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Abstract

In this paper, we establish a homogenization result for a nonlinear degenerate system arising from two-
phase flow through fractured porous media with periodic microstructure taking into account the temperature
effects. The mathematical model is given by a coupled system of two-phase flow equations, and an energy
balance equation. The microscopic model consists of the usual equations derived from the mass conservation
of both fluids along with the Darcy-Muskat and the capillary pressure laws. The problem is written in
terms of the phase formulation, i.e. the saturation of one phase, the pressure of the second phase and the
temperature are primary unknowns. The fractured medium consists of periodically repeating homogeneous
blocks and fractures, the permeability being rapidly oscillating discontinuous function. Over the matrix
domain, the permeability is scaled by £2, where ¢ is the size of a typical porous block. Furthermore, we will
consider a domain made up of several zones with different characteristics: porosity, absolute permeability,
relative permeabilities and capillary pressure curves. The model involves highly oscillatory characteristics
and internal nonlinear interface conditions accounting for discontinuous capillary pressures. We then show
by a rigorous mathematical argument that the solution of this microscopic problem converges as € tends to
zero to the solution of a double-porosity model of the global macroscopic flow. Our techniques make use
of the two-scale convergence method combined to extension and dilation operators in the homogenization
context. The memory effects of usual double porosity media are reproduced by this model. We show how
the effective coefficients of the porous medium are determined in a precise way by certain physical and
geometric features of the microscopic fracture domain, the microscopic matrix blocks, and the interface
between them.

Keywords: Homogenization; double porosity media; nonisothermal two—phase flow; nonlinear degen-
erate system;two-scale convergence; dilatation operator.
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1 Introduction

Modeling two-phase flow through fractured porous media is of interest for a wide range of science fields, includ-
ing energy and environmental engineering. Examples include geothermal systems, oil reservoir engineering,
ground-water hydrology, and thermal energy storage, see for instance [32, 45]. More recently, modeling mul-
tiphase flow received an increasing attention in connection with gas migration in a nuclear waste repository
and sequestration of C'Oy. Furthermore, fractured rock domains corresponding to the so-called Excavation
Damaged Zone (EDZ) receives increasing attention in connection with the behaviour of geological isolation
of radioactive waste after drilling the wells and shafts, see, e.g., [38]. Efficient heat exploitation strategies
from geothermal systems demand for modeling of coupled flow-heat equations on large-scale heterogeneous
fractured formation, see, e.g. [37, 42] and the references therein.

Dual-porosity models are typically used to simulate multiphase flow in fractured formations. Naturally
fractured reservoirs can be modeled by two superimposed continua, a connected fracture system and a system of
topologically disconnected matrix blocks. The fracture system has low storage capacity but high conductivity,
while the matrix block system has low conductivity and large storage capacity. The majority of fluid transport
will occur along flow paths through the fissure system. When the system of fissures is so well developed that
the matrix is broken into individual blocks or cells that are isolated from each other, there is consequently no
flow directly from cell to cell, but only an exchange of fluid between each cell and the surrounding fissure
system. For more details on the physical formulation of such problems see, e.g., [14, 34, 40].

The study of two-phase fluid flow through fractured porous media is a challenging nonlinear multiscale
problem with obvious multiphysics features. During the last decade, there appeared a significant body of
literature devoted to the modeling of such problems. Many works have been devoted to perform upscaling of
two-phase fluid flow in porous media by different approaches. Here we comment only on those publications
which are related to the present work. Namely, we restrict ourselves to the mathematical homogenization
methods of such models.

The mathematical analysis and the homogenization of the system describing the flow of isothermal sin-
gle and incompressible two-phase flow in porous media is quite understood. A recent review of the math-
ematical homogenization methods developed for incompressible single phase flow, incompressible immis-
cible two-phase flow in porous media and compressible miscible flow in porous media can be viewed in
[6, 13, 18, 20, 23, 25, 27, 28, 29, 31] and the references therein. The situation is quite different for immis-
cible compressible two-phase flow in porous media, where, only recently, few results have been obtained, see
for instance [3, 7, 10, 35] and the references therein.

However, as reported in [4, 5], all the aforementioned works do not include any temperature dependence
and are restricted to the case where flows are under isothermal conditions, contrarily to the present work. This
assumption is too restrictive for some realistic problems, such as thermally enhanced oil recovery, geothermal
energy production, high-level radioactive waste repositories. For such systems, the temperature dependence is
essential. The present work was motivated by a need to incorporate the thermal behavior for such problems.
The purpose of this paper is to carry out investigations of a generalized two-phase model for fractured porous
media which accounts for varying reservoir temperature to capture flow physics accurately.

In a previous paper [4], we gave an existence result of weak solutions for such a model under some real-
istic assumptions on the data. A model fully coupling the two-phase flow and heat transfer was developed to
investigate immiscible incompressible two-phase flow in porous media under nonisothermal conditions. The
corresponding homogenization problem for a single rock type model was proposed and analyzed in [5]. We
provided a rigorous derivation of an upscaled model by means of the two-scale convergence. To the best knowl-
edge of the authors, the homogenization of such coupled models under nonisothermal conditions for fractured
media is still missing. Closer to the present problem, recently homogenization for a Richard’s model arising
from the heat and moisture flow through a partially saturated porous medium was obtained in [15]. In [36], a
model for nonistothermal single phase flow in double porosity media is constructed by the technique of homog-
enization. Concerning the numerical simulation of such upscaled models for nonisothermal flows in fractured



media, we refer for instance to [16, 33, 42] and the references therein.

Here, we extend the model by developing a general approach that would allow us to incorporate the tem-
perature effects into two-phase flow in double porosity media made of several types of rocks accounting for
discontinuous capillary pressures. More precisely, the fluids are assumed immiscible and incompressible and
the solid matrix is non-deformable. The fractured medium consists of periodically repeating homogeneous
blocks and fractures, the permeability being highly discontinuous. Over the matrix domain, the permeability
is scaled by €2, where ¢ is the size of a typical porous block. Furthermore, we will consider a domain made
up of several zones with different characteristics: porosity, absolute permeability, relative permeabilities and
capillary pressure curves. The mathematical model is given by a coupled system of two-phase flow equations,
and an energy balance equation. The model consists of the usual equations derived from the mass conservation
of both fluids along with the Darcy-Muskat and the capillary pressure laws. The problem is written in terms of
the phase formulation, i.e. the saturation of one phase, the pressure of the second phase and the temperature are
primary unknowns. The model involves highly oscillatory characteristics and internal nonlinear interface con-
ditions. This leads to a system of three coupled nonlinear partial differential equations, a degenerate parabolic
two-phase flow system and a parabolic diffusion-convection one. As we include temperature effects in fluid
flow, the resulting model is much more complex. Including temperature effects requires a new equation: energy
conservation. The coupling between these equations raises several issues in the upscaling process that are to be
elaborated on. Our aim is to study the macroscopic behavior of solutions of this system of equations as € tends
to zero and give a rigorous mathematical derivation of upscaled models by means of the two-scale convergence
method combined with the dilation technique. The major difficulties related to this model are in the nonlinear
degenerate structure of the two-phase flow equations, as well as in the coupling in the system and the transient
fracture-matrix interactions. The equations in the matrix blocks are analyzed by the dilatation technique and
the passage to the limit in these equations is achieved by an adaptation of the monotonicity argument developed
in [19]. It should be emphasized that in the nonisothermal model both a priori estimates and passage to the limit
in the two-phase flow equations is rather involved, especially in the part related to the fracture-matrix interac-
tions. Thus, we extend the results of our previous paper [5] to the case of highly heterogeneous porous media
with discontinuous capillary pressures for nonisothermal immiscible incompressible two-phase flow through
fractured porous media.

The rest of the paper is organized as follows. Section 2 is devoted to the formulation of the homogenization
problem considered in the paper. Then we recall the notion of the so-called nonisothermal global pressure.
We also provide the assumptions on the data and we give the definition of a weak solution to our problem. In
Section 3 we obtain the basic a priori estimates for a weak solution of the problem under consideration. Namely,
for the phase pressures, the saturation, and the temperature. In Section 4 we establish the compactness and the
two-scale convergence results which will be used in the proof of the main result of the paper. Namely, first, we
extend the global pressure and the saturation functions defined in the fissure system. Then in Subsection 4.2 we
obtain the compactness result for the family of the extended saturation functions and, using the ideas from [5],
we also establish the compactness result for the family of temperature functions. In Subsection 4.3 we make
use of the compactness results from the previous Subsections in order to prove rigorously the convergence of
the homogenization process by means of two-scale convergence approach (see, e.g., [2]). Section 5 is devoted
to the properties of the dilated functions defined in the matrix blocks. Namely, first, in Subsection 5.1 we
introduce the definition of the dilation operator and describe its main properties. Then in Subsection 5.2 we
obtain the equations for the dilated saturation and the global pressure functions, the corresponding uniform
estimates and the convergence results. In Section 6 we formulate the main result of the paper and we complete
its proof. The resulting homogenized problem is a dual-porosity type model that contains a term representing
memory effects which could be seen as a source term or as a time delay. The proof is done in several steps.
The main difficulty with the phase pressure functions is that they do not possess the uniform H'-estimates.
To overcome the difficulties, we pass to the equivalent formulation of the problem in terms of the global
pressure, saturation, and the temperature functions. Then using the convergence and compactness results from
Section 4 we pass to the limit in the corresponding equations. This is done in Subsection 6.1. The homogenized



equations contain some additional nonlocal in time terms which depend on the saturation function in the matrix
block. Subsection 6.2 is devoted to the derivation of the effective equations in terms of the global pressure, the
saturation and the temperature. In order, to obtain the homogenized phase pressures we make use of the change
of the unknown functions. Then we rewrite the limit system obtained in terms of the global pressure and the
saturation in terms of the homogenized phase pressures (see Subsection 6.3). The passage to the limit in the
matrix blocks makes use of the dilation operator. Then in Subsection 6.4 we pass to the equivalent problem
for the imbibition equation and, finally, obtain the local problem in the matrix block. Lastly, some concluding
remarks are forwarded.

