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Abstract

We investigate a minimal model for cell propagation involving migration along self-generated
signaling gradients and cell division, which has been proposed in an earlier study. The model
consists in a system of two coupled parabolic diffusion-advection-reaction equations. Because of a
discontinuous advection term, the Cauchy problem should be handled with care. We first establish
existence and uniqueness locally in time through the reduction of the problem to the well-posedness
of an ODE, under a monotonicity condition on the signaling gradient. Then, we carry out an
asymptotic analysis of the system. All positive and bounded traveling waves of the system are
computed and an explicit formula for the minimal wave speed is deduced. An analysis on the
inside dynamics of the wave establishes a dichotomy between pushed and pulled waves depending
on the strength of the advection. We identified the minimal wave speed as the biologically relevant
speed, in a weak sense, that is, the solution propagates slower, respectively faster, than the minimal
wave speed, up to time extraction. Finally, we extend the study to a hyperbolic two-velocity model
with persistence.

1 Introduction

In this paper, we are mainly concerned with the investigation of spreading properties for a one-
dimensional parabolic system of two diffusion-advection-reaction equations, with t ≥ 0, x ∈ R,

∂tρ− ∂xxρ+ ∂x(χsign(∂xN)1N≤Nthρ) = 1N>Nthρ (1a)
∂tN −D∂xxN = −ρN. (1b)

Here ρ(t, x) describes a cell population subject to diffusion, with a diffusion constant normalized to 1,
and either growth or advection depending on its position. The switch between growth and advection is
mediated by the value N(t, x) of a chemical nutrient field: for a given threshold value Nth, if N > Nth,
the population ρ is subject to growth with constant rate normalized to 1, and ifN ≤ Nth, the population
is subject to advection with constant speed χ > 0 in the direction of the gradient ∂xN . This advection
speed results from biases in individual cell trajectories, which are averaged at the macroscopic level.
The chemical nutrient N undergoes a reaction-diffusion equation through a simple consumption term
−ρN , with the consumption rate per cell normalized to 1. All along the article, we work in the setting,
where N is increasing in space, limx→−∞N(t, x) = 0 and limx→+∞N(t, x) = 1 > Nth, by normalizing
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(a) (b)

Figure 1: (a): A schematic representation of the experiment carried out in [15]. Cells are confined be-
tween two narrowly spaced plates and quickly consume available oxygen, so that the colony experiences
self-induced hypoxic conditions. This, in turn, triggers outward migration of the colony under the form
of a ring expanding at constant speed over long periods of time. (b): A cartoon representation of the
’Go or Grow’ hypothesis. Cells switch between two behaviors, depending on the level of oxygen. When
oxygen concentration is above some threshold Nth, cells divide and follow Brownian trajectories (this
is the ’Grow’ behavior). In contrast, when oxygen concentration drops below Nth, cells stop dividing
and follow a biased Brownian motion towards higher levels of oxygen (this is the ’Go’ behavior).

the limit to 1. Under these conditions, the cell population propagates from left to right. Furthermore,
we introduce the (unique) position of the threshold x̄(t), such that:

N(t, x̄(t)) = Nth. (2)

In Equation (1a), the advection term is discontinuous, but the flux should still be continous. Hence in
particular at the interface x̄(t) the flux must be continuous. More precisely, consider a weak solution
to Equation (1a), which is continuous and sufficiently regular on either side of the interface x̄(t). By
a Rankine-Hugoniot type argument, ρ satisfies the following C1-jump relation at the interface x̄(t):

∂xρ
(
t, x̄(t)+

)
− ∂xρ

(
t, x̄(t)−

)
= −χρ(t, x̄(t)). (3)

A typical initial datum (ρ0, N0) ∈ L∞(R)2 for System (1) satisfies nonnegativity, i.e. ρ0, N0 ≥ 0. In
addition, we assume that ρ0 satisfies the C1-jump relation (3) and is bounded by an exponentially
decreasing function at x = +∞. Furthermore, ∂xN0 > 0, limx→−∞N

0(x) = 0 and limx→+∞N
0(x) =

1 > Nth.
System (1) was introduced in [15] by the author and collaborators as a minimal model for cell

collective behaviour triggered by a self-generated gradient. In this study, the following emerging
behavior of Dictyostelium discoideum cells (Dd cells in short) in hypoxic conditions was observed:
when a colony of Dd cells is confined between two narrowly spaced plates, Dd cells form a dense ring
moving outwards. After a brief transitory phase, the ring of cells moves at constant speed and constant
density over the time course of the experiment (see Figure 1a). The authors emitted the hypothesis
that the quick consumption of oxygen by Dd cells exposes them to hypoxia, i.e. lack of oxygen,
and in turn induces aerotaxis, i.e. a bias in the individual trajectories of Dd cells towards higher
oxygen concentrations, leading to a macroscopic outward motion. We refer to [8, 15] (see also [41])
for a biological discussion on the hypotheses under which the observed phenomenon may arise. The
scientific approach in [15] leading to this minimal model can be described as follows: (i) Experimentally,
it was observed that cells exhibit various individual behaviors accross the colony. (ii) In the model, two
particular behaviors were retained as an alternative: either cell division, or migration towards oxygen.
(iii) It was postulated that the transition between the two behaviors depends on a single threshold (see
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Figure 1b). Indeed, it is for instance well known that Dd cells do not have enough energy to divide,
when oxygen is lacking. The term ’Go or Grow’ was coined to describe this dichotomy, by analogy
with a similar mechanism in the modeling of glioma cells [27], which nevertheless is of another nature,
as it describes a density-dependent rather than an oxygen-dependent switch between diffusion and cell
division.

The mechanism of cell division in System (1) resembles to some extent to standard reaction-
diffusion models, among which the classical Fisher/Kolmogorov-Petrovsky-Piskunov [4, 19, 31] is a
prototype. The F/KPP model describes in particular expansion of a cell population undergoing cell
division and diffusion. However, while in standard reaction-diffusion models, growth is limited by a
density-mediated mechanism (e.g. a quadratic saturation term in the F/KPP case), here it is limited
via the dependence on the chemical nutrient N , which leads to a similar regulatory mechanism: the
more cells divide, the more they consume the chemical nutrient N , the more their growth is limited.

Interestingly, this minimal model is sufficient to describe the propagation of a wave of cells, in a
context of self-generated oxygen gradients. In fact, System (1) exhibits explicit traveling wave solutions
and the minimal wave speed can be computed explicitly (see [15] and also Section 3). This gives rise
to the following formula for the minimal wave speed,

σ∗ =

{
χ+ 1

χ if χ > 1

2 if χ ≤ 1
. (4)

Thus, there are two different regimes: in the regime χ ≤ 1, which we call the small bias regime, the
speed corresponds to the well-known F/KPP speed, σF/KPP := 2, whereas in the regime of large bias,
χ > 1, the wave speed χ + 1

χ is greater than σF/KPP . The threshold is reached when the advection
speed χ is equal to half the F/KPP speed σF/KPP : there, the two expressions coincide.

System (1) combines two distinct propagation phenomena, one being aerotaxis of cells triggered by
the self-generated gradient, and the other being expansion by division-diffusion, such as described by
the F/KPP model. Biologically, it is therefore relevant to ask how these two propagation phenomena
combine with each other (see [8, 15]). Since the collective propagation speed σ∗ is always higher than
the advection speed χ, cell division has a net positive effect on the propagation of cells. In parallel,
in the regime of large bias χ > 1, aerotaxis has also in turn a net positive effect on the propagation
speed, compared to mere expansion by division-diffusion, which is in agreement with the findings by
[16]. In that case, we may refer to the wave as an aerotactic wave. Yet, in the regime of small bias
χ ≤ 1, the propagation is driven by division-diffusion, and aerotaxis does not contribute to the wave
speed: in that case, we refer to the propagation as a F/KPP wave.

Recently, numerous works, among which [16, 35, 50, 51], have investigated propagation of cells
under self-generated gradients and shown its biological relevance as an efficient migration strategy.
Notably in [16], the authors observe that the the combination of chemotaxis (the response to chemical
gradients, which is very analogous to aerotaxis in a mathematical setting) and cell division, leads to
an enhanced expansion.

Other works have investigated chemotactic waves in Escherichia coli bacteria (and references
therein [12, 46]). These works have proposed a description at a mesoscopic scale, through a kinetic
model, and at a macroscopic scale, through a parabolic model, analogous to some extent with System
(1). However, the main difference is that in order to sustain the propagation of the wave, two attrac-
tants are required in [12, 46], whereas here the single attractant N is sufficient. Additionally in the
case of E. coli cell division is negligible, while here it plays a key ingredient. We refer to [13] for a
discussion on different models of propagation through self-generated signaling gradients.

In parallel, the Keller-Segel model [29, 30] has been widely used in order to give a description of
cells undergoing chemotaxis. In [38], a variation on this model was proposed by adding a density-
dependent growth term to the model. This Keller-Segel model with growth term has been the subject
of numerous investigations in recent years, among which the works [10, 34, 38, 44, 45]. These types of
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models combine chemotaxis and cell division and exhibit traveling waves under some conditions on the
parameters. Nevertheless, chemotactic self-aggregation (in the aformentioned studies) and aerotaxis
(in the present study) lead to biases in opposite directions at the edge of expansion front. Recently,
in the works [26, 28], the authors have investigated the case of negative chemotaxis, where the bias
induced by chemotaxis is in the same direction than the propagation induced by division-diffusion and
thus bears a similarity to the aerotactic advection term. In [28], the author was able to obtain bounds
on the propagation speed. Since the considered model is different from ours, this result cannot be
directly compared to our explicit speed Formula (4), but in the regime of small negative chemotaxis,
the wave speed exactly agrees, i.e. σ∗ = 2, and the propagation is caused by division-diffusion. In
the regime of large negative chemotaxis, the wave speed increases, which is also in agreement with our
findings.

Interestingly, Formula (4) coincides with the formula for the wave speed obtained in the monostable
cubic reaction-diffusion equation with reaction term f(u) = u(1− u)(1 + 2χ2u) [5, 25] or the Burgers-
FKPP equation of the form ∂tu − ∂xxu + 2χu∂xu = u(1 − u) [3]. We also mention a class of free
boundary problems introduced in [6], that is linked to the large-population limit of the N -Branching
Brownian Motion [17]. The authors of [6] show that the following free boundary problem for (u, µt) ∈
C(R+ × R)× C(R+) sufficiently regular admits Formula (4) as minimal wave speed:

∂tu− ∂xxu = u, for x > µt
u(t, µt) = 1 and ∂xu(t, µt) = −χ

In [23, 42], the authors have investigated the inside dynamics of traveling waves in reaction-diffusion
equations. They have proposed a new characterization of the categorization between pushed and pulled
waves. A pushed wave is subject to a significant contribution from the overall population to the net
propagation, whereas a pulled wave is driven by growth and diffusion of the population at the edge of
the front with negligible contribution from the overall population. In particular, it was shown in [23]
that in the monostable cubic reaction-diffusion equation with reaction term f(u) = u(1−u)(1 + 2χ2u)
a transition from a pulled to a pushed nature of the wave exists at χ = 1. The same dichotomy was
observed at play in System (1), essentially via numerical simulations [15]: in the case of small bias
χ ≤ 1, the traveling wave is pulled. In contrast, in the case of large bias χ > 1, the traveling wave is
pushed. A transition from pulled to pushed waves has recently been of interest in the works [21, 22,
40], but in these studies they are due to structural modifications of the system, i.e. the reaction term
goes from a monostable structure to a bistable structure. However here, as well as in the case of the
monostable cubic case and the Burgers-FKPP equation [3], it is a transition induced by the relative
size of the parameters without changing the nature of the stable states.

Of note, the definitions of pulled and pushed waves can vary in the literature. The historical
definition as proposed in [47] (see also [43, 52]) is based on the criterion whether the minimal speed
σ∗ is equal to the speed of the linearized front around the steady state 0 (pulled), or greater than
this speed (pushed). The definition proposed in [23, 42] is based in turn on the inside dynamics of
the traveling waves. In this paper, we follow the latter definition and more precisely the study of the
inside dynamics of ρ, that we believe is more appropriate to the study of a system of equations, such
as System (1). However, both definitions coincide in our case, since linearizing System (1) around its
leading edge yields a constant chemical nutrient field N ≡ 1 and the linear F/KPP equation on ρ,
which gives rise to a front traveling at speed σ = 2.

In this paper, we are mainly concerned with the study of the parabolic System (1), that can be
viewed as a minimal model on a macroscopic scale including self-generated signaling gradients and
cell division. However, following the discovery of the run and tumble motion in E. coli [7], it may be
relevant to model collective motion of micro-organisms on a mesoscopic scale through kinetic transport
equations, see for instance [1, 2, 14, 39, 48]. In particular in [12], the author has investigated the
existence of traveling waves in E. coli populations propagating in microchannels. In Dd cells, persistent
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motion is observed as well [15]. Therefore, it is very natural to propose a kinetic model for their study,
involving free transport and reorientations of cells. Hence, by analogy with the aforementioned studies,
we propose the following kinetic model:

∂tf(t, x, v) + v∂xf(t, x, v) = λ (M(v;N, ∂xN)ρ− f) + r(N)ρ (5a)
∂tN −D∂xxN = −ρN, (5b)

where v ∈ V , a compact subset of R and ρ(t, x) = 1
|V |
∫
V f(t, x, v)dx. Equation (5a) describes the

evolution of the mesoscopic density of cells, that undergo cell division and persistent motion: cells
move with velocity v and at a constant rate λ cells reorient themselves according to the probability
distribution described by the Maxwellian M(v;N, ∂xN). In addition, cells divide with rate r(N),
depending on the ambient oxygen level, and the new cells have a velocity that is drawn from the
uniform distribution on V . In particular, we can adapt the ’Go or Grow’ hypothesis to Equation (5a):
for N < Nth, set cell division to zero and a fixed Maxwellian distribution with mean χsign(∂xN); for
N > Nth, set a fixed nonzero cell division rate and a fixed Maxwellian with zero mean.

