Abdelkrim Aharmouch 
email: abdelkrim.aharmouch@usmba.ac.ma
  
Brahim Amaziane 
email: brahim.amaziane@univ-pau.fr
  
Efficient Mass Conservative Numerical Model for Solving Variably Saturated Groundwater Flow

Keywords: Groundwater Flow, Finite Element, Modeling, Richards Equation, Variably Saturated Flow

A multi-dimensional mass conservative numerical method, particularly suitable for limited computational resources, is developed for solving transient variably saturated groundwater flow problems. The Richards equation is discretized spatially with a finite element method and temporally with an implicit Euler scheme, in which mass-conservative and mass-lumping techniques are used to keep the numerical simulation stable. In addition, the stiffness and mass matrices involved are approximated in a way to guarantee less computational effort. To confirm the accuracy and the efficiency of this code, we verified it using benchmark tests using one, two and three-dimensional problems. The present model is also applied to a real field case problem, where its superiority is clearly demonstrated. The code achieved reliable results for each problem.

Introduction

Flow in a variably saturated porous medium is governed by the Richards equation, a highly nonlinear PDE. Few analytical solutions using simplifying conditions or restrictive hypotheses were presented [START_REF] Polubarinova-Kochina | Theory of groundwater movement[END_REF][START_REF] Teloglou | A water table fluctuation in aquifers overlying a semi-impervious layer due to transient recharge from a circular basin[END_REF][START_REF] Moutsopoulos | Solutions of the Boussinesq equation subject to a nonlinear Robin boundary condition[END_REF]Tracy, 1995[START_REF] Tracy | Clean two-and three-dimensional analytical solutions of Richards' equation for testing numerical solvers[END_REF][START_REF] Tracy | Three-dimensional analytical solutions of Richards equation for a box-shaped soil sample with piecewise-constant head boundary conditions on the top[END_REF][START_REF] Hayek | An analytical model for steady vertical flux through unsaturated soils with specific hydraulic properties[END_REF]. Nevertheless, the most attempts to solve saturatedunsaturated flow problems are based on numerical techniques.

Several models, using the numerical approach of [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF], were developed [START_REF] Clement | A physically based, two-dimensional, finitedifference algorithm for modeling variable saturated flow[END_REF][START_REF] Van Dam | Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation[END_REF][START_REF] Kuznetsov | Quasi 3D modeling of water flow in vadose zone and groundwater[END_REF]Herada, 2014). [START_REF] Belfort | On equivalent hydraulic conductivity for oscillation-free solutions of Richards equation[END_REF] presented a review of several estimations of the equivalent conductivity and analyzed the efficiency of the different averaging fashions when solving unsaturated flow. [START_REF] Fahs | An easy and efficient combination of the Mixed Finite Element Method and the Method of Lines for the resolution of Richards' Equation[END_REF] used the method of lines combined with the mixed finite element discretization to solve variably saturated flow in porous media. [START_REF] Younes | Monotonicity of the cell-centred triangular MPFA method for saturated and unsaturated flow in heterogeneous porous media[END_REF] studied the monotonicity of a finite volume-based method for solving flow in variably saturated and heterogeneous porous media. Hassane Maina and Ackerer (2017) discussed Newton-Raphson method and time-stepping strategies for solving the mixed form of Richards equation. Koohbor et al (2020) solved Richards equation in the context of fractured porous media. [START_REF] Zha | A modified Picard iteration[END_REF] presented a modified Picard iteration scheme for overcoming drawbacks arising when simulating infiltration into dry soils. Farthing and Ogden (2018) and Zha et al (2019) presented a state-of-the-art review of the numerical solution of the Richards equation.

Numerous aspects were discussed and challenges underlined related to equivalent hydraulic conductivity, computational efficiency or choice of primary variable among others.

Other models were also developed [START_REF] Thoms | User's guide to the variably saturated flow (VSF) process for MODFLOW; technique and Methods 6-A18[END_REF][START_REF] Šimůnek | The Hydrus software pachage for simulating two-and three-dimensional movement of water, heat and multiple solutes in variably saturated media[END_REF] in view to solve 3D flow in variably saturated porous media. These numerical models proceed by solving the resulting equations system subsequent to various approximation methods. However, these codes may be costing in CPU time when much finer temporal and spatial discretizations are necessary, or in case of applications at the watershed scale, e. g., for climate change purposes when huge equations systems are to be solved. Drawbacks to the numerical resolution attempt of the Richards equation may be exacerbated, when computational resources are limited. Alternatives are proposed to avoid high CPU time costs of fully 3D numerical modes [START_REF] Yakirevich | A quasi three-dimesional model for flow and transport in unsaturated and saturated zones: 1. Implementation of the quasi two-dimensional case[END_REF][START_REF] Paulus | Innovative modelling of 3D unsaturated flow in porous media by coupling independent models for vertical and lateral flows[END_REF][START_REF] Kuznetsov | Quasi 3D modeling of water flow in vadose zone and groundwater[END_REF][START_REF] Xu | Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas[END_REF]. These techniques act by lowering dimensions of the fully 3D Richards equation in both unsaturated and saturated domains or only in the unsaturated one when the saturated flow is modeled in its whole dimensionality. As a consequence the number of unknowns to be solved decrease significantly and the CPU time as well. However, doing so may constitute a source of inaccuracies that can affect the hydraulic heads as well as the fluxes in the separated domains.