2 Formulation of the problem

In this section we formulate the homogenization problem. First, in Subsection 2.1 we introduce the adimension-
alized system of equations describing a nonisothermal immiscible incompressible two-phase flow in a reservoir
with double porosity. Then in Subsection 2.2 we define the so-called nonisothermal global pressure. Subsec-
tion 2.3 provides the main assumptions on the data. Finally, in Subsection 2.4 we give the definition of a weak
solution to our problem.

2.1 Governing equations

We consider a reservoir  C R? (d > 2) which is assumed to be a bounded, connected Lipschitz domain with
a periodic microstructure. More precisely, we scale a given periodic structure in R? with a scaling parameter &
which represents the ratio of the cell size to the size of the whole region 2. We assume that 0 < £ < 1 thatis ¢
is a small positive parameter tending to zero. Let Y o (0, 1)? be a basic cell of a fractured porous medium. For
the sake of simplicity and without loss of generality, we assume that Y is made up of two homogeneous porous
media Y, and Y} corresponding to the parties of the mesoscopic domain occupied by the matrix block and the
fracture, respectively. Thus Y = Y, U Y; U Iy, where I's,, denotes the interface between the two media. Let
2 with £ = "f” or ”m” denotes the open set filled with the porous medium ¢. Then Q = Q U Tz U Qg,
where I'f | e 00 NI, N Q and the subscript m and f refer to the matrix and fracture, respectively. For the
sake of simplicity, we assume that 25 N 9 = (). We also introduce the notation:

Q=A% (0,7), Q=07 x(0,7), Z5ET5, % (0,7) (T >0 is fixed). 2.1)

We focus our attention on a model where both fluids are assumed incompressible, that is the densities of the
wetting and non-wetting phases are strictly positive constants, and the skeleton density is also assumed to be a
strictly positive constant. It is assumed that no exchange of mass between the two phases can take place and
each phase remains homogeneous. Then the flow can be described in terms of the following adimensionalized
characteristics: ®°(z) = ®(x, £) is the porosity of the medium ; K*(x) = K(z, ) is the absolute permeabil-
ity tensor of €2; 0., 0n, and s are the mass densities of the wetting and non-wetting phases, and the skeleton,
respectively; S; = Sj(z,t) is the saturation of the wetting phase in {7 5; k,(.ﬁ)(S}f ) and kf«{%(Sz:) are the rel-
ative permeabilities of the wetting and non-wetting phases in the medium Q7 ; (¢ = f,m); pj , = piw(fﬂ, t),
Pin = Pj(%,t) are the pressures of wetting and non-wetting phases in Qf 53 Poc (S7) is the capillary pres-
sure in QZT; T¢ = T¢%(z,t) is the temperature; C,,, C,, are the constant heat capacities of the wetting and
non-wetting phases, respectively; C5(z) = C,(Z) is the heat capacity of the solid part; y5, = p,(7¢) and
py, = pn(T°) are the viscosities of the wetting and non-wetting phases, respectively; k%(z) = kr(Z) is the
thermal conductivity of the combined three-phase system. For all S,T" € R, the mobility functions Ay ., A¢,p
are defined by:

(6) ()
et Krw(S) aet krn(S)
Now(S, T)E 2D © Aen(S,T)E 0 =f,m). (2.2)
b ( ) :uw(T) b ( ) Nn(T) ( )



In what follows, each function f¢ := 5%, pf,, p5,, T°, C% is defined as:

o5 ff () 15 (2) + fr (e, t) 15, (2),

where 17(z) = 1,(%) is the characteristic function of the subdomain €27 for £ = f, m. In a similar way, we
define the functions A\, A\, P.. Namely,

)\0 (ga SE,TE> défAf,o‘ (SfE)Tf?) 1?(37) + )\m,a (Sr€n7Trf1) 1r€n(x) (J = w,n);

P, (g 55) = Pre (SE) 15(x) + P (S5) 15,(x).

In what follows, for the sake of presentation simplicity, we neglect the source terms. Then the conservation
of mass in each phase and conservation of energy relations read (see, e.g., [26, 30, 43]):

0<85 <1 in Qg

@6

a5 _ diV{KE)\w (2,5°,7) (Vps, — Fw)} =0 in Qg

02— div{ Ko\, (2,57 T°) (Vpi = 75) } =0 in O

0% — div{ K°T% [Cuy (£,5%,T%) (V5 = 72) + Ca (2,55, 7%) (V05 = 72)] } -
—div{k%VTE} —0 in Q
P (Z,8°) =p5 —p5, in Qf,
where 7y = 04 , T = 05, § With § being the gravity vector, and
e (2,95 77) 2 {(CuS + Call - 57) @7 + €5 1 - 0] } 77, (2.4)

The exact form of the porosity function, the function C¢, the thermal conductivity, and the absolute perme-
ability tensor corresponding to the double porosity model studied in this paper will be specified in conditions
(A.1), (A.2), (A.3), and (A.4) in Section 2.3.

The model (2.3) has to be completed with appropriate interface, boundary and initial conditions.

The interface conditions on X5 are the continuity of the phase fluxes, the phase pressures, and the temperature:
Gy V="Gnw 'V and G, V={qg, V onXs
TVIE -V =k3VIy -V on X&; 2.5)
piw = an,w and pﬁn = pfmn on Xg,

T =Ty on X5,
where Y5 is defined in (2.1), ¥/ is the unit outer normal on I' |, and the fluxes (TZW (j’fn are given by:
(TZE,U = _KEA&U(SZU7 ng) [sza - ’FU} (f =f,m; o =w, n)

The boundary 95 consists of two parts I'p and I'y such that Tp NIy = 0, 92 =Tp UT y and |T'p| > 0.
Here I'p, I'y are subsets of 02 with a Lipschitz boundary on 9€2. On I'p the pressures and the temperature



satisfy homogeneous Dirichlet boundary condition while on I'y the corresponding fluxes through the boundary
are equal to zero, that is:

{ o5 (x,t) = pS (2, t) =T%(x,t) =0 onI'p x (0,7); 2.6)
Qo V=0q; - V=kxVT*- V=0 onIy x(0,7),
where the fluxes ¢/, ¢ are defined as follows:
as d:ef—Kg(ac))\g (g, S‘E,TE) (Vpi — Fg) (0 =w,n).
The initial conditions read:
pe(x,0) = pO(z), p5(x,0) =pl(x), T°(x,0)=T%=) in Q. 2.7

2.2 The concept of nonisothermal global pressure

In the sequel, we deal with a formulation of problem (2.2)—(2.7) obtained after a proper change of unknown
functions. This transformation uses the concept of the so-called nonisothermal global pressure. For the isother-
mal incompressible immiscible two-phase flow, this concept was introduced for the first time in [11, 21]. Then
it was generalized to the nonisothermal case in [17]. This concept plays a crucial mathematical role for a priori
estimates and compactness results. Notice that in contrast to the gradients of phase pressures which do not have
uniform estimates with respect to € because of the degeneration of the mobilities (see Lemma 3.1 below), the
gradients of the nonisothermal global pressure possess the corresponding uniform estimates (see Lemma 3.4
below). This fact is then used in the proof of the main result of the paper given in Section 6.1. Following [17],
for any subdomain 27 (¢ = f, m), we define the nonisothermal global pressure Pj as follows:

Si

At w "

P = Pt [ S TE) PL(€)dE 2 P + Gy (57.T7), 8
1

where
def

Ae(SET7) = Ao (ST, T7) + Aen (S35 T7)-
Then using the capillary pressure relation (2.3)5, one can easily calculate that

€
SZ
def

A n £ € £ £
Piw = Pi - / 6 TE) Pro(€) dE = P+ Gru(SF.TF). 2.9)
1

It is easy to see that

A
Vi, = VP; + 22 (S5, T5) VP,.o(S7) + Bf VT§

¢
and N
Vb = VPf = S(S7,T7) VP, (SF) + B} VT,
¢
where
55
€ e ey def 9 )‘va € /
B =Bu(Se.T0)= | 57 N (& T7)| Ppo(§)de. (2.10)
1



As in [4], we introduce the following functions that depend on the saturation only:

5 K@ ke \
Bu(S5) = / ag(€)de  with ay(6)= H P (&), @2.11)
, kv (§) + ky. n(f)

where the constants M,,, M,,, m,,, m,, are defined in condition (A.7) below. Furthermore, we set
w MMy, B (S9)my, + kO (S5)m,,
MM kﬁf%wmw(T;) k(S n(T7)

. Moo (S5, TE) Ao (S5, T5
AO(se, 1) AP (55, TE) \/ ¢ EM S)é ‘;F() 6T, (2.13)

Due to (A.6) and (A.7), the function A(() ) (¢ = f, m) satisfies the estimates

A (ss, TE) & (2.12)

0 < Agmin < A (S5, T5) < Agmaz < +00, (2.14)

with some constants Aq i and Ag ynqez. The function Agé) keeps the degenerations in (2.3) as it is zero for
S7 = 0and S7 = 1. With these new functions we can write:

Men Vi = Men VP — A VB(SF) + AeuB§ VT (2.15)
NV = AewVP; + A VBi(S7) + Ao BF VTE (2.16)
Mon VD524 Av [V05 0|2 = Ao [VPE2 4+ AV [V B(S5)1% + e [BS]? [VTF|2 +2 A B VPS- VTS, (2.17)

In what follows we also make use of the function B\ defined by

S

Bls) / a(¢)de with a(s) = min {ar(s).am (P7()) 1 2.18)
0

where
def

P(s)= (P{C1 0 Pne)(s), se€]0,1]. (2.19)

Remark 1. Notice that due to the properties of the capillary pressure functions P . and Py, . (see condition
(A.5) below), the function P is a smooth, increasing function with a bounded derivative. Moreover, P(0) = 0
and P(1) = 1.

2.3 Main assumptions

The main assumptions on the data (A.1)-(A.10) are listed below. In the rest of this paper we assume that these
assumptions hold.

(A.1) The porosity function ®° is given by:
() £ 0f(2) 1 (@) + & (2) 15 (2),

where ®¢ € L°°(2) and there are positive constants &f . ¢ir independent of € such that 0 < o <
Of (x) < (bﬁr < 1a.e. in ). Moreover,

®: — df  strongly in L*(Q).

O = Oy (y) is Y-periodic, , € L*°(Y) and there are positive constants ¢, ¢ independent of ¢ and
such that 0 < ¢ < @p(y) < 9T < lae.inY.