Whilst the general study of System (5) is postponed to future investigations, we analyze in the
present study the two-velocity case, which we will refer to as the two-velocity system with persistence.
In fact, we consider V = {±ε−1}, with rescaled velocity and System (5) becomes a system of two
hyperbolic equations for f±(t, x) := f(t, x,±ε−1) and a parabolic equation for N , with t ≥ 0, x ∈ R,

∂tf
+ + ε−1∂xf

+ = ε−2
(
M(+ε−1;N, ∂xN)ρ− f+

)
+ 1N>Nthρ (6a)

∂tf
− − ε−1∂xf

− = ε−2
(
M(−ε−1;N, ∂xN)ρ− f−

)
+ 1N>Nthρ (6b)

∂tN −D∂xxN = −ρN, (6c)

where ρ := f++f−

2 and,

M(±ε−1;N, ∂xN) =


1 if N > Nth
1± εχ if N ≤ Nth and ∂xN ≥ 0
1∓ εχ if N ≤ Nth and ∂xN < 0

,

with χ < ε−1 and, up to a scale of units, r(N) = 1N>Nth , λ = ε−2 and the mean of the Maxwellian
distribution equal to ±εχ, when N ≤ Nth.

The parabolic System (1) and the two-velocity System with persistence (6) are linked through the
so-called parabolic scaling limit. Indeed, taking the limit ε → 0 of Equations (6) leads, at least in a
formal sense, to Equations (1). We refer to [14] for a rigorous derivation in a general chemotaxis model
without cell division.

Results and Strategies of Proof

The present article contains on the one hand an analysis of the well-posedness of System (1) locally
in time and on the other hand an asymptotic analysis of System (1), including: the computation of
traveling wave solutions, the study of the inside dynamics of the traveling waves, as well as a weak
characterization of the asymptotic behavior of the spreading speed in the Cauchy problem. We also
characterize traveling wave solutions for the two-velocity System with persistence (6). All along the
article we work in the setting where N is increasing in space and cells propagate from left to right.
Concerning the well-posedness we give a non-optimal criterion on the initial datum N0 under which
monotonicity of N is preserved locally in time and globally in space. However, for the rest of the
article, monotonicity of N is a restrictive assumption in our study.

In Section 2, we prove an existence and uniqueness result for the parabolic System (1) locally in
time under the assumption that N is initally monotonic. Because of the discontinuity of the advection

5



coefficients, involving the coupling with the signaling gradient, direct application of Banach’s Fixed
point Theorem seems not directly applicable. To circumvent this delicate issue, we use the monotonicity
of N and the definition of the threshold position x̄(t) (see Equation (2)) and apply Banach’s Fixed
Point Theorem to the curve x̄( · ). Our strategy relies on an endpoint estimate of N in W 3,∞, which
is out of the range of textbook estimates (to the best of our knowledge), that we achieve by a careful
handling of the singularity at the interface. This reduction to an equation on the dynamics of a curve,
coupled with a PDE, is reminiscent of studies in one-dimensional free boundary problems (see, e.g.
Chapter 3 in [18] on the Stefan problem, [33] in the context of front propagation, or [37] in the context
of mutation-selection dynamics in evolutionary biology).

In Section 3, we exhibit all positive and bounded traveling wave solutions for Equations (1), which
propagate from left to right, i.e. all stationary solutions in the frame (t, z) = (t, x − σt), with σ ≥ 0.
This completes the preliminary analysis performed in [15]. In that case, Equation (1a) reduces to a
piecewise constant second-order differential equation. All traveling wave profiles of ρ are a concate-
nation of a constant profile on the left side and an exponentially decreasing profile on the right side.
In both the small and large bias regimes, there exists a minimal velocity σ∗ for traveling waves, given
by Formula (4). For each σ ≥ σ∗, there exists an associated wave profile (ρσ, Nσ), whose exponential
decay at z = +∞ is slower than the decay of the profile associated to the minimal velocity σ∗, which
will be a crucial observation for Section 5.

In Section 4, we investigate the inside dynamics of the traveling waves. We introduce the formalism
of neutral fractions [23, 42] and extent it to System (1). The methodology consists in studying the
evolution of a fraction ν = ρ

ρσ of the traveling wave, relative to the stationary dynamics in the moving
frame prescribed by the traveling wave solution ρσ. This gives rise to a linear parabolic equation,

∂tν + Lν = 0.

In the case of large bias (χ > 1), the elliptic operator L is self-adjoint in a weighted L2-space and
has the following spectral properties: 0 is a simple eigenvalue, whose eigenspace is spanned by the
constants, and the operator L has a spectral gap. This leads to the conclusion that every neutral
fraction converges exponentially to a constant in a weighted L2-norm, which constitues the signature
of a pushed wave, according to [23, 42]. In contrast, in the regime of small bias (χ ≤ 1), under the
condition that ν0ρ

σ∗ is square-integrable at z = +∞, the solution ν converges to 0, which is the
signature of a pulled wave. To do so, we use an energy method in an L2-setting to show uniform
convergence to 0 on intervals of the form [a,+∞).

In Section 5, we give a weak description of the asymptotic behavior of solutions to System (1).
In fact, if we define the instantaneous spreading speed to be ˙̄x(t), we show that for initial conditions
bounded above by a multiple of ρσ∗ and under the technical assumption that ˙̄x ∈ L∞(R+), we have
that,

lim inf
t→+∞

˙̄x(t) ≤ σ∗, and lim sup
t→+∞

˙̄x(t) ≥ σ∗.

In other words, for an inital cell profile, whose exponential decay is faster than ρσ
∗ , up to a time

extraction, the cell profile spreads either slower or quicker than the minimal wave speed σ∗. Hence, an
important conclusion of this Section is that for biologically relevant initial conditions (e.g. a profile,
whose support is bounded above), the only reasonable candidate for convergence to a traveling wave
profile, is the one associated to the minimal wave speed σ∗. However, convergence in a proper sense
to the traveling wave profile remains an open problem, a major difficulty being notably the lack of a
suitable comparison principle.

Finally, in Section 6, we compute all subsonic traveling wave solutions, i.e. σ < ε−1, for System
(6). Subsonic traveling wave solutions exist if and only if ε−1 > 1. The structure of these solutions
then follows mutatis mutandis the structure of the solutions for the parabolic System (1). In particular
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we find a similar expression for the minimal wave speed,

σ∗ =
1

1 + ε2
·
{
χ+ 1

χ if χ ∈ (1, ε−1)

2 if χ ≤ 1
. (7)

The proof consists in solving piecewise constant linear differential equations. Furthermore, the velocity
formula for χ ≤ 1 coincides with the velocity of traveling waves in two-velocity models with a reaction
term, but without advection (see for instance [9, 24]).

2 Existence and Uniquess of Solutions for the Parabolic Model

In this Section, we establish existence and uniqueness locally in time for the parabolic System (1),
under certain conditions. The main difficulty to prove such a result stems from the singular advection
term ∂x (χsign(∂xN)1N≤Nthρ) in Equation (1a). Therefore, we will work in the framework, where
N is increasing and N(t, · ) = Nth admits a unique solution x̄(t). In this framework, System (1) is
equivalent to the following simpler System:

∂tρ− ∂xxρ+ ∂x(χ1x≤x̄(t)ρ) = 1x>x̄(t)ρ (8a)

∂tN −D∂xxN = −ρN (8b)
N(t, x̄(t)) = Nth. (8c)

In order to prove existence and uniqueness of the solution x̄(t), it suffices to require that ∂xN > 0.
Nevertheless, the property that ∂xN(t, · ) > 0 is in general not implied by the sole condition that
∂xN

0 > 0. In fact, it is possible to exhibit an initial configuration (ρ0, N0) where N0 is monotonic, but
nearly constant, and ρ0 is sufficiently localized, so that the concentration N(t, x) is no longer monotonic
after some time t > 0, simply because of strong depletion around a spatial location. To circumvent
this issue, we will here simply study System (8) and at the end of Section, we give a simple criterion,
far from being optimal, on the inital data (ρ0, N0) such that the property ∂xN > 0 is conserved for
small time. Hence the solution of System (8), (ρ,N) is in fact a solution of (1).

The strategy of proof consists in applying a fixed point mapping to the curve t 7→ x̄(t), i.e. the
unique solution to N(t, · ) = Nth. More precisely, the main steps consist in (i) given the curve x̄( · ),
solving Equations (8a,8b). (ii) Given the solution (ρ[x̄], N [x̄]), we show existence and uniqueness of
a solution to Equation N [x̄](t, · ) = Nth, that we denote ȳ( · ). We then show that the solution ȳ( · )
satisfies the following ODE: {

˙̄y(t) = − ∂tN [x̄](t,ȳ(t))
∂xN [x̄](t,ȳ(t))

ȳ(0) = x̄(0)
. (9)

In fact, ODE (9) is equivalent to Equation N(t, · ) = Nth. To show well-posedness of ODE (9), we
need to obtain enough regularity on N : ∂tN [x̄] and (∂xN [x̄])−1 should be locally Lipschitz in space.
But from standard parabolic theory and the fact that the time derivative is expected to have the same
regularity as the double space derivative, this roughly corresponds to ∂xxN [x̄] being locally Lipschitz
in space (and ∂xN [x̄](t, ȳ(t)) uniformly bounded away from 0). Hence the required regularity of N is
W 3,∞ in space. We shall see that this regularity holds true, but it is an endpoint case. (iii) Finally,
the aim is to show that the mapping x̄( · ) 7→ ȳ( · ) is a contraction and there exists a unique solution
to the Cauchy problem: {

˙̄x(t) = − ∂tN [x̄](t,x̄(t))
∂xN [x̄](t,x̄(t))

x̄( · )|t=0 = x̄(0)
.
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However, because of the regularity requirement on N , the mapping x̄ 7→ ȳ becomes only a contraction,
as will be seen, in a space that controls also the time derivative ˙̄x. This deviates from standard Picard-
Lindelöf theory of integration for ODEs, where contraction in L∞-norm is sufficient and is obtained
through a local in time integration of the ODE. Furthermore, from the ODE (9) it becomes clear that
x̄ 7→ ȳ is at best merely Lipschitz continuous in the W 1,∞-norm and not a contraction. In order to
circumvent this issue, we will consider the mapping x̄ 7→ ȳ in anW 1,p-norm (with p <∞) and therefore
by a local in time integration of the ODE (9), the mapping x̄( · ) 7→ ȳ( · ) becomes a contraction in that
given norm.

Next, we introduce some notations and basic facts, before moving on to the statement of Theorem
2.1.
The evolution operator of the heat equation etµ∂xx (here µ = 1 and µ = D will be of interest) on the
real-line are defined as follows:

etµ∂xxf(x) =
1√

4πµt

∫
R
e
− (x−y)2

4µt f(y)dy.

The operator etµ∂xx satisfies the following well-known functional inequalities, as a consequence of
Young’s convolutional inequality. For 1 ≤ p ≤ q ≤ ∞:∥∥∥etµ∂xxf∥∥∥

q
≤ Ct−

1
2

(
1
p
− 1
q

)
‖f‖p , (10)∥∥∥etµ∂xx∂xf∥∥∥

q
≤ Ct−

1
2

(
1
p
− 1
q

+1
)
‖f‖p . (11)

In addition, we consider Hölder spaces Ck,α(R), with α ∈ (0, 1) and the norm ‖ · ‖Ck,α(R) =
∑k

i=0

∥∥∂ix ·
∥∥
∞+

[∂kx · ]α, where [f ]α := supx,y
|f(x)−f(y)|
|x−y|α . From Real Interpolation Theory with the K-method (see Chap-

ter 1 in [36]), we know that Ck,α(R) =
(
Ck(R), Ck+1(R)

)
α,∞, where Ck(R) is the space of functions

k-times differentiable with bounded derivatives, equipped with its usualW k,∞-norm. This leads to the
following bounds: ∥∥∥etµ∂xxf∥∥∥

C0,α(R)
≤ Ct−

α
2 ‖f‖∞ , (12)∥∥∥etµ∂xxf∥∥∥

C1,α(R)
≤ Ct−

1+α
2 ‖f‖∞ , (13)∥∥∥∂xetµ∂xxf∥∥∥

∞
≤ Ct

α−1
2 ‖f‖C0,α(R) , (14)∥∥∥∂xxet∂xxf∥∥∥

∞
≤ Ct

α
2
−1 ‖f‖C0,α(R) . (15)

Set B(A) := BW 1,p([0,T ])(A) =
{
ȳ( · ) ∈W 1,p([0, T ])

∣∣‖y‖W 1,p ≤ A
}
, with the norm ‖y‖W 1,p = ‖y‖p +

‖ẏ‖p and p ∈ (4,∞). Given a curve x̄ ∈ B(A), we consider System (8) in the moving frame of reference
(t, z) = (t, x− x̄(t)), which yields:

∂tρ̃− ˙̄x(t)∂zρ̃− ∂zzρ̃+ ∂z(χ1z≤0ρ̃) = 1z>0ρ̃ (16a)

∂tÑ − ˙̄x(t)∂zÑ −D∂zzÑ = −ρ̃Ñ . (16b)

Of note, throughout this Section ρ̃, Ñ denotes the solutions in the moving frame, in order to easily
distinguish between for instance ρ and ρ̃. Without loss of generality, we also suppose that x̄(0) = 0, so
that ρ̃0 = ρ0 and Ñ0 = N0. Thereafter, we will however drop the diacritical mark˜and systematically
designate by ρ the solution in the moving frame.
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As already observed in the Introduction, continuity of the flux in Equation (16a) leads by a Rankine-
Hugoniot type of argument to a C1-jump relation (3), which in the moving frame can simply be
rewritten as:

∂zρ̃(t, 0+)− ∂zρ̃(t, 0−) = −χρ̃(t, 0).