Indeed, as it is pointed out by [START_REF] Twarakavi | Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW[END_REF], only solving the fully 3D Richards equation for the whole continuous flow domain is able to provide accurate solutions for hydraulic heads and subsequent fluxes in both unsaturated and saturated compartments.

However, the most obstacle that limits the applicability of such models for regional scales is their computational demand and time cost.

In this paper, a multi-dimensional numerical model based on the mixed form of Richards equation, particularly suitable for limited computational resources, is developed to solve flow equation in both unsaturated and saturated zones under unsteady and steady regimes. The numerical model is Galerkin FE based and uses the [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF] first-order time integration method to solve the derived algebraic equations system. The use the Richrads equation may be inappropriate with coarse grids because of violation of the assumption of representative elementary volume which can result in loss of accuracy (Zha et al, 2019). The use of the fine grids, however, may complicate the resolution or simply make it infeasible due to high computational coast. In order to circumvent these difficulties, the proposed numerical numerical scheme approximates the matrices involved in a newly fashion to guarantee less computational effort, when solving the involved PDE.

The paper is organized as follows: section 2 describes the flow model used to solve variably saturated porous media and reports the most used retention curves equations. Section 3 is dedicated to the numerical procedure adopted and the proposed approximation of the matrices obtained. In section 4 benchmark tests against analytical solutions show the present model capabilities to provide high level of accuracy. In addition, other tests available in the literature are also examined and the efficiency of the present model is demonstrated. Finally, section 5 summarizes the concluding remarks.

Mathematical statement

The Richards equation can be expressed on three usual forms: the head-based form, the moisture-based form and under a mix form using the moisture and the head for the temporal and the spatial terms respectively. Discussion about these forms can be found in [START_REF] Fahs | An easy and efficient combination of the Mixed Finite Element Method and the Method of Lines for the resolution of Richards' Equation[END_REF], Farthing and Ogden (2018) and Zha et al (2019).

The mixed form of Richards' equation, modeling water flow in a variably saturated porous medium, is obtained by combining Darcy's law and continuity equation and is expressed as:

( ) . ( ) r K h h q t θ ∂ ∇ ∇ -= ∂ s K (1) 
Where s K is the saturated hydraulic conductivity tensor, ( ) r K h is the relative conductivity, q is the source/sink per volume of aquifer, θ stands for the volumetric moisture content and h is the hydraulic head.

Solving Richards' equation necessitates eliminating one of the two dependent variables, water content and the pressure head h z ψ = -(where z is elevation). This is often done by introducing constitutive equations, namely the water retention curves that express the water content and the relative conductivity, as functions of the pressure head. Various formulations can be found in the literature. In this work some of them will be used ranging from simplest to very complex ones and are listed below.

Based on the model of [START_REF] Irmay | On the hydraulic conductivity of unsaturated soils[END_REF], the moisture content, as in [START_REF] Tracy | Clean two-and three-dimensional analytical solutions of Richards' equation for testing numerical solvers[END_REF], is expressed as:
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Where [START_REF] Brooks | Hydraulic properties of porous media[END_REF] provided also equations describing hydraulic properties of soils, expressed originally as functions of the moisture content θ :
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Where ( )

s s ψ ψ θ =
, is the pressure head at saturation, r θ is the residual water moisture content and λ is a parameter describing the pore-size distribution index of the medium.

Other relationships, linking moisture content and relative conductivity to the pressure head, are presented by [START_REF] Haverkamp | Comparison of numerical simulation models for one-dimensional infiltration[END_REF]:
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Where A, B, C and D are constants to be determined experimentally for the soil type.

Numerical solution

Finite element model

To solve the flow equation ( 1), the finite element Galerkin method with linear basis functions is used to discretize the whole domain of flow (saturated and unsaturated), along with an implicit finite difference scheme for time. Linear, rectangular and hexahedral elements are used in the codes for 1D, 2D and 3D features. Discretization leads to the following system of nonlinear equations:
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where 1 k + h is the vector of nodal head values at time 1 k t + , k is a time step index. G is the conductance (stiffness) matrix, M is a vector containing the moisture content derivative with respect to time and q is a vector containing the boundary conditions and flow rates pumped or injected.

