is trivial. Numerous other studies have considered two-dimensional geometries, with [START_REF] Manton | Low Reynolds number flow in slowly varying axisymmetric tubes[END_REF][START_REF] Sisavath | Creeping flow through a pipe of varying radius[END_REF] or without [START_REF] Happel | Low Reynolds Number Hydrodynamics ͑Kluwer[END_REF][START_REF] Richardson | A model for the boundary condition of porous material p2[END_REF][START_REF] Taylor | A model for the boundary condition of porous material p1[END_REF][START_REF] Hemmat | Creeping flow through sinusoidally constricted capillaries[END_REF][START_REF] Kitanidis | Stokes flow in a slowly varying twodimensional periodic pore[END_REF][START_REF] Bernabe | The hydraulic conductance of a capillary with a sinusoidally varying cross-section[END_REF][START_REF] Letalleur | Average flow model of rough surface lubrication: Flow factors for sinusoidal surfaces[END_REF] inertia effects. Neverthe-less, most of these theoretical investigations were interested in the weakly perturbed limit of large constrictions for which the amplitude of variations is small when compared to the mean diameter. [START_REF] Manton | Low Reynolds number flow in slowly varying axisymmetric tubes[END_REF][START_REF] Sisavath | Creeping flow through a pipe of varying radius[END_REF][START_REF] Happel | Low Reynolds Number Hydrodynamics ͑Kluwer[END_REF][START_REF] Hasegawa | On steady flow through a channel consisting of an uneven wall and a plane wall[END_REF][START_REF] Wang | Drag due to a striated boundary in slow Couette flow[END_REF] On the other hand, some of them bore on the opposite situation of small constrictions, for which the macroscopic behavior of the flow can display singularities, as first shown by Richardson. 10,15,18 -21 Hence, in this case, it is interesting to develop analytical solutions that can be useful either to match numerical boundary conditions, or to directly provide a good approximation for the macroscopic hydrodynamical behavior. As emphasized in Refs. 22 and 23, macroscopic singularities strongly depend on the local geometry of the surfaces which are close to contact. If the surface mean slope ͑defined as the surface average of the aperture gradient͒ is zero, the leading order singularities will depend on the surface curvature at the minimum gap. But if the curvature is zero at the minimum gap, then the lubrication leading order will be controlled by higher order surface derivatives as first noticed in Ref. 23. This study focuses on the simple situation of constant applied potential ͑i.e., pressure or electrical potential͒ for static solid surfaces. This article investigates the correction to the leading order lubrication theory in two dimensions.

In three dimensions, there has also been a considerable amount of literature regarding creeping flow between solid surfaces in different contexts such as sedimentation and suspension. The hydrodynamical interaction between close particles is strongly dominated by lubrication, the result of which is generally singular with the minimum gap distance. Hence, the detailed hydrodynamic of this confined flow is worth being considered analytically to provide useful boundary conditions for numerical methods. [START_REF] Kim | Micro-Hydrodynamics ͑Butterworth[END_REF] An extensive literature reviewed in Ref. 25 has been devoted to the analysis of three-dimensional lubricated flows. To cite only a few, the analysis of the forces and couple acting on a rotating sphere was first investigated by Dean and O'Neil 26 using matched asymptotic expansion technique. The case of a moving sphere with constant velocity near a wall was then solved by O'Neill and Stewartson [START_REF] O'neill | On the slow motion of a sphere parallel to a nearby plane wall[END_REF] and Goldman et al. [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall-I motion through a quiescent fluid[END_REF] The case in which the particle is confined inside a tube has been treated by Bungay and Brenner 29 while other more complex solid surfaces have also been considered. [START_REF] Falade | First-order wall curvature effects upon the Stokes resistance of a spherical particle moving in close proximity to a solid wall[END_REF][START_REF] Hirschfeld | First and second order wall effects upon the slow viscous asymmetric motion of an arbirary shaped positioned and oriented particle within a circular cylinder[END_REF] The most general case of two oblate spheroids in relative translation was finally addressed by Cox. [START_REF] Cox | The motion of suspended particles almost in contact[END_REF] To the authors' knowledge, however, all these studies have considered two surfaces with positive curvature, for they were mainly addressed in the context of the relative motion of particles. This article focuses on the hydrodynamics of the confined flow between two surfaces with curvatures of opposite sign, as displayed in Fig. 1͑b͒. Nevertheless, such saddle point geometries have already been studied in the context of electro-magnetic transport properties [START_REF] Koslov | Geometric aspects of averaging[END_REF][START_REF] Borcea | Network approximation for transport properties of high contrast materials[END_REF][START_REF] Borcea | Asymptotic analysis of quasi-static transport in high contrast conductive media[END_REF] ͑such as equivalent impedance͒ for which it has been shown that the macroscopic transport parameter depends on the principal curvatures at the saddle. This problem turns out to be different from those previously examined in the lubrication theory context because it brings to the fore a specific geometrical rescaling of longitudinal, transverse and vertical directions.

The purpose of this work is to give an analytical approximation of conductances associated with a constant applied potential ͑pressure or electrical potential͒ between two confined surfaces, as well as their validity range in two and three dimensions.

II. GOVERNING EQUATIONS AND DEFINITIONS

A. Governing equation

Let us define the aperture field h ˜as being the local distance between two smoothly spatially varying surfaces.

We will first solve the Poisson problem for the electrical potential ˜,

ٌ 2 ˜ϭ0, ͑1͒
with no-flux boundary conditions at the side walls,

ץ n ˜ϭ0 on z ˜ϭ0 and z ˜ϭh ˜, ͑2͒

associated with nonconducting boundaries. The local electrical flux density reads IϭDٌ ˜where D is the electrical conductivity. This problem is analogous to the problem of binary diffusion of a species in the dilute limit and heat conduction when the solid walls are of electrical or thermal negligible conductivity. In the context of diffusion ͑resp. heat conduction͒ D is the binary diffusion coefficient ͑resp. the thermal conductivity͒ and ˜the concentration ͑resp. the tem-perature͒. The results obtained in this article will be presented in the context of electrical conductance. There can nevertheless be directly applied to the thermal conductance problem when it is decoupled from the solid wall.