In fact, it is furthermore possible to factorize ρ̃ under the form vU , with a function U such that
the factorization precisely cancels out the C1-jump relation at z = 0. For instance, we can choose

U(z) =

{
1 if z ≤ 0
e−χz if z > 0

. Notice that U exactly satisfies the C1-jump relation and that we obtain

the following Equation on v:

∂tv − ∂zzv − β(t, z)∂zv − γ(t, z)v = 0, (17)

where β(t, z) := ˙̄x − χ1z≤0 − 2χ1z>0 and γ(t, z) := χ
((
χ+ 1

χ

)
− ˙̄x
)
1z>0. Under this circumstance,

v will be of higher regularity, i.e. C1,α. Of note, the particular choice of U is arbitrary in this Section,
although as will be seen in Section 3, U corresponds to the traveling wave profile in the case χ ≥ 1. In
fact, one could consider other candidates for U , but for the sake of simplicity we restrict ourselves to
this particular choice.

Let us now move to the statement of a well-posedness theorem locally in time under the condition
that N0 is increasing.

Theorem 2.1. Let p ∈ (4,∞), α ∈
(

0, 1− 2
p

)
and α′ ∈

(
2
p , 1−

2
p

)
. Suppose that N0 ∈W 3,∞(R) and

ρ0

U ∈ C
1,α(R). Additionally suppose that ∂xN0 > 0 and that N0( · ) = Nth admits a (unique) solution,

for x = 0. For a certain ζ > 0, denote m a lower bound of ∂xN0 on the interval [−ζ,+ζ].
Given A > 0 big enough (depending on D,χ, p, α, α′,

∥∥∥ρ0U ∥∥∥C1,α
,
∥∥N0

∥∥
W 3,∞ ,m, ζ) there exists a small

enough T > 0, such that for any curve x̄ ∈ B(A), there exists a unique solution (ρ̃, Ñ) to System (16).
Moreover, ρ̃ ∈ L∞([0, T ],W 1,∞(R)), v = ρ̃

U ∈ L
∞([0, T ], C1,α(R)) and Ñ ∈ L∞([0, T ],W 3,∞(R)).

Furthermore, there exists a unique curve x̄ ∈ B(A), such that the solution (ρ̃, Ñ) to System (16)
satisfies in addition the condition Ñ(t, 0) = Nth, or in the static frame N(t, x̄(t)) = Nth, for t ∈ [0, T ].
In other terms, (ρ,N) in the static frame is the unique solution to System (8).

Proof. We divide the proof of Theorem 2.1 into several steps:

1. a) We fix a curve x̄( · ) ∈W 1,p([0, T ]) and construct the unique (mild) solution v ∈ L∞
(
[0, T ], C1,α(R)

)
)

to Equation (17). Furthermore the map x̄ ∈ B(A) 7→ v ∈ L∞([0, T ], C1,α(R)) is Lipschitz con-
tinuous.
b) Given v and thus ρ̃, we construct the unique (mild) solution Ñ ∈ L∞

(
[0, T ], C2,α′(R)

)
to

Equation (16b). Furthermore the map x̄ ∈ B(A) 7→ Ñ ∈ L∞([0, T ], C2,α′(R)) is Lipschitz con-
tinuous.

2. We show that Ñ ∈ L∞([0, T ],W 3,∞(R)). This regularity is an improvement from the more
standard regularity result obtained in Step 1b) and is crucial for the rest of the proof. We carry
out estimates on explicit computations and finally we refer to the Remark at the end of the proof
of Theorem 2.1 for a brief argument to show that the obtained regularity is borderline.

3. For t ∈ [0, T ], N(t) (in the static frame) admits a unique solution to the equation N(t, · ) = Nth
that we denote by ȳ(t). Furthermore ȳ( · ) satisfies ODE (9) and the regularity obtained on N
leads to well-posedness of ODE (9).
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4. For A > 0 big enough the map x̄ 7→ ȳ maps from B(A) into itself and is furthermore a contrac-
tion. We conclude by Banach’s Fixed Point Theorem and obtain well-posedness.

Conventions. For the sake of clarity, throughout the proof we will make use of the following
conventions. C will represent constants that depend on D,χ, p, α, α′,m, ζ. In order to simplify the
presentations of the inequalities, we suppose that A,

∥∥∥ρ0U ∥∥∥C1,α
,
∥∥N0

∥∥
W 3,∞ ,

∥∥N0
∥∥
C2,α′ > 1 in order

to use freely for instance the bounds 1 + A ≤ 2A or
∥∥∥ρ0U ∥∥∥C1,α

≤
∥∥∥ρ0U ∥∥∥2

C1,α
. In parallel, we suppose

that T < 1, in order to use freely bounds of the type |t−s|−c ≤ |t−s|−d, for t, s ∈ [0, T ], when 0 < c < d.

Step 1a: Existence and uniqueness of a (mild) solution v to Equation (17).
Consider the affine map F : L∞

(
[0, T ], C1,α(R)

)
→ L∞

(
[0, T ], C1,α(R)

)
, for t ∈ [0, T ]:

F [u](t) = et∂zz
(
ρ0

U

)
+

∫ t

0
e(t−s)∂zz (β(s)∂zu(s) + γ(s)u(s)) ds. (18)

As ρ0

U ∈ C
1,α(R), we have that et∂zz

(
ρ0

U

)
∈ L∞

(
[0, T ], C1,α(R)

)
.

We will now show that the second term in (18) is in L∞
(
[0, T ], C1,α(R)

)
. Notice that β(s, z)∂zu(s, z) =

∂z (β(s, z)u(s, z)) + χu(s, 0)δ0. Hence by using Bounds (10,11), the fact that
∥∥e(t−s)∂zzδ0

∥∥
∞ ≤

C√
t−s

and that |β| ≤ C(1 + | ˙̄x(s)|), we have that:∥∥∥∥∫ t

0
e(t−s)∂zz (β(s)∂zu(s)) ds

∥∥∥∥
∞
≤ C

∫ t

0

(
‖β(s)u(s)‖∞√

t− s
+
|u(s, 0)|√
t− s

)
ds

≤ C
∫ t

0

(1 + | ˙̄x(s)|) ‖u(s)‖∞√
t− s

ds

≤ C ‖u‖∞
∫ t

0

(1 + | ˙̄x(s)|)√
t− s

ds

≤ C ‖u‖∞
(

1 + ‖ ˙̄x‖p
)
T
p−2
2p

≤ C ‖u‖∞AT
p−2
2p ,

where we have used Hölder’s inequality, p > 2 in order to guarantee the integrability of s 7→ (t−s)−
p

2(p−1)

and the convention that T < 1 and A > 1. In a slightly easier manner, we have also that:∥∥∥∥∂z ∫ t

0
e(t−s)∂zz (β(s)∂zu(s)) ds

∥∥∥∥
∞
≤ C ‖∂zu‖∞AT

p−2
2p .

Finally by using Bound (13):[
∂z

∫ t

0
e(t−s)∂zz (β(s)∂zu(s)) ds

]
α

≤ C ‖∂zu‖∞AT
p(1−α)−2

2p ,

where integrability of
∥∥∥s 7→ (t− s)−

α+1
2

∥∥∥
p
p−1

is guaranteed by the condition α < 1− 2
p . This yields the

bound: ∥∥∥∥∫ t

0
e(t−s)∂zz (β(s)∂zu(s)) ds

∥∥∥∥
L∞([0,T ],C1,α(R))

≤ C ‖u‖L∞([0,T ],W 1,∞(R))AT
p(1−α)−2

2p ,
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where by the conventions, we have used that T
p−2
2p < T

p(1−α)−2
2p . The remaining term in (18) admits a

similar bound. In fact:∥∥∥∥∫ t

0
e(t−s)∂zz (γ(s)u(s)) ds

∥∥∥∥
L∞([0,T ],C1,α(R))

≤ C ‖u‖L∞([0,T ]×R)AT
p(1−α)−2

2p .

Hence F maps L∞([0, T ], C1,α(R)) into itself.
Furthermore, if we choose T small enough (depending on A), for instance such that the Lipschitz

constant of F becomes 1
2 , then F is a contraction and by Banach’s Fixed Point Theorem Equation

(16a) admits a unique solution v. Furthermore, we have the bound:

‖v‖ = ‖F [v]‖ ≤ ‖F [v]− F [0]‖+ ‖F [0]‖ ≤ ‖v‖
2

+ ‖F [0]‖

=⇒ ‖v‖L∞([0,T ],C1,α(R)) ≤ 2

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

. (19)

It remains to show that the map x̄ 7→ v is Lipschitz continuous. Given x̄1, x̄2 ∈ B(A), consider
the two corresponding functions v1, v2 ∈ L∞([0, T ], C1,α(R)), as well as the two corresponding maps
F1, F2, and set w := v1 − v2:

w(t) =

∫ t

0
e(t−s)∂zz (β1∂zw + (β1 − β2)∂zv2 + γ1w + (γ1 − γ2)v2) ds

=

(
F1[w]− et∂zz

(
ρ0

U

))
+

∫ t

0
e(t−s)∂zz ((β1 − β2)∂zv2 + (γ1 − γ2)v2) ds.

First of all, by using that et∂zz
(
ρ0

U

)
= F1[0] and by recalling that by the choice of T the Lipschitz

constant of F1 is 1
2 , we have:∥∥∥∥F1[w]− et∂zz

(
ρ0

U

)∥∥∥∥
L∞([0,T ],C1,α(R))

= ‖F1[w]− F1[0]‖L∞([0,T ],C1,α(R))

≤ 1

2
‖w‖L∞([0,T ],C1,α(R)) .

We have that β1 − β2 = ˙̄x1 − ˙̄x2 and γ1 − γ2 = ( ˙̄x1 − ˙̄x2)χ1z≥0, which leads for t ∈ [0, T ] to:∥∥∥∥∫ t

0
e(t−s)∂zz ((β1 − β2)∂zv2 + (γ1 − γ2)v2) ds

∥∥∥∥
C1,α(R)

=

∥∥∥∥∫ t

0
e(t−s)∂zz( ˙̄x1(s)− ˙̄x2(s))(∂zv2 + χ1z≥0v2)ds

∥∥∥∥
C1,α(R)

≤C
∫ t

0

| ˙̄x2(s)− ˙̄x1(s)| ‖∂zv2(s) + χ1z≥0v2(s)‖∞
(t− s)

α+1
2

ds

≤C ‖v2‖L∞([0,T ],C1,α(R))

∫ t

0

| ˙̄x2(s)− ˙̄x1(s)|
(t− s)

α+1
2

ds

≤C
∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

‖ ˙̄x2 − ˙̄x1‖p T
p(1−α)−2

2p ,

where the last bound is an application of Hölder’s inequality. Hence we have that:

‖w‖L∞([0,T ],C1,α(R)) ≤
1

2
‖w‖L∞([0,T ],C1,α(R)) + C

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

‖ ˙̄x2 − ˙̄x1‖p T
p(1−α)−2

2p .
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And finally we establish that the map x̄ 7→ v is Lipschitz continuous with:

‖w‖L∞([0,T ],C1,α(R)) ≤ CT
p(1−α)−2

2p

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

‖ ˙̄x2 − ˙̄x1‖p (20)

Step 1b: Existence and uniqueness of a (mild) solution Ñ to Equation (16b).
Consider the map G : L∞([0, T ], C2,α′(R)) → L∞([0, T ], C2,α′(R)), with α′ ∈ (2

p , 1 −
2
p). For

t ∈ [0, T ]:

G[u](t) = etD∂zzN0 +

∫ t

0
e(t−s)D∂zz ( ˙̄x(s)∂zu(s)− v(s)Uu(s)) ds. (21)

We proceed as before and treat explicitly only the following two terms:[
∂zz

∫ t

0
eD(t−s)∂zzv(s)Uu(s)ds

]
α′
≤ C

∫ t

0
(t− s)−

1+α′
2 ‖∂z (v(s)Uu(s))‖∞ ds

≤ C
∫ t

0
(t− s)−

1+α′
2 (‖∂zv(s)‖∞ ‖u(s)‖∞ + ‖v(s)‖∞ ‖∂zu(s)‖∞) ds

≤ CT
1−α′

2 ‖v‖L∞([0,T ],W 1,∞(R)) ‖u‖L∞([0,T ],W 1,∞(R))

≤ CT
1−α′

2

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

‖u‖L∞([0,T ],W 1,∞(R)) ,

where we used the fact that U ∈W 1,∞(R). And:[
∂zz

∫ t

0
eD(t−s)∂zz ˙̄x(s)∂zu(s)ds

]
α′
≤ C

∫ t

0
(t− s)−

1+α′
2 | ˙̄x(s)| ‖∂zzu(s)‖∞ ds

≤ CA ‖u‖L∞([0,T ],W 2,∞(R) T
1−α′

2 .

