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Summary 10 

A multi-dimensional mass conservative numerical method, particularly suitable for limited 11 

computational resources, is developed for solving transient variably saturated groundwater 12 

flow problems. The Richards equation is discretized spatially with a finite element method 13 

and temporally with an implicit Euler scheme, in which mass-conservative and mass-lumping 14 

techniques are used to keep the numerical simulation stable. In addition, the stiffness and 15 

mass matrices involved are approximated in a way to guarantee less computational effort. To 16 

confirm the accuracy and the efficiency of this code, we verified it using benchmark tests 17 

using one, two and three-dimensional problems. The present model is also applied to a real 18 

field case problem, where its superiority is clearly demonstrated. The code achieved reliable 19 

results for each problem. 20 
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1 Introduction 23 

Flow in a variably saturated porous medium is governed by the Richards equation, a highly 24 

nonlinear PDE. Few analytical solutions using simplifying conditions or restrictive 25 

hypotheses were presented (Polubarinova, 1962; Teloglou et al, 2008; Moutsopoulos, 2013; 26 

Tracy, 1995, 2006, 2007; Hayek, 2015).  Nevertheless, the most attempts to solve saturated-27 

unsaturated flow problems are based on numerical techniques. 28 

Several models, using the numerical approach of Celia et al. (1990), were developed (Clement 29 

et al, 1994; Van dam and Feddes, 2000; Kuznetsov et al, 2012; Herada, 2014). Belfort et al. 30 

(2013) presented a review of several estimations of the equivalent conductivity and analyzed 31 

the efficiency of the different averaging fashions when solving unsaturated flow. Fahs et al 32 

(2009) used the method of lines combined with the mixed finite element discretization to 33 

solve variably saturated flow in porous media. Younes et al (2013) studied the monotonicity 34 

of a finite volume-based method for solving flow in variably saturated and heterogeneous 35 

porous media. Hassane Maina and Ackerer (2017) discussed Newton-Raphson method and 36 

time-stepping strategies for solving the mixed form of Richards equation. Koohbor et al 37 

(2020) solved Richards equation in the context of fractured porous media. Zha et al. (2017) 38 

presented a modified Picard iteration scheme for overcoming drawbacks arising when 39 

simulating infiltration into dry soils. Farthing and Ogden (2018) and Zha et al (2019) 40 

presented a state-of-the-art review of the numerical solution of the Richards equation. 41 

Numerous aspects were discussed and challenges underlined related to equivalent hydraulic 42 

conductivity, computational efficiency or choice of primary variable among others. 43 

Other models were also developed (Thoms et al, 2006; Šimůnek et al, 2006) in view to solve 44 

3D flow in variably saturated porous media. These numerical models proceed by solving the 45 

resulting equations system subsequent to various approximation methods. However, these 46 

codes may be costing in CPU time when much finer temporal and spatial discretizations are 47 
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necessary, or in case of applications at the watershed scale, e. g., for climate change purposes 48 

when huge equations systems are to be solved.  Drawbacks to the numerical resolution 49 

attempt of the Richards equation may be exacerbated, when computational resources are 50 

limited. Alternatives are proposed to avoid high CPU time costs of fully 3D numerical modes 51 

(Yakirevich et al, 1998; Paulus et al, 2013; Kuznetsov et al, 2012; Xu et al, 2012). These 52 

techniques act by lowering dimensions of the fully 3D Richards equation in both unsaturated 53 

and saturated domains or only in the unsaturated one when the saturated flow is modeled in its 54 

whole dimensionality. As a consequence the number of unknowns to be solved decrease 55 

significantly and the CPU time as well. However, doing so may constitute a source of 56 

inaccuracies that can affect the hydraulic heads as well as the fluxes in the separated domains. 57 

Indeed, as it is pointed out by Twarakavi et al. (2008), only solving the fully 3D Richards 58 

equation for the whole continuous flow domain is able to provide accurate solutions for 59 

hydraulic heads and subsequent fluxes in both unsaturated and saturated compartments. 60 

However, the most obstacle that limits the applicability of such models for regional scales is 61 

their computational demand and time cost. 62 

In this paper, a multi-dimensional numerical model based on the mixed form of Richards 63 

equation, particularly suitable for limited computational resources, is developed to solve flow 64 

equation in both unsaturated and saturated zones under unsteady and steady regimes. The 65 

numerical model is Galerkin FE based and uses the Celia et al’s (1990) first-order time 66 

integration method to solve the derived algebraic equations system. The use the Richrads 67 

equation may be inappropriate with coarse grids because of violation of the assumption of 68 

representative elementary volume which can result in loss of accuracy (Zha et al, 2019). The 69 

use of the fine grids, however, may complicate the resolution or simply make it infeasible due 70 

to high computational coast. In order to circumvent these difficulties, the proposed numerical 71 
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numerical scheme approximates the matrices involved in a newly fashion to guarantee less 72 

computational effort, when solving the involved PDE. 73 

The paper is organized as follows: section 2 describes the flow model used to solve variably 74 

saturated porous media and reports the most used retention curves equations. Section 3 is 75 

dedicated to the numerical procedure adopted and the proposed approximation of the matrices 76 

obtained. In section 4 benchmark tests against analytical solutions show the present model 77 

capabilities to provide high level of accuracy. In addition, other tests available in the literature 78 

are also examined and the efficiency of the present model is demonstrated. Finally, section 5 79 

summarizes the concluding remarks. 80 

2. Mathematical statement 81 

The Richards equation can be expressed on three usual forms: the head-based form, the 82 

moisture-based form and under a mix form using the moisture and the head for the temporal 83 

and the spatial terms respectively. Discussion about these forms can be found in Fahs et al 84 

(2009), Farthing and Ogden (2018) and Zha et al (2019). 85 

The mixed form of Richards’ equation, modeling water flow in a variably saturated porous 86 

medium, is obtained by combining Darcy’s law and continuity equation and is expressed as:  87 