(A.2) The absolute permeability tensor K°(x) = K*(x, £) is defined as
K*(2,y) < Ki(2,y) 1§ (2) + £° Km(2,y) 15,(2),

where Ky € (L®(£2; C,(Y))?*? with £ = f, m; the subindex # indicates that K/(z,y) is periodic in y.
Moreover, there exist constants kp,in, k™2 such that 0 < kpin < K™ and

Fnin|€]* < (Ke(2,) €, €) < k™[¢[* forall¢ € RY, ace.in Q x Y.
(A.3) The heat capacity of the solid part is given by C(z) = Cs(Z) where C; is a Y-periodic function,

Cs(y) = Cr s 15(y) + Crms Im(y)  with 0 < Cr g, Cpns < +00,

where the constants Cs ¢, C,  do not depend on €. The fluid heat capacities C,, and C,, are strictly
positive constants.

(A.4) The thermal conductivity tensor k% is given by:

def

k’ET(.I) = k’f’T 1? (l‘) I+ kmj 1% (x) I,
where I is the unit tensor and k¢ 7, km 7 are positive parameters that do not depend on €.

(A.5) The capillary pressure function Py.(s) € C1([0,1];R") (¢ = f, m). Moreover, P .(s) < 0in[0,1],
Py (1) =0and P .(0) = Py .(0).

(A.6) The functions k:,(«QU, k;,(f,l belong to the space C'*(R) and satisfy the following properties:
()0 < k%, kY < 1 on R; (i) £ (S) = 0 for S<0 and k)(S) = 0 for §>1; kY(S) = 1 for §>1
and k%)L(S ) = 1 for S <0; (iii) there is a positive constant kq such that k:%)u(S )+ k:%)l(S ) = ko > 0 for
all S e R.

(A.7) The viscosities iy, it € C(R) are functions of the temperature 7. Moreover, these functions, for any
T € R, satisfy the following bounds:

0<my < pio(T) <My, |uL(T)| <My < +0 (00 =w,n).

(A.8) The function ay defined in (2.11) is such that ay € C1([0,1]; RT) . Moreover, a(0) = ay(1) = 0 and
ay > 0in (0, 1). In addition, there exist a constant C' > 0 such that

am(s) < Cas(s) for all s € [0,1]. (2.20)
(A.9) The function 3‘1, inverse of B defined in (2.18), is a Holder function of order 6 on the interval [0, B (1)]
with # € (0,1). That is there exists a positive constant C'z such that for all u;,up € [0, 5(1)] the

following inequality holds:
B (u1) — B~ (ua)| < Cp Jur — us”.

(A.10) The initial data for the phase pressures are such that p, p?, € L?(Q2) and 0 < p¥ —p? < P.(0). The initial
data for the saturation 0 < S”¢ < 1 is defined by the capillary pressure law: p9 — p! = P.(x/e, S%¢).
The initial temperature 70 € L () satisfies the bounds 7T},, < TY(z) < Tys ae. in € for some
constants T, and Ty, 15, < 0 < Ty

Remark 2. According to (A.6) and (A.7) the mobility functions A, Mo, defined in (2.2) belong to the space
C(R x R;R") and satisfy the following properties:



() Aw(0,T) =0and Xp,,(1,T) =0forall T € R;
(ii) there is a positive constant Lq such that

ko
My, M,

def

Ae(S,T) Z N (S,T) + Mg (S, T) = Lo Zmin{m,, my,} >0 forall S,TeR. (2.21)

It also easily follows from conditions (A.6), (A.7) that

) (0) .
Frw(S) | kra(S) L 1wy (2.22)

MED) =200 T (@) S T

Remark 3. Notice that the initial data for the nonisothermal global pressure function, P*¢, can be calculated
with the help of the definition (2.8) and the initial data for the phase pressures and saturation function deter-

mined in condition (A.10).

Remark 4. Since the derivative of the capillary pressure functions is bounded from below and from above (see

condition (A.5)), then the function P has a strictly positive derivative, i.e., min¢g 1) P'(s) > 0. Then it holds,

~ ~ 0
Cs |B(P(51)) — B(P(S2))| = [P(S1) — P(S2)| = min P'(s)|S1 — Sal,
where the function Bis defined in (2.18). This inequality shows that the inverse of the function C(s) 4 (B oP)(s)
is Holder continuous with the same exponent 0 as for the inverse function of B\ (see condition (A.9)). The same
fact is true for the unbounded capillary pressure functions, with, possibly, smaller exponent 0, if we assume
that the inverse of the capillary function P . is Holder continuous.

We also note that the function Bs (see definition (2.11)) is Holder continuous with the exponent 0 since

S o S o
Co137(80) = 1(52)I" = Ca| [as(s)ds| =y [ts)ds| = [B(si) = Bis)| > 151 - sal,
So Sa

and therefore the same bound is valid for s o P.

Remark 5. If we define S o P! (pgyn - pg’w), for € € {n,w}, then the initial saturation defined in condition
(A.10) is given by
§%¢(x) =S¢ (x) 1§ () + Spy () 15, ().

Remark 6. The assumptions (A.1)-(A.10) are classical and physically meaningful for two-phase flow in porous
media. They are similar to the assumptions made in our previous work [4] that dealt with the existence of a

weak solution for the studied problem.

2.4 Definition of a weak solution

In order to define a weak solution to problem (2.3)-(2.7) we introduce the following Sobolev space:
HE ()={ueH(Q) :u=00onTp}.

The space H%D (€) is a Hilbert space when it is equipped with the norm ||u||H% @ = IVull(z2(q))a-
D
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Definition 2.1. We say that a quadruple function (p5,, p5,, S¢,T¢) is a weak solution to problem (2.3)-(2.7) if,
foranye >0,

(i) 0< S8 < lae in Q.
(i) T, <T° < Ty ae. in Q.

(iii) The functions ps5,, p5,, S, T¢ have the following regularity properties:

P pE € LA(Qy) and /e <§ST) Ve, 1/ A (§ST) VpE € LA(Q):  (2.23)

T¢ € L*(0,T; Hf (). (2.24)

(iv) For any pu, ¢n, o7 € C1([0,T); H(Q)) satisfying o = on = o7 =00nT'p x (0,7T) and
ouw(x,T) = pn(z,T) = or(z,T) =0, we have:

Wetting phase pressure equation:

- / cpf(x)seagw dar dt — / B (2) SO () pu (. 0) dar

Qg

(2.25)
/ Ke(z 55 T€) [VpS, — ] - Ve dudt = 0;
Non-wetting phase pressure equation:
€ 58¢n 5 0,e
O (x)S py dedt+ | ®°(2)S7(z)pn(z,0)dx
f . i (2.26)
+ /Kg(x))\n <E’ Sa,Tﬁ) (VP — ] - Vipn da dt = 0;
Temperature equation:
—/\Ila(agtT dx dt — /‘I’O’E@T(x,()) dx + /kET(m)VTE -V dx dt+ (2.27)
Qo Q Qg
x . T .
+/ {12 @) [ Cud (2,87, 7%) (Y5, = 70) + Cuda (5,55, 7%) (Vi = 72) | } - Ve dwdt = 0,
Qg
where the function W¢ is defined in (2.4) and
w0 2L (€, 80 + Cyf1 - %)) + C5 1 - o] | 17 (2.28)

According to [4] and its direct generalization to the case of multiple rock types, under assumptions (A.1)-
(A.10) problem (2.3)-(2.7) has at least one weak solution.

Notational convention. From now on C, C'y, Cy, . . . stand for the generic constants that do not depend on €.
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3 Uniform estimates for a solution to problem (2.3)-(2.7)

In this section we obtain the a priori estimates for a solution to problem (2.3)-(2.7). Inspired by [4, 5] we obtain
the following results.

Lemma 3.1. Let a quadruple function (p5,, p5,, S¢,T¢) be a weak solution to (2.3)-(2.7). Then
/Ke(x) {)\w (g Se, T€> IV, |2 + (g se,Tf) |vp;|2} dz dt < Co. G.1)
Qg

Corollary 3.1. Taking into account condition (A.2) the bound (3.1) implies that

J RS R E RN T

£
Qf 7

+ 2 / {)\mw(Sﬁ”Te)WpﬁwF + Am,n(sg,Tﬁ)wpfn,nP} dx dt < Cy. (3.2)

>
Qm,’J’

Lemma 3.2. Let a quadruple function (p5,, p5,, S¢,T¢) be a weak solution to (2.3)-(2.7). Then

/|VT5|2dm dt < Cy. (3.3)
Qg
Remark 7. In the derivation of (3.3) the crucial role plays condition (A.4) where the thermal symmetric con-
ductivity tensor k%, (in contrast to the global permeability tensor K*¢) is of order one with respect to € both in

the matrix part and the fissures system.

Now we turn to the estimates of the nonisothermal global pressure P; and the function 3¢(S7) (¢ = f, m)
defined above in Section 2.2. To this end we make use of the relation (2.17) in which we first estimate the
quantity B7. The following result holds true.

Lemma 3.3. Let a quadruple function (p5,, p5,, S¢,T¢) be a weak solution to (2.3)-(2.7). Then

o M M
’BZ‘ < Cp with Cp d:ngyc(O) |:n + w:| , 3.4
my, My
where the constants M,,, m,,, M,,, my, are defined in condition (A.7).
The Proof of Lemma 3.3 is presented in Lemma 3.3 from [5]. O

The gradients of the nonisothermal global pressure Pj and the function 3,(S57) (¢ = f, m) admit the follow-
ing estimates.

Lemma 3.4. Let a quadruple function (p,, p5,, S¢, T¢) be a weak solution to (2.3)-(2.7). Then

/|VP§2dxdt+e2 / |VPE |2 dx dt < Ch; (3.5)
9 Q5
/!Vﬂf(5§)|2dazdt+52 /|V6m(sg)2dxdt<cz. (3.6)
9 5 Q5

where the function (;(S7) is defined in (2.11).