Linearization technique

Applied to (10), the Picard scheme, where the soil moisture at the current iteration level is approximated as a truncated expansion of Taylor series about the pressure head at the last iteration level [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF], gives the following system of linear equations to be solved for 1, 1 k m + + h , the vector of nodal hydraulic heads at the current iteration level; superscript m is the iteration index:
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Stiffness matrix G , mass matrix C and vector M depend upon the hydraulic head.

The entries of these matrices and the elements of the vector are defined as follows:
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Where ( )
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indicates the general storage coefficient and s S stands for the specific storage coefficient.

Equation ( 14) gives the coefficients of the mass matrix C if mass lumping technique is used. 

Solution procedure

To solve iteratively the equation ( 11), the matrices involved have to be updated at each iteration level, making the solution process very costly on a CPU time basis, particularly for large scale problems. To make the procedure fast, approximations are proposed for the matrix coefficients [START_REF] Aharmouch | Development and evaluation of a numerical model for steady state interface and/or free surface groundwater flow[END_REF]. The idea is to split the coefficients into to quantities, one constant, computed once and stored, and the other varying with iteration, needing to be updated. The authors applied the method to solve 3D steady state groundwater flow problems only in the saturated zone and neglect the flow in the unsaturated region.

However, the flow modeling in the vadose zone constitutes an important issue in hydrology and plays a key role for sustainable groundwater use, particularly in dry regions, by evaluating the water transfer rates to the water table during recharge and also by assessing the water losses during dry periods. For these purposes, retention curves equations have to be used to characterize the unsaturated medium.

In the present work, the stiffness entries are approximated as in the work of [START_REF] Aharmouch | Development and evaluation of a numerical model for steady state interface and/or free surface groundwater flow[END_REF], but with incorporating the retention curves equations, aforementioned, to solve correctly the flow in the vadose zone as well as for the saturated one.

The stiffness entries (equation 12) are approximated for 1D, 2D and 3D features as:
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The mass matrix entries for the distributed form (equation 13) can be readily approximated as for the stiffness coefficients with making the necessary change. However, the lumped form (equation 14) is used only, because of its property to guarantee non oscillatory solution as it was demonstrated by [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF].

The mass matrix entries using mass lumping technique (equation 14) are approximated for 1D, 2D and 3D features as: over the integration points involved in the elements that share the nodes I and J.
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Only the hydraulic properties (relative conductivity and general storage coefficient) have to be updated during the iteration process, which guarantees gain in CPU time.

Time stepping is performed as in the work of [START_REF] Paniconi | A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems[END_REF]. Time step sizes during transient simulations are dynamically recalculated depending on the convergence behavior of the nonlinear procedure. The simulations start with a certain time step ∆t0 which can be augmented, by a magnificence factor ∆mag, to a certain ∆tmax, or reduced, using a reduction coefficient ∆red to a minimum value, ∆tmin , depending on the number of iterations allowed in each nonlinear iteration and according to some performance criteria. If the convergence is achieved in less than maxit1 iterations, the time step in increased and remains unchanged if the number of iterations is within maxit1 and maxit2 iterations and reduced if convergence iterations needed are more than maxit2. The solution can also be recomputed at the current time, if convergence is not accomplished among the specified criteria, when maxit limit is exceeded, by reducing the time step and going back to the old status ("back stepping").

The infinity norm ( l ∞ ) of the convergence error is adopted as stopping criterion of the nonlinear iterative process, thus the convergence is achieved when

1, 1 1, k m k m tol + + + ∞ - < h h is
satisfied. In the field case example, the convergence is checked using a relative norm based stopping criterion. The convergence is, therefore, achieved when

1, 1 1, 2 1, 2 k m k m k m tol + + + + - < h h h is
satisfied, where 2 . expresses the (l2) norm (the square root of the sum of squares of a vector components).

Owing to that the systems of linear equations obtained with the Picard finite element approximation are sparse and symmetric, conjugate gradient solvers are particularly indicated in such situation. In this work preconditioned conjugate gradient method with incomplete Cholesky decomposition preconditioner (ICCG) is used to solve the resulting linear systems for 2D and 3D problems, whereas tridiagonal direct algorithm is used for solving those obtained for 1D configuration. Comparisons between the two models were focused on the following criteria:

Numerical tests and model assessment

-The number of time steps, Nts, -The number of back steps, Nbs -The total computation time, CPU, -The total number of nonlinear iterations, Nnlit, -The mass balance error, MBE, computed as in [START_REF] Yeh | On the computation of darcian velocity and mass balance in the finite element modeling of groundwater flow[END_REF].

All the simulations were performed on a 3.00 GHz Pentium Dual-Core E5700 microcomputer.