( ). ( )rK h h q
t

θ∂∇ ∇ − =
∂sK  (1) 88 

Where s
K is the saturated hydraulic conductivity tensor, ( )

r
K h  is the relative conductivity, q  89 

is the source/sink per volume of aquifer, θ  stands for the volumetric moisture content and 90 

h is the hydraulic head. 91 

Solving Richards’ equation necessitates eliminating one of the two dependent variables, water 92 

content and the pressure head h zψ = −  (where z is elevation). This is often done by 93 

introducing constitutive equations, namely the water retention curves that express the water 94 
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content and the relative conductivity, as functions of the pressure head. Various formulations 95 

can be found in the literature. In this work some of them will be used ranging from simplest to 96 

very complex ones and are listed below. 97 

Based on the model of Irmay (1954), the moisture content, as in Tracy (2006), is expressed 98 

as: 99 

( ) 0
0

r s r

s

e
αψθ θ θ ψθ θ ψ

 + − <=  ≥
 (2) 100 

Where s
θ  and r

θ  are saturated and residual moisture content respectively. 101 

Gardner (1958) expressed the relative conductivity as an exponential function of the pressure 102 

head: 103 

( ) { 0
1 0r

ek
αψ ψψ ψ

<= ≥  (3) 104 

The moisture content and the relative conductivity formulated by Van Genuchten (1980) are 105 

very popular and are written as:  106 

( )
( )( )

0
1

0

s r

rm
n

s

θ θ
θ ψ

θ α ψ
θ ψ

−
+ <

=  +
 ≥

 (4) 107 

( )
2

11

2 1 1 0

1 0

m

r
k ψψ

ψ

   
Θ − − Θ <  =      ≥

 (5) 108 

Where 
r

s r

θ θ
θ θ

−Θ =
−  expresses the effective saturation and α , n and 

1n
m

n

−=  are constants 109 

depending upon the soil properties. 110 

Brooks and Corey (1964) provided also equations describing hydraulic properties of soils, 111 

expressed originally as functions of the moisture content θ : 112 



 

6 

1

r
s

s

λθ θψ ψ
θ θ

−
 −=  − 

 (6) 113 

( )
2 3

r
r

s

k

λ
λθ θθ

θ θ

+

 −=  − 
 (7) 114 

Where ( )s s
ψ ψ θ= , is the pressure head at saturation, r

θ  is the residual water moisture 115 

content and λ  is a parameter describing the pore-size distribution index of the medium. 116 

Other relationships, linking moisture content and relative conductivity to the pressure head, 117 

are presented by Haverkamp et al. (1977): 118 

( )
( )

0
1 100

0

s r

rB

s

A θ θ
θ ψ

θ ψ
θ ψ

−
+ <=  +

 ≥

 (8) 119 

( ) ( )
0

100
1 0

D

r

C

k C
ψ

ψ ψ
ψ

 <=  +
 ≥

 (9) 120 

Where A, B, C and D are constants to be determined experimentally for the soil type. 121 

3. Numerical solution 122 

3.1. Finite element model 123 

To solve the flow equation (1), the finite element Galerkin method with linear basis functions 124 

is used to discretize the whole domain of flow (saturated and unsaturated), along with an 125 

implicit finite difference scheme for time. Linear, rectangular and hexahedral elements are 126 

used in the codes for 1D, 2D and 3D features. Discretization leads to the following system of 127 

nonlinear equations: 128 

1 1 1 1( ) ( ) ( ) 0k k k k
t

+ + + ++ − =G h h M h q  (10) 129 
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where 1k +h  is the vector of nodal head values at time 1kt + , k is a time step index. G  is the 130 

conductance (stiffness) matrix, M  is a vector containing the moisture content derivative with 131 

respect to time and q  is a vector containing the boundary conditions and flow rates pumped 132 

or injected. 133 

3.2. Linearization technique 134 

Applied to (10), the Picard scheme, where the soil moisture at the current iteration level is 135 

approximated as a truncated expansion of Taylor series about the pressure head at the last 136 

iteration level (Celia et al, 1990), gives the following system of linear equations to be solved 137 

for 1, 1k m+ +h , the vector of nodal hydraulic heads at the current iteration level; superscript m is 138 

the iteration index: 139 

1, 1 1,
1, 1, 1 1, 1, 1

1
( ) ( ) ( ) ( ) 0

k m k m
k m k m k m k m k

k
t

t

+ + +
+ + + + + +

+

−+ + − =
∆

h h
G h h C h M h q  (11) 140 

Stiffness matrix G , mass matrix C and vector M  depend upon the hydraulic head. 141 

The entries of these matrices and the elements of the vector are defined as follows: 142 

e

t

IJ r i j
V

e

G k b b dxdydz= ∇ ∇∑∫ s
K  (12) 143 

( )
eIJ g i j

V
e

C S b b dxdydzψ=∑∫  (13) 144 

( )
eII g i

V
e

C S b dxdydzψ=∑∫  (14) 145 

Where ( )g s

s

d
S S

d

θ θψ
θ ψ

= +  indicates the general storage coefficient and s
S  stands for the 146 

specific storage coefficient. 147 

Equation (14) gives the coefficients of the mass matrix C if mass lumping technique is used. 148 
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eI i
V

e

d
M b dxdydz

dt

θ=∑∫  (15) 149 

Chord slope is used to perform the moisture content derivative with respect to time as 150 

follows: 151 

1,

1

k m k

k

d

dt t

θ θ θ+

+

−=
∆

 (16) 152 

I and J represent the global nodes, while i
b  and j

b  are basis functions related, respectively, to 153 

local nodes i and j belonging to the element e. Gaussian quadrature rule is applied to perform 154 

the integrals. 155 

3.3. Solution procedure  156 

To solve iteratively the equation (11), the matrices involved have to be updated at each 157 

iteration level, making the solution process very costly on a CPU time basis, particularly for 158 

large scale problems. To make the procedure fast, approximations are proposed for the matrix 159 

coefficients (Aharmouch and Amaziane, 2012). The idea is to split the coefficients into to 160 

quantities, one constant, computed once and stored, and the other varying with iteration, 161 

needing to be updated. The authors applied the method to solve 3D steady state groundwater 162 

flow problems only in the saturated zone and neglect the flow in the unsaturated region. 163 