11



The Proof of Lemma 3.4 can be done by the arguments similar to those from Lemma 3.4 in [5]. O

Lemma 3.5. Let a quadruple function (p,, p5,, S, T¢) be a weak solution to (2.3)-(2.7). Then under assump-
tions (A.1)-(A.10) the following uniform in € estimates hold true:

HP?HLQ(QET) <C and ”P;HL?(Q;J) <C (3.7

Proof of Lemma 3.5. In the proof of the lemma we follow the lines of the proof of Lemma 3.2 from [6]. The
first bound in (3.7) follows immediately from Friedrichs’s inequality and the uniform estimate (3.5).
Now we turn to the derivation of the second bound in (3.7). Since the global pressure is a discontinuous

function on the interface I'f | (see (2.1) for the definition), then we make use of the ideas from [9, 24]. For

Ps, € L*(0,T; H'(Q5,)) and P§ — Pr;, € L*(0,T; Hf: (%)) it is proved in [24] (see estimates (3.10), (3.11)
in Theorem 3.1) that there exists a constant C' independent of € such that

IPall2s, ) <C |eIVPaIzs, ) + VE IPll2s)] (3.8)

VEIPEz2es) < C [ I9P lzaag.) + 1P lzecr. | - (3.9)

Note that inequalities (3.8) and (3.9) follow from the Poincaré inequality, the trace inequality and the scaling
argument.

Then due to the definition of the global pressure P, (2.8), and the interface condition (2.5) written in terms
of the global pressure, one obtains the following estimate:

IPallz2ms) < IPm + Gmow(Sh: Tl z2 s + 1Gmw (S Tl 22 (e
= [IPF + Grw (S5, TF )| 2(s2) + 1 Gm,w (Shys Tl £2(s2) (3.10)
S Pfllz2mg) + 1Gew (56, TF) | L2(s2) + [Gmow (S Tr) | 2252 -

Now, taking into account the boundedness of Gy, (57,7} ), the geometry of ang, (3.8), (3.9) and (3.10), we
obtain:

1522z, ) < € (eIVPalz2z ) + 1) 3.11)
By using (3.5), from (3.11) we get the desired inequality (3.7). Lemma 3.5 is proved. O

Let us pass to the uniform bounds for the time derivatives of S¢. In a standard way (see, e.g., [8]) we get:

Lemma 3.6. Let a quadruple function (p,, p5,, S¢,T¢) be a weak solution to (2.3)-(2.7). Then under assump-
tions (A.1)-(A.10) the following uniform in ¢ estimates hold true:

{0,(®75)} .~ s uniformly bounded in L*(0,T; H'(5)); (3.12)
{0:®5} ., is uniformly bounded in L*(0,T; H*()); (3.13)

where
F = W5, T5) 2 { (CuS? + Calt — 57)) @5 + €2 1 — 5] } 7 (3.14)

and where ®¢, @7, are defined in condition (A.1).

4 Compactness and convergence results

The outline of this section is as follows. First, in Subsection 4.1 we extend the functions P and S¢ from the
subdomain €2 to the whole €2 and obtain uniform estimates for the extended functions. Then in Subsection

4.2, using these uniform estimates we prove the compactness result for the family {§f€ }e>0. In Section 4.2 we
establish the compactness result for the sequence of functions {7 }.~.
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4.1 Extensions of the functions Pg, S¢

The goal of this Subsection is to extend the functions P¢, S defined in the subdomain €2f to the whole (2 and
to derive the uniform in € estimates for the extended functions.

Extension of the function Ps. First, we introduce the extension by reflection operator from the subdomain €25 to
the whole 2. Taking into account the results of [1] we conclude that there exists a linear continuous extension
operator I1° : H(Qf) — H'(Q) such that: (i) IT°u = w in  and (ii) for any u € H*(Q%),

Mul[20) < Cllullz2@e) and  [[VIIFu)||r20) < C[Vullr2(0s), (4.1)
where C'is a constant that does not depend on u and . Now it follows from (3.5), (3.7) that

VAP L2 0y + ITEPEll 20y < C- (4.2)

Notational convention. In what follows we will denote 5? = II°P%.
Extension of the function S . In order to extend S§, following the ideas of [19], we make use of the function 3
defined in (2.18). It is evident that 3 is a monotone function of s. Let S° be the function defined by:

gem S infe 4.3)
P(S;) in QF,

where the function P is defined in (2.19). Then we introduce L?(0,T; H %D (€2)) function:

Bz, t) £ 5(S%) = [ als)ds, (4.4)

where the function a is defined in (2.18). As in [9] (see Lemma 4.1) using (3.6) and the definition (2.18) of the
function 3, one can show that there is a constant C' which does not depend on ¢ such that

IVBSE L2z ) = ||V5(§E)||L2(Q§J) <C and €l|VA(S S)HL?(Q;_’,‘T) <C. (4.5)
Let now the function B¢ be the extension of the function B\ (Sf ) to the whole domain €, i.e.,
BEEI°H(SE) in Qy with B = 5(SF) in Qf .
Then it follows from the extension by reflection and (4.5) that

0< B < ma B(s) ace.in Q7 and [|VB?| 12, < C, (4.6)
se|0,

Now we can extend S¢ from (2§ to the whole €2. We denote this extension by S¢ and define it as follows:
SEE BB, 4.7)

This implies that
/}V§(§5)|2 drdt <C and 0<5°<1ae. in Q. (4.8)
Qg
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4.2 Compactness results for the sequences {5°}..( and {1},

The main goal of this Subsection is to establish the compactness and corresponding convergence results for
the sequence {§E}E>0 constructed in the previous section (see the definition (4.7)). To this end we obtain an
auxiliary estimate of the modulus of continuity with respect to time variable for the saturation function .S¢. This
result is also used below in the proof of the compactness and convergence results for the temperature function
T¢. In this section we apply the ideas of the papers [44] and [4]. The main result of the section is then given in
Proposition 4.2.

Lemma 4.1. Under our standing assumptions, for h sufficiently small,

/ [SE(t) — Sg(t — h)] [B(SE)(t) — B(SE)(t — h)] dedt < Ch; (4.9)
oy
[ (8) = St = )] [BP(SR)) (1) = BP(Sq)) (¢ — )] dadt < C'h, (4.10)

where ka}; =4 Qf x (h,7), QZ% e Q% x (h,T) and C'is a constant that does not depend on € and h.

Proof of Lemma 4.1. First, we rewrite the equation (2.25) as follows. For any function ¢, € L%(0,T; H(Q))
such that ¢, = 0onT'p x (0, T) it holds:

3
/CDE(ac)aS Yw dx dt + / K (x, g) M (SE, T°) (VD5 — Tuw) - Vo da di

ot
Q QF
’ b N 4.11)
+ 2 / K (g; g) Ao (S50 T%) (VD0 — ) - Vipu daz dt = 0.
Q07
Following the ideas of the proof of Lemma 6.3 from [44], we introduce the function x°:
min{t+h,T}
c e . o u(t) —u(t —
Xz, t) & / h[0"B(S %) (x,7)dr  with o'y & W (4.12)
max{¢t,h}

Then, due to Lemma 3.4 and the boundary conditions for the function J3i (S %), we have x© € L(0,T; H%D (Q))
for any € > 0. Setting ¢,, = x° in (4.11), by the Fubini theorem we have:

T
/ @f(x)%it & dadt = / / & () h2 [ahsﬂ [ahﬁ(ég)] dz dr. 4.13)
QF h Q

Then from (4.11) with ¢,, = x® and relation (4.13) we obtain the following relation:
T
/ / @ (2) 12 [0S [0"B(5 )] drdr = 9°[xC),
h Q

where

] / K (x g) Mw(SE,T9) (V0 0y — Fo) - Vi© davdt

€
Qf 5

2 / K (w g) A (S5, T) (Vi — ) - VX© da .

e
Qm,‘J’
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Now by Lemma 3.1, estimate (4.5) and Cauchy’s inequality we obtain that
1 [xX°]| < Ch,

where C is a constant that does not depend on ¢, h. It is clear that
T
/ / @12 [05°] [05(5 )] i dr =
h Q

= [ @i)($50) - $i(o.t - 1) (BS70.0) ~ B(SF st~ ) ) dadr

€
Qf 7

+ / %, (2) (S5 (2, t) — S5 (z,t — 1)) <B<?<S;<x,t>> B(?(S;Wh») dadt.

e
Qm,ﬂ’

Since B and P are monotonically increasing functions, then both integrals on the right hand side are positive
and we find the bounds (4.9) and (4.10). This completes the proof of Lemma 4.1. O

Corollary 4.1. Under our standing assumptions, for h sufficiently small,

/ B3%) () — BE)(t — W)[* dwdt < Ch @.14)
i
/|§5(t)§€(th)]2/edxdt< Ch; (4.15)
i
/|Sg(t)55(th)]2/9dxdt< C'h. .16)
Qh

Here Qg 20 x (h,T); S¢ is the extension of the function S to the whole ) defined by (4.7); 0 is defined in
condition (A.9); C is a constant that does not depend on ¢ and h.

Proof of Corollary 4.1. It follows from the definition (2.18) of the function E and condition (A.8) that

1B(S°(t)) — B(S*(t — h))| < max a(s)|Se(t) — S5(t — n)).

B(S° () = BP(S*(t — m))] < ma (A(P(s)) ma (7)) |5°(2) — (¢ — )]

Then from (4.9) we get:

/|3(sf6(t B(SE(t — b)) du

R R “4.17)
<cC / [S(t) — S(t — h)] [B(SE() — BISE(t — h))] dadt < C'h,
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where C'is a constant that does not depend on ¢, h. In the same way we obtain that

[BP(S5(1)) = BEP(Sq(t = h))[* dardt < C . (4.18)

The inequality (4.14) stated in the whole domain Qg is a consequence of the bound (4.17) and the properties
(4.1) of the extension operator I1°.
From condition (A.9) we have:

/ |S5(t) = 5% (¢ — )| */" dw dt = / BB @) - BHBE)) (- m)[* dwdt
Qh
<c/|§(§€)() Bt — b da dt.
2%

Then from (4. 14) we obtain the desired bound (4.15). Taking into account Remark 4 we know that the inverse
of the function 3 o P is Holder continuous with the same exponent 6 and therefore we get:

/\smt)—s*( — )|’ dw dt = /iwo?) B(P(S2))) () — (B o P)  (B(P(S2)))(t — b)|** der at

(P(SE)(t — )| da dt.