4.1. Transient flow in a soil column under infiltration 4. 1.1. Description This example was chosen to verify the presented model when dealing with infiltration. The experimental results have been reported by [START_REF] Haverkamp | Comparison of numerical simulation models for one-dimensional infiltration[END_REF]. Later, Clement et al.

(1994) presented a 2-dimensional numerical study of the same case and checked the obtained results to those observed by [START_REF] Haverkamp | Comparison of numerical simulation models for one-dimensional infiltration[END_REF]. In the present study, the flow domain is a one-dimensional sand column of 0.7 m length, where a constant pressure head of ψ = -0.615 m is specified at the outlet and a constant flux of 3.29 m/day is imposed at the inlet.

The soil properties are taken as in [START_REF] Clement | A physically based, two-dimensional, finitedifference algorithm for modeling variable saturated flow[END_REF]. The saturated hydraulic conductivity 

Results and discussion

The domain of study is discretized in 71 nodes with a constant spacing of 0.01 m. Transient simulations are performed during a period of 0.8 hours using a varying time step technique, ∆t0 = 0.1×10 -2 hr, ∆tmin = 0.1×10 -5 hr, ∆tmax = 0.1×10 -1 hr, ∆tmag = 1.2, ∆tred = 0.5, along with maxit1 = 10, maxit2 = 20 and maxit = 30. A tolerance of 3 10 m is fixed for non linear iterations. The linear system of equations is solved directly using tridiagonal algorithm.

Transient solutions are then computed at each 0. The soil surface is recharged with a constant flux of q = 3.55 m/day, applied over a strip of 1.00 m width, located at the center of the domain. The remaining surface is covered to avoid evaporation. Because of symmetry, only one part of the whole domain is to be modeled (for instance, the right one). The subsequent domain is of 3.00 m by 2.00 m and the recharge flux is then applied over a 0.5 m wide strip. The remaining soil surface is subject to no-flow condition as well as the bottom and the left side of the resulting domain. Fixed head boundary is used at the wetting zone of the right side of the domain by maintaining the water level at 0.65 m, whereas a no-flow condition is set to the remaining zone [START_REF] Clement | A physically based, two-dimensional, finitedifference algorithm for modeling variable saturated flow[END_REF].

The soil properties are those of [START_REF] Vauclin | Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem[END_REF]. The saturated hydraulic conductivity is KS = 8.40 m/day, the porosity (saturated water content) is θs = 0.30 and the residual water content is θr = 0.30. The values of the soil properties used to fit [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF] retention curve model (equations 4 and 5) are α = 3.3 m -1 and n = 4.1 [START_REF] Clement | A physically based, two-dimensional, finitedifference algorithm for modeling variable saturated flow[END_REF][START_REF] Kuznetsov | Quasi 3D modeling of water flow in vadose zone and groundwater[END_REF]. Specific storage is set to zero [START_REF] Clement | A physically based, two-dimensional, finitedifference algorithm for modeling variable saturated flow[END_REF].

Results and discussion

Two grids are used, one coarse, with nodal distance of ∆x = 0.1 m along the horizontal axis, and ∆z = 0.05 m with respect to the vertical axis. For the fine grid, nodal distances are taken to be the half of those of the coarse grid. For the initial conditions, the water level is fixed to 

Results and discussion

Transient simulations are conducted during a period of 15 days using a varying time step technique, ∆t0 = 0.01 day, ∆tmin = 0.001 day, ∆tmax = 0.025 day, with maxit1 = 10, maxit2 = 10 and maxit = 30. Transient solutions are then computed at 2.5, 5, 10, and 15 days elapsed time, using the present model and the standard one. Simulation details are listed in Table 3.

Fig. 3 shows the pressure head contours at different times obtained with the present numerical model (versions M1 and M2) and the standard one, together with those obtained with the analytical solution [START_REF] Tracy | Clean two-and three-dimensional analytical solutions of Richards' equation for testing numerical solvers[END_REF]. Very good agreement can be noted between the solutions.

As for the precedent cases, the present model performs better than the standard one for all time simulations. In addition, the version M1 ensures its superiority when compared to the version M2. On a per-non linear iteration basis, for all the time simulations, the versions M1 taken to be impervious. For the pumping case, the boundaries of the domain are subject to no flow condition and a fully penetrating vertical well is situated in the centre of the domain and screened over 2 m from the bottom, with constant pumping rate 50 m 3 /day, during 150 days.

For the both cases, the initial water table height is of 5 m from the bottom of the domain.