However, the flow modeling in the vadose zone constitutes an important issue in hydrology 164 

and plays a key role for sustainable groundwater use, particularly in dry regions, by 165 

evaluating the water transfer rates to the water table during recharge and also by assessing the 166 

water losses during dry periods. For these purposes, retention curves equations have to be 167 

used to characterize the unsaturated medium. 168 



 

9 

In the present work, the stiffness entries are approximated as in the work of Aharmouch and 169 

Amaziane (2012), but with incorporating the retention curves equations, aforementioned, to 170 

solve correctly the flow in the vadose zone as well as for the saturated one. 171 

The stiffness entries (equation 12) are approximated for 1D, 2D and 3D features as: 172 

1*

1

t

IJ i j

e

G k b b dξ
−

≅ ∇∑∫ s
K  (17) 173 

1 1*

1 1

t

IJ i j

e

G k b b d dξ η
− −

≅ ∇∑∫ ∫ s
K  (18) 174 

1 1 1*

1 1 1

t

IJ i j

e

G k b b d d dξ η ζ
− − −

≅ ∇ ∇∑∫ ∫ ∫ s
K  (19) 175 

( ) [ ]( )*

1 1

1
, .det ,

.

eS G

g

n N

r g g

e nG eS

k k e n e n
N n = =

= ∑∑ J  (20) 176 

The mass matrix entries for the distributed form (equation 13) can be readily approximated as 177 

for the stiffness coefficients with making the necessary change. However, the lumped form 178 

(equation 14) is used only, because of its property to guarantee non oscillatory solution as it 179 

was demonstrated by Celia et al. (1990). 180 

The mass matrix entries using mass lumping technique (equation 14) are approximated for 181 

1D, 2D and 3D features as: 182 

1*

1II g i

e

C S b dξ
−

≅ ∑∫  (21) 183 

1 1*

1 1II g i

e

C S b d dξ η
− −

≅ ∑∫ ∫  (22) 184 

1 1 1*

1 1 1II g i

e

C S b d d dξ η ζ
− − −

≅ ∑∫ ∫ ∫  (23) 185 
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( ) [ ]( )*

1 1

1
, .det ,

.

eS G

g

n N

g g g g

e nG eS

S S e n e n
N n = =

= ∑∑ J  (24) 186 

, andξ η ζ are local coordinates, eS
n  is the number of elements sharing the nodes I and J, 187 

gn indicates Gauss integration points, ( )2, 4,8
G

N =  stands for their numbers, depending on 188 

the dimensionality of the problem and [ ]det J ( , )
g

e n is the Jacobian matrix determinant related 189 

to Gauss integration point gn  and element e. 190 

As it was pointed out in the work of Aharmouch and Amaziane (2012), *k  expresses the 191 

arithmetic mean of the term .det[J]
r

k  over the integration points involved in the elements that 192 

share the nodes I and J. Similarly, it can be seen that 
*

g
S  is the arithmetic mean of the term 193 

.det[J]
g

S  over the integration points involved in the elements that share the nodes I and J. 194 

Only the hydraulic properties (relative conductivity and general storage coefficient) have to 195 

be updated during the iteration process, which guarantees gain in CPU time. 196 

Time stepping is performed as in the work of Paniconi and Putti (1994). Time step sizes 197 

during transient simulations are dynamically recalculated depending on the convergence 198 

behavior of the nonlinear procedure. The simulations start with a certain time step ∆t0 which 199 

can be augmented, by a magnificence factor ∆mag, to a certain ∆tmax, or reduced, using a 200 

reduction coefficient ∆red to a minimum value, ∆tmin , depending on the number of iterations 201 

allowed in each nonlinear iteration and according to some performance criteria. If the 202 

convergence is achieved in less than maxit1 iterations, the time step in increased and remains 203 

unchanged if the number of iterations is within maxit1 and maxit2 iterations and reduced if 204 

convergence iterations needed are more than maxit2. The solution can also be recomputed at 205 

the current time, if convergence is not accomplished among the specified criteria, when maxit 206 

limit is exceeded, by reducing the time step and going back to the old status (“back 207 

stepping”). 208 
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The infinity norm ( l∞ ) of the convergence error is adopted as stopping criterion of the 209 

nonlinear iterative process, thus the convergence is achieved when
1, 1 1,k m k m tol+ + +

∞
− <h h  is 210 

satisfied. In the field case example, the convergence is checked using a relative norm based 211 

stopping criterion. The convergence is, therefore, achieved when 

1, 1 1,

2
1,

2

k m k m

k m
tol

+ + +

+

−
<

h h

h
 is 212 

satisfied, where 2
. expresses the (l2) norm (the square root of the sum of squares of a vector 213 

components). 214 

Owing to that the systems of linear equations obtained with the Picard finite element 215 

approximation are sparse and symmetric, conjugate gradient solvers are particularly indicated 216 

in such situation. In this work preconditioned conjugate gradient method with incomplete 217 

Cholesky decomposition preconditioner (ICCG) is used to solve the resulting linear systems 218 

for 2D and 3D problems, whereas tridiagonal direct algorithm is used for solving those 219 

obtained for 1D configuration. 220 

4. Numerical tests and model assessment 221 

For validation purposes, numerical examples are treated to verify the proposed model 222 

described in section 3 either (equations17—24), designated as "M1" or equations (14 and 223 

17—20), designated as "M2". The obtained results are then checked against some available 224 

solutions measured or analytical to account for the model accuracy. Numerous examples are 225 

considered including 1D, 2D and 3D flow features and dealing with the most encountered 226 

problems of groundwater in variably saturated porous media, ranging from infiltration-227 

evaporation in a soil column, recharge-drainage of a free surface 2D aquifer and free surface 228 

3D aquifer response to recharge and pumping. Special attention is paid to flow in unsaturated 229 

flow in porous media. 230 
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The efficiency of the proposed numerical model is demonstrated against the standard model, 231 

labeled "Stand", where stiffness and mass matrices entries are expressed normally (equations 232 