N
Q
=
=
@)

Combining this inequality with (4.18) and the restriction of (4.15) to Qfg we obtain (4.16). Corollary 4.1 is
proved. O

The main result of the section reads.

Proposition 4.2. Under our standing assumptions there is a function S such that 0 < S < 1 in Qg and, up to

a subsequence,
5S¢ — S strongly in LY(Qqg) foranyq > 1. (4.19)

Proof of Proposition 4.2. By (4.8) the sequence {B S 5%)}e>0 is uniformly bounded in L?(0,7T; HY(€2)). Since
this sequence also satisfies (4.14), it follows from [39] that {5( B S%)}eso is a relatively compact set in the space
LQ(QT) Therefore, for a subsequence, 5(85 ) — B strongly in the space L?(fy). Letting S = B- (6*) we
get S° — S strongly in L?/%(Qq). In view of the uniform boundedness of the functions B (S5 ) this implies the
strong convergence in the space L?(Q)y) for any 1 < ¢ < oo. This completes the proof of Proposition 4.2. 0

Relying on (4.16) one can repeat the proof of Proposition 4.4 in [5] and prove the following compactness

for the temperature:

Proposition 4.3. Under our standing assumptions there is a function T such that T,,, <T < Ty in Qg and,
up to a subsequence,
T° — T strongly in L9(Q2y) forany g > 1. (4.20)
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4.3 Two-scale convergence results

In this Subsection, taking into account the compactness results from the previous section, we formulate the
convergence results for the sequences {P }es0, {S%}es0, and {T¢}.50. In this paper the homogenization
process is rigorously obtained by using the two-scale approach (see, e.g., [2]). For reader’s convenience, we
recall the definitions of the two-scale convergence.

Definition 4.4. A sequence of functions {v¢}.~o C L*(Qq) two-scale converges to v € L*(Qy x Y) if
v¥]|22(0q) < C, and for any test function p € C> (Q; Cx(Y)) the following relation holds:

e—0
Q’J’ QTXY

lim [ v®(x,t) ¢ (x,t, g) dx dt = / v(z,t,y) p(z,t,y) dy dx dt.

This convergence is denoted by v (x,t) 2 v(x, t,y).

Now we summarize the convergence results for the sequences {]Bf }e>0 {§5}5>0 and {T°}.~0. We have:

Lemma 4.2. There exist a function S such that 0 < S < 1 ae. in Qy, 3:(S) € L?(0,T; HE (), and
functions P, T € L*(0,T; H% (), wp, ws, wr € L*(Qq; H),,.(Y)) such that up to a subsequence

S%(x,t) — S(z,t) strongly in LI(Qg) V1 < g < 400; (4.1)
P:(z,t) — P(x,t) weakly in L2(0,T; H*(Q)); (4.2)
VP (z, 1) 22 VP (2, t) + Vywy(x, £, y); 4.3)

B(S%) — B¢(S) strongly in LI(Qg) V1 < ¢ < 400; (4.4)
V() (@, ) 22 VBH(S) (2, 1) + Vyw(, 1, 9); 4.5)
T#(x,t) — T(,t) strongly in LY (Qg) V1 < ¢ < 400; (4.6)
T¢(x,t) — T(x t) weakly in L*(0,T; H'(Q)); 4.7)
VT (2,t) 22 VT (x,t) + Vywr (2, t,y); (4.8)

Proof of Lemma 4.2. The proof of the lemma 4.2 is based on the a priori estimates for the functions 3¢ (Sf),
Pf and T° obtained in Section 3, the extension results from Subsection 4.1, Proposition 4.2 and Proposition 4.3.
The two-scale convergence results are obtained by arguments similar to those in [2]. Lemma 4.2 is proved. ©

5 Dilation operator and convergence results

It is known that due to the nonlinearities and the strong coupling of the problem, the two-scale convergence
does not provide an explicit form for the source terms appearing in the homogenized model, see for instance
[19, 23, 44]. To overcome this difficulty the authors make use of the dilation operator. Here we refer to
[13, 19, 23, 44] for the definition and main properties of the dilation operator. Let us also notice that the notion
of the dilation operator is closely related to the notion of the unfolding operator. We refer here, e.g., to [22] for
the definition and the properties of this operator.

The outline of this section is as follows. First, in Subsection 5.1 we introduce the definition of the dilation
operator and describe its main properties. Then in Subsection 5.2 we obtain the equations for the dilated
saturation and the global pressure functions, the corresponding uniform estimates and the convergence results.
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5.1 Definition and preliminary results

Definition 5.1. For a given € > 0, we define a dilation operator D¢ mapping measurable functions defined in

anJ to measurable functions defined in Qg X Yy, by

| e (@) tey,t), if (x) +ey € Q;
(D°9) (z,t,y) < " (5.1)
0, elsewhere,

where ¢ (x) Lek if v € (Y + k) with k € Z% denotes the lattice translation point of the e-cell domain
containing .

The basic properties of the dilation operator are given by the following lemma (see, e.g., [13, 44]).

Lemma 5.1. Let ¢,v € L?(0,T; HY(,)). Then we have:
VD0 =eD°(Vyp) ae. in Qy x Y, (5.2)

190l L2y xvm) = Illz2(0g, 13
IVyD 0l L2y xvim) = €1D°Va @l 20 xve) = €IV @l 20z )3
(D% D) 12(0y vy = (03 ¥) 2002, ) -
The following lemma gives the link between the two-scale and the weak convergence (see, e.g., [19]).

Lemma 5.2. Let {¢°}.~0 be a uniformly bounded sequence in L (X, ) satisfying: (i) D°p° — ¢° weakly in
L2(Qg; L2, (Yo)): (ii) 15, (2)p° 22 % € L2(Qq; L2, (Yan)). Then @ = ¢* a.e. in Q3 x Yy,

per per

Finally, we also have the following result (see, e.g., [23, 44]).

Lemma 5.3. If ¢° € L? (QF, 7) and 13, () ¢° = @ € L?(Qq; L2, (Ym)) then ©°p° converges to o strongly in

per
2 . .
L?(Qg x Yy). Here =3 denotes the strong two-scale convergence. If p € L*(Qy) is considered as an element

of L*(Qg x Yy constant in y, then D¢ converges strongly to ¢ in L*(Qg X Yr).

5.2 The dilated functions ©°S;,, ©°F;, ©°7: and their properties

In this section we derive the equations for the dilated functions ©°S5%,, ©° P7, ©°T}; and obtain the correspond-
ing uniform estimates. In what follows we also make use of the notation:

DESE L5, DPEEpS and DTTE =6 (5.3)
The equations for the dilated functions s%,, p%, are given by the following lemma.

Lemma 5.4. For x € Q, the functions s5,, 5, satisfy in the space L*(0,T; H=(Yy,)) the following system of

equations:

O _ giv, {Km(x, v) [Am,w(s,ﬁ,, 05 [V yy — et +A™ (55, 0 )V, B (5,)

D (y) 5t

+Am,wBm(Sh, 05) V4 0°] } =05 (5.4)
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st
ot

)25 iy { Kin.9) [ 55 B T, = 1A (5 05 ¥ o5

FAmn B (55, 05)V,6°] } =0. (5.5)

The Proof of Lemma 5.4 is given in [19, 44]. The system of equations (5.4)-(5.5) is provided with the following
boundary conditions: _
Bm(sm) = M(B:(D°5%)) on Tgy for (z,t) € Qf 7, (5.6)

where
def

M= pmo ([)m,c)_1 o Pf,c o (61‘)_1 =fBmo (ﬁf © ﬂ))_l- (5.7)

We also have

P + Gm,w(Sm, Omm) = CDE~? + Gf7w(®5§5,©5Tf) on T, for (x,t) € Q'S.n’g';

m’~“m
Pon + G (85, 05,) = D°P§ + Gp ,(D°S°, D°Tf) on Tpy for (z,t) € Q5.
The initial conditions are
S (2,9,0) = (D°5)(x,y) and  pf(z,y,0) = (D°Pp)(z,y) in Qf, X Vi, (5.8)

where SO, PO are the functions defined in (A.10) and Remark 5.

The dilations of the functions defined on the fracture system can be defined in a way similar to that already
used for the functions defined on the matrix part.

Now we establish a priori estimates for the functions s,, p%,. They are given by the following lemma.

Lemma 5.5. Let (s5,, p5,, 05,) be dilated functions defined in (5.3). Then:

0<sp, <1, ae inQgxYy, (5.9)
IVy B (sm)ll L2025 12,, (vi)) < C, (5.10)
105l 2202, v < C5 IVybmllz20yi12., () < Ce- (5.11)

Proof of Lemma 5.5. Statement (5.9) is evident. The uniform estimate for the gradient of the function S, (s,)
follows from the uniform bounds of Lemma 3.4 and Lemma 5.1. Finally, the uniform estimates (5.11) follow
from Lemma 3.2 and Lemma 5.1. Lemma 5.5 is proved. O

Since our fluid system is incompressible we can show that the global pressure in the matrix blocks converges
to a constant, independent of the fast variable y. This is the subject of the following lemma.

Lemma 5.6. For all ¢ € L*(Qg; H} (Ym)) it holds

/ Kn(2,y) Am(Sm: 0)Vypi - Vyo dydzdt| < Ce /||Vygb|L2(ym)d1:dt. (5.12)
QyxYm Qg

Proof of Lemma 5.6. From (5.4) and (5.5), by summing the equations we eliminate the saturation and obtain:

div, {Km(a:, Y) Am(Sins 05) VP — €Amw(Sis 0m)Tw — EAmn (St 0 ) Tn + AmBm (1, 0 ) VO] } =0,
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where Am = Am w + Am,n. The weak formulation of this equation is as follows: for any ¢ € L?(0,T; H& (Q)),

/ [ Ko (,9) A (550, 65,)V o - V) dy
Qg’XYm

_ / {Kn(@,9) [EXm (550, 05) 7o + EXmn (850 0570 — AmBun (55, 05)Vy05,] - Vo dy da dt.
Qg’XYm

Using the boundedness of the functions Am , Am,n and AmBm, together with the estimate (5.11) we conclude
that there is a constant C' which does not depend on ¢, such that (5.12) holds. Lemma 5.6 is proved. O

Lemmata 5.2 imply the following convergence results.