The electrical conductance G is then related to the electrical flux I and the potential difference ⌬⌽ ˜ϭ⌽ ˜(X 2 ) Ϫ⌽ ˜(X 1 ) applied at the aperture maxima X 1 and X 2 ͑see Fig. 1͒ apart from distance ͉X 2 ϪX 1 ͉ϭL:

IϭϪDG ⌬⌽ L . ͑3͒
In two dimensions I is the total current per unit width, while in three dimensions the total current is IL. The purpose of the analysis is to look for an asymptotic estimate for this conductance as the aperture at the saddle point becomes small ͑compared to the apertures of the adjacent valleys͒. We will then address the Stokes problem, defined on the pressure p ˜and velocity u ˜ϭ(u ˜,v ˜,w ˜),

Ϫٌp ˜ϩٌ 2 u ˜ϭ0, ͑4͒
where is the fluid dynamic viscosity. This momentum equation is complemented by incompressibility:

ٌ•u ˜ϭ0. ͑5͒
We apply no slip boundary conditions at the side walls: u ˜ϭ0 on z ˜ϭ0, and z ˜ϭh ˜. ͑6͒

These boundary conditions restrict the presented analysis to nonmobile walls, and excludes the case of surface-driven flows. The hydraulic conductance K is related to the fluid flux Q and the pressure difference ⌬ P ˜ϭ P ˜(X 2 )Ϫ P ˜(X 1 ) applied at the aperture maxima X 1 and X 2 apart from distance L:

QϭϪ K ⌬ P L . ͑7͒
With this definition, in two dimensions Q is the total flux per unit width, while in three dimensions the total injected flux is QL.

B. Nondimensionalization

In the vicinity of the aperture minimum a Taylor expansion of the two-dimensional aperture field gives

h ˜͑x ͒ϭh 0 ϩ 1 2 h x ˜x ˜x ˜2ϩ 1 6 h x ˜x ˜x ˜x ˜3ϩ 1 24 h x ˜x ˜x ˜x ˜x ˜4ϩ¯. ͑8͒
This expression can be much simplified using the proper nondimentionalization associated with standard lubrication problems. 22 We define ⑀ as the ratio of the minimum gap h 0 to its longitudinal curvature 1/h x ˜x ˜, ⑀ϭͱh 0 h x ˜x ˜. This article mainly investigates geometrical situations where ⑀Ͻ1. The horizontal direction is then scaled with a slowly varying variable xϭ⑀x ˜/h 0 while the vertical direction is simply scaled by the minimum aperture (zϭz ˜/h 0 , hϭh ˜/h 0 ). Then, x has been rescaled so that the aperture field in the inner region has, at leading order, a simple parabolic shape, h͑x ͒ϭ1ϩ 1 2 x 2 ϩ⑀␥ 3 x 3 ϩ⑀ 2 ␥ 4 x 4 ϩO͑⑀ 3 ͒ϩ¯, ͑9͒ where we have introduced coefficients ␥ 3 ϭh x ˜x ˜x ˜/ (6h x ˜x 2 ) and ␥ 4 ϭh x ˜x ˜x ˜x ˜/ (24h x ˜x 3 ). In the following, we will sometimes use notation h ˆfor h ˆ(x)ϭ1ϩ 1 2 x 2 . In three dimensions, a Taylor expansion in the vicinity of the aperture saddle point keeping only the first quadratic terms reads h ˜͑x,y ͒ϭh 0 ϩ 1 2 h x ˜x ˜x ˜2ϩ 1 2 h y ˜y ˜y ˜2ϩ¯, ͑10͒

where h x ˜x ˜Ͼ 0 and h y ˜y ˜Ͻ 0. The simple nondimensionalization choice for y ˜in the case of two solid convex surfaces with positive curvature should have been identical to the one used in the x direction ͑see, for example Ref. 32͒. This simple choice should also correspond to nondimensionalizing using the gap span ᐉϭͱh 0 /h y ˜y ˜. Nevertheless, a more careful inspection of the specificity of the geometry depicted on Fig. 1͑b͒ rather suggests another choice, because the flow is restricted in the transverse y direction by boundary conditions. Lubrication involves the ratio between the surface curvature and the typical small length-scale in the y direction which is the half-width ᐉ. Hence there is a new intrisic small parameter in the problem based on the ratio between the gap span and the transverse curvature ͱᐉh y ˜y ˜which scales as ϳͱ⑀. Then, rescaling yϭͱ⑀y ˜/h 0 , the three-dimensional aperture field is simplified into

h͑x,y ͒ϭ1ϩ 1 2 x 2 ϩ⑀͑ 1 2 ␥ 2 y 2 ϩ␥ 3 x 3 ͒ϩO͑ ⑀ 3/2 ͒, ͑11͒
where we have introduced coefficient ␥ 2 ϭh y y /h xx Ͻ0 which is O (1). The potential and pressure are nondimensionalized using the usual choice:

ϭ ˜Dh 0 IL⑀ , uϭ u ˜h0 dϪ1 QL , pϭ h 0 3 p QL⑀ , ͑12͒
where d is the space dimension, e.g., dϭ2,3, and the pressure follows the viscous standard lubrication nondimensionalization. [START_REF] Leal | Laminar Flow and Convective Transport Processes[END_REF] In the following, lower case letters refer to the inner region, while upper case ones refer to the outer region far from the aperture minimum. Using such nondimensionalization, the diffusion problem ͑1͒ becomes

͑ ץ z 2 ϩ⑀ץ y 2 ϩ⑀ 2 ץ x 2 ͒ϭ0, ͑13͒
exhibiting different scaling behaviors in the directions x,y and z. Nondimensional Stokes equation ͑4͒ also scales as

Ϫ⑀ץ x pϩ͑ץ z 2 ϩ⑀ץ y 2 ϩ⑀ 2 ץ x 2 ͒uϭ0, Ϫͱ⑀ץ y pϩ͑ץ z 2 ϩ⑀ץ y 2 ϩ⑀ 2 ץ x 2 ͒vϭ0, ͑14͒ Ϫץ z pϩ͑ץ z 2 ϩ⑀ץ y 2 ϩ⑀ 2 ץ x 2 ͒wϭ0.