12 and 14). 233 

Comparisons between the two models were focused on the following criteria: 234 

— The number of time steps, Nts, 235 

— The number of back steps, Nbs 236 

— The total computation time, CPU, 237 

— The total number of nonlinear iterations, Nnlit, 238 

— The mass balance error, MBE, computed as in Yeh (1981). 239 

All the simulations were performed on a 3.00 GHz Pentium Dual-Core E5700 240 

microcomputer. 241 

4.1. Transient flow in a soil column under infiltration 242 

4.1.1. Description 243 

This example was chosen to verify the presented model when dealing with infiltration. The 244 

experimental results have been reported by Haverkamp et al. (1977). Later, Clement et al. 245 

(1994) presented a 2-dimensional numerical study of the same case and checked the obtained 246 

results to those observed by Haverkamp et al. (1977). In the present study, the flow domain is 247 

a one-dimensional sand column of 0.7 m length, where a constant pressure head of ψ = -0.615 248 

m is specified at the outlet and a constant flux of 3.29 m/day is imposed at the inlet. 249 

The soil properties are taken as in Clement et al. (1994). The saturated hydraulic conductivity 250 

is KS = 8.16 m/day, the porosity (saturated water content) is θs = 0.287 and the residual water 251 

content is θr = 0.075. The values of the soil properties used to parameterize the retention 252 

curve (equation 8) are A = 1.61×106 and B = 3.96 and those for the relative conductivity 253 

expression (equation 9) are C = 1.18×106 and D = 4.74. 254 
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4.1.2. Results and discussion 255 

The domain of study is discretized in 71 nodes with a constant spacing of 0.01 m. Transient 256 

simulations are performed during a period of 0.8 hours using a varying time step technique, 257 

∆t0 = 0.1×10-2 hr, ∆tmin = 0.1×10-5 hr, ∆tmax = 0.1×10-1 hr, ∆tmag = 1.2, ∆tred = 0.5, along with 258 

maxit1 = 10, maxit2 = 20 and maxit = 30. A tolerance of 
310 m

−
 is fixed for non linear 259 

iterations. The linear system of equations is solved directly using tridiagonal algorithm. 260 

Transient solutions are then computed at each 0.1 hours during a total time simulation of 0.8 261 

hours, both with the present model and the standard one. Simulation details are summarized in 262 

Table 1. 263 

Simulated and measured water content are shown in Fig.1. The numerical water content 264 

profiles are identical for the standard formulation and the new model. Both are in good 265 

agreement with the experimental results. Numerically, the two models perform quiet similarly 266 

as it can be seen in Table 1. For every time simulation, the time steps number, the nonlinear 267 

iterations number, the CPU times are almost the same, as well as the mass balance error. The 268 

new model (version M1) performs similarly, but takes 2 or 3 iterations more to converge to 269 

the same solution. 270 

4.2. Two-dimensional, transient variably saturated water-table recharge 271 

4.2.1. Description 272 

This test case is taken from Vauclin et al. (1979) and involves a transient flow through a 273 

homogeneous and isotropic rectangular soil embankment of 6.00 length and 2.00 m height. 274 

The soil surface is recharged with a constant flux of q = 3.55 m/day, applied over a strip of 275 

1.00 m width, located at the center of the domain. The remaining surface is covered to avoid 276 

evaporation. Because of symmetry, only one part of the whole domain is to be modeled (for 277 

instance, the right one). The subsequent domain is of 3.00 m by 2.00 m and the recharge flux 278 
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is then applied over a 0.5 m wide strip. The remaining soil surface is subject to no-flow 279 

condition as well as the bottom and the left side of the resulting domain. Fixed head boundary 280 

is used at the wetting zone of the right side of the domain by maintaining the water level at 281 

0.65 m, whereas a no-flow condition is set to the remaining zone (Clement et al, 1994). 282 

The soil properties are those of Vauclin et al. (1979). The saturated hydraulic conductivity is 283 

KS = 8.40 m/day, the porosity (saturated water content) is θs = 0.30 and the residual water 284 

content is θr = 0.30. The values of the soil properties used to fit Van Genuchten’s (1980) 285 

retention curve model (equations 4 and 5) are α = 3.3 m-1 and n = 4.1 (Clement et al, 1994; 286 

Kuznetsov et al, 2012). Specific storage is set to zero (Clement et al, 1994). 287 

4.2.2. Results and discussion 288 

Two grids are used, one coarse, with nodal distance of ∆x = 0.1 m along the horizontal axis, 289 

and ∆z = 0.05 m with respect to the vertical axis. For the fine grid, nodal distances are taken 290 

to be the half of those of the coarse grid. For the initial conditions, the water level is fixed to 291 

0.65 m throughout the whole domain. Transient simulations are performed during a period of 292 

8 hours using a varying time step technique, ∆t0 = 0.1×10-2 hr, ∆tmin = 0.1×10-6 hr, ∆tmax = 0.1 293 

hr, ∆tmag = 1.2, ∆tred = 0.5, with maxit1 = 10, maxit2 = 10 and maxit = 30. A tolerance of 294 

310 m
−

 is fixed for non linear iterations and 10-12 for inner ICCG iteration. Transient solutions 295 

are then computed at 2, 3, 4 and 8 hr elapsed time, using the present model and the standard 296 

one. Simulation details, related to the coarse grid, are exhibited in the Table 2. 297 

Simulated water-table positions for different periods independently of the model are in good 298 

agreement with the measured data of Vauclin et al. (1979), as it can be seen in Fig.2. 299 

However, the solutions obtained with the fine grid are more close to the experimental data. 300 

The proposed model (M1 and M2) and the standard one provide identical solution. The two 301 

versions of the present model, in all cases, converge in less CPU time when compared to the 302 
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standard model. Overall, the standard model takes more CPU time to achieve the convergence 303 

to the fixed level of accuracy. The best performance is recorded by the version M2 of the 304 

proposed model. As an example, during the 2 hours duration of the first period, the 305 

convergence of the version M2 is accomplished in 6401 iterations for 436 s whereas the 306 

version M1 converges in 9552 iterations for 617 s and the standard one converges in 7839 307 

iterations for 993 s. However, on a per-non linear iteration basis, the versions M1 and M2 of 308 

the present model and the standard one needed respectively an average CPU time of 0.0645 s, 309 