Parameters of the soil properties used along with the Van Genuchten's (1980) retention curve model are α = 0.145 m -1 and n = 2.68 [START_REF] Kuznetsov | Quasi 3D modeling of water flow in vadose zone and groundwater[END_REF] This example deals with a hypothetical large scale groundwater flow problem in a semi-arid context that is described by [START_REF] Prudic | A new Stream-Flow Routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW[END_REF]. The flow domain is a closed alluvial basin in which recharge is tributary to interactions between the aquifer and the rivers that cross it, broadly, from northwest to southeast and from east to west. The aquifer is constituted of unconsolidated deposits of mostly sand and gravel overlying a substratum that is many times less permeable than the filling material of the valley, which thickness increase toward the centre. A three dimensional structured mesh of this hypothetical aquifer is generated and adjusted to fit aquifer geometry and wells location. Maps of the aquifer top and bottom are presented in Fig. 5 below. The studied domain is discretized into non uniform finite hexahedral elements by a 51×54×11 mesh, respectively in x-, y-and z-direction, resulting in 30294 nodes and 26500 elements.

The boundaries of the domain are subject to no flow condition except the top where evaporation occurs, mostly in the vicinity of the streams network, as described in [START_REF] Prudic | A new Stream-Flow Routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW[END_REF], when the depth of the free surface is less than a certain value (6.5 m for the present simulations) and with variable rates, to a maximum of 0.0021 m/d. The streambed thickness is of 0.915 m and the corresponding leakance is globally constant of 0.864 d -1 , but can reach locally 1.728 d -1 in the blue river [START_REF] Prudic | A new Stream-Flow Routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW[END_REF]. The elevation of the water in different streams (sum of the streambed thickness and the stream depth) is taken constant and equal to 1.25 m.

For the retention curve model, Brooks and Corey's model (1964) 

Results and discussion

Two simulations were conducted to provide the results presented in the framework of this study. First, a steady-state simulation without pumping, but taking into account leakage and evaporation, was conducted to provide initial conditions inputs necessary to the transient simulation. For this purpose, a constant guess water head of 320.25 m was used for all the nodes. A tolerance of 10 -4 , using the relative norm, is fixed for non linear iterations together with a tolerance of 10 -12 for inner PCG iteration. The steady-state simulation, performed with the present model, required 18 iterations to converge to the specified criteria with an error mass balance of 0.211%. The CPU time needed for the model to converge in steady-state regime is 44.3 s. The standard model, however, fails to converge to the same level of solution mentioned above. The convergence of the standard method is also examined with alleviated criteria and did not converge even with non linear tolerance reduced to 10 -2 . Indeed, the inner iterations (i, e), the PCG iterations, fail to converge when the inner tolerance is still 10 -12 .

With less drastic conditions (non linear tolerance of 10 -2 and inner tolerance of 10 -5 ) the standard method reaches convergence in 17 iterations within 125 s of CPU time and with a mass balance error of 34.6%, whereas, the present new model converges in 2 iterations within only 11.8 s of CPU time and with a mass balance error of 0.866%. Fig. 6 (left) shows steadystate water-table contours.

Transient simulations are conducted during a period of 50 years using a varying time step technique, ∆t0 = 15 day, ∆tmin = 5 day, ∆tmax = 365 day, with maxit1 = 10, maxit2 = 10 and maxit = 30. A tolerance of 10 -4 is fixed for non linear iterations and 10 -12 for inner PCG iteration. Transient solutions are then computed at 50 years elapsed time, using the present model and the standard one. Table 6 displays obtained simulation results. Regarding the mass balance analysis, the versions M1 and M2 provide satisfactory mass balance, 0.144% and -0.633%, contrarily to the standard model which shows an excessively high mass balance error of 131%. Thus, the standard model (equations 12 and 14) may be inadequate to solve complex groundwater flow problems, in addition to its high numerical cost. Fig. 7 shows the solutions obtained with the version M1 and M2 of the present model together with the solution obtained with the standard one. For the 2D recharge test, the CPU time needed by the standard model is about 2.3-2.5 times higher than the CPU time needed for the present model, whereas the mass balance errors are satisfactory for the competing models. When dealing with the 3D flow examples the CPU time needed by the standard model to achieve convergence is about 3.66-3.95 times greater than that needed by the present model to converge to the same level of accuracy. On the other hand, the mass balance error is very satisfactory for the present model, less than 0.01% for the recharge test and less than 0.1% for test of pumping, whereas for the standard model, these mass balance errors are more than 5% and more than 10% for the two tests mentioned, respectively. It is to notice that the mass balance error provided by the two competing model are very satisfactory (less than 0.001%), when dealing with the totally unsaturated flow example. Indeed, the numerical solutions obtained with the two models (present and standard) match very well. However, the CPU time needed by the standard model to converge under the same constraints is globally about 3 times greater than that needed for the present model. As it can be seen, particularly for this real world test, the version M1 of the present model shows the highest numerical efficiency to solve large and complex groundwater flow problems. Consequently, the use of the standard model to solve groundwater flow problems may be difficult and almost prohibitive to perform more complicated and repetitive operations as the calibration, for instance, or to solve coupled groundwater flow and solute transport problems, particularly with poor or insufficient computational resources. The present model, however, particularly the version M1, is shown to be suitable for solving large and complex groundwater flow problems and, probably, to be used usefully for the anticipated related issues.