III. TWO-DIMENSIONAL GEOMETRIES

A. Electrical problem

Inner expansion

The governing equation ͑13͒ has the standard feature of boundary layer equations that the potential must be constant at leading order across the inner region. This feature follows from the different scaling of its spatial variations on different directions. Thus we seek an expansion in small ⑀:

ϭ 0 ϩ⑀ 2 2 ϩO͑⑀ 3 ͒. ͑15͒
This choice derives from the realization that, in two dimensions, the governing equation for the O(⑀) perturbation 1 is only a copy of the leading order. The boundary condition being also identical, this perturbation term must be equal to zero. Each perturbation then follows the governing equations:

ץ z 2 0 ϭ0, ͑16͒
with boundary condition ץ z 0 ϭ0, on zϭ0 and zϭh ˆ. ͑17͒

This problem is easily solved from stating a constant vertical potential gradient. The potential variation along the x direction is thus deduced by imposing a constant integrated flux along the vertical direction. In nondimensional form this simply writes h(x)ץ x 0 ϭ1, which can then be integrated, at leading order:

0 ͑ x ͒ϭ ͵ 0 x dx 1ϩ 1 2 x 2 ϭ& arctan ͩ x & ͪ .

͑18͒

The second order can thus be computed from this leading order using the governing equation:

ץ z 2 2 ϩץ x 2 0 ϭ0. ͑19͒
The boundary condition at O(⑀ 2 ) order is given by expanding ͑2͒:

ץ z 2 ϭ0 on zϭ0, ͑20͒ Ϫ 1 2 ץ z 0 z 2 Ϫxץ x 0 ϩץ z 2 ϭ0 on zϭh ˆ.
The solution can be computed up to a function of x only. This function can be found by imposing a zero flux associated with this second order potential:

2 ͑ x,z ͒ϭϪ 1 2 xz 2 h ˆ2 Ϫ x 2 ϩ 2& 3 arctan x & . ͑21͒ 

Outer expansion

Similarly the length scale for variations in the vertical direction far from the constricted region is no longer the gap thickness but becomes the curvature h xx of the aperture field. In this far-field region, horizontal variations are of the order of L, the distance between the aperture maxima. This requires rescaling

͑ z,h ͒ϭ⑀ Ϫ2 ͑ Z,H ͒, ͑22͒ xϭ⑀ Ϫ1 ⑀Ј Ϫ1 X,
where we introduce a new small parameter ⑀Јϭ1/(Lh xx ) which is the typical slope of the aperture field. This rescaled region can be considered to be the outer region of large inner variations, if the slope fulfills ⑀Ӷ⑀ЈϽ1. Using scaling ͑22͒, the governing equations become ץ Z 2 ⌽ϩ⑀Ј 2 ץ X 2 ⌽ϭ0. ͑23͒

It will be confirmed by examining the matching of boundary conditions coming from the inner region that the outer solution should be expanded as

⌽ϭ⌽ 0 ϩ ⑀ ⑀Ј ⌽ 1 .
͑24͒

The leading order outer potential must fulfill

ץ Z 2 ⌽ 0 ϭ0 ͑25͒
with boundary conditions ץ Z ⌽ 0 ϭ0, on Zϭ0 and ZϭH. ͑26͒

The leading order outer solution is thus a constant, ⌽ 0 (X,Z)ϭ⌽ 0 , the value of which has to be matched with the inner region. The next order outer problem depends on the value of the ratio ⑀/⑀Ј. Let us first consider the case ⑀/⑀Јӷ⑀Ј 2 .

In this case, the first perturbation ⌽ 1 will fulfill the same problem and boundary conditions as the leading order. A general solution of this problem will be a function ⌽ 1 (X) of X only. This function must verify the conservation of flux, integrated along the vertical direction, which imposes that Hץ X ⌽ 1 is a constant. Hence, it is defined up to an initial flux that has to be matched with the inner region. Hence, contrary to the leading order, there will be some supplementary flux coming out of the inner region associated with this corrective term.

In the case where ⑀/⑀Јϭ⑀Ј 2 , the problem looks some- what different for the first perturbation. It is precisely similar with the previously first perturbation problem in the inner ͑21͒:

ץ Z 2 ⌽ 1 ϩץ X 2 ⌽ 0 ϭ0. ͑27͒
The boundary condition is given by expanding ͑2͒:

ץ Z ⌽ 1 ϭ0 on Zϭ0, ͑28͒ Ϫ 1 2 ץ Z ⌽ 0 Z 2 ϪXץ X ⌽ 0 ϩץ Z ⌽ 1 ϭ0
on ZϭH, Nevertheless, the leading order being constant, this problem degenerates, and we can recognize the previously examined problem for the leading order. We thus reach the same conclusion that Hץ X ⌽ 1 is a constant that has to be matched with the inner region.