0.0681 s and 0.1266 to converge. In addition, the version M1, the standard model and, in a 310 

lesser extent, the version M2, experience difficulties during the iterative process which is 311 

reflected by the number of the needing back steps, 6 for the version M1, 5 for the standard 312 

model and only 2 for the version M2. The mass balance errors are of 0.215×10-1 % and 313 

0.208×10-1 %, for the standard and the version M2, respectively, and of 0.398 % for the 314 

version M1. The same performances of the competing models can be observed at the end of 315 

the other periods of simulation. The overall CPU time required for the version M2 to attain the 316 

solution is about 2.3 times lesser than that needed by the standard model. 317 

For the fine grid, the same outcome is observed regarding the rate of convergence and the 318 

efficiency of the 3 models, with, however, the CPU time needed for model M2 about 2.5 times 319 

lesser than that necessitated by the standard model. 320 

4.3.1. Description 321 

This test deals with three-dimensional flow in an unsaturated porous media. The flow domain 322 

is taken as a very dry cubic block of soil of length a = 15 m and is discretized with hexahedral 323 

elements of size 0.25×0.25×0.25 m3. Because of the symmetry of the problem, only the half 324 

of the domain is discretized, resulting in 58621 nodes and 54000 elements. On the top and the 325 

bottom of the cubic domain, the pressure head is given by: 326 
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 and ψ = ψr respectively, where as a non-327 

flux condition is assigned to the vertical sides. To complete the problem the following initial 328 

conditions are taken, h(x, y, z, 0) = ψr + z, where z indicates elevation. The relative 329 

conductivity is modeled as kr = eαψ . and he moisture content as θ = θr + (θs - θr) eαψ , where 330 

θs is the saturated moisture content and θr is the residual content. Parameters of the problem 331 

are :α = 0.25, θs = 0.45, θr = 0.15, ψr = –15 m and the saturated hydraulic conductivity is 332 

taken Ks = 0.15 m/day. 333 

4.3.2. Results and discussion 334 

Transient simulations are conducted during a period of 15 days using a varying time step 335 

technique, ∆t0 = 0.01 day, ∆tmin = 0.001 day, ∆tmax = 0.025 day, with maxit1 = 10, maxit2 = 10 336 

and maxit = 30. Transient solutions are then computed at 2.5, 5, 10, and 15 days elapsed time, 337 

using the present model and the standard one. Simulation details are listed in Table 3. 338 

Fig. 3 shows the pressure head contours at different times obtained with the present numerical 339 

model (versions M1 and M2) and the standard one, together with those obtained with the 340 

analytical solution (Tracy, 2006). Very good agreement can be noted between the solutions. 341 

As for the precedent cases, the present model performs better than the standard one for all 342 

time simulations. In addition, the version M1 ensures its superiority when compared to the 343 

version M2. On a per-non linear iteration basis, for all the time simulations, the versions M1 344 

and M2 of the present model needed an average of 8.23 s and 8.96 s of CPU time, 345 

respectively, to converge, whereas an average time of 25.83 s is required for the standard 346 

model, which represent more than 3 times the time needed by the present model, in the case 347 

of the version M1, and slightly less than 3 for the other version. Overall, with respect to the 348 

total CPU time, the standard model takes about 3.11 times and 2.88 times the CPU time 349 
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needed for the versions M1 and M2, respectively, to converge. The standard model is very 350 

costly in terms of CPU time. As an example, during the 15 days period of simulation, the 351 

CPU time needed for the standard model to attain the solution is 9 hr 51 min 40 s, whereas 3 352 

hr 10 min and 3 hr 25 min were recorded for the versions M1 and M2, respectively. Again the 353 

version M1 of the presented model shows its highest efficiency. 354 

Regarding the rate of convergence, the three models show practically the same number of 355 

iterations for every time simulation, despite a little advantage of the standard model and the 356 

version M2 against the version M1, which takes 7 more iterations to accomplish the 357 

convergence to the same solution. None of the 3 models had experienced difficulties to 358 

converge during all the periods of simulation, thus any back step was noticed. Finally, the 359 

Present model and the standard one show very satisfactory mass balance. The absolute values 360 

of the mass balance errors for almost all simulations are less than 10-3 %. 361 

4.4. Three-dimensional transient variably saturated infiltration and pumping 362 

4.4.1. Description 363 

Two tests are involved and are taken from Kuznetzov et al. (2012), both deals with three-364 

dimensional flow in a variably saturated porous media. Recharge from the top is considered 365 

first and pumping is studied afterwards, separately. The flow domain is a rectangular 366 

parallelepiped of 1000 m in both lateral directions and of 10 m height. The domain is 367 

discretized with hexahedral elements of size 10×10×1 m3 resulting in 112211 nodes and 368 

100000 elements. For the infiltration case, the boundaries of the domain are subject to no flow 369 

condition except the top, which receives a recharging flux of 0.01 m /day from a square area 370 

of 100 m×100 m, located at the centre of the surface domain, whereas the remainder part is 371 

taken to be impervious. For the pumping case, the boundaries of the domain are subject to no 372 

flow condition and a fully penetrating vertical well is situated in the centre of the domain and 373 
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screened over 2 m from the bottom, with constant pumping rate 50 m3/day, during 150 days. 374 

For the both cases, the initial water table height is of 5 m from the bottom of the domain. 375 