By using Bound (19), we can choose T such that the Lipschitz constant for G becomes 1
2 . Therefore

G is a contraction and this yields existence and uniqueness of the solution Ñ to Equation (16b) and
Ñ satisfies the bound: ∥∥∥Ñ∥∥∥

L∞([0,T ],C2,α′ (R))
≤ 2

∥∥N0
∥∥
C2,α′ (R)

≤ 2
∥∥N0

∥∥
W 3,∞ . (22)

As before, we show that x̄ ∈ B(A) 7→ N ∈ L∞([0, T ], C2,α′(R)) is Lipschitz continuous. Given
x̄1, x̄2 ∈ B(A), consider the corresponding Ñ1, Ñ2, as well as the two corresponding maps G1, G2. We
recall that w = v1 − v2 and set P := Ñ1 − Ñ2:

P = G1[P ]−G1[0] +

∫ t

0
e(t−s)D∂zz

(
( ˙̄x1(s)− ˙̄x2(s))∂zÑ2(s)ds− w(s)UÑ2(s)

)
ds.

By the same arguments as before, we have the following bounds:

‖G1[P ]−G1[0]‖L∞([0,T ],C2,α′ (R)) ≤
1

2
‖P‖L∞([0,T ],C2,α′ (R))∥∥∥∥∫ t

0
e(t−s)D∂zz( ˙̄x1(s)− ˙̄x2(s))∂zÑ1(s)ds

∥∥∥∥
L∞([0,T ],C2,α′ (R))

≤ CT
p(1−α′)−2

2p
∥∥N0

∥∥
C2,α′ (R)

‖ ˙̄x2 − ˙̄x1‖p∥∥∥∥∫ t

0
e(t−s)∂zzw(s)UÑ1(s)ds

∥∥∥∥
L∞([0,T ],C2,α′ (R))

≤ CT
1−α′

2 ‖w‖L∞([0,T ],C1,α(R))

∥∥N0
∥∥
C2,α′ (R)

.
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By recalling Inequality (20) on ‖w‖L∞([0,T ],C1,α(R)), we obtain that the map x̄ 7→ N is Lipschitz
continuous, with:

‖P‖L∞([0,T ],C2,α′ (R)) ≤ C
(
T
p(1−α′)−2

2p + T
(1−α′)(p(1−α)−2)

4p

)∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

∥∥N0
∥∥
C2,α′ (R)

‖ ˙̄x2 − ˙̄x1‖p . (23)

Step 2: Enhanced regularity on Ñ ∈ L∞([0, T ],W 3,∞(R)).
First let us point out that Ñ satisfies Equation (16b):

∂tÑ − ∂zzÑ − ˙̄x(t)∂zÑ = −vUÑ.

Suppose that vUÑ had C1,α′′ regularity in space for some α′′ ∈ (0, 1). Then by standard Parabolic
Schauder Estimates (see Chapter 8 in [32]), Ñ would have C3,α′′ regularity in space. But because of
the C1-discontinuity of U at z = 0, this fails and vUÑ is merely Lipschitz continuous. This constitutes
the endpoint case for the Parabolic Schauder Estimates and it cannot generally be deduced that Ñ
has W 3,∞ regularity in space. However, in our case this result remains true, as we can single out the
C1-discontinuity of U at z = 0, then prove that this explicit contribution enjoys the endpoint W 3,∞

regularity. Finally, we refer the reader to Remark 2 at the end of this proof, where we give an argument
why any higher regularity is not to be expected.

From the preceding point, we have the following representation for Ñ :

Ñ(t) = etD∂zzN0 +

∫ t

0
e(t−s)D∂zz

(
˙̄x(s)∂zÑ(s)− v(s)UÑ(s)

)
ds. (24)

The term etD∂zzN0 ∈ L∞([0, T ],W 3,∞(R)), as by assumption N0 ∈W 3,∞(R).
In addition, by using Bound (15):∥∥∥∥∂zzz ∫ t

0
e(t−s)D∂zz ˙̄x(s)∂zÑ(s)ds

∥∥∥∥
∞
≤
∫ t

0

∥∥∥∂zze(t−s)∂zz ˙̄x(s)∂zzÑ(s)
∥∥∥
∞
ds

≤ CT
pα′−2

2p ‖ ˙̄x‖p
∥∥∥Ñ∥∥∥

L∞([0,T ],C2,α′ (R))
,

where the integrability of
∥∥∥s 7→ (t− s)

α′
2
−1
∥∥∥

p
p−1

is due to the condition α′ > 2
p .

It remains to be shown that
∫ t

0 e
(t−s)D∂zz

(
v(s)UÑ(s)

)
ds ∈ L∞([0, T ],W 3,∞(R)). In order to do so,

we will decompose the term ∂z

(
v(s)UÑ(s)

)
as the sum of a C0,α function and a discontinous function.

In fact for s ∈ [0, T ], z ∈ R:

∂z

(
vUÑ

)
(s, z) = ∂z

(
vUÑ

)
(s, z)− J∂z

(
vUÑ

)
(s)Kz=01z≥0︸ ︷︷ ︸

g(s,z):=

+ J∂z
(
vUÑ

)
(s)Kz=0︸ ︷︷ ︸

h(s):=

1z≥0, (25)

where JfKz0 = limz→z+0
f(z)−limz→z−0

f(z). Here J∂z
(
vUÑ

)
(s)Kz=0 is well-defined, since v(s), Ñ(s) ∈

C1,α(R) and U ∈ C1(R+) ∩ C1(R−). We will conclude by treating both terms separately and using
the following bound:∥∥∥∥∂zzz ∫ t

0
e(t−s)∂zz

(
v(s)UÑ(s)

)
ds

∥∥∥∥
∞
≤
∥∥∥∥∫ t

0
∂zze

(t−s)∂zzg(s)ds

∥∥∥∥
∞

+

∥∥∥∥∫ t

0
∂zze

(t−s)∂zzh(s)1z≥0ds

∥∥∥∥
∞
.

(26)
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Lemma 2.1.1. Let f ∈ L∞([0, T ], C0,α(R+)) ∩ L∞([0, T ], C0,α(R−)), where we understand C0,α(R±)
as a normed space, equipped with the norm ‖ · ‖∞ + [ · ]α;R±.

Then we have that g := f − JfKz=01z≥0 ∈ L∞([0, T ], C0,α(R)) and:

‖g‖L∞([0,T ],C0,α(R)) ≤ 21−α max

{
sup
t∈[0,T ]

[f(t)]α;R+ , sup
t∈[0,T ]

[f(t)]α;R−

}
+ 3 ‖f‖∞ .

Proof. By construction we have that for t ∈ [0, T ], g(t) ∈ C0(R) and ‖g‖∞ ≤ 3 ‖f‖∞, since |JfKz=0| ≤
2 ‖f‖∞. Let t ∈ [0, T ] and x, y ∈ R and suppose that x < 0 < y:

|f(t, y)− f(t, x)|
|y − x|α

≤ |f(t, y)− f(t, 0)|
|y − x|α

+
|f(t, 0)− f(t, x)|
|y − x|α

(27)

≤ 2

(
1

2
·
|y|α

|y − x|α
[f(t)]α;R− +

1

2
·
|x|α

|y − x|α
[f(t)]α;R+

)
≤ 2

(
|y|+ |x|
2|y − x|

)α
max

{
sup
t∈[0,T ]

[f(t)]α;R+ , sup
t∈[0,T ]

[f(t)]α;R−

}

= 21−α max

{
sup
t∈[0,T ]

[f(t)]α;R+ , sup
t∈[0,T ]

[f(t)]α;R−

}
,

where we have used the concavity of z 7→ zα and the fact that x < 0 < y.
If x, y < 0 (resp. x, y > 0), then the left handside of (27) is simply bounded by [f(t)]α;R− (resp.

[f(t)]α;R+).

Applying Lemma 2.1.1 with f = ∂z

(
vUÑ

)
∈ L∞([0, T ], C0,α̃(R+)) ∩ L∞([0, T ], C0,α̃(R−)), where

α̃ := min(α, α′), we obtain that g ∈ L∞([0, T ], C0,α̃(R)). Through Bound (15), this leads to:∥∥∥∥∫ t

0
∂zze

(t−s)∂zzg(s)ds

∥∥∥∥
∞
≤ CT

α̃
2 ‖g‖L∞([0,T ],C0,α̃(R))

≤ CT
α̃
2

(
max

{
sup
t∈[0,T ]

[∂z

(
vUÑ

)
(t)]α̃;R+ , sup

t∈[0,T ]
[∂z

(
vUÑ

)
(t)]α̃;R−

}

+
∥∥∥∂z (vUÑ)∥∥∥

L∞([0,T ],C0,α̃(R))

)
≤ CT

α̃
2 ‖v‖L∞([0,T ],C1,α̃(R)) ‖N‖L∞([0,T ],C1,α̃(R))

≤ CT
α̃
2

∥∥∥∥ρ0

U

∥∥∥∥
C1,α

∥∥N0
∥∥
W 3,∞ , , (28)

where we have used that the product of C1,α̃ functions are C1,α̃.
The last term is treated differently by using explicit computations:∫ t

0
∂zze

(t−s)D∂zzh(s)1z≥0ds =

∫ t

0
∂ze

(t−s)D∂zzh(s)δ0ds

= −
∫ t

0

zh(s)

4π
1
2D

3
2 (t− s)

3
2

e
− z2

4(t−s)ds

= −
∫ ∞
|z|√
t

h
(
t− z2

u2

)
2π

1
2D

3
2

e−u
2
du where u =

|z|√
(t− s)

.
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Hence, by the integrability of e−u2 :∥∥∥∥∫ t

0
∂zze

(t−s)D∂zzh(s)1z≥0ds

∥∥∥∥
∞
≤ C ‖h‖∞

But we have the following identity:

h(s)

= lim
z→0+

∂z(vUÑ)(s, z)− lim
z→0−

∂z(vUÑ)(s, z)

= lim
z→0+

U(z)∂z(vÑ)(s, z) + lim
z→0+

(vÑ)(s, z)∂zU(z)− lim
z→0−

U(z)∂z(vÑ)(s, z)− lim
z→0−

(vÑ)(s, z)∂zU(z)

=v(s, 0)Ñ(s, 0)J∂zUKz=0

=− χv(s, 0)Ñ(s, 0).

Therefore: ∥∥∥∥∫ t

0
∂zze

(t−s)D∂zzh(s)1z≥0ds

∥∥∥∥
∞
≤ C ‖v‖∞

∥∥∥Ñ∥∥∥
∞
. (29)

Bringing Bounds (26, 28, 29) together, we conclude that
∫ t

0 e
(t−s)D∂zz

(
v(s)UÑ(s)

)
ds ∈ L∞([0, T ],W 3,∞(R)).

Thus Ñ ∈ L∞([0, T ],W 3,∞(R)).

Step 3: Definition of the map x̄ 7→ ȳ: Existence and Uniqueness of the solution N(t, · ) = Nth.
We consider ρ,N again in the initial frame (t, x), where they satisfy Equations (8). Note that

‖N‖∞ =
∥∥∥Ñ∥∥∥

∞
and ‖ρ‖∞ ≤ ‖v‖∞. By assumption, we have that ∂xN0 > m on the interval [−ζ,+ζ].

Therefore by setting ε = ζm, we have that for x < −ζ,N0(x) < Nth − ε and x > ζ,N0(x) > Nth + ε.

1. We start by showing that there exists T > 0, such that for t ∈ [0, T ] and x ≤ −ζ , we have that
N(t, x) < Nth. Note that:∥∥∥∥−∫ t

0
e(t−s)∂zzρ(s)N(s)ds

∥∥∥∥
∞
≤ T ‖N‖∞ ‖ρ‖∞

≤ 4T
∥∥ρ0
∥∥
C1,α

∥∥N0
∥∥
W 3,∞ .

So for T > 0 small enough, the right handside is smaller than ε
4 .

Choose T > 0 small engouh, so that for t ∈ (0, T ] we have that:

1√
4πDt

∫ +∞

ζ
e−

x2

4Dtdx <
ε

4
.

From this we can deduce that for t ∈ (0, T ], x < −ζ, by recalling that
∥∥N0

∥∥
∞ = 1, we have:

N(t, x) = et∂xxN0|x −
∫ t

0
e(t−s)∂xxρ(s)N(s)ds|x

≤ 1√
4πDt

∫
R
e−

(x−y)2
4Dt N0(y)dy +

∥∥∥∥−∫ t

0
e(t−s)∂xxρ(s)N(s)ds

∥∥∥∥
∞

<
Nth − ε

2
+
Nth

2
+

∥∥N0
∥∥
∞√

4πDt

∫ +∞

ζ
e−

x2

4t dx+
ε

4

< Nth.
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2. By a similar reasoning, there exists T > 0, such that for t ∈ [0, T ] and x ≥ ζ, we have that
N(t, x) > Nth.

3. We now show that there exists T > 0, such that for t ∈ [0, T ], x ∈ [−ζ,+ζ], we have that
∂xN(t, x) ≥ m

8 .
The reasoning is again similar. On the one hand:∥∥∥∥∂x(−∫ t

0
e(t−s)D∂xxρ(s)N(s)ds

)∥∥∥∥
∞
≤
∫ t

0

C√
t− s

‖ρ(s)‖∞ ‖N(s)‖∞ ds.

As before we can choose T > 0 such that the right handside becomes smaller than m
8 (here the

constant C does not depend on m).
On the other hand, by choosing T > 0 small enough such that for every t ∈ [0, T ]:

1√
4πDt

∫ ζ

0
e−

y2

4Dtdy ≥ 1

4
.