Matching

We match the inner and outer solutions with the intermediate variable method, the result of which gives

⌽ 0 ϭ 0 ͑ ϱ ͒ϭϪ & 2 , ⌽ 1 ͑ 0 ͒ϭ0, ͑29͒ ץ X ⌽ 1 ͑ 0 ͒ϭץ x 2 ͑ ϱ ͒ϭϪ 1 2 .
A symmetrical result holds when matching the first maximum region with the inner in the limit x→Ϫϱ. From this solution, we deduce a simple expression for the first correction to the outer, Hץ X ⌽ 1 ϭϪ 1 2 H(0), which, from ͑22͒ and ͑9͒, leads to

⌽ 1 ͑ X 2 ͒Ϫ⌽ 1 ͑ X 1 ͒ϭϪ 1 2 ͵ X 1 X 2 ⑀ 2 dX H͑X ͒ ϭϪ 1 2 ⑀⑀Ј ͵ X 1 /⑀⑀Ј X 2 /⑀⑀Ј dx h͑x ͒ ϭϪ 2 ⑀⑀ЈϩO͑⑀ 2 ⑀Ј,⑀ 2 ⑀Ј 2 ͒. ͑30͒
From ͑30͒ and ͑24͒ one can infer the asymptotic expansion for the potential drop between the two maxima,

⌬⌽ϭϪ&Ϫ 2 ⑀ 2 .

͑31͒

This finally leads to the asymptotic expansion of the electrical conductance,

Gϭ 1 & h 0 ⑀ ͩ 1Ϫ ⑀ 2 2& ͪ ,

͑32͒

which is the main result of this section. It is interesting to note that the O(⑀ 2 ) correction has an intrinsic algebraic form. In particular, there is no geometrical contribution coming from the conductance higher curvatures in the inner region. It will not be the case for permeability, as will be seen in the next section.

B. Stokes problem 1. Inner expansion

Following similar lines, the inner problem for Stokes pressure and flow-fields is expanded:

pϭ⑀ Ϫ1 p 0 ϩp 1 ϩ⑀p 2 , ͑33͒ ͑ u,w ͒ϭ͑ u 0 ,⑀w 0 ͒ϩ⑀͑ u 1 ,⑀w 1 ͒ϩ⑀ 2 ͑ u 2 ,⑀w 2 ͒.
The rescaling for the velocity field gives a self-consistent divergence-free flow field at each order. As in the diffusion problem, governing equations ͑14͒ give the same problem for the leading order and first perturbation iϭ0,1:

Ϫץ x p i ϩץ z 2 u i ϭ0, ͑34͒ Ϫץ z p i ϭ0,
while the second order governing equations reads

Ϫץ x p 2 ϩץ z 2 u 2 ϩץ x 2 u 0 ϭ0, ͑35͒ Ϫץ z p 2 ϩץ z 2 w 0 ϭ0.
This expansion has to be completed with consistent boundary conditions. In keeping with notation h ˆϭ1ϩ 1 2 x 2 , boundary conditions ͑6͒ are expanded,

u 0 ͑ x,h ˆ͒ϭ0, u 1 ͑ x,h ˆ͒ϭϪ␥ 3 x 3 h ˆץz u 0 ͑ x,h ˆ͒, ͑36͒ u 2 ͑ x,h ˆ͒ϭϪ␥ 4 x 4 h ˆץz u 0 ͑ x,h ˆ͒Ϫ 1 2 ␥ 3 2 x 6 h ˆ2 ץ z 2 u 0 ͑ x,h ˆ͒ Ϫ␥ 3 x 3 h ˆץz u 1 ͑ x,h ˆ͒,
so that each order can be deduced from the previous one. Hence, in the case of the Stokes problem, the first perturbation is not a copy of the leading order because it fulfills different boundary conditions. At leading order, the Reynolds approximation is found again,

u 0 ͑ x,z ͒ϭ 1 2 ץ x p 0 ͑ x ͒z͑ zϪh ˆ͒. ͑37͒
The resulting flux being unity in this nondimensional formulation, the pressure is thus obtained from integrating the pressure gradient coming from the Darcy-type pressure-flux relation ץ x p 0 (x)ϭϪ12/h ˆ3:

p 0 ͑ x ͒ϭϪ 3 h ˆ2 Ϫ 9x 2h ˆϪ 9& 2 arctan x & , ͑38͒
where the pressure reference is chosen as equal to zero at x ϭ0. The next order solution for the velocity field is as simple as the leading order, to solve a boundary layer problem with uniform pressure along the vertical direction:

u 1 ͑ x,z ͒ϭ 1 2 ץ x p 1 ͑ x ͒z͑ zϪh ˆ͒Ϫ 1 2 zx 3 h ˆ␥3 ץ x p 0 ͑ x ͒. ͑39͒
The first perturbation pressure gradient is then easy to get from imposing a zero flux on the first velocity perturbation. The integration of this pressure gradient gives

p 1 ͑ x ͒ϭϪ6␥ 3 ͩ Ϫ 3 h ˆ4 ϩ 4 h ˆ3 ͪ .

͑40͒

In principle, solving the next order problem ͑35͒ requires the solution for the vertical component of the velocity at leading order. Even though it is easy to compute, computation is not necessary; instead one can use incompressibility in order to find a relation between the velocity components derivative in each direction. This leads to a simple decomposition of the second order pressure p 2 (x,z), which depends on the vertical direction, as p 2 (x,z)ϭץ x u 0 (x,z)ϩp ˆ2(x) with a yet unknown boundary layer additional contribution p ˆ2(x). From this decomposition we solve the first momentum equation of ͑35͒ and find the formal solution for the velocity field second order perturbation:

u 2 ͑ x,z ͒ϭ 1 2 ץ x p ˆ2z͑zϪh ˆ͒Ϫ x 3 z␥ 3 2h ˆץx p 1 Ϫ z 2h ˆץx p 0 ␥ 4 x 4 Ϫ 1 12 ץ x 3 p 0 z͑zϪh ˆ͒͑z 2 Ϫh ˆzϪh ˆ2͒. ͑41͒
Imposing a zero flux from this second order perturbation leads to defining the second perturbation boundary layer pressure gradient as