Parameters of the soil properties used along with the Van Genuchten’s (1980) retention curve 376 

model are α = 0.145 m-1 and n = 2.68 (Kuznetsov et al, 2012) and the saturated hydraulic 377 

conductivity is taken Ks = 5 m/day. 378 

4.4.2. Results and discussion 379 

Transient simulations are conducted during a period of 150 days using a varying time step 380 

technique, ∆t0 = 0.1 day, ∆tmin = 0.001 day, ∆tmax = 1 day, with maxit1 = 10, maxit2 = 10 and 381 

maxit = 30. A tolerance of 
310 m

−
 is fixed for non linear iterations and 10-12 for inner PCG 382 

iteration. Transient solutions are then computed at 50, 100, and 150 days elapsed time, using 383 

the present model and the standard one. Tables 4 and 5 summarize simulation results and 384 

simulated water-table positions obtained are shown in Fig.4. 385 

As can be expected, the present model performs better than the standard one for all time 386 

simulations. Also, the version M1 shows again its relative superiority when compared to the 387 

version M2. On a per-non linear iteration basis, for all the time simulations, the versions M1 of 388 

the present model necessitated an average of 24.20 s to converge and the version M2 needed 389 

an average of 25.44 s of CPU time to achieve the convergence, while the standard model 390 

required an average time of 93.24 s to accomplish the convergence to the same level of 391 

accuracy. For the pumping case the performances are of 24.10 s, 25.39 s and 90.68 s of CPU 392 

time, respectively. Consequently, the versions M1 and M2 of the present model are more than 393 

3 times and half faster than the standard model. Globally, with respect to the total CPU time, 394 

the standard model takes about 3.85 times and 3.66 times the CPU time needed, respectively, 395 

for the versions M1 and M2 to converge when dealing with infiltration and about 3.95 times 396 

and 3.74 times the CPU time needed in case of pumping. This demonstrates the high 397 
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computational cost of the standard model and the highest efficiency of the version M1 of the 398 

present model. 399 

Concerning the rate of convergence, the three models show exactly the same number of 400 

iterations for every time simulation. No resize was necessary for the time step already fixed, 401 

depending on the convergence history, during all the time simulations. Finally, the two 402 

versions of the present model show very satisfactory mass balance, contrarily to the standard 403 

model. Indeed, for all the simulations, the mass balance errors are under 10-2 % for the present 404 

model and are more than 5% for the standard model, in the infiltration case and are under 0.1 405 

% for the present model and more than 10.0% for the standard model, when dealing with 406 

pumping. 407 

As a comparison with an already published work, Kuznetzov et al. (2012) studied the same 408 

test (medium scale) and reported that their Quasi-3D model performs almost as a standard 409 

full-3D model. The CPU time needed for the standard full-3D is almost about 1.16 times 410 

superior to the CPU time needed for the Quasi-3D model. 411 

4.5.1. Description 412 

This example deals with a hypothetical large scale groundwater flow problem in a semi-arid 413 

context that is described by Prudic et al. (2004). The flow domain is a closed alluvial basin in 414 

which recharge is tributary to interactions between the aquifer and the rivers that cross it, 415 

broadly, from northwest to southeast and from east to west. The aquifer is constituted of 416 

unconsolidated deposits of mostly sand and gravel overlying a substratum that is many times 417 

less permeable than the filling material of the valley, which thickness increase toward the 418 

centre. A three dimensional structured mesh of this hypothetical aquifer is generated and 419 

adjusted to fit aquifer geometry and wells location. Maps of the aquifer top and bottom are 420 

presented in Fig.5 below. The studied domain is discretized into non uniform finite 421 
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hexahedral elements by a 51×54×11 mesh, respectively in x-, y- and z-direction, resulting in 422 

30294 nodes and 26500 elements. 423 

The boundaries of the domain are subject to no flow condition except the top where 424 

evaporation occurs, mostly in the vicinity of the streams network, as described in Prudic et al. 425 

(2004), when the depth of the free surface is less than a certain value (6.5 m for the present 426 

simulations) and with variable rates, to a maximum of 0.0021 m/d. The streambed thickness is 427 

of 0.915 m and the corresponding leakance is globally constant of 0.864 d-1, but can reach 428 

locally 1.728 d-1 in the blue river (Prudic et al, 2004). The elevation of the water in different 429 

streams (sum of the streambed thickness and the stream depth) is taken constant and equal to 430 

1.25 m. 431 

For the retention curve model, Brooks and Corey’s model (1964) is chosen (equations 6 and 432 

7) with the sets of values of Herrada et al. (2014) and which are used as follows: in the 433 

vicinity of the channels (θs = 0.396, θr = 0., ψs = –0.131 m and λ=0.127) and (θs = 0.477, θr = 434 

0.1, ψs = –0.45 m and λ=1.20) for the sediments in the remainder part of the valley. The 435 

hydraulic conductivity is taken as in Prudic et al. (2004): 52.8 m/d in the vicinity of the 436 

streams and 10.7 m/d elsewhere. Ten pumping wells are considered; from each one, an 437 

amount of 40000 m3/d is extracted during a period of 50 years. The initial conditions are 438 

provided as a result of a steady-state simulation of the model without pumping. 439 

4.8.2. Results and discussion 440 

Two simulations were conducted to provide the results presented in the framework of this 441 

study. First, a steady-state simulation without pumping, but taking into account leakage and 442 

evaporation, was conducted to provide initial conditions inputs necessary to the transient 443 

simulation. For this purpose, a constant guess water head of 320.25 m was used for all the 444 

nodes. A tolerance of 10-4, using the relative norm, is fixed for non linear iterations together 445 
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with a tolerance of 10-12 for inner PCG iteration. The steady-state simulation, performed with 446 

the present model, required 18 iterations to converge to the specified criteria with an error 447 

mass balance of 0.211%. The CPU time needed for the model to converge in steady-state 448 

regime is 44.3 s. The standard model, however, fails to converge to the same level of solution 449 

mentioned above. The convergence of the standard method is also examined with alleviated 450 

criteria and did not converge even with non linear tolerance reduced to 10-2. Indeed, the inner 451 

iterations (i, e), the PCG iterations, fail to converge when the inner tolerance is still 10-12. 452 

With less drastic conditions (non linear tolerance of 10-2 and inner tolerance of 10-5) the 453 

standard method reaches convergence in 17 iterations within 125 s of CPU time and with a 454 

mass balance error of 34.6%, whereas, the present new model converges in 2 iterations within 455 

only 11.8 s of CPU time and with a mass balance error of 0.866%.  Fig.6 (left) shows steady-456 

state water-table contours. 457 

Transient simulations are conducted during a period of 50 years using a varying time step 458 

technique, ∆t0 = 15 day, ∆tmin = 5 day, ∆tmax = 365 day, with maxit1 = 10, maxit2 = 10 and 459 

maxit = 30. A tolerance of 10-4 is fixed for non linear iterations and 10-12 for inner PCG 460 

iteration. Transient solutions are then computed at 50 years elapsed time, using the present 461 

model and the standard one. Table 6 displays obtained simulation results. 462 

Fig.6 (right) exhibits water level contours obtained with the version M1 of the present model 463 

after 50 years of pumping. 464 

For this mimicking real world groundwater flow problem, the present model shows its 465 

absolute superiority compared to the standard model. The versions M1 and M2 of the present 466 

model achieve the convergence in 167 and 301 iterations with CPU times, respectively, of 467 