Conclusions

scheme for overcoming numerical difficulties of simulating infiltration into dry soil. J.

Hydrol. 551, 56-69. 

I

  and J represent the global nodes, while i b and j b are basis functions related, respectively, to local nodes i and j belonging to the element e. Gaussian quadrature rule is applied to perform the integrals.

  coordinates, eS n is the number of elements sharing the nodes I and J, the Jacobian matrix determinant related to Gauss integration point g n and element e.As it was pointed out in the work of Aharmouch and Amaziane (2012), * k expresses the arithmetic mean of the term .det[J] r k over the integration points involved in the elements that share the nodes I and J. Similarly, it can be seen that * g S is the arithmetic mean of the term .det[J] g S

For

  validation purposes, numerical examples are treated to verify the proposed model described in section 3 either (equations17-24), designated as "M1" or equations (14 and 17-20), designated as "M2". The obtained results are then checked against some available solutions measured or analytical to account for the model accuracy. Numerous examples are considered including 1D, 2D and 3D flow features and dealing with the most encountered problems of groundwater in variably saturated porous media, ranging from infiltrationevaporation in a soil column, recharge-drainage of a free surface 2D aquifer and free surface 3D aquifer response to recharge and pumping. Special attention is paid to flow in unsaturated flow in porous media.The efficiency of the proposed numerical model is demonstrated against the standard model, labeled "Stand", where stiffness and mass matrices entries are expressed normally (equations 12 and 14).

  is KS = 8.16 m/day, the porosity (saturated water content) is θs = 0.287 and the residual water content is θr = 0.075. The values of the soil properties used to parameterize the retention curve (equation 8) are A = 1.61×10 6 and B = 3.96 and those for the relative conductivity expression (equation 9) are C = 1.18×10 6 and D = 4.74.

  0.65 m throughout the whole domain. Transient simulations are performed during a period of 8 hours using a varying time step technique, ∆t0 = 0.1×10 -2 hr, ∆tmin = 0.1×10 -6 hr, ∆tmax = 0.1 hr, ∆tmag = 1.2, ∆tred = 0.5, with maxit1 = 10, maxit2 = 10 and maxit = 30. A tolerance of 3 10 m is fixed for non linear iterations and 10 -12 for inner ICCG iteration. Transient solutions are then computed at 2, 3, 4 and 8 hr elapsed time, using the present model and the standard one. Simulation details, related to the coarse grid, are exhibited in the Table2. Simulated water-table positions for different periods independently of the model are in good agreement with the measured data of[START_REF] Vauclin | Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem[END_REF], as it can be seen in Fig.2.However, the solutions obtained with the fine grid are more close to the experimental data. The proposed model (M1 and M2) and the standard one provide identical solution. The two versions of the present model, in all cases, converge in less CPU time when compared to the standard model. Overall, the standard model takes more CPU time to achieve the convergence to the fixed level of accuracy. The best performance is recorded by the version M2 of the proposed model. As an example, during the 2 hours duration of the first period, the convergence of the version M2 is accomplished in 6401 iterations for 436 s whereas the version M1 converges in 9552 iterations for 617 s and the standard one converges in 7839 iterations for 993 s. However, on a per-non linear iteration basis, the versions M1 and M2 of the present model and the standard one needed respectively an average CPU time of 0.0645 s, 0.0681 s and 0.1266 to converge. In addition, the version M1, the standard model and, in a lesser extent, the version M2, experience difficulties during the iterative process which is reflected by the number of the needing back steps, 6 for the version M1, 5 for the standard model and only 2 for the version M2. The mass balance errors are of 0.215×10 -1 % and 0.208×10 -1 %, for the standard and the version M2, respectively, and of 0.398 % for the version M1. The same performances of the competing models can be observed at the end of the other periods of simulation. The overall CPU time required for the version M2 to attain the solution is about 2.3 times lesser than that needed by the standard model.For the fine grid, the same outcome is observed regarding the rate of convergence and the efficiency of the 3 models, with, however, the CPU time needed for model M2 about 2.5 times lesser than that necessitated by the standard model.4.3.1. DescriptionThis test deals with three-dimensional flow in an unsaturated porous media. The flow domain is taken as a very dry cubic block of soil of length a = 15 m and is discretized with hexahedral elements of size 0.25×0.25×0.25 m 3 . Because of the symmetry of the problem, only the half of the domain is discretized, resulting in 58621 nodes and 54000 elements. On the top and the bottom of the cubic domain, the pressure head is given by: ψ = ψr respectively, where as a nonflux condition is assigned to the vertical sides. To complete the problem the following initial conditions are taken, h(x, y, z, 0) = ψr + z, where z indicates elevation. The relative conductivity is modeled as kr = e αψ . and he moisture content as θ = θr + (θs -θr) e αψ , where θs is the saturated moisture content and θr is the residual content. Parameters of the problem are :α = 0.25, θs = 0.45, θr = 0.15, ψr = -15 m and the saturated hydraulic conductivity is taken Ks = 0.15 m/day.