ץ x p ˆ2ϭϪ 1 5 h ץ2ˆ x 3 p 0 Ϫ 1 2 ץ x p 0 ͩ 6x 4 ␥ 4 h ˆ2Ϫ18x 6 ␥ 3 2 h ˆ4 ͪ . ͑42͒
From this pressure gradient we found an expression for the second order perturbation pressure. As will be outlined in the next section, the matching will only require the asymptotic limit as 

x→ϱ

Outer expansion and matching

Rescaling ͑22͒ is similarly applied in the outer domain for the Stokes problem. The governing equation ͑14͒ thus becomes

Ϫץ X Pϩ ͩ ⑀ 3 ⑀Ј ץ Z 2 ϩ⑀ 3 ⑀Јץ X 2 ͪ Uϭ0, ͑44͒ Ϫץ Z Pϩ͑⑀ 2 ץ Z 2 ϩ͑⑀⑀Ј͒ 2 ץ X 2 ͒Wϭ0.
The first perturbation of the outer problem must then be expanded in the following form:

Pϭ P 0 ϩ ⑀ 3 ⑀Ј P 1 , ͑45͒ ͑ U,W ͒ϭ͑ U 0 ,⑀ЈW 0 ͒ϩ ⑀ 3 ⑀Ј ͑ U 1 ,⑀ЈW 1 ͒.
Being interested in an O(⑀ 2 ) correction, we will restrict our attention to the leading order of the outer perturbation, as usual for lubrication problems, [START_REF] Leal | Laminar Flow and Convective Transport Processes[END_REF] while, moreover, since here ⑀/⑀ЈӶ1, it is not necessary to compute the next order. The matching for the far-right outer region then gives the following outer pressure:

P 0 ͑ X 2 ͒ϭ p 0 ͑ ϱ ͒ϩ⑀ 2 p 2 ͑ ϱ ͒ ϭ 9 4 &͑1ϩ⑀ 2 ͑ 4 5 ϩ 3 4 ␥ 4 Ϫ 15 16 ␥ 3 2

͒͒. ͑46͒

A symmetrical result holds for matching the left outer region in the limit x→Ϫϱ, so that the hydraulic conductance can finally be computed:

Kϭ & 9 h 0 3 ⑀ ͩ 1Ϫ⑀ 2 ͩ 4 5 ϩ 3 4 ␥ 4 Ϫ 15 16 ␥ 3 2 ͪͪ ,

͑47͒

where we recall that ␥ 3 ϭh x ˜x ˜x ˜/ (6h x ˜x 2 ) and ␥ 4 ϭh x ˜x ˜x ˜x ˜/ (24h x ˜x 3 ). The leading order exhibits the well-known [START_REF] Richardson | A model for the boundary condition of porous material p2[END_REF][START_REF] Bernabe | The hydraulic conductance of a capillary with a sinusoidally varying cross-section[END_REF][START_REF] Letalleur | Average flow model of rough surface lubrication: Flow factors for sinusoidal surfaces[END_REF] small gap dependence on h 0 5/2 . The O(⑀ 2 ) correction has an intrinsic dependence on the third and fourth derivative at the gap minimum. It is worthwhile comparing this result with other lubrication results associated with moving particles. When considering the resistance matrix associated with the relation between forces and velocities it is well known that cubic and quartic terms do not generally contribute to the same correction order. [START_REF] Bungay | The motion of a closely fitting sphere in a fluid-filled tube[END_REF][START_REF] Falade | First-order wall curvature effects upon the Stokes resistance of a spherical particle moving in close proximity to a solid wall[END_REF][START_REF] Hirschfeld | First and second order wall effects upon the slow viscous asymmetric motion of an arbirary shaped positioned and oriented particle within a circular cylinder[END_REF][START_REF] Cox | The motion of suspended particles almost in contact[END_REF] This is not the case here, where both third and quartic derivatives fulfill a quadratic ⑀ correction. Moreover, one can see that, depending on the sign of the quartic derivative, the correction could either increase or decrease the hydraulic conductance. Unsurprisingly, positive quartic derivative associated with profiles that are flatter than cylinders will decrease the hydraulic conductance. More surprisingly, any third derivative associated with an asymmetrical profile will lead to a hydraulic conductance increase.

These asymptotic results are interesting to compare with some approximate results obtained from saddle point approximations as studied by Borcea and Papanicolaou. [START_REF] Borcea | Network approximation for transport properties of high contrast materials[END_REF][START_REF] Borcea | Asymptotic analysis of quasi-static transport in high contrast conductive media[END_REF] The Appendix shows that in two dimensions the saddle point approximation can be a rather precise estimate for the leading order.

IV. THREE-DIMENSIONAL GEOMETRIES

In the case of three-dimensional geometries we are interested in throat-like geometries ͓see Fig. 1͑b͔͒ resulting from the contact between a concave and a convex solid surface. The horizontal plane coordinate systems (x,y) associated with the principal direction at the saddle point are considered. They coincide with the Hessian eigenvectors directions at the saddle point. In this section we will focus on the leading order of the asymptotic expansion of conductances.

A. Asymptotic scaling 1. Diffusion problem

In three dimensions, the potential expansion must be taken in its general form:

ϭ 0 ϩ⑀ 1 ϩ¯. ͑48͒
From now on, we will center on the first two perturbative terms. There should be an additional term of the order O(⑀ 3/2 ) before the previously examined O(⑀ 2 ) because of the scaling of additional perturbation on the nondimensional aperture ͑11͒. Here we are following the same steps as in Sec. III A seeking the leading order potential 0 first. Ex- panding ͑48͒ in ͑13͒ leads to the same governing equation ͑16͒ and boundary conditions ͑17͒. Formally, the solution is the same and leads to a uniform potential over the vertical boundary layer, as well as along the transverse direction. This longitudinally varying potential gradient ץ x 0 (x) can thus be deduced from the imposed flux. Nevertheless, in three dimensions the flux should now be integrated over the vertical and the transverse directions. Expanding the aperture half-width y 0 from ͑11͒ leads to

y 0 ϭͱ 2h Ϫ⑀␥ 2 ͩ 1ϩ⑀ ␥ 3 x 3 2h ˆϩO͑⑀ 3/2 ͒ ͪ . ͑49͒
From nondimensionalization ͑12͒, integrating the potential gradient along z and y direction at leading order with a constant current intensity leads to

⑀ Ϫ1/2 ϭ ͵ Ϫy 0 y 0 dy ͵ 0 h dzץ x 0 ͑ x ͒ ϭ 4& 3 ͱϪ⑀␥ 2 h ˆ3/2 ץ x 0 ͑ x ͒, ͑50͒
from which the potential solution at leading order can be integrated:

0 ͑ x ͒ϭ 3 4 ͱ Ϫ2␥ 2 ⑀ x h ˆ1/2
.