In that fashion for x ∈ [−ζ,+ζ]:

etD∂xx∂xN
0|x =

1√
4πDt

∫
R
e−

(x−y)2
4Dt ∂xN

0(y)dy

≥ 1√
4πDt

∫ ζ

−ζ
e−

(x−y)2
4Dt ∂xN

0(y)dy

≥ m√
4πDt

∫ ζ−x

−ζ−x
e−

y2

4Dtdy

≥ m

4
,

by noticing that either [0, ζ] ⊂ [−ζ − x, ζ − x], when x ≤ 0, or alternatively that [−ζ, 0] ⊂
[−ζ − x, ζ − x], when x ≥ 0. From this, we conclude that:

∂xN(t, x) = etD∂xx∂xN
0|x − ∂x

(∫ t

0
e(t−s)D∂xxρ(s)N(s)ds

)∣∣∣∣
x

≥ m

4
− m

8
=
m

8
.

4. From the considerations above, we see that there exists T > 0, such that for t ∈ [0, T ], the
equation N(t) = Nth has a unique solution, which we denote by ȳ(t). We know that ȳ(t) ∈
[−ζ,+ζ] and ȳ(0) = 0. Furthermore from the preceding analysis we know that N is differentiable
and by differentiating the relation N(t, ȳ(t)) = Nth, ȳ(t) satisfies an ODE:

˙̄y(t) = − ∂tN(t, ȳ(t))

∂xN(t, ȳ(t))
=: F(t, ȳ(t)).

Since ‖N‖L∞([0,T ],W 3,∞(R)) =
∥∥∥Ñ∥∥∥

L∞([0,T ],W 3,∞(R))
, ‖ρ‖L∞([0,T ],W 1,∞(R)) ≤ C ‖v‖L∞([0,T ],W 1,∞(R))

and ∂tN = D∂xxN − ρN , we have that ∂tN ∈ L∞([0, T ],W 1,∞(R)). Additionally, since
∂xN(t, ȳ(t)) ≥ m

4 and ∂xN ∈ L∞([0, T ],W 1,∞(R)), we have that (∂xN)−1 ∈ L∞([0, T ],W 1,∞(R)).
Therefore F ∈ L∞([0, T ] × [−ζ, zeta]) is uniformly in time Lipschitz continuous in the second
variable. Hence the ODE is well-posed and it admits a unique solution ȳ ∈W 1,∞([0, T ]).
We have the bound:

| ˙̄y(t)| ≤ |∂xN(t, ȳ(t))|−1 ‖D∂xxN − ρN‖∞

≤ 8

m
(D ‖∂xxN‖∞ + ‖ρ‖∞ ‖N‖∞)

≤ C
∥∥N0

∥∥
W 3,∞

∥∥∥∥ρ0

U

∥∥∥∥
C1,α′

,
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where at the end, we have used Bounds (19,22). Hence, by the convention that T < 1, we have
‖ȳ‖W 1,p ≤ C

∥∥N0
∥∥
W 3,∞

∥∥∥ρ0U ∥∥∥C1,α′
. It therefore suffices that A is bigger than the right handside

and in that case the map x̄ 7→ ȳ maps B(A) into itself.

Step 4: Unique Fixed Point of the map x̄ ∈ B(A) 7→ ȳ ∈ B(A).
Given x̄1, x̄2 ∈ B(A), consider ȳ1, ȳ2 ∈ B(A). Set Fi = − ∂tNi

∂xNi
, such that ˙̄yi(t) = Fi(t, ȳi(t) . Note

that ȳi(t) ∈ [−ζ,+ζ] and that therefore ∂xNi(t, ȳi(t)) >
m
8 .

| ˙̄y1(t)− ˙̄y2(t)| = |F1(t, ȳ1(t))−F2(t, ȳ2(t))|
≤ |F1(t, ȳ1(t))−F1(t, ȳ2(t))|+ |F1(t, ȳ2(t))−F2(t, ȳ2(t))| .

For x ∈ [−ζ,+ζ], t ∈ [0, T ] and by using the lower bounded of ∂xN(t, x) from Step 3, we have that:

|∂xF1(t, x)| ≤

(
sup

x∈[−ζ,+ζ]

1

∂xN(t, x)

)2

‖∂txN∂xN − ∂tN∂xxxN‖∞

≤ C ‖(∂xxxN − ∂x(ρN)) ∂xN − (∂xxN − ρN)∂xxxN‖∞ .

This latter term is bounded, in particular because of Step 2. Hence:

|F1(t, ȳ1(t))−F1(t, ȳ2(t))| ≤ C
∥∥N0

∥∥2

W 3,∞(R)

∥∥∥∥ρ0

U

∥∥∥∥
C1,α(R)

|ȳ1(t)− ȳ2(t)|. (30)

For the second term:

|F1(t, ȳ2(t))−F2(t, ȳ2(t))|

≤ |∂tN1(t, ȳ2(t))|
|∂xN1(t, ȳ2(t))||∂xN2(t, ȳ2(t))|

|∂xN1(t, ȳ2(t))− ∂xN2(t, ȳ2(t))|

+
1

|∂xN2(t, ȳ2(t))|
|∂tN1(t, ȳ2(t))− ∂tN2(t, ȳ2(t))|

≤C (‖∂xxN1 − ρ1N1‖∞ ‖∂xN1 − ∂xN2‖∞ + ‖∂xxN1 − ∂xxN2‖∞
+ ‖ρ1 − ρ2‖∞ ‖N1‖∞ + ‖ρ2‖∞ ‖N1 −N2‖) .

Now take (t, y) ∈ [0, T ]× R, we have:

|∂xxN1(t, y)− ∂xxN2(t, y)|
=|∂zzÑ1(t, y − x̄1(t))− ∂zzÑ2(t, y − x̄2(t))|
≤|∂zzÑ1(t, y − x̄1(t))− ∂zzÑ1(t, y − x̄2(t))|+ |∂zzÑ1(t, y − x̄2(t))− ∂zzÑ2(t, y − x̄2(t))|

≤
∥∥∥∂zzzÑ1

∥∥∥
∞
|x̄1(t)− x̄2(t)|+

∥∥∥∂zzÑ1 − ∂zzÑ2

∥∥∥
∞
.

We have similar (and slightly easier) bounds for ‖ρ1 − ρ2‖∞, ‖N1 −N2‖∞ and ‖∂xN1 − ∂xN2‖∞.
Hence, by using ‖x̄1 − x̄2‖∞ ≤ T

1− 1
p ‖ ˙̄x1 − ˙̄x2‖p and Bounds (20,23) this leads to:

|F1(t, ȳ1(t))−F2(t, ȳ2(t))|

≤C
∥∥N0

∥∥2

W 3,∞

∥∥∥∥ρ0

U

∥∥∥∥2

C1,α

(
T

1− 1
p + T

p(1−α′)−2
2p + T

(1−α′)(p(1−α)−2)
4p

)
‖ ˙̄x1 − ˙̄x2‖p . (31)

Combining Inequalities (30,31), using the conventions and setting K := C
∥∥N0

∥∥2

W 3,∞

∥∥∥ρ0U ∥∥∥2

C1,α
, we find

that:

| ˙̄y1(t)− ˙̄y2(t)| ≤ K
(
|ȳ1(t)− ȳ2(t)|+ ‖ ˙̄x1 − ˙̄x2‖p

)
.
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By Grönwall’s lemma, we obtain:

‖ȳ1 − ȳ2‖∞ ≤
(
eKT − 1

)
‖ ˙̄x1 − ˙̄x2‖p .

Bootstrapping the penultimate estimate, we can prove that:

‖ ˙̄y1 − ˙̄y2‖p ≤ KT
1
p eKT ‖ ˙̄x1 − ˙̄x2‖p .

By noticing that ‖ȳ1 − ȳ2‖p ≤ T
1
p ‖ȳ1 − ȳ2‖∞ and using the two last inequalities, we find that the map

x̄ ∈ B(A) 7→ ȳ ∈ B(A) is a contraction in the W 1,p-norm for T > 0 small enough. Thus, we have a
unique fixed point, which concludes the proof of Theorem 2.1.

Remark. The Step 2 of the preceding proof naturally leads to the question whether Ñ ∈ L∞([0, T ], C3,α′′(R))
for α′′ ∈ (0, 1). In fact, by the reasoning in Step 2, this is equivalent to wondering, whether

∫ t
0 ∂zze

(t−s)D∂zzh(s)1z≥0ds ∈
L∞([0, T ], C0,α′′(R)). But we see that if we take h ≡ 1 and denote θ > 0 the constant such that

1

π
1
2

∫ θ
0 e
−u2du = 1

4 . Then, by applying the preceding computations between (t, z) = (min(y2θ−2, T ), y)

and (min(y2θ−2, T ), 0), we find:

y−α
′′

∣∣∣∣∣∣
(∫ min(y2θ−2,T )

0
∂zze

(t−s)D∂zz1z≥0ds

∣∣∣∣∣
z=0

)
−

∫ min(y2θ−2,T )

0
∂zze

(t−s)D∂zz1z≥0ds

∣∣∣∣∣
z=y

∣∣∣∣∣∣
=

y−α
′′

2π
1
2D

3
2

∫ max
(
θ, y√

T

)
0

e−u
2
du

≥y
−α′′

8D
3
2

.

Hence the expression is unbounded and we have that
∫ t

0 ∂zze
(t−s)D∂zz1z≥0ds /∈ L∞([0, T ], C0,α′′(R)).

This establishes that the regularity Ñ ∈ L∞([0, T ],W 3,∞(R)) is in fact critical.

Corollary 2.1.2. Suppose that in addition to the assumptions of Theorem 2.1, the initial conditions
(ρ0, N0) satisfy the following conditions:

1. ∂xN0

N0 , ∂xρ
0

ρ0
∈ L∞(R),

2. lim infx→−∞
∂xN0

N0 ≥ ν > 0 and lim supx→+∞
∂xρ0

ρ0
≤ −η < 0,

3. 1−N0 is square-integrable at x = +∞.

Then (ρ,N), the solution given by Theorem 2.1, satisfies the condition ∂xN ≥ 0 locally in time and
hence (ρ,N) is in fact a solution to System (1).

Let us briefly comment on the assumptions of Corollary 2.1.2. The assumption on N0 implies that
N0 increases at least exponentially at x = −∞. The assumption, that 1−N0 is square-integrable at
x = +∞, is of course more restrictive than the condition limx→+∞N

0(x) = 1. We will see in the next
Section that the traveling wave solution satisfies the property Ñ(z) = 1 + p(z) with p a function that
is dominated by an exponentially decreasing function at z = +∞, which is then square-integrable at
z = +∞. Concerning the assumption on ρ0, we already know that ρ̃ = vU with U an exponentially
decreasing function at z = +∞ and v a bounded function. Hence the additional condition translates
the fact that lim supx→+∞

(
∂xv0

v0

)
≤ χ − η. Considering that we must have lim infx→+∞

∂xv0

v0
≤ 0,

otherwise v0 is not bounded, this assumption translates a restriction on the oscillations of ∂xv
0

v0
.
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Proof. 1. We start by showing that w := ∂zÑ
Ñ

is well-defined. In fact by dividing Equation (16b) by
Ñ , we obtain:

∂tÑ

Ñ
= D(∂zw + w2) + ˙̄xw − vU.

Then by observing that ∂z
(
∂tÑ
Ñ

)
= ∂zt log Ñ = ∂t

(
∂zÑ
Ñ

)
and by differentiating the preceding Equa-

tion, w satisfies the following equation:

∂tw = D(∂zzw + ∂z
(
w2
)
) + ˙̄x∂zw − ∂z (vU) .

This leads to the following representation formula for w:

w(t) = etD∂zzw0 +

∫ t

0
e(t−s)D∂zz (D∂z (w2

)
(s) + ˙̄x(s)∂zw(s)− ∂z (v(s)U)

)
ds.

By arguments similar to the ones exposed in the proof of Theorem 2.1, we simply must show that
for R > 0 big enough there exists T > 0 such that the right handside defines a contraction from
L∞([0, T ], B(R)) into itself, where B(R) = {f ∈ L∞(R), ‖f‖∞ ≤ R}. We merely treat the term
w ∈ L∞([0, T ], B(R)) 7→

∫ t
0 e

(t−s)D∂zzD∂z
(
w2(s)

)
ds ∈ L∞([0, T ], B(R)). Let w1, w2 ∈ L∞([0, T ]×R),

we have: ∥∥∥∥∫ t

0
e(t−s)D∂zz (∂z (w2

1

)
(s)− ∂z

(
w2

2

)
(s)
)
ds

∥∥∥∥
∞

≤C
∫ t

0

∥∥w2
1(s)− w2

2(s)
∥∥
∞

ds√
t− s

≤C
∫ t

0
‖w1(s)− w2(s)‖∞ ‖w1(s) + w2(s)‖∞

ds√
t− s

≤CR
√
T ‖w1 − w2‖∞ .

Hence w = ∂xÑ
Ñ
∈ L∞([0, T ]× R).

Furthermore, we show that w ∈ C([0, T ], L∞(R)). The map t 7→ etD∂xxw0 is continuous and in
addition by noticing, for instance, that:∥∥∥∥∫ t+h

0
e(t+h−s)D∂zzD∂z

(
w2
)

(s)ds−
∫ t

0
e(t−s)D∂zzD∂z

(
w2
)

(s)ds

∥∥∥∥
∞

=

∥∥∥∥∫ t+h

t
e(t+h−s)D∂zzD∂z

(
w2
)

(s)ds+
(

1− ehD∂zz
)∫ t

0
e(t−s)D∂zzD∂z

(
w2
)

(s)ds

∥∥∥∥
∞

≤C ‖w‖2∞
∫ t+h

t

ds√
t+ h− s

+

∥∥∥∥(1− ehD∂zz
)∫ t

0
e(t−s)D∂zzD∂z

(
w2
)

(s)ds

∥∥∥∥
∞
.