584 s and 1040 s, whereas, for the standard model, the convergence is achieved in 450 468 

iterations within 5680 s. On a per-iteration basis, standard model, version M1 and version M2 469 
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of the present model need, respectively, 12.62 s, 3.45 sand 3.5 s CPU time. Thus, the present 470 

model (versions M1 and M2) is about 3.6 times faster than the standard one. In addition, 471 

regarding the total CPU time, the version M1 of the present model is almost 10 times faster 472 

than the standard model and almost 2 times faster than the version M2 of the present model, 473 

which demonstrates the high convergence rate of the version M1 compared to the standard 474 

model and the version M2 of the present model. This is confirmed by the iterations numbers 475 

needed for convergence which are of 167, 301 and 450, respectively for the versions M1 and 476 

M2 of the present model and the standard one. As it can be seen, particularly for this real 477 

world test, the version M1 of the present model shows the highest numerical efficiency to 478 

solve large and complex groundwater flow problems. 479 

Regarding the mass balance analysis, the versions M1 and M2 provide satisfactory mass 480 

balance, 0.144% and -0.633%, contrarily to the standard model which shows an excessively 481 

high mass balance error of 131%. Thus, the standard model (equations 12 and 14) may be 482 

inadequate to solve complex groundwater flow problems, in addition to its high numerical 483 

cost. Fig.7 shows the solutions obtained with the version M1 and M2 of the present model 484 

together with the solution obtained with the standard one. 485 

5. Conclusions 486 

An efficient transient numerical mass-conservative model is constructed to solve variably 487 

saturated groundwater flow problems. A Galerkin linear finite element mesh is used to 488 

discretize the entire domain, saturated and unsaturated compartments. Picard iteration 489 

technique, together with the fully implicit Euler method, is used to solve the obtained 490 

discretized equations system. The present model is particularly suitable for limited 491 

computational resources when 3D groundwater flow problems are tackled. The stiffness and 492 

mass matrices involved are approximated in a way that only hydraulic properties are updated 493 

during the iterative process to guarantee less computational effort, when solving the PDE. The 494 
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geometric part of the matrices remains unchanged, so computed once and stored, which 495 

ensures important savings in CPU time. The new model is presented with or without 496 

approximate mass matrix (versions M1 and M2). Both are tested and compared to a standard 497 

numerical model obtained with non altered matrices. 498 

The proposed model capabilities are tested and compared to the standard model across 499 

benchmark tests for which analytical solutions or experimental results are available. A “real 500 

world” groundwater flow problem is also solved to examine the performance of the 501 

competing numerical tools. Different soil water curve models, conferring variable non 502 

linearity degrees to the Richards equation, are also implemented. Emphasis is made when 503 

reproducing these examples on two major aspects, that are accuracy and efficiency assessed, 504 

respectively, by the mass balance error and the CPU time to achieve convergence. 505 

Along with the studied examples, the developed new model shows its superiority to solve 506 

variably saturated flow problems in 1D, 2D and 3D configurations. The developed new model 507 

exhibits high computational performance regarding time cost and solution accuracy. These 508 

outcomes are clearly revealed with high dimensionality problems. In effect, the present model 509 

and the standard one perform almost similarly when dealing with 1D flow problems, may be, 510 

because of the relatively small number of nodes and elements. The numerical water content 511 

curves are identical and the CPU times are very close as well as the mass balance errors. 512 

Since the dimensionality increases, the present model (M1 and M2) performs increasingly 513 

better than the standard model. The latter is computationally intensive due to the fact that the 514 

involved matrices should be, totally rebuilt, at every nonlinear iteration, contrarily to the 515 

proposed new model, where only the hydraulic parts are to be updated; the geometric parts are 516 

computed once and stored. As a consequence, the CPU time needed to attain the convergence 517 

becomes dramatically highest for the standard model. It is clear that the required CPU time 518 

increases with high dimensionality and the total number of elements and nodes. 519 
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For the 2D recharge test, the CPU time needed by the standard model is about 2.3–2.5 times 520 

higher than the CPU time needed for the present model, whereas the mass balance errors are 521 

satisfactory for the competing models. When dealing with the 3D flow examples the CPU 522 

time needed by the standard model to achieve convergence is about 3.66–3.95 times greater 523 

than that needed by the present model to converge to the same level of accuracy. On the other 524 

hand, the mass balance error is very satisfactory for the present model, less than 0.01% for the 525 

recharge test and less than 0.1% for test of pumping, whereas for the standard model, these 526 

mass balance errors are more than 5% and more than 10% for the two tests mentioned, 527 

respectively. It is to notice that the mass balance error provided by the two competing model 528 

are very satisfactory (less than 0.001%), when dealing with the totally unsaturated flow 529 

example. Indeed, the numerical solutions obtained with the two models (present and standard) 530 

match very well. However, the CPU time needed by the standard model to converge under the 531 

same constraints is globally about 3 times greater than that needed for the present model. 532 

For the hypothetical real word test, the present model shows its absolute superiority when 533 

compared to the standard model. Also, the version M1 confirms its superiority when 534 

compared to the version M2. Globally, with respect to CPU time, the standard model takes 535 

almost 10 times and more than 5 times the CPU time needed respectively by the versions M1 536 

and M2 of the present model to converge. This, clearly, shows the highest efficiency of the 537 

version M1 of the present model. The version M2 take about 2 times the CPU time needed to 538 

the version M1 to converge, indeed. Regarding the mass balance analysis, the versions M1 and 539 