͑51͒

It is interesting to note that the leading order potential is not of order one, but it rather scales as O(1/⑀) from the chosen nondimensionalization. This means that the threedimensional diffusion conductance will scale linearly with h 0 . As a matter of fact, the matching with the outer region, at leading order, will be as simple as adjusting the outer region's potential values to the limit of the inner potential ͑51͒ as x goes to infinity. It is then easy to find the asymptotic leading order for the three-dimensional electrical conductance:

Gϭ 2 3 h 0 ͱ h xx Ϫh y y . ͑52͒
This result is very similar to the one obtained in Refs. 19 and 20 with a combination of reciprocity and extremal principle considerations. It is possible to compute the next perturbation order. One has first to realize that there will be O(⑀) correction to the flux coming from the leading order, due to some geometrical contribution of ͑49͒ from integrating over small O(⑀) correction to the gap width. This O(⑀) contribution to the flux necessitates a nonzero first order correction to the potential in order to annihilate this flux correction. Using the same boundary conditions as the leading order one can compute the first order correction to the potential which is now not zero in three dimensions. It turns out that this correction is still localized inside the inner region, and does not bring any further contribution to the outer potential. The next possible correction should then be of order O(⑀ 3/2 ).

Stokes problem

In three dimensions the pressure and velocity field have now to be expanded in the same way as in Sec. III B:

pϭ⑀ Ϫ1 p 0 ϩp 1 , ͑53͒ ͑ u,v,w ͒ϭ͑ u 0 ,ͱ⑀v 0 ,⑀w 0 ͒ϩ⑀͑ u 1 ,ͱ⑀v 1 ,⑀w 1 ͒.
The leading order still corresponds to a boundary layer problem, for which the pressure is uniform over the vertical and transverse directions. The longitudinal velocity field u 0 can then be obtained from the first momentum equation of ͑34͒, so as to find the lubrication parabolic profile ͑37͒ again. This result can then be integrated to find the relation between the uniform imposed flux and the leading order pressure gradient ץ x p 0 (x):

⑀ Ϫ1/2 ϭ ͵ Ϫy 0 y 0 dy ͵ 0 h dzz͑zϪh ץ͒ x p 0 ͑ x ͒ ϭ 16 105& ͱ⑀␥ 2 h ˆ7/2 ץ x p 0 ͑ x ͒.

͑54͒

The longitudinally varying pressure p 0 can then be integrated from taking the reference pressure equal to zero at x ϭ0:

p 0 ͑ x ͒ϭ 7 8& 1 ͱ Ϫ␥ 2 ⑀ x͑2x 4 ϩ10x 2 ϩ15͒ h ˆ5/2
.

͑55͒

Here again the leading order pressure is scaling as ⑀ Ϫ1 due to nondimensionalization ͑12͒. This means from examining previous results ͑47͒ that the three-dimensional conductance will scale as h 0 3 , as expected. As previously examined in Sec. III B 2, the matching of the pressure inner region with the outer pressure has in common with lubrication problems that the outer pressure leading order does not show any spatial variation. The outer pressure value is simply given by the x →ϱ limit of the inner pressure. From ͑55͒ the leading order for the asymptotic hydraulic conductance thus reads

Kϭ 1 14 h 0 3 ͱ h xx Ϫh y y . ͑56͒
This leading order asymptotic estimate should give a good approximation of the pressure drop from imposing the flux in Fig. 1͑b͒ throat. As was done previously, it is possible to compute further corrections. We focus on the first O(⑀) terms, which still fulfill a simple boundary layer problem, as the leading order longitudinal velocity u 0 only shows a small O(⑀) span-wise variation. Furthermore, as in the previous section, the leading order hydraulic flux has a small O(⑀) contribution due to the integral over small O(⑀) geometrical variations of the gap width. It is thus easy to find the inner pressure correction resulting from imposing a zero O(⑀) flux. As for the diffusion problem, this pressure remains localized inside the inner region and does not bring any contribution to the outer pressure. The expected further contributions are of O(⑀ 3/2 ) and O(⑀ 2 ). The next section will present a numerical comparison between asymptotic results ͑52͒ and ͑56͒ with direct numerical computation.

B. Numerical computations

There are very few known exact results for the pressure in three-dimensional geometries and none of them can be used to test the validity of the proposed expression. Hence, numerical computation is necessary to check their accuracy and validity range. It is interesting to proceed from a simple aperture field to more complex ones. Hence, we first investigate a simple sinusoidal aperture field defined by