When h→ 0, the first term clearly tends to 0 and so does the second term by strong continuity of the
heat semi-group.

2. Next we show that q = ∂zv
v is well-defined. q satisfies:

∂tq = ∂zzq + ∂z(q
2) + ∂z(βq) + ∂zγ.

The proof is similar to the preceding point. However, one should notice the following fact, in or-
der to prove that the map:

∫ t
0 e

(t−s)∂zz∂zγds ∈ L∞([0, T ] × R). Indeed, by observing that ∂zγ =
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χ
(
χ+ 1

χ − ˙̄x(t)
)
δ0 and applying Hölder’s inequality, we have that:∥∥∥∥∫ t

0
e(t−s)∂zz∂zγds

∥∥∥∥
∞

=

∥∥∥∥∥χ
∫ t

0

χ+ 1
χ − ˙̄x(s)√

4π(t− s)
e
− z2

4(t−s)ds

∥∥∥∥∥
∞

≤ C
∥∥∥∥χ+

1

χ
− ˙̄x

∥∥∥∥
p

.

3. We establish that Ñ is nondecreasing. To do so we start by noticing that since lim supz→+∞
∂z ρ̃0

ρ̃0
<

−η < 0. There exists an A > 0 such that for every z > A, ∂zv0(z)
v0(z)

+ U ′(z)
U < −η. But by con-

tinuity of t 7→ ∂zv(t, · )
v(t, · ) in L∞(R), there exists T > 0, such that for every t ∈ [0, T ] and z > A,

∂z ρ̃(t,z)
ρ̃(t,z) = ∂zv(t,z)

v(t,z) + U ′(z)
U < −η

2 . In particular ∂zρ̃(t, z) < 0 for (t, z) ∈ [0, T ]× [A,+∞).
Now because of Condition 1 and 3, we have in fact that for z ∈ (−∞, A], w0(z) ≥ ν

2 > 0 and by the
same argument, we must have for T > 0 small enough that for t ∈ [0, T ], z ∈ (−∞, A], w(t, z) ≥ ν

4 > 0.
Therefore it remains to show that on the interval [A,+∞), we also have that ∂zÑ ≥ 0. For h > 0, let
f(t, z) := Ñ(t, z + h) − Ñ(t, z) and g(t, z) := −ρ̃(t, z + h)Ñ(t, z + h) + ρ̃(t, z)Ñ(t, z). Then we have
that:

∂tf − ˙̄x∂zf −D∂zzf = g. (32)

Furthermore for (t, z) ∈ [0, T ]×(−∞, A), we have that f ≥ 0 by the preceding and for z > A, if f(t, z) =
Ñ(t, z+h)− Ñ(t, z) < 0, then we must have that g(t, z) = −ρ̃(t, z+h)Ñ(t, z+h) + ρ̃(t, z)Ñ(t, z) ≥ 0,
since ρ̃(t, z + h) ≤ ρ̃(t, z). Therefore we have f−g ≥ 0, where ( · )− = −min(0, · ).

We have that g(t, · ) ∈ L2(R), since Ñ is dominated at z = −∞ by e
νz
4 and ρ̃ is dominated at

z = +∞ by e−
ηz
2 . Notice that f(0, · ) ∈ L2(R) by the assumption that 1−N0 is square-integrable at

x = +∞. Therefore f(t · ) ∈ L2(R) as solution to Equation (32). Hence, the following computations
are justified:

d

dt

(
1

2

∫
R

(f−)2

)
=

∫
R
f−∂tf−

= −
∫
R
f−∂tf , since f−∂t (f−) = −f−∂tf

= − ˙̄x(t)

∫
R
f−∂zf −D

∫
R
f−∂zzf −

∫
f−g

= ˙̄x(t)

∫
R
f−∂z(f−)−D

∫
R
f−∂zzf −

∫
f−g, since f−∂z (f−) = −f−∂zf

≤
˙̄x(t)

2

∫
R
∂z((f−)2) +D

∫
R

(∂zf−)∂zf , since f−g ≥ 0

= −D
∫
R

(∂zf−)2, since ∂zf−∂zf = −(∂zf−)2

≤ 0.

But, by assumption f−(0, · ) ≡ 0. Hence f−(t, · ) ≡ 0 and Ñ(t, · ) is nondecreasing.

3 Traveling Waves for the Parabolic System

In this Section, we will investigate the existence of waves for the parabolic System (1), i.e. solutions of
the form (ρ(t, x), N(t, x)) = (ρ̃(x− σt), Ñ(x− σt)), for a velocity σ to be determined. Set z = x− σt,
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any traveling wave solution must satisfy the following equations:

− σρ̃′ − ρ̃′ + (χsign(∂zN)1Ñ≤Nth
ρ̃)′ = 1Ñ>Nth

ρ̃ (33a)

− σÑ ′ −DÑ ′′ = −ρ̃Ñ . (33b)

For the sake of concision, we will drop the diacritical .̃ Applying the assumption that N is increasing,
Equation (33a) reduces to a second-order linear ordinary differential equation with piecewise-constant
coefficients. By translation invariance of the traveling waves, we suppose that N(0) = Nth. Adding
the C1-jump relation (3), that comes from the continuity of the flux, we obtain the following problem:{

−σρ′ − ρ′′ + χρ′ = 0 for z < 0
−σρ′ − ρ′′ = ρ for z > 0

and ρ′(0+)− ρ′(0−) = −χρ(0). (34)

We solve this problem explicitly and thus deduce all bounded and nonnegative traveling wave profiles
for ρ. Moreover, there exists a minimal speed σ∗, such that for every σ ∈ [σ∗,+∞), there exists a
unique (up to a multiplicative factor) traveling wave profile ρσ. In a second step, given the profile
ρσ, we construct a corresponding traveling wave profile Nσ and the condition N(0) = Nth will fix the
multiplicative factor of ρ, thus leading to a unique traveling wave profile (ρσ, Nσ) for each σ ≥ σ∗.

Let us introduce some notations, before moving on to the statement of Theorem 3.1. Define the
Fisher/Kolmogorov–Petrovsky–Piskunov speed σF/KPP := 2. Note that χ+ 1

χ ≥ σF/KPP, with equality

if and only if χ = 1. Furthermore set for σ ≥ 2, µ±(σ) := σ±
√
σ2−4
2 . We then have the following

inequality for σ > σF/KPP = 2:

0 < µ−(σ) < µ−
(
σF/KPP

)
= 1 = µ+

(
σF/KPP

)
< µ+(σ)

In addition, the function σ 7→ µ+(σ) (resp. σ 7→ µ−(σ)) is increasing (resp. decreasing).

Theorem 3.1. Under the assumption that N is increasing, there exists a minimal speed σ∗, such that
there exists a bounded and nonnegative traveling wave profile (ρσ(z), Nσ(z)) if and only if σ ≥ σ∗.
Given σ ≥ σ∗, the traveling wave profile (ρσ(z), Nσ(z)) is unique. Moreover, the exact value of σ∗ is
given by Formula (4) and depends on the value of χ:

– if χ > 1, then σ∗ = χ+ 1
χ ,

– if χ ≤ 1, then σ∗ = σF/KPP = 2

Furthermore, the functions ρσ satisfy the following properties for z ≥ 0 with Cσ, Dσ > 0:

– for σ > σ∗, ρσ(z) = Aσe−µ−(σ)z +Bσe−µ+(σ)z

– for χ > 1, σ = σ∗ = χ+ 1
χ , ρ

σ∗(z) = Aσ
∗
e−µ+(σ∗)z and µ+(σ∗) = χ

– for χ ≤ 1, σ = σF/KPP, ρ
σF/KPP(z) = AσF/KPP((1− χ)z + 1)e−z

In addition, let µ > 0, with µ 6= σ
D , such that ρ(z) ≤ Ce−µz for a constant C > 0, then there exists

another constant C > 0, such that for z ∈ R:

|N(z)− 1| ≤ C
(
e−

σ
D
z + e−µz

)
. (35)

Proof. Integrating Equation (34) over the whole line yields (σ − χ)ρσ(−∞) =
∫
R+
ρσ(z)dz (as we will

see just below, ρσ is integrable at z = +∞). Therefore by nonnegativity of the left handside, we find
that σ > χ. Consider Equation (34) for z < 0. Its characteristic polynomial is X2 + (σ − χ)X and
has roots 0 and χ− σ. There exist two constants A−, B− ∈ R, such that ρσ(z) = A−+B−e(χ−σ)z, for
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z < 0. Since σ > χ, the term e(χ−σ)z is unbounded on R−, which leads to B− = 0.
Consider Equation (34) for z > 0. Its characteristic polynomial is X2 + σX + 1 and its discriminant
is σ2 − 4. If the discriminant is negative, the roots are complex and ρσ would be a linear combination
of two oscillating functions, which is prohibited by the nonnegativity condition. Hence σ2 ≥ 4, or, by
positivity of σ, σ ≥ 2.
Suppose σ > 2 = σF/KPP, the roots of the characteristic polynomial are then −µ±(σ) and there exist
two constants A+, B+ ∈ R such that ρσ(z) = A+e−µ+(σ)z +B+e−µ−(σ)z. By the continuity at z = 0 of
ρσ, we obtain equality A− = A+ +B+ and by the C1-jump relation (3), we obtain equality −µ+A

+−
µ−B

+ = −χA−. Thus we find that ρσ(z) = A−√
σ2−4

(
(µ+(σ)− χ)e−µ−(σ)z + (χ− µ−(σ))e−µ+(σ)z

)
.

One checks that this expression is nonegative for all z, if and only if, µ+(σ) ≥ χ. In the case of small
bias χ ≤ 1, this inequality is always verified. In the case of large bias χ > 1, this inequality is verified,
if and only if σ ≥ χ+ 1

χ . This proves all cases of Theorem for σ > σF/KPP.
Suppose σ = 2 = σF/KPP, then there exist two constantsA+, B+ ∈ R such that ρσ(z) = (A+z+B+)e−z.
By the same arguments as above, we have B+ = A−, A+ = (1− χ)A− and this leads to ρσ(z) =
A− ((1− χ)z + 1) e−z. To satisfy the nonnegativity condition, we must have χ ≤ 1, which shows that
σ = 2 = σF/KPP, is the speed of a traveling wave, if and only if χ ≤ 1.

The behavior of ρσ for z ≥ 0 is simply a reformulation of the considerations above. In particular,
note that in the case of large bias and σ = σ∗, we have that µ+(σ∗) = χ, which leads to ρσ∗(z) =
A−e−χz, for z ≥ 0.

It remains to show that for every wave profile ρσ, we have a corresponding wave profile Nσ, which
satisfies the condition Nσ(0) = Nth. To do so, notice that by linearity of the equation on ρ, the profile
ρσ is defined up to the multiplicative constant A−, that is yet to be determined. Denote for a given
constant A− > 0, ρσA− its corresponding profile. Equation (33b) with boundary condition N(+∞) = 1,
then has a unique solution, which we denote Nσ

A− . But it is clear that the map A− 7→ Nσ
A−(0)

is continuous and decreasing and its range is (0, 1). Therefore there exists a unique A−, such that
Nσ
A−(0) = Nth and we obtain for a fixed σ ≥ σ∗ a unique traveling wave profile (ρσA− , N

σ
A−).

Let us finally prove Estimate (35). By integrating Equation (33b) on the interval (z,+∞) and
noticing that N(+∞) = 1, N ′(+∞) = 0:

σ (N(z)− 1) +D (N(z)− 1)′ = −
∫ +∞

z
ρ(y)N(y)dy.

Hence for a constant C > 0: ∣∣∣∣(e σD z(N(z)− 1)
)′∣∣∣∣ ≤ Ce( σD−µ)z.

By integrating this inequality on the interval (0, z) for another C > 0, we find:

|N(z)− 1| ≤ C
(
e−

σ
D
z + e−µz

)
.

Theorem 3.1 shows that there exist a large number of traveling waves. However, in Section 5 we
will show that in the circumstances of a biologically relevant initial conditions, the interesting traveling
wave will be that of minimal speed σ∗.

4 Inside Dynamics of Traveling Waves

We elaborate on the properties of the traveling waves, following the lines of [23], as well as [42] to a
small extent. We establish that in the large bias case, the wave is pushed, and in the small bias case
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(or when σ > σ∗), the wave is pulled, according to the definition proposed in [23] (see the discussion in
the Introduction on the ambiguity of pushed and pulled waves). To do so, we are using the formalism
of neutral fractions. The aim is to study the behaviour of partitions of the traveling wave profile (see
[23] and [15] for the biological relevance of this decomposition).

Definition. Define L := −∂zz − β∂z, where β(z) = σ − χ1z≤0 + 2∂zρ
σ

ρσ . A neutral fraction ν (of the
traveling wave ρσ) is a solution to the following equation:{

∂tν + Lν = 0
ν(0, · ) = ν0 . (36)

It is clear that any constant is a neutral fraction, as stationary solutions to Equation (36). The
interest in Equation (36) stems from the following observation. Suppose we have neutral fractions
(νi)

k
i=1 ≥ 0 that satisfy

∑k
i=1 ν

0
i = 1. It amounts to marking each part ν0

i ρ
σ of the population with

neutral labels, i.e. that do not interfer with the dynamics. The neutral fractions (νi(t)ρ
σ)ki=1 then

describe the evolution over time of the distribution of these labels. Because of this interpretation, it
is natural to suppose that ν0 takes its values in [0, 1], but such a restriction is of no relevance for the
subsequent analysis. Of note, describing νi or νiρσ is equivalent, only the expression of the operator L
changes.