Lemma 5.7. Let (s5,,p5,, 05,) be the dilated functions defined in (5.3). Then, up to a subsequence, we have:

e 23 2 .
( )S s€L (Q‘Ta per(Y ))a (5.13)

55, — s weakly in L*(Qg x Y,).

Lemma 5.8. The weak formulation of the equation (5.4) for the dilated matrix saturation s;, has the form:

/ D, ()a(;t pdydz dt + / {Km(z,y)Vybr(sin, T) + F} - Vypdydr dt =0, (5.14)

Qg’ ><Ym Q‘J’ X Ym

for all ¢ € L*(Qg; HE(Ym)), where B}, is the function introduced in (6.6), the temperature T = T(z,t) is

given in Proposition 4.3, and

F* = K (2,9) | Am,w (8w, 00) [VyDin — €70

(5.15)
[A“">< St On) = A" (550, D]V Ben (550) + Ao Brn (550, 0 V0
Furthermore, we have
|Agm)( w0n) — A(m)( T —0 aeinQyxYy,ase—0. (5.16)

Proof of Lemma 5.8. From direct calculation we get

MM /I (S)ma + K(8)ma b ()E.(S)
Mo () o (T) + ko (8) i (T)

AYs,T) =

and consequently by (A.7) there is a constant C' > 0 such that
A8 (550, 050) = A (550 DI < C [l (850) = p (T)] + 100 (85,) = pn (7))

Due to the strong convergence given in Proposition 4.3 and Lemma 5.3, we get (5.16). Furthermore, using the
fact that 7" = T'(z, t), we introduce the function 5, = 3% (S, T') given by the relation

A NG /
dSIBm(SaT)_Al (S)T)ﬁm(s)
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Then we have
A (550, T)Vy Bn(570) = VB0, T (5.17)
One can easily verify that

Am,w (S, T)Amn (S, T)
Amaw (S, T) 4+ Amn (S, T)

A™(S,T)BL(S) =

Therefore, the function /;, introduced in (5.17) coincides with the function 3}, defined by (6.6) below in Section
6. The weak formulation (5.14)-(5.15) follow now directly from (5.4) and (5.17). Lemma 5.8 is proved. O

6 Statement of the homogenization result

In this section we formulate the main result of the paper and we complete its proof.
First, we introduce the notation. By S, P,,, P, and T' we denote the homogenized wetting phase saturation,
wetting phase pressure, nonwetting phase pressure and temperature, respectively.

- ®* = ®*(z) denotes the effective porosity and it is given by:
©*(2) = Of () | Y5|/|Yim (©6.1)
where the function @? is defined in condition (A.1) and |Y}| is the measure of the set Y; (¢ = f, m).

- K* is the homogenized permeability tensor with the entries (K*); ; defined by:

def 1 — —
(K*)ij(2) = A / Ki(z,y) [Vy&i + @] - [Vyg; + €] dy, (6.2)
4

where §; = §;(z,y) (j = 1,...,d)is a Y-periodic solution to the auxiliary cell problem:

—divy {K¢(z,y)(Vy& +€)} =0 in Y5
V& vy =—€j -1y on ey; (6.3)

y— &(y) Y — periodic.

- X% is the homogenized thermal conductivity tensor with the entries (X7.);; defined by:
e 1 - =
(KF)ig = A / k() [Vyn; + &1 - [Vyni + &ldy. (6.4)
m
Y

where 1; = n;(y) (j = 1,...,d) is a Y-periodic solution to the auxiliary cell problem:

—divy {kr(y)(Vyn; + &)} =0 inY; ©5)
y—n;(y) Y — periodic. .
- For a fixed value of the temperature function 7' € R we define:
[ Amanls, T Amns, T)
*(s,T) = [ St D)AmniS T pr (o) ds. 6.6
O e e LI ©6)
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We study the asymptotic behaviour of the solution to problem (2.3)-(2.7) as € — 0. In particular, we
are going to show that the effective model, expressed in terms of the homogenized phase pressures and the
temperature function reads:

0<S5<1 in Qg
L0S ) . . 09, . '
@ E —d1V {K )\f’w(S,T)(va_’rw)} = W mn Q‘J‘,
—<I>*§ —div{ KX, (S, T)(VP, — 7)) ¢ = 09 in Qg;
ot ’ ot 6.7)
o> '
aat —div {CwTK*/\f,w(S’ T) [va - Fw] + CnT K*)\f,n(5> T) [vpn - 'Fn]}
. N 0 .
—div{X5VT} = (Cyp — Cn)a(QwT) in Qg;
P;(S)=P,— P, inQyg
with
TH(S,T) = [(Cuw S+ Cn[l = 8]) @* +Cf, .+ Cf g + Cp @] T, (6.8)
where ®,,, is the mean value of the function ®,,, over Y;, and the constants (C;*n’ o C?,s are given by:
Che=Cms[l—®m] and Cf, = C,[|V5]/|Ym| — ®*(2)]. (6.9)

For almost every point z € € the system for flow in a matrix block Yy, C R? is given by the so-called
imbibition equation:

0
B (y) = — divy { Km(@,y)VyB5(s, T(2,£))} =0 in Y x Qg

ot
s(xayat) - ‘:Pil(S(l',t)) on Ffm X Q‘Ta (610)
s(z,,0) = S%(x) in Yy, x Q,

where P(.5) is defined in (2.19), s denotes the wetting liquid saturation in the matrix block Yy, and 521 is defined
in Remark 5.

Remark 8. The inequalities from Remark 4 show that the parabolic operator in the imbibition equation (6.10)
is degenerate and thus important qualitative properties (such as, for instance, the finite speed of propagation)
remain true even in the nonisothermal case. This can be justified by means of the local in space energy methods

such as given in [12].

For any x € Q) and ¢ > 0, the matrix-fracture sources have the form:

Qu = A Pm(y) s(z,y,t) dy = —Qn. (6.11)

The boundary conditions for the effective system (6.7) are given by:
P,=PFP,=T=0 onTpx(0,7);
K* A\ (S,T)(VPy, — §) - 7 =K* (S, T)(VP,—g)- =0 on Ty x(0,7); (6.12)
KiVT-v=0 onIy x(0,7).
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Finally, the initial conditions read:
S(x,0) = SP(z) and T(x,0)=Tzx) in Q. (6.13)
The main result of the paper is given by the following theorem.

Theorem 6.1. Let assumptions (A.1)-(A.10) be fulfilled. Then the solution of the initial problem (2.3)-(2.7)
converges (up to a subsequence) in the two-scale sense to a weak solution of the homogenized problem (6.7),

(6.10), (6.11)-(6.13).

Proof of Theorem 6.1. The proof is done in several steps. We start our analysis by considering the system
(2.3). The main difficulty with the initial unknown functions p;,, p5, in this system is that they do not possess
the uniform H!-estimates (see Lemma 3.1). To overcome the difficulties appearing due to the absence of the
uniform H'-estimates, we pass to the equivalent formulation of the problem in terms of the global pressure,
saturation, and the temperature function. Then using the convergence and compactness results from Section 4
we pass to the limit in equations (2.25), (2.26), (2.27). This is done in Subsection 6.1. In order, to pass to the
homogenized phase pressures we make use of the change of the unknown functions. Namely, we set, by the
definition of the global pressure: P, “p 4 Gt (S, T) and P, “p 4+ Gf (S, T). Then we rewrite the limit
system obtained in terms of the global pressure and saturation in terms of the homogenized phase pressures (see
Subsection 6.3). The passage to the limit in the matrix blocks makes use of the dilation operator (see Section
5 above). Then in Subsection 6.4 we pass to the equivalent problem for the imbibition equation and, finally,
obtain the local problem (6.10).

6.1 Passage to the limit in equation (2.25), (2.26), (2.27)

In this section we pass to the limit, as € — 0, in equations (2.25), (2.26), (2.27). This will be done in the follow-
ing way. We replace the gradients of the functions p5,, p5, by their representations in terms of the global pressure
and saturation (see (2.15), (2.16)) and then pass to the limit in this equivalent formulation. The homogenized
equations are then obtained in terms of the homogenized global pressure, the homogenized saturation, and the
homogenized temperature function.

Passage to the limit in equation (2.25). In order to pass to the limit in (2.25), we make use of the relation
(2.16) for the gradient of the function p,,. Then we set:

Ow (J;,t, g) Zo(x,t) +eCf (:C,t, g) =o(x,t) +eCi(x,t) (o (g) , (6.14)

where p € D(Q x [0,7)),1 € D(Qg), € CX.(Y), and plug the function ¢,, in the equivalent form of

per
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(2.25) in terms of the global pressure and saturation. This yields:

_/q)s( )S [aaf—k 85:} 1?(m)dmdt—/@f(m)S?l?(:c)gp(x,O)dm
Q

/ Ke(a Afw (S5, T°) (vﬁ; - fw) + A (82 T2V B (5%) + A (S°,T°) By (§E,T5)VT5}

: {w + VL A+ vyG} 15(z) do dt

- / o (%) 55 [%fﬂ%ﬂ dxdt—/ £ (2) S o(w, 0) da
0

15
m

(6.15)

+é? / K,?(w){Am,w(S,i, %) (VPG — 7o) + A{™ (S5, T%) VB (S5,)

Amao(55,T%) Bm(S5,, TE)VTE} : {w eV + vygﬁ} dzdt =0,

where K¢ (z) = K(x, 2)15(x), K;,(v) = K(z, £)15,(x), and S, Isf are the extensions of the functions S,
P¢ from )¢ to the whole 2 that were defined in Section 4.