hЈ͑X,Y ͒ϭϩ 1 & ͫ Ϫ 1 ␥ 2 cos͑X ͒Ϫcos͑ Y ͒Ϫ ͩ 1ϩ 1 ␥ 2 ͪͬ , ͑57͒ h͑X,Y ͒ϭH͑ hЈ͑X,Y ͒͒hЈ͑ X,Y ͒,
where H is the Heaviside function which imposes zero aperture at wherever the solid surfaces are in contact. The saddle point located at ͑0, 0͒ has an aperture equal to ⑀, with an associated Hessian eigenvalue ratio ␥ 2 ϭh y y /h xx . Hence, this sinusoidal aperture geometry has two free parameters ⑀ and ␥ 2 for comparison with the proposed scaling. It is nev- ertheless worthwhile extending these tests to more general geometries. Hence we also have investigated randomly generated smooth aperture fields. This study is interested in short range correlated aperture fields with smooth derivative defined everywhere. For this Markovian family of random fields, a Gaussian short range correlation function has been chosen, the Fourier transform of which has a Gaussian power spectrum. From imposing such power spectrum on randomly generated aperture field in Fourier space one can backtransform them to generate aperture fields with prescribed correlation functions. Restricting our investigation to isotropic Gaussian correlation functions, several random fields have been generated with a high spectral accuracy ͑i.e., 256ϫ256 points͒. In the following, two examples will be considered. The first is a closely isotropic aperture field associated with a Hessian eigenvalue ratio at the considered saddle point very close to one while the second is highly deformed in the y direction with ␥ 2 ϷϪ2.59 as represented in Fig. 1͑b͒.

Numerical computation is performed with a standard finite volume technique on a Cartesian grid with a uniform grid spacing ⌬ in both (x,y) directions. The aperture field being periodic, (x,y) coordinates are rescaled between ͓0,2͔. Instead of solving full three-dimensional problems, we have rather chosen to investigate the aforementioned small-slopes limit where either the diffusion problem or the Stokes problem still does not exhibit potential or pressure variations. As already mentioned in earlier sections, these boundary layer problems can be formally solved concerning their vertical variations, while the in-plane potential or pressure will fulfill a heterogeneous Poisson problem:

ٌ•͑h͑X,Y ٌ͒⌽ ͒ϭ0, ͑58͒ ٌ•͑h 3 ͑ X,Y ٌ͒ P ͒ϭ0.
Both equations ͑58͒ have been solved with associated uniform Dirichlet boundary conditions (⌽, P)ϭ0 at yϭ0 and (⌽, P)ϭ1 at yϭ2. The nodes associated with zero aperture are obviously disregarded by the solving procedure. The numerical solver uses a direct solving method. The influence of discretization is first investigated to quantify the validity range of the numerical results. Figure 2͑a͒ illustrates the grid mesh influence when computing the hydraulic conductance for isotropic (␥ 2 ϭϪ1) sinusoidal aperture ͑57͒. As expected, the numerical computation diverges from the asymptotic limit as ⑀ gets smaller. We thus define a critical ⑀ c associated with a given grid size NϫN as the value of ⑀ for which the relative error ͉KϪK 512 ͉/K 512 becomes greater than 10%. Better numerical results would have been obtained if more refined numerical methods 33 had been used. Figure 2͑b͒ displays the ⑀ c variations with the discretization N. As can be seen, ⑀ c ϰN Ϫ2 , i.e., ⑀ c ϰ⌬ 2 , as expected from the chosen discretization method. Misorientation may have a considerable effect on numerical results with finite volume methods. These effects should be taken into account when saddle point principal directions are different from the mesh orientation. All these results indicate that any direct computation of conductances associated with a complicated aperture field with an increasing number of saddle points would rapidly become difficult, if not impossible, owing to the discretization level which is necessary for accurate results. Figure 3͑a͒ compares the numerical computation of the hydraulic conductance ͑for a grid mesh size Nϭ512) to its asymptotic approximation. Three different geometries are represented, corresponding to the isotropic case (␥ 2 ϭϪ1) of Eq. ͑57͒ and the previously introduced randomly generated short-range correlated aperture fields. It is first interesting to note that for small values of ⑀, the hydraulic conductance reaches the asymptotic behavior ͑56͒, up to the expected numerical drift. One can observe that the difference between the predicted prefactor and the numerical results is smaller than 0.5%.

It is interesting to note the similarities in behavior between the sinusoidal aperture and the isotropic short-range correlated aperture for ⑀ values as large as 10. While the anisotropic short-range correlated aperture clearly differs from the two other ones for ⑀ values larger than 10 Ϫ1 , it hardly differs from more than 30% for saddle point gap values as large as 10. This quantitative observation emphasizes the robustness of the leading order approximation ͑56͒. As a matter of fact, the results displayed in Fig. 3͑a͒ suggest that when the upper and lower surfaces have only few contact points ͑with associated saddle point gap close to one͒, the proposed approximation is approximately 10%. Moreover, the Hessian eigenvalue ratio appears as the main parameter accounting for deviations from the asymptotic leading order.

The numerical results sketched in Fig. 3͑b͒ for the diffusive case qualitatively agree with those obtained for the hydraulic conductances. No numerical drift from the asymptotic behavior ͑52͒ is observed as ⑀ gets smaller. This is due to the smoother behavior of the local conductance that is much easily captured by the numerical discretization. It could be clearly observed that the prefactor leading order is within 1% of numerical results. These numerical results are very similar to those obtained by Borcea and Papanicolaou [START_REF] Borcea | Network approximation for transport properties of high contrast materials[END_REF] for which the comparison between numerical computation for the electrical resistance of a saddle point geometry was found to be very close to asymptotical results derived from extremal principle. Moreover, the results shown in Fig. 3͑b͒ indicate that the asymptotic behavior ͑52͒ is also robust over quite a significant range of ⑀ values.

These numerical results obtained from either deterministic analytical aperture fields or randomly generated ones show the fact that the proposed general conductances can provide a correct evaluation of any general saddle point geometry, as long as the surface slopes remain small.