  and M2 of the present model needed an average of 8.23 s and 8.96 s of CPU time, respectively, to converge, whereas an average time of 25.83 s is required for the standard model, which represent more than 3 times the time needed by the present model, in the case of the version M1, and slightly less than 3 for the other version. Overall, with respect to the total CPU time, the standard model takes about 3.11 times and 2.88 times the CPU time needed for the versions M1 and M2, respectively, to converge. The standard model is very costly in terms of CPU time. As an example, during the 15 days period of simulation, the CPU time needed for the standard model to attain the solution is 9 hr 51 min 40 s, whereas 3 hr 10 min and 3 hr 25 min were recorded for the versions M1 and M2, respectively. Again the version M1 of the presented model shows its highest efficiency. Regarding the rate of convergence, the three models show practically the same number of iterations for every time simulation, despite a little advantage of the standard model and the version M2 against the version M1, which takes 7 more iterations to accomplish the convergence to the same solution. None of the 3 models had experienced difficulties to converge during all the periods of simulation, thus any back step was noticed. Finally, the Present model and the standard one show very satisfactory mass balance. The absolute values of the mass balance errors for almost all simulations are less than 10 -3 %. 4.4. Three-dimensional transient variably saturated infiltration and pumping 4.4.1. Description Two tests are involved and are taken from Kuznetzov et al. (2012), both deals with threedimensional flow in a variably saturated porous media. Recharge from the top is considered first and pumping is studied afterwards, separately. The flow domain is a rectangular parallelepiped of 1000 m in both lateral directions and of 10 m height. The domain is discretized with hexahedral elements of size 10×10×1 m 3 resulting in 112211 nodes and 100000 elements. For the infiltration case, the boundaries of the domain are subject to no flow condition except the top, which receives a recharging flux of 0.01 m /day from a square area of 100 m×100 m, located at the centre of the surface domain, whereas the remainder part is

  and the saturated hydraulic conductivity is taken Ks = 5 m/day. 4.4.2. Results and discussion Transient simulations are conducted during a period of 150 days using a varying time step technique, ∆t0 = 0.1 day, ∆tmin = 0.001 day, ∆tmax = 1 day, with maxit1 = 10, maxit2 = 10 and maxit = 30. A tolerance of 3 10 m is fixed for non linear iterations and 10 -12 for inner PCG iteration. Transient solutions are then computed at 50, 100, and 150 days elapsed time, using the present model and the standard one. Tables 4 and 5 summarize simulation results and simulated water-table positions obtained are shown in Fig.4. As can be expected, the present model performs better than the standard one for all time simulations. Also, the version M1 shows again its relative superiority when compared to the version M2. On a per-non linear iteration basis, for all the time simulations, the versions M1 of the present model necessitated an average of 24.20 s to converge and the version M2 needed an average of 25.44 s of CPU time to achieve the convergence, while the standard model required an average time of 93.24 s to accomplish the convergence to the same level of accuracy. For the pumping case the performances are of 24.10 s, 25.39 s and 90.68 s of CPU time, respectively. Consequently, the versions M1 and M2 of the present model are more than 3 times and half faster than the standard model. Globally, with respect to the total CPU time, the standard model takes about 3.85 times and 3.66 times the CPU time needed, respectively, for the versions M1 and M2 to converge when dealing with infiltration and about 3.95 times and 3.74 times the CPU time needed in case of pumping. This demonstrates the high computational cost of the standard model and the highest efficiency of the version M1 of the present model. Concerning the rate of convergence, the three models show exactly the same number of iterations for every time simulation. No resize was necessary for the time step already fixed, depending on the convergence history, during all the time simulations. Finally, the two versions of the present model show very satisfactory mass balance, contrarily to the standard model. Indeed, for all the simulations, the mass balance errors are under 10 -2 % for the present model and are more than 5% for the standard model, in the infiltration case and are under 0.1 % for the present model and more than 10.0% for the standard model, when dealing with pumping. As a comparison with an already published work, Kuznetzov et al. (2012) studied the same test (medium scale) and reported that their Quasi-3D model performs almost as a standard full-3D model. The CPU time needed for the standard full-3D is almost about 1.16 times superior to the CPU time needed for the Quasi-3D model. 4.5.1. Description