Now taking into account the uniform bounds given in Lemmata 3.2,3.4 and the convergence results of
Lemmata 4.2, 5.7 we pass to the limit in (6.15) as € — 0 and obtain the following homogenized equation:

|Yf|/<I>st D Jedt — |Yf|/<1>PSf z,0)dx + / Ke(x y){Afw(s T)[VP + Vywy, — 7]
Q-’_]’XYf

+AD (S, T)[VB:(S) + Vyws] + A (S, T)Be(S, T)[VT + vwa]} : {w n glvy@} dy dz dt

= / @m(y)s(x,y,t)%—fdydxdt—i— / P (y) S2 (2)p(z,0) dy da. (6.16)
Q3 XYm OXYm

Passage to the limit in equation (2.26). In a similar way, using relation (2.15) for the gradient of the function
Pn, We obtain the second homogenized equation. It reads:

|Yf|/<1>Hs 99 qwdt + n|/q>?sf¢(x 0)da + / Ke(a, y){xm(s T)[VP + Vyw, — 7]
Q‘:]’X}/f

—AP (S, TYVBH(S) + Vyws] + A (S, T)Be(S, T)[VT + vwa]} - {w + glvy@} dy dz dt

=- / @m(y)s(x,y,t)%—fdydxdt— / () S2 () p(,0) dy da. 6.17)
Qg‘XYm QXYm

Here in (6.16), (6.17) the function s is defined in (5.13).
Passage to the limit in equation (2.27). Taking into account the relations (2.15), (2.16) and then using the test
function (6.14), after passing to the limit as ¢ — 0, we get:

- / {@fl(l‘) (CuS+Cp[1—8]) + (11— of () (Cs(y)} T%—f dx dy dt
QrxYr
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= [ {@f@)(Cus? + ol ~ S + (1 - 0 (@) Culy) } To(,0) dwdy
QxYr

+ / CoTK¢(z, y){Af,w(s, T)[VP + Vyw, — Fu]+A (S, T) VB (S) + Vywa]+
QTXY}

(S, T) Be(S,T) [VT + vwa]} : {ch + glvy@} dz dy dt

+ / CoTKi(z, y){xf,n(s, T)[VP + Vyw, — ]~ AP (S, T)[VB:(S) + Vywi+
QK_TX}/f

A (S, T) Be(S, T)[VT + vwa]} : {w + glvy@} da dy di—

[ {@n)(Cos + Calt = 5) + (1 - En(0)C) } T G e dy e+

Qg XYm
[ { @@ CuSh + Calt =SB + (1 = Bn(y) Caly)} (2, 0) s dy
QXYm
+ / kr(y) VT + V,ywr] - {Vap + clvy@} dz dy dt = 0. (6.18)

Qg xY
It remains to identify the corrector functions wy,, w,, wr appearing in the equations (6.16), (6.17), (6.18) in
the standard way (see, e.g., [28]). By setting ¢ = 0 in these equations and by multiplying (6.16) and (6.17) by
CyT and C,, T, respectively, and subtracting from (6.18), and taking into account the fact that the temperature
T does not depend on the fast variable y, we get

d T
wr(2,y,1) =D nj(y) 75— (1), (6.19)
j=1 /

where 7; = 1;(y) (j = 1, .., d) are the Y -periodic solution of the auxiliary cell problem (6.5).
Adding equations (6.16), (6.17) and dividing by A¢(S,T'), which does not depend on y and is strictly
positive due to (2.21), we obtain:

d

oP L or
Wp($7y7t) = Z <8x(x’t) - Tw,j) gj(y) + Bf(‘sv T) Z 87(1‘7{:))(](3/)7 (620)
J j=1 J

j=1
where the functions £;(x, y) satisfy the local problems (6.3) and x;(x, y) satisfy the following local problems:
~divy {Ke(x,9) Vx5 } = divy {Ke(,0)(Tyn; +)} in Yo
Vyxi Py =—(Vynj + &) -0y onlpm; (6.21)
y+— x;(y) Y — periodic.
Note that from the uniqueness of the solution to problem (6.21), we have

Xj+tn=2¢& (6.22)

up to an additive constant.
Finally, we can identify

d
w(o.0) = 3607

). (6.23)
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6.2 Effective equations in terms of the global pressure and saturation

In this section we derive the homogenized equations for the wetting, nonwetting phases, and the temperature.
By setting (2 = 0 in (6.16), (6.17) and (6.18) and using the representations of the corrector functions obtained
in the previous section, we derive the following homogenized equations:

—/@*S%fda:dt—/@*é’?gp(x,o)dx
Qg Q

+ / K* () {Af,wosn T) (VP = ) + AP (S, T)VBH(S) + Ar.u (S, T) Be(S, T) VT} Vpdrdt g0y
Qg

= —/Qw%fdmdt+/¢m5%(x)@(x,0) dx.
Qg Q

where the homogenized porosity ®* is given by (6.1), @, is the mean value of the function ®, over Yp,, the
homogenized permeability tensor K* is defined in (6.2), Q,, stands for the source term given by (6.11) and the
function s = s(x, y, t) is defined in (5.13).

Homogenized nonwetting phase equation is given by:

/@*S‘z‘fdxdt+/¢*s?¢(x,0)dx
Qg Q

T / K*(a:){/\fyn(S,T) (VP—7,) A (S, 7) V5:(S) + A¢ (S, T) Be(S, T) VT} Vodzdt g 95)

Qg

= /Qn%f dxdt/@mS,?q(x)go(;v,O) dx,

o Q
where Q,, = —Q,, (see (6.11)).

Homogenized equation for the temperature is given by:

— / {cb*((cw S+C,1-8)+C,+C;, +Cyp Em} T @dmdt

ot
Qg
- / {@*(CwS? + Cull — S)) + Chys + Cf, + Cs Em} TO%(z,0) dz
Q
- / Cu TK*{)\ﬁw(S, T)VP — 7 J+A (S, TYV B (S) + A (S, T) B (S, T) VT} Vedrdt (g5
Qg
+ / Cn TK*{AW(S, T)[VP — 7= AV (S, TV B (S) + A (S, T) Be (S, T) VT} Ve dz dt
Qg

+ /x; VT -Vpdrdt = — /((Cw —Cn)9, T %fda:dt + B (Cyy — Cy) / SO TY%(,0) de,
Q Qg Q

where C, ; and (C{ . are given by (6.9) and X7 is the homogenized thermal conductivity tensor defined in
(6.4)-(6.5).
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6.3 Effective equations in terms of the phase pressures

The variational equations (6.24), (6.25) and (6.26) can be written in the differential form as follows:

o %‘j — div {K* [Af,w(s, T) (VP — 7))+ A (S, T)VBe(S) + Ara (S, T)B(S, T)VT} }
(6.27)
09,
ot
L, 08 ) N . (f)
—0* = —div | K {Af,nw, TY(VP — 7))~ AP (S, T)VB:(S) + At (S, T)Be (S, T)VT}
(6.28)
_ 9%
ot
(9 * * * FY
815{ [@ (Cw S +Cpll = ) + Chyy +Cf, + Cr @m}T}
~div {(Cw TK*{)\ﬂw(S, T) [VP — 7+ AV (S, T)V B (S) + Aeao(S, T) Be(S, T) VT}}
(6.29)
— div {(Cn TK*{AM(S, T) [VP — %] —AD (S, T)VB(S) + A (S, T) Be(S, T) VT}}
—div {X7VT} = (Cy, — Cp) %(Qw T),
with the following boundary conditions:
P=T=0, S=1 onTlpx(0,T); (6.30)
and the Neumann boundary conditions on I'y x (0, T):
K {8, T) [VP = Ful+A(S, T)VB(S) + A (S, T) BA(S, T) VT } -7 =0, (631)
K*{Af,n(s, T) [VP — 7] =AY (S, 7YV B (S) + Apn (S, T) Be (S, T) v:r} =0, (6.32)
K45 VT -7 = 0. (6.33)

It is straightforward to show that the initial conditions read,

1 _
d*S(x,0) Wi B (y) s(z,y,0) dy = S (z) + PSP (x), T(x,0) =T ) forz c Q. (6.34)

Ym

Let us introduce now the functions

def def

Pw=P + Gf (S, T) and p, =P+ G, (S,7T), (6.35)
where the functions Gs ,,, Gf ,, are defined in Section 2.2. We call these functions homogenized phase pressures.

Then using relations (2.15) and (2.16) it is easy to see that the homogenized equations (6.27), (6.28), and (6.29)
become the desired equations (6.7)2-(6.7)4. The boundary and conditions (6.12) follow from (6.30)—(6.33).
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6.4 Flow equations in the matrix block

In preceding section we have shown that the homogenized phase pressures p,, and p,, homogenized wetting
phase saturation S and homogenized temperature 7" satisfy the homogenized equations (6.7)2-(6.7)4 and the
boundary conditions (6.12). The source terms Q,, and Q,, are given by (6.11) with the function s(z, y,t) given
as a weak limit of the dilated functions s, (see Lemma 5.7). Furthermore, only a combination of the functions
appearing on the left hand side in (6.34) have enough regularity to satisfy corresponding initial conditions. In
this section it is shown by the asymptotic analysis of the equations (5.4) and (5.5) satisfied by dilated functions
s, pe, and 6%, that homogenized matrix block saturation s, given as a weak limit of s%,, satisfies the imbibition
equation (6.10), which completes the homogenized model. In that way it is also shown that the function s has
sufficient regularity in temporal variable and satisfy the initial condition (6.10)3, which together with (6.34)
gives the initial condition

S(x,0) = SP(z) forx € Q. (6.36)

In this section we proceed with the monotonicity arguments similar to ones from [19]. Let us temporarily
denote by s* = s*(x,y,t) a solution to problem (6.10), Then, for any » € L?(Qq; H} (Yn))s

a *
/ ‘I)m(y)aiitpdydxdt—l— / Kn(z,y)VyBm(s*,T) - Vypdydzdt = 0.
Qg’XYm QTXYm

Subtracting this equation from (5.14) we get:

o, . .
/ Oy 5 (55 — 57) oy do

Qg’XYm
(6.37)
+ / {Km(x,y) VyBm(sim:T) — VyBr(s*,T)] - Vyp + F° - Vygo} dydx dt =0,
erXYm
where F* is given in (5.15).
In order to pass to the limit as € — 0 in (6.37) we consider the following auxiliary problem:
I E el _ e X . .
dlvy {Km(.’L', y)vyw } (I)m(y) [Sm(‘rv y7 t) S (.%‘, ya t)] n Ym ) (638)
w® =0 only,
forall t € (0,7). From (6.38) we obtain that for a.e. (z,t) € Q,
||Vyw5(x, K t)HLQ(Ym) < CHSi"I(m? " t) - 5*(1'7 K t)||L2(Ym)7 (6.39)
where C is a constant that does not depend on (z, t).
Since s5,(7,,0) = (9°5%)(z,y) and s*(z,y,0) = SO (z), then for t = 0,
—divy § K(z,y)Vyw® p = ®py 950 (z,y) — SO (x in Yy ;
o { Kon(,9) V0 b = @m(y) D755 (2, ) — S5 ()] 640)

w®=0 on I'y.
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Lemma 6.1. Let s;, be dilated matrix saturation defined in (5.3) and let s* be the solution to (6.10). Then,

0< [ Bn)[5h(sin T) = B 7)] (55— ) dy v
Qg’XYm
<- /Km(x,y)vyﬁr’;(P1(©5§5),T)-Vyw5dydxdt
Qg’XYm

+ / P (y) B (PTH(D°5),T) = Br(PTH(S). T)] (s — 8T dydzdt (g 41,
ngYm

/ Km(z,y)|Vyw(z,y, )|2dxdy+CE/HVyw | 22(v;y) dv dt
Q><Ym
+C / |A§’“)(s,€n,efn)—A§m>(s;,T)||vyﬁm(sfn)||vyw€|dydxdt.