V. CONCLUSION

Newtonian lubrication flow and diffusion transport through a constriction have been studied. Asymptotic expansion for electrical and hydraulic conductances has been obtained for two-dimensional ͑i.e., one-dimensional geometry͒ flow. Standard leading order results and the first asymptotic correction have been obtained. These results are simply expressed in terms of the minimum local geometry and do not depend on the far-field boundary conditions. Asymptotic expansion has also been used to study three-dimensional ͑i.e., two-dimensional lubricated flow͒ constrictions, the scaling of which has been obtained as a function of the saddle point eigenvalues ratio. The prefactors of the leading order have been analytically obtained and successfully compared with direct numerical computation. This leading order lubrication approximation has proved valid over a quite large range of constriction apertures. These results open up interesting perspectives to compute the flow through highly complicated geometries with a large number of constrictions.

The extension of the obtained results to low Mach number gas flows is a straightforward one. Because the conductances of compressible gas flows linearly vary with density, they will depend on the local pressure. As long as the no-slip boundary condition at the wall can be used ͑continuum flow͒, the dependence of the gas conductance on pressure is directly related to the gas state equation. Hence, even if the resulting pressure equation is nonlinear, one can easily find a suitable potential choice to linearize it. The resulting problem can then be matched with the one studied here, while FIG. 2. ͑a͒ Evolution of ratio between the theoretical hydraulic conductance and its numerical computation K/K n for four different grid sizes NϫN. ͑b͒ Critical gap ⑀ c versus the number of grid points N. The dashed line has a slope equal to Ϫ2. FIG. 3. Comparison between conductance K approximation ͑56͒ with numerical computations K n . Square symbols are for sinusoidal aperture defined in ͑57͒ with ␥ 2 ϭϪ1, while circle symbols are for random field short- range correlated apertures. Dark circles correspond to the aperture field represented on Fig. 1͑b͒ with associated Hessian eigenvalue ratio equal to ␥ 2 ϭϪ2.59, while opened circles are for an associated Hessian eigenvalue ratio equal to ␥ 2 ϭϪ1.05. ͑b͒ Same convention as ͑a͒ for G.

adapting the corresponding potential difference to the farfield pressure difference.

͗h Ϫn ͘ϭ ͵ h͑x ͒ Ϫn dx, ͑B1͒ which is written as ͗h Ϫn ͘ϭ ͵ exp͑Ϫn ln͑h͑x ͒͒͒dx.

Changing variable x to Xϭͱ⑀x/h 0 leads to expressing the aperture field in the vicinity of the minima as h͑X ͒ϭh 0 ͑ 1ϩ [START_REF] Zimmerman | Hydraulic conductivity of rock fractures[END_REF] 2 X 2 ͒, while neglecting O(⑀ 3/2 ) terms conductances can be written ͗h Ϫn ͘ϭC n h 0 Ϫnϩ 1/2 1 ͱh xx , which, in agreement with the derivations presented in Sec. II, shows that, to the leading order in ⑀, the conductances depends on the seconds derivative of the aperture at the saddle point and on a numerical prefactor that is expressed in integral form as

C n ϭ ͵ exp ͩ Ϫn ln ͩ 1ϩ 1 2 X 2 ͪͪ dX.

͑B2͒

An approximation of the value of this prefactor can be obtained using a saddle-point approximation. Writing g 2 ͑ X ͒ϭn ln͑1ϩ [START_REF] Zimmerman | Hydraulic conductivity of rock fractures[END_REF] 2 X 2 ͒, the constant C n defined in ͑B2͒ now becomes a Gaussian integral:

C n ϭ ͵ exp͑Ϫg 2 ͒ 1 dg/dX dg.
From expressing dX/dg in power series of g, dX/dg ϭ⌺ mϭ0 ϱ a m g m , one can tackle integration from Gaussian moments ͐e Ϫg Numerically, the successive order mϭ0,2,4 gives 1.44, 1.628, 1.661, which can be compared with the exact result 3/4&, leading respectively to 10%, 1.6% and 0.3% estimate.

FIG. 1 .

 1 FIG.1. ͑a͒ Schematic representation of a two-dimensional constriction. ͑b͒ Schematic representation of a three-dimensional constriction, for which the aperture saddle point is associated with a positive and a negative curvature. Boundary conditions are applied at the aperture field maxima 1 and 2.

ϭ ͱ6 3 ϩ ͱ6 12 g 2 ϩ 25ͱ6 2592 g 4 Ϫ5/2 1 ͱh xx ͱ 2 3

 412 2 g 2m dgϭͱ(2mϪ1)!!/2 m . In the case nϭ3, one finds dX dg ϩ¯, from which the leading order prefactor of the hydraulic conductance can be computed: ͗h Ϫ3 ͘ϭh 0
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APPENDIX A: ASYMPTOTIC LEADING ORDER FOR TWO-DIMENSIONAL CONDUCTANCES

Integrating Eq. ͑17͒ for the electrical potential and ͑37͒ for the pressure leads to the closed form for leading order resistances computed from far field aperture maxima at positions X 1 and X 2 ,

with nϭ1 and nϭ3. For periodic aperture the conductance is integrated over a period, while for unbounded aperture h(x) the integral domain is extended to infinity. Using expansion ͑11͒ in the vicinity of minimum xϭ0, and substituting this expansion in ͑A1͒, gives ͗h Ϫn ͘ϭ h 0

Ϫnϩ1

ͱ⑀

Obviously, these prefactors are exactly identical to those obtained from an exact integration of a simple sinusoidal profile:

For this type of aperture field, the integrations can be performed exactly. [START_REF] Bernabe | The hydraulic conductance of a capillary with a sinusoidally varying cross-section[END_REF][START_REF] Letalleur | Average flow model of rough surface lubrication: Flow factors for sinusoidal surfaces[END_REF] Computation of the resistances yields

From these exact results, one can derive asymptotic approximations as ⑀Ӷ1,

which hopefully perfectly match the previous result ͑A2͒.

APPENDIX B: COMPARISON WITH GENERALIZED SADDLE POINT APPROXIMATION

In this appendix, we use the generalized saddle point approximation technique to obtain an estimate of the hydraulic conductance in two dimensions. Starting from Eq. ͑A1͒,