4.1 Pushed Front Dynamics in the Large Bias Case

In this Section, we develop arguments very similar to the ones developped in the works [20] and [23]
(see also [42]). The evolution of neutral fractions is characterized in the regime of large bias (χ > 1)
and minimal velocity (σ = σ∗) by Theorem 4.1.

Consider the operator L in the space L2(eV dz), where V ′ = β. On the appropriate domain, L is
self-adjoint, has 0 as eigenvalue and an exact spectral gap γ := 1

4 min
(
σ2 − 4, 1

χ2

)
> 0. This leads to

the following convergence result:

Theorem 4.1. Suppose that χ > 1 and that σ = σ∗. Let ν be a neutral fraction (36) that satisfies
ν0 ∈ L2(eV dz). Then we have the following convergence result:∥∥ν(t)− 〈ν0〉

∥∥
L2(eV dz)

≤
∥∥ν0
∥∥
L2(eV dz)

e−γt, (37)

with 〈ν0〉 =
∫
ν0eV dz∫
eV dz

and γ := 1
4 min

(
σ2 − 4, 1

χ2

)
> 0.

Furthermore for a constant C > 0, we have:∥∥∥(ν(t)− 〈ν0〉)e
V
2

∥∥∥
∞
≤ C

(
1 + t−

1
2

)
e−γt. (38)

And as a consequence ν converges exponentially fast to a constant on compact sets K ⊂ R, i.e.:

sup
z∈K
|ν(t, z)− 〈ν0〉| ≤

C
(

1 + t−
1
2

)
e−γt

infK e
V
2

. (39)

Theorem 4.1 states that every neutral fraction converges to a constant. In other words, indepen-
dently of the initial datum for the neutral fraction, the neutral fraction will after some time, uniformly
on compact sets in space represent a multiple (which does depend on the initial datum) of the total
population. This is in stark contrast with the case when σ = σF/KPP (or when σ > σ∗) in Corollary
4.2.1, where neutral fractions will in general go extinct (unless they are part of the leading edge). In
fact, in the large bias case when σ = σ∗, for z < 0, β(z) > 0 and for z > 0, β(z) < 0, which shows that

23



1 ∈ L2(eV dz). But this property is not true in the small bias case when σ = σF/KPP (or when σ > σ∗),
as we will see in Subsection 4.2.

We define L on L2(eV dz) with domain D(L) = H2(eV dz). Nevertheless to simplify the spectral
study of L, we introduce the pullback L of L to the space L2(dz), that is L = e

V
2 L
(
e−

V
2 ·
)
, with

domain D(L) =
{
f ∈ H1(dz)

∣∣∣f ′ − β
2 f ∈ H

1(dz)
}
. L is symmetric and monotone, as for f, g ∈ D(L),

〈f,Lg〉

=

∫
R
e
V
2 f

(
−
(
e−

V
2 g
)′′
− β

(
e−

V
2 g
)′)

dz

=

∫
R

((
e
V
2 f
)′ (

e−
V
2 g
)′
− βe

V
2 f
(
e−

V
2 g
)′)

dz

=

∫
R

((
f ′ +

β

2
f

)(
g′ − β

2
g

)
− βf

(
g′ − β

2
g

))
dz

=

∫
R

(
f ′ − β

2
f

)(
g′ − β

2
g

)
dz (40)

=〈Lf, g〉,

where 〈f |g〉 :=
∫
R fgdz. In fact Equality (40) holds also true if f ∈ D(L) and g ∈ H1(dz). By

observing that D(L) ⊂ H1(dz) and density of D(L) in H1(dz), we obtain that for every f ∈ H1(dz):

〈f,Lf〉 =

∫
R

(
f ′ − β

2
f

)2

dz ≥ 0. (41)

Finally L has the following expressions:

Lf

=− f ′′ + β2

4
f +

β′

2
f (42)

=−
(
e
V
2

(
e−

V
2 f
)′)′

. (43)

Proposition 4.1.1. The operator L : D(L)→ L2(dz) is closed.

Proof. Let (fn,Lfn) ∈ Γ(L) such that (fn,Lfn)
L2(dz)−−−−−→
n→+∞

(f, g) ∈ L2(dz) × L2(dz). We will show that

f ∈ D(L) and Lf = g.
1. First, we prove boundedness of (fn) in H1(dz):∫

R

(
f ′n −

β

2
fn

)2

dz = 〈fn|Lfn〉 ≤ ‖fn‖2 ‖Lfn‖2 .

The right handside is bounded and thus f ′n −
β
2 fn is bounded in L2(dz). But β

2 fn is also bounded in
L2(dz) (since β ∈ L∞(R)). Hence (fn) is bounded in H1(dz)

2. The boundedness of (fn) in H1(dz) implies weak compactness of the sequences. Hence up to

extraction of a subsequence, we can assume that fn
H1(dz)−−−−−⇀
n→+∞

` ∈ H1(dz). But uniqueness of the limits

in L2(dz) implies ` = f , which leads to f ∈ H1(dz).
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3. We now show strong convergence in H1(dz). Denote rn := f − fn∫
R

(
r′n −

β

2
rn

)2

dz

=

〈
f ′ − β

2
f

∣∣∣∣r′n − β

2
rn

〉
−
〈
f ′n −

β

2
fn

∣∣∣∣r′n − β

2
rn

〉
=

〈
f ′ − β

2
f

∣∣∣∣r′n − β

2
rn

〉
︸ ︷︷ ︸

→0 by weak convergence in H1(dz)

− 〈Lfn|rn〉︸ ︷︷ ︸
→0 since rn→0 in L2(dz) and Lfn is bounded

,

where we have applied (40) with fn ∈ D(L) and rn ∈ H1(dz). Thus fn
H1(dz)−−−−−→
n→+∞

f .

4. We show that f ∈ D(L): (
f ′n −

β

2
fn

)′
= −Lfn −

β

2
f ′n −

β2

4
fn.

The right handside converges in L2(dz), which establishes that f ′n −
β
2 fn

H1(dz)−−−−−→
n→+∞

f ′ − β
2 f ∈ H

1(dz).

Therefore f ∈ D(L).
5. Finally we show that Lf = g. Let h ∈ D(L∗). By definition of D(L∗), we have that

〈h|Lfn〉 −−−−−→
n→+∞

〈h|Lf〉. But we also know that 〈h|Lfn〉 −−−−−→
n→+∞

〈h|g〉. Therefore Lf − g ∈ D(L∗)⊥.
But since L is a symmetric operator, we have the inclusion D(L) ⊂ D(L∗) and thus D(L∗) is dense.
Hence Lf = g.

Thus, the operator L is closed.

Proposition 4.1.2. The operator L : D(L)→ L2(dz) is self-adjoint.

Proof. We already know that the operator L is symmetric. It remains to show that it shares the same
domain as its adjoint.

Let g ∈ D(L∗) and f ∈ C∞0 (R) ⊂ D(L). By definition of D(L∗), we have that:

|〈g|Lf〉| ≤ C(g) ‖f‖L2(dz) . (44)

But since f is a test function, we can view Lg as a distribution. Let us take gn ∈ D(L) such that

gn
L2(dz)−−−−−→
n→+∞

g. Then Lgn
D′(R)−−−−−→
n→+∞

Lg, so that 〈Lgn|f〉 −−−−−→
n→+∞

〈Lg|uf〉L2(dz). But from the symmetry of

L, we get 〈Lgn|f〉 = 〈gn|Lf〉 −−−−−→
n→+∞

〈g|Lf〉. Hence 〈Lg|f〉 = 〈g|Lf〉
Therefore:

|〈Lg|f〉| = |〈g|Lf〉| ≤ C(g) ‖f‖2 . (45)

By Bound (45), the linear form f 7→ 〈Lg|f〉 is bounded on C∞0 (R) in the L2-norm and we can extend
it to the whole space L2(dz) by uniform continuity and density of C∞0 (R) in L2(dz). This shows that
Lg ∈ L2(dz).

Then:

Lg = −
(
e
V
2

(
e−

V
2 g
)′)′

∈ L2(dz)

=⇒ e
V
2

(
e−

V
2 g
)′
∈ H1(dz)

=⇒ g′ − β

2
g ∈ H1(dz)

=⇒ g ∈ D(L).

Thus D(L∗) ⊂ D(L), which concludes the proof.
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We are now ready to show a lower bound on the essential spectrum of the operator L.

Proposition 4.1.3.

σess(L) = [γ,+∞),

with γ := 1
4 min

(
σ2 − 4, 1

χ2

)
> 0

In order to prove this proposition, we require two standard lemmata, whose proof we give for the
sake of completeness.

Lemma 4.1.4. Let f ∈ H1(dz), then f ∈ C0(R) and:

‖f‖2∞ ≤
1

2π

∥∥f ′∥∥
2
‖f‖2 .

Proof. Let z ∈ R, η > 0, then:

f(z)2 =

(
1

2π

∫
R
f̂(ξ)eizξdξ

)2

≤

 1

2π

∫
R

√
1 + η|ξ|2

∣∣∣f̂(ξ)
∣∣∣√

1 + η|ξ|2
dξ

2

≤ 1

4π2

π
√
η

(
‖f‖22 + η

∥∥f ′∥∥2

2

)
,

where we have used Cauchy-Schwartz Inequality and the fact that
∫
R

dξ
1+η|ξ|2 = π√

η . By taking η =
‖f‖22
‖f ′‖22

,
we obtain the desired bound.

By similar computations, we also have that:

(f(z + h)− f(z))2 ≤ 1

4π

∫
R

(
1 + |ξ|2

) ∣∣∣f̂(ξ)
∣∣∣2 ∣∣∣ei(z+h)ξ − eizξ

∣∣∣2 dξ.
By Dominated Convergence, we have that limh→0 f(z + h) = f(z) and hence f ∈ C0(R).

Lemma 4.1.5 (Weyl’s criterion). Let T be a self-adjoint operator in the Hilbert space H. The following
properties are equivalent:
(i) λ ∈ σess(T ).
(ii) There exists a sequence (un) ⊂ D(T ) such that ‖un‖H = 1, (un) is not relatively compact and
(T − λI)un

H−−−→
n→∞

0.

Proof. i) =⇒ (ii):
Let λ ∈ σess(T ), T −λI is not a Fredholm operator, which means that N(T −λI) infinite dimensional.
Therefore there exists an orthonormal family (un) ∈ N(T − λI), which satisfies proposition (ii).

(ii) =⇒ (i):
Suppose λ /∈ σess(T ), then T − λI is a Fredholm operator. Consider a sequence (un) ⊂ D(T ) such
that ‖un‖H = 1 and (T − λI)un

H−−−→
n→∞

0. Define vn ∈ N(T − λI), wn ∈ N(T − λI)⊥ such that

un = vn + wn. We have that wn = A−1(T − λI) where A = (T − λI)|N(T−λI)⊥ . A−1 is bounded and

therefore wn
H−−−→

n→∞
0. Furthermore (vn) is bounded, since ‖vn‖H ≤ ‖un‖H = 1 and as a bounded

sequence in a finite-dimensional subspace it admits a converging subsequence. Thus (un) admits a
converging subsequence.

We now prove Proposition 4.1.3.
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Proof. 1. Let λ < γ, we show that λ /∈ σess(L).
By a straightforward computation, we have that β2

4 > λ. Suppose there exists a sequence (fn) ⊂

D(L) that satisfies (L − λI)fn
L2(dz)−−−−→
n→∞

0 and ‖fn‖2 = 1. We will show that (fn) has a converging
subsequence.

(fn) is bounded in H1(dz) and we may apply Equality (41):

〈(L − λI)fn|fn〉 =

∫
R

((
f ′n
)2

+

(
β2

4
− λ
)
f2
n

)
dz − χfn(0)2

2

≥
∥∥f ′n∥∥2

2
− χfn(0)2

2

≥
∥∥f ′n∥∥2

2
− χ

4π

∥∥f ′n∥∥2
.

We used the fact that by Lemma 4.1.4 the domain D(L) ⊂ C0(R) and thus the distribution β′

2 fn =

−χfn(0)
2 δ0 is well-defined as a linear function on C0(R). The left handside is bounded above as a

converging sequence and thus the second-order polynomial in ‖f ′n‖2 on the right handside is also
bounded above, which in turn shows that ‖f ′n‖2 is uniformly bounded.

By boundedness of ‖f ′n‖2 and Lemma 4.1.4, we have that (fn(0)) is a bounded sequence and thus
admits a converging subsequence. Up to extraction, we can suppose that (fn(0)) converges.

〈(L − λI)(fn − fm)|(fn − fm)〉+
χ

2
(fn(0)− fm(0))2 ≥

∥∥f ′n − f ′m∥∥2

2
+ (inf γ − λ) ‖fn − fm‖22 ,

since γ(z) ≥ λ for z ∈ R. Therefore (fn) is a Cauchy sequence in L2(dz) (in fact even in H1(z)) and
converges. By Lemma 4.1.5, we have that λ /∈ σess(L).