  is chosen (equations 6 and 7) with the sets of values of Herrada et al. (2014) and which are used as follows: in the vicinity of the channels (θs = 0.396, θr = 0., ψs = -0.131 m and λ=0.127) and (θs = 0.477, θr = 0.1, ψs = -0.45 m and λ=1.20) for the sediments in the remainder part of the valley. The hydraulic conductivity is taken as in Prudic et al. (2004): 52.8 m/d in the vicinity of the streams and 10.7 m/d elsewhere. Ten pumping wells are considered; from each one, an amount of 40000 m 3 /d is extracted during a period of 50 years. The initial conditions are provided as a result of a steady-state simulation of the model without pumping.

Fig. 6 (

 6 Fig.6 (right) exhibits water level contours obtained with the version M1 of the present model after 50 years of pumping.

  An efficient transient numerical mass-conservative model is constructed to solve variably saturated groundwater flow problems. A Galerkin linear finite element mesh is used to discretize the entire domain, saturated and unsaturated compartments. Picard iteration technique, together with the fully implicit Euler method, is used to solve the obtained discretized equations system. The present model is particularly suitable for limited computational resources when 3D groundwater flow problems are tackled. The stiffness and mass matrices involved are approximated in a way that only hydraulic properties are updated during the iterative process to guarantee less computational effort, when solving the PDE. The geometric part of the matrices remains unchanged, so computed once and stored, which ensures important savings in CPU time. The new model is presented with or without approximate mass matrix (versions M1 and M2). Both are tested and compared to a standard numerical model obtained with non altered matrices.The proposed model capabilities are tested and compared to the standard model across benchmark tests for which analytical solutions or experimental results are available. A "real world" groundwater flow problem is also solved to examine the performance of the competing numerical tools. Different soil water curve models, conferring variable non linearity degrees to the Richards equation, are also implemented. Emphasis is made when reproducing these examples on two major aspects, that are accuracy and efficiency assessed, respectively, by the mass balance error and the CPU time to achieve convergence.Along with the studied examples, the developed new model shows its superiority to solve variably saturated flow problems in 1D, 2D and 3D configurations. The developed new model exhibits high computational performance regarding time cost and solution accuracy. These outcomes are clearly revealed with high dimensionality problems. In effect, the present model and the standard one perform almost similarly when dealing with 1D flow problems, may be, because of the relatively small number of nodes and elements. The numerical water content curves are identical and the CPU times are very close as well as the mass balance errors.Since the dimensionality increases, the present model (M1 and M2) performs increasingly better than the standard model. The latter is computationally intensive due to the fact that the involved matrices should be, totally rebuilt, at every nonlinear iteration, contrarily to the proposed new model, where only the hydraulic parts are to be updated; the geometric parts are computed once and stored. As a consequence, the CPU time needed to attain the convergence becomes dramatically highest for the standard model. It is clear that the required CPU time increases with high dimensionality and the total number of elements and nodes.

For

  the hypothetical real word test, the present model shows its absolute superiority when compared to the standard model. Also, the version M1 confirms its superiority when compared to the version M2. Globally, with respect to CPU time, the standard model takes almost 10 times and more than 5 times the CPU time needed respectively by the versions M1 and M2 of the present model to converge. This, clearly, shows the highest efficiency of the version M1 of the present model. The version M2 take about 2 times the CPU time needed to the version M1 to converge, indeed. Regarding the mass balance analysis, the versions M1 and M2 provide satisfactory mass balance, 0.144% and -0.633%, contrarily to the standard model which shows an excessively high mass balance error of 131%.

  Simulation results for the transient, three-dimensional unsaturated flow 674 Simulation results for the transient, three-dimensional water-table recharge.

Table 1 .

 1 1 hours during a total time simulation of 0.8 hours, both with the present model and the standard one. Simulation details are summarized in

	4.2. Two-dimensional, transient variably saturated water-table recharge
	4.2.1. Description
	This test case is taken from Vauclin et al. (1979) and involves a transient flow through a
	homogeneous and isotropic rectangular soil embankment of 6.00 length and 2.00 m height.

Simulated and measured water content are shown in Fig.

1

. The numerical water content profiles are identical for the standard formulation and the new model. Both are in good agreement with the experimental results. Numerically, the two models perform quiet similarly as it can be seen in Table

1

. For every time simulation, the time steps number, the nonlinear iterations number, the CPU times are almost the same, as well as the mass balance error. The new model (version M1) performs similarly, but takes 2 or 3 iterations more to converge to the same solution.
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	Model	∆x	∆z	Time Nts	Nbs	CPU	Nnlit	MBE (%)