Qg’XYm

Proof of Lemma 6.1 . We plug w*® in (6.37) as the test function. We get:

/ @m(y)%(sfn — s wdydxdt

7> (6.42)

[ { Koo 9280550 7) = 9155067, D0] - Dy + 5 Wy Ly e =
Qg’XYm

Now we rearrange the terms in this equation. This is done in several steps.

Step 1. Integration by parts with respect to time in the first term of (6.42). Using (6.38) we get:

0 * 15 5 * dw*®
| ) sy utdededy = [ o) 55~ 571 5

Qg‘ ><Ym Q‘J’ X Ym

+ / B(y) [ (2, T) — (2,5, T)] w (2,5, T) dy da

QAXYm
g * £ 15 6
[ s 00) - @0 O dyde =~ [ @l [5h - 5
QX Ym Q‘J’XYm
+ / Km(xay) |Vyw€(x7y77)|2 dydw - / Km(x7y) |Vywa(x7ya O)|2 dy d&i‘
QAxXYm QxXYm

Integration by parts with respect to time variable in (6.38) we get:

owe €

€ * € ow
/ (I)m(y) [Sm - S ] ot / Km($7y) Vyfw (Jf,y,t) : vyﬁ(x7y7t) dydxdt
Qg’XYm Q'J'XYm

T
:/;68 / Km(z,y) |Vyw® (2, y,t)|* dy dx dt
QXYm

1
/ (@0) (90 (9, 0) Py e+ 5 [ om0 (2,0, 9) P dy d
XYm QXYm

l\D\»—l
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Taking into account this two transformations in (6.42) we get:

/ Kon(e,y) [VoBa(s, T) — VyBia(s™,T)] - Vyu dyda di

Q-j-XYm
1
=3 / Km(aj,y)|Vyw5(x,y,‘3')|2dmdy (6.43)
QX Ym
1
—1—5 / Kn(z,y) [Vt (2,y,0) dy de — / Fe . Vyw® dydx dt.
QxYnm Q3 XYm

Step 2. Integration by parts with respect to space variable in (6.38). Taking into account the auxiliary
problem (6.38) we get:

/ K2, ) [V (550, T) = VyBi(s™, T)] - Vyu* dy da
erXYm

_ / divy{[ﬁ;(s;,T)—,B;(s*,T)] Km(x,y)vywe}dydmdt
Qg XYm

B / [/8:;1(8;7,11) 75:1(5*7T)] dlvy{Km(xgy)Vng}dyd$dt
= / (B (550, T) = Ba(s*,T)] Km(,y)Vyw® - ndS, dz dt

+/’%@wmmn—@w¢mﬁ—@@mw
Qg XYm

Note that the boundary condition (5.6) imply that s5, = P~} (@555 ) a.e. on OYy, x Q7 and, therefore,
Bin(850, T) = Bn(P™H(DS?),T) on Tgy for (z,t) € Q5 .
In the same way, since s* = P~1(.9) a.e. on 9Y;, x Qg, we have that
Ba(s*,T) = Bn(P71(S),T) on Tgy for (z,t) € Q4.

Since the boundary values are well defined in the whole {23 x Y we can substitute them in the integral over
0Yr, and perform again the integration by parts. We get:

/ Ko, ) [V (550, T) — VyBin(s™, T)] - Vg dy da
Q3 xXYm
= / [B5,(P7Y(®°5%),T) — B4 (PH(S),T)] Km(z,y)Vyw® - ndS, dx dt
Qg XYm

+/’%@wmﬁﬂ—&wfm$—m@mw
Qg XxYn
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The integration by parts now gives:

/ Ko, 9)[Vy 8 (550, T) — VB0 (s%, T)] - Vyur dy da dt
Qg’XYm

/ Kum(2,9)V B5(P7HDS%), T) - Vyws dy dx dt

Qg xYn

- / B (y) [5(P~LD°55), T) — B (P1(S), T)] (5, — 5) dy da dit
Q3 XYm

+ / B (4) 185 (55, T) — Ba(s™ TV (5 — %) dy de dt,
Q3 XYm

where we have taken into account the auxiliary problem (6.38) and also the fact that V, 3 (P~1(S),T) = 0.
Plugging now this equality into (6.43) we get:

0< / Drn(y) [ (550, T) = Bia(s™, T)] (55, — °) dy dt dt

Q‘J’XYm
/ Kum(z,y) V, 85 (P~YDS%), Tz - Vyw® dy da dt
Qg’XYm
b [ Bn) [P @4E), 1) - B (P T)] (55 - 57 dydrdt 644
Qg’XYm
1 1
) / Kn(z,y) ‘Vyws(x,y,U‘)ded:c + 3 / Kn(z,y) ‘Vyw*?(x,y,())‘? dy dx
QxYm QXYm
— / Fe . V,uw® dydx dt,
Qg’XYm

where we used the monotonicity of the function s — S (s, T).
The boundedness of the functions Am ., Am,n, AmBm and estimate (5.11) imply that

/ Fe - Vyw® dydzdt]| <

Qg—XYm

/ I{f‘ﬂ(x7y))\l'ﬂ7 ( m;efn)vypivngdyda?dt
Qg‘XYm
+C / A (52, 62) — A™ (5, T)| |V Bm(s5)| |Vyw€|dyd:rdt+()€/|Vyw5||Lz(ym)da:dt.

Qg X Ym Qg
Then, from (5.12) it follows the estimate:

/ Fe - Vyw® dydxdt <C€/|’Vyw€|’L2(ym) dxdt

Qg—XYm
C / A™ (55,05 — A™ (55, T)| | VyBm(55)| | Vyw?| dy da dt. (6.45)
Qf‘rXYm
Finally, the bound (6.41) immediately follows from (6.44) and (6.45). Lemma 6.1 is proved. O

Now we turn to the main result of the section. This is done by studying the asymptotic behaviour of the
right-hand side of (6.41) as ¢ — 0. We have.
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Lemma 6.2. Let s € L*(Qg x Yy,) be the limit function from (5.13) and let s* be the weak solution of the
imbibition equation (6.10). Then s = s* a.e. in Qg X Y.
Proof of Lemma 6.2. We will show that all terms on the right hand side in (6.41) converge to zero as € — 0.

First note that by (6.39) the functions w® are uniformly bounded in L?(Qq; H'(Yy,)) and, therefore,

€ /||Vyw€||L2(ym) drdt -0 ase—0. (6.46)
Qg

By Lemma 5.8 and the bound (5.10) we have:

m>m

/ IA™ (55, 05) — AS™ (52, T)| |Vy B (s50) | | Vyw?| dy dadt — 0 as & — 0.

Qf]’XYm

Proposition 4.2 implies that 5° — S strongly in L2 (Q7) and from Lemma 5.3 we have that D¢ S¢ — S strongly
in L2(Qg x Yp,). This leads to

/ D (y) [B;(P‘l(gegg),T) — 6;(73_1(5),T)] (st, — s")dydxdt -0 as e — 0.
Qg—XYm
From (6.39), (6.40), and Lemma 5.3 we get:
/ Kn(z,y) }Vng(x,y,0)|2 dydr < C / |28 (,-) — S,?](:v)H%Q(Ym) dr -0 ase—0.
QOxYm

In order to estimate the first integral on the right hand side in (6.41) we note that
[VyB5(P7H(®°57), )| = [A{™ (P (D°5°), T)V, (P (D°59))| < C |V, D (P (5))].

With the help of the inequality (2.20) in condition (A.8) and (4.8), from the last inequality we obtain that

/ 19, 85(P~ (0°5°). T) |22y, da dt < C / 19,0 6m(P~1(8)) 1221y, dr

2 / |V Bn(P~Y(S)| d dt < C €2 / V.B(S%)|?dzdt -0 as e— 0.
N Q;,‘J’

The above convergence result and (6.41) implies that

0< / P (y) [Bn(sin, T) — B (s*,T)] (55, — s¥) dwdtdy — 0 as e — 0.
Qg’XYm

This enables us to conclude that the limit of s;, is equal to s*, which is the solution of problem (6.10).
Lemma 6.2 is proved. O

Let us also note that by standard arguments (see, e.g., [41]) we have the uniqueness of a solution to the
imbibition equation (6.10) for a fixed value of the temperature 7.
This completes the proof of Theorem 6.1. O
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7 Concluding remarks

We have presented a homogenization result for a degenerate system modeling nonisothermal immiscible in-
compressible two-phase flow through a double porosity medium made of several types of rocks. We have
assumed that the porosity, the absolute permeability, the capillary and relative permeabilities curves are differ-
ent in each type of porous medium. This leads to nonlinear transmission conditions representing the continuity
of some physical characteristics such as wetting and nonwetting pressures, at the interfaces that separate dif-
ferent media. Then the saturation and some other characteristics become discontinuous at the interface. We
proved the homogenized results by using the two-scale convergence method combined with the dilation tech-
nique. This homogenization result improves previous results that were obtained for isothermal model in highly
heterogeneous porous media with discontinuous capillary pressures. The study still needs to be improved by
developing a general approach that would allow us to incorporate the cases of compressible phases and double
porosity media. These more complicated cases appear in various applications. Further work on these important
issues is in progress, in particular the homogenization of nonisothermal immiscible compressible two-phase
flow through a double porosity medium as well as the corresponding existence results for such kind of flow.
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