M2 provide satisfactory mass balance, 0.144% and -0.633%, contrarily to the standard model 540 

which shows an excessively high mass balance error of 131%. 541 

As it can be seen, particularly for this real world test, the version M1 of the present model 542 

shows the highest numerical efficiency to solve large and complex groundwater flow 543 

problems. Consequently, the use of the standard model to solve groundwater flow problems 544 
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may be difficult and almost prohibitive to perform more complicated and repetitive operations 545 

as the calibration, for instance, or to solve coupled groundwater flow and solute transport 546 

problems, particularly with poor or insufficient computational resources. The present model, 547 

however, particularly the version M1, is shown to be suitable for solving large and complex 548 

groundwater flow problems and, probably, to be used usefully for the anticipated related 549 

issues. 550 
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Table 1. Simulation results for the transient flow in a soil column under infiltration  657 
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(m) (hr) (s) 

New, M2 

Stand 

New, M2 
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New, M2 
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New, M2 
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New, M2 
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New, M2 
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New, M2 
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0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.1 

0.1 

0.2 

0.2 

0.3 

0.3 

0.4 

0.4 

0.5 

0.5 

0.6 

0.6 

0.7 

0.7 

0.8 

0.8 

19 

19 

29 

29 

39 

39 

49 

49 

59 

59 

69 

69 

79 

79 

89 

89 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2.31 

2.36 

3.52 

3.51 

4.56 

4.62 

5.66 

5.72 

6.70 

6.76 

7.80 

7.85 

8.84 

8.96 

9.94 

10 

82 

82 

126 

126 

166 

166 

206 

206 

246 

246 

286 

286 

326 

326 

366 

366 

-0.261E-3 

-0.165E-3 

0.583E-3 

0.927E-3 

0.103E-2 

0.162E-2 

0.940E-3 

0.192E-2 

0.912E-3 

0.212E-2 

0.924E-3 

0.224E-2 

0.894E-3 

0.228E-2 

0.525E-3 

0.204E-2 

 658 

 659 

 660 

 661 

 662 

 663 

Table 2. Simulation results for the transient two-dimensional water-table recharge  664 

Model ∆x ∆z Time Nts Nbs CPU Nnlit MBE (%) 
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(m) (m) (hr) (s) 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

2 

2 

2 

3 

3 

3 

4 

4 

4 

8 

8 

8 

779 

541 

685 

810 

555 

707 

834 

565 

718 

875 

605 

758 

6 

2 

5 

6 

2 

5 

6 

2 

5 

6 

2 

5 

617 

436 

993 

636 

445 

1020 

651 

453 

1030 

676 

473 

1080 

9552 

6401 

7839 

9873 

6540 

8061 

10106 

6636 

8170 

10478 

6937 

8517 

0.398 

0.208E-1 

0.215E-1 

0.287 

0.142E-1 

0.201E-1 

0.240 

0.111E-1 

0.201E-1 

0.186 

0.622E-2 

0.350E-1 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

Table 3. Simulation results for the transient, three-dimensional unsaturated flow  674 
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Model ∆x 

(m) 

∆y 

(m) 

∆z 

(m) 

Time 

(days) 

Nts Nbs CPU 

(s) 

Nnlit MBE (%) 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

2.5 

2.5 

2.5 

5 

5 

5 

10 

10 

10 

15 

15 

15 

103 

103 

103 

203 

203 

203 

403 

403 

403 

603 

603 

603 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2660 

2850 

8150 

4420 

4790 

13600 

7930 

8570 

24600 

11400 

12300 

35800 

352 

345 

345 

552 

545 

545 

952 

945 

945 

1352 

1345 

1345 

-0.232E-3 

-0.210E-3 

-0.449E-3 

-0.867E-3 

-0.106E-2 

-0.159E-2 

-0.444E-3 

-0.660E-3 

-0174E-2 

-0.231E-3 

-0.401E-3 

-0.200E-2 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 
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Table 4. Simulation results for the transient, three-dimensional water-table recharge. 686 

Model ∆x 

(m) 

∆y 

(m) 

∆z 

(m) 

Time 

(days) 

Nts Nbs CPU 

(s) 

Nnlit MBE (%) 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

10.0 

100 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

50 

50 

50 

100 

100 

100 

150 

150 

150 

59 

59 

59 

109 

109 

109 

159 

159 

159 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2860 

3010 

10600 

5310 

5530 

19500 

7580 

8020 

30600 

117 

117 

117 

217 

217 

217 

317 

317 

317 

0.880E-2 

0.470E-2 

5.40 

0.508E-2 

0.403E-2 

5.46 

0.385E-2 

0.374E-2 

5.53 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 
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Table 5. Simulation results for the transient, three-dimensional water-table with pumping. 700 

Model ∆x 

(m) 

∆y 

(m) 

∆z 

(m) 

Time 

(days) 

Nts Nbs CPU 

(s) 

Nnlit MBE (%) 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

New, M1 

New, M2 

Stand 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

50 

50 

50 

100 

100 

100 

150 

150 

150 

59 

59 

59 

109 

109 

109 

159 

159 

159 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3060 

3230 

12500 

5440 

5750 

20700 

7360 

7780 

29100 

130 

131 

132 

230 

231 

232 

298 

298 

323 

-0.255E-1 

-0.237E-1 

-12.8 

-0.291E-1 

-0.323E-1 

-12.8 

-0.265E-1 

-0.343E-1 

-12.7 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 
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 714 

Table 6. Simulation results for the transient, hypothetical river-connected aquifer. 715 

Model ∆x 

(m) 

∆y 

(m) 

∆z 

(m) 

Time 

(years) 

Nts Nbs CPU 

(s) 

Nnlit MBE (%) 

New, M1 

New, M2 

Stand 

- 

- 

- 

- 

- 

- 

- 

- 

- 

50 

50 

50 

64 

70 

84 

0 

0 

7 

584 

1040 

5680 

167 

301 

450 

0.144 

-0.633 

131 

 716 

 717 

 718 

 719 

 720 
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Solid Line : Coarse grid
Dash-Dot line : Fine grid
Symbol : Experimental Data (Vauclin et al, 1979)
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