2. Let λ ≥ γ, we show that λ ∈ σess(L).
If γ = 1

4 min
(
σ2 − 4, 1

χ2

)
= σ2−4

4 , or equivalently when β2(z)
4 − γ = 0 for z ≥ 0, we have that for a

function f ∈ D(L), such that supp(f) ⊂ R+ \ {0}, (L − λ)f = −f ′′ + (γ − λ)f .
Take a smooth increasing nonnegative function φ : [0, 1] → [0, 1] such that φ(0) = φ′(0) = φ′(1) = 0
and φ(1) = 0. Define the function fk : R→ R like so:

fk : z 7→ ck ·


φ(z) if z ∈ [0, 1]
cos
(√
λ− γ(z − 1)

)
if z ∈ [1, ak + 1]

φ(ak + 2− z) if z ∈ [ak + 1, ak + 2]
0 else

,

where ak = 2kπ√
λ−γ , ck =

(
ak
2 + 2

∫ 1
0 φ

2(z)dz
)− 1

2 , if λ > γ, or ak = 2k, ck =
(
ak + 2

∫ 1
0 φ

2(z)dz
)− 1

2 ,
if λ = γ. In all cases fk ∈ D(L), ‖fk‖2 = 1 and (L − λ)fk(z) = 0 for z ∈ [1, ak + 1]. Hence
‖(L − λ)fk‖22 = 2c2

k

∫ 1
0 (φ′′(z) + (λ − γ)φ(z))2dz → 0, because clearly limk→+∞ ck = 0. Finally, it can

be easily shown that (fk) is not relatively compact (its only possible accumulation point would be 0,
but (fk) cannot converge to 0, since ‖fk‖2 = 1). Thus by Lemma 4.1.5, λ ∈ σess(L).

If γ = 1
4 min

(
σ2 − 4, 1

χ2

)
= 1

4χ2 , or equivalently when β2(z)
4 − γ = 0 for z ≤ 0, the same reasoning

applies mutatis mutandis.

Proposition 4.1.6.

σ(L) ∩ (−∞, γ) = {0}

Furthermore, the eigenvalue 0 is simple.
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Proof. Let λ < γ be an eigenvalue for L in the space L2(dz).
For z > 0, the characteristic polynomial of the ordinary differential equation L − λ = 0 is P (µ) =

−µ2 + σ2

4 −1−λ, whose roots are µ± = ±1
2

√
σ2 − 4(1 + λ), which is well-defined, since λ < 1

4(σ2−4).
This gives rise to two eigenvectors eµ±z, but it is clear that only eµ−z ∈ L2(R+, dz).

For z < 0, by a similar reasoning we obtain that eν+z is an eigenvector for L in the space L2(R−, dz),
with ν+ = 1

2

√
1
χ2 − 4λ, which is well-defined, since λ < 1

4χ2 , .
The eigenvector associated with the eigenvalue λ is therefore of the shape:

fλ(z) =

{
eν+z if z < 0
eµ−z if z ≥ 0

.

However we must have that fλ ∈ D(L) which implies that f ′λ −
β
2 fλ is continuous.(

f ′λ −
β

2
fλ

)
(0+) =

(
f ′λ −

β

2
fλ

)
(0−) ⇐⇒ µ− +

σ

2
= ν+ +

σ − χ
2

⇐⇒ χ =
√
σ2 − 4(1 + λ) +

√
1

χ2
− 4λ

The right handside is a strictly decreasing function in λ and thus the equation admits at most one
root. One checks that this root is λ = 0 and we already know that λ = 0 is indeed an eigenvalue with
the eigenvector e

V
2 .

We move on with the proof of Theorem 4.1.

Proof. L is monotone and self-adjoint, therefore by Semigroup theory (see Section 7.4 in [11]), it gen-
erates the semi-group e−tL. We consider the spectral projection P onto the eigenspace of L associated
with the eigenvalue 0, which is Pu = 1∫

eV dz

∫
ue

V
2 dz. Let A be the restriction of L to N(P)⊥. We

have that inf σ(A) = γ and for λ < γ, (A − λI)−1 is a bounded operator. Since A is a closed self-
adjoint operator, inf σ(A) = inf‖u‖2=1〈Au|u〉 and therefore 〈(A−λI)u|u〉 ≥ (γ−λ) ‖u‖22, which shows
that

∥∥(A− λI)−1
∥∥ ≤ 1

γ−λ . From Hille-Yosida theorem in the self-adjoint case (see Section 7.4 in
[11]), we then have for every u ∈ N(P)⊥ (and not just u ∈ D(A)) that

∥∥e−tAu∥∥
2
≤ e−γt ‖u‖2 and∥∥Ae−tAu∥∥

2
≤ e−γt

t ‖u‖2. By setting w = e
V
2 ν, we have that:

w(t) = Pw0 + e−tA(I − P)w0.

This leads to the bound:

‖w(t)− Pw0‖L2(dz) ≤ ‖w0‖L2(dz) e
−γt.

Bound (37) is simply a rewritten form of this bound.
Finally, we prove Bound (38). Set r(t) := e−tA(I − P)w0, then we have:∫

R

(
∂zr(t)−

β

2
r(t)

)2

= 〈r(t),Ar(t)〉 ≤ ‖r(t)‖2 ‖Ar(t)‖2 ≤
e−2γt

t
‖r(0)‖22 ,

where we have used the bounds obtained from Hille-Yosida Theorem in the self-adjoint case. Therefore
‖∂zr(t)‖2 ≤

(
‖β‖∞‖r(0)‖2

2 +
‖r(0)‖2√

t

)
e−γt. By Lemma 4.1.4, we then have that ‖r(t)‖∞ ≤ C

(
1 + t−

1
2

)
e−γt.

Or equivalently: ∥∥∥(ν(t)− 〈ν0〉)e
V
2

∥∥∥
∞
≤ C

(
1 + t−

1
2

)
e−γt.
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4.2 Pulled Front Dynamics in the Small Bias Case

In the small bias case χ ≤ 1 (or when σ > σ∗), the inside dynamics of the wave is drastically
different. In fact, we can start by observing that Theorem 4.1 doesn’t apply to these cases. For
σ = σF/KPP,

∂zρσ

ρσ = 1−χ
(1−χ)z+1 − 1, for z ≥ 0. Hence 1 · eV (z) = C((1 − χ)z + 1)2 for a multiplicative

constant C > 0 and 1 /∈ L2(eV ). Similarily, in the case σ > σ∗, 1 · eV behaves like e(σ−2µ−(σ))z, but
σ − 2µ−(σ) =

√
σ2 − 4 > 0 and thus 1 /∈ L2(eV dz). To describe the behavior in these cases, we start

by stating first a general Theorem concerning Equation (36) under a condition on β:

Theorem 4.2. Consider Equation:{
∂tν − ∂zzν − β(z)∂zν = 0
ν(0, · ) = ν0 . (46)

Suppose that β verifies the following conditions:

• There exists K > 0, such that β′ ≤ K in the sense of distributions.

•
∫
R β−(z)dz < +∞, where ( · )− = −min(0, · ).

We recall that V ′ = β. Suppose that the initial datum ν0 satisfies the following condition:∫
R

(
ν0(z)

)2
eV (z)dz < +∞. (47)

Then the solution ν to Equation (46) satisfies the following decay property:

lim
t→+∞

∥∥∥ν(t)e
V
2

∥∥∥
∞

= 0. (48)

And as a consequence ν converges uniformly to 0 on intervals of the form [a,+∞), for a ∈ R, i.e.:

lim
t→+∞

sup
z∈[a,+∞)

|ν(t, z)| = 0. (49)

Next, we apply Theorem 4.2 to establish the pulled nature of the waves in the two mentioned cases
(small bias case χ ≤ 1, or σ > σ∗).

Corollary 4.2.1. Suppose that χ ≤ 1 and that σ = σF/KPP = 2 and consider a neutral fraction ν
of the associated wave profile that satisfies Condition (47). In particular, any function ν0 ∈ L∞(R)

such that z 7→
(
ν0(z)z

)2 is integrable at z = +∞ satisfies Condition (47). Then ν(t) converges to 0
uniformly on intervals of the form [a,+∞), with a ∈ R.
The same results holds true if we suppose that σ > σ∗. In particular, any function ν0 ∈ L∞(R) such
that z 7→

(
ν0(z)

)2
e(σ−2µ−(σ))z is integrable at z = +∞ satisfies Condition (47).

Proof. We recall that β(z) = σ − χ1z≤0 + 2∂zρ
σ

ρσ .

In the case where χ ≤ 1 and σ = 2, we have from Theorem 3.1 that ρσ(z) =

{
1 if z ≤ 0
((1− χ)z + 1)e−z if z > 0

,

which leads to β(z) =

{
2− χ if z ≤ 0

2(1−χ)
(1−χ)z+1 if z > 0

. β′ is clearly bounded everywhere except at z = 0, but

β(0−) = 2−χ and β(0+) = 2(1−χ). This leads to β′ being bounded above in the sense of distributions
and β ≥ 0, hence Theorem 4.2 applies. Furthermore, by an easy computation up to a mulitplicative

constant we have that eV (z) =

{
e(2−χ)z if z ≤ 0
((1− χ)z + 1)2 if z > 0

, hence a bounded function ν0 ∈ L∞(R)

satisfies Condition (47), if
(
ν0(z)z

)2 is integrable at z = +∞.
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In the case where σ > σ∗, we have ρσ(z) =

{
1 if z ≤ 0
µ+−χ
σ−χ e

−µ−z − µ−−χ
σ−χ e

−µ+z if z > 0
, where we

recall that µ± = σ±
√
σ2−4
2 . This leads to β(z) =

{
σ − χ if z ≤ 0

σ − 2 (µ+−χ)µ−e
−µ−z−(µ−−χ)µ+e

−µ+z

(µ+−χ)e−µ−z−(µ−−χ)e−µ+z
if z > 0

.

By the same reasoning β′ is bounded above. For z ≤ 0, β(z) ≥ 0 and limz→+∞ β(z) = σ − 2µ− > 0,
which establishes that

∫
R β−(z)dz < +∞ and hence Theorem 4.2 applies. Finally, we have up to a

multiplicative constant that eV (z) =

{
e(σ−χ)z if z ≤ 0

eσz (ρσ(z))2 if z > 0
, hence a bounded function ν0 ∈ L∞(R)

satisfies Condition (47), if
(
ν0(z)

)2
e(σ−2µ−)z is integrable at z = +∞.

Before moving on to the proof of Theorem 4.2, let us make some comments. Notice that Corollary
4.2.1 does not apply to the neutral fraction ν0 ≡ 1, which is consistent with the fact that the neutral
fraction ν ≡ 1 stays constant and does not converge to 0. In fact, Condition (47) or its counterparts in
Corollary 4.2.1 may be seen as a characterization of an initial datum ν0, that constitutes a negligible
part of the leading edge of the traveling wave. If, for the sake of the argument, we were to accept
this property as a definition, then Theorem 4.2 or Corollary 4.2.1 tell us that neutral fractions, which
constitute a negligible part of the leading edge of the traveling wave, go extinct in the traveling wave,
i.e they converge to 0.
Nevertheless, just like in the work [23], Theorem 4.2 does not give any rate of convergence, contrary to
Theorem 4.1, and this remains an open question. Finally let us note, that unsurprisingly in the case of
large bias with σ = σ∗, for β(z) is bounded above by a negative constant for z > 0, which establishes
that

∫
β−(z) = +∞ and thus Theorem 4.2 conversely does not apply to that case.

We now move on to the proof of Theorem 4.2.

Proof. Consider L := −∂zz − β(z)∂z in the weighted space L2(eV dz) with domain D(L) = H2(eV dz).
From the arguments of the proof of Theorem 4.1, we have that L is self-adjoint and it furthermore
satisfies the following property for f ∈ D(L):∫

R
f(Lf)eV dz =

∫
R
f(−f ′′ − βf ′)eV ∂z

=

∫
R

(
f ′2 + βff ′ − βff ′

)
eV dz

=
∥∥f ′∥∥2

L2(eV dz)
.

This leads to the following dissipation rate:

d

dt

(
1

2
‖ν‖2L2(eV dz)

)
= −‖∂zν‖2L2(eV dz) . (50)
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Furthermore:

d

dt

(
1

2
‖∂zν‖2L2(eV dz)

)
=

∫
R
∂z(∂tν)∂zνe

V dz

=−
∫
R
∂tν∂z(e

V ∂zν)dz

=−
∫
R
∂zzν∂z(e

V ∂zν)dz −
∫
R
β∂zν∂z(e

V ∂zν)dz

=− ‖∂zzν‖2L2(eV dz) −
1

2

∫
R
∂z

(
(∂zν)2

)
βeV dz −

∫
R

(∂zν)2β2eV dz − 1

2

∫
R
β∂z

(
(∂zν)2

)
eV dz

=− ‖∂zzν‖2L2(eV dz) −
∫
R

(
∂z((∂zν)2)βeV + (∂zν)2β2eV

)
dz

=− ‖∂zzν‖2L2(eV dz) −
∫
R

(
∂z
(
(∂zν)2βeV

)
− (∂zν)2β′eV

)
dz

=− ‖∂zzν‖2L2(eV dz) +

∫
R

(∂zν)2 β′eV dz.

For K > 0 such that β′ ≤ K, we have that:

d

dt

(
K

2
‖ν‖2L2(eV dz) +

1

2
‖∂zν‖2L2(eV dz)

)
= −‖∂zzν‖2L2(eV dz) +

∫
R

(∂zν)2 (β′ −K) eV dz ≤ 0.

Hence ‖ν(t)‖L2(eV dz) converges to a limit and so does ‖∂zν(t)‖L2(eV dz). But by Equation (50), the limit
of ‖∂zν(t)‖L2(eV dz) can only be 0, otherwise ‖ν(t)‖L2(eV dz) could not converge.
Finally, set c :=

∫ +∞
−∞ β− and W (z) =

∫ z
0 β+ − c. If we fix the constant of integration of V such that

V (z) =
∫ z

0 β. Then we have the following inequality:

V − 2c ≤W ≤ V.

We can conclude by the following argument:

e−2c
∥∥ν(t)2eV

∥∥
∞ ≤

∥∥ν(t)2eW
∥∥
∞

≤
∫
R

∣∣∂z (ν2eW
)∣∣ dz

≤ 2

∫
R
|ν||∂zν|eWdz +

∫
R
|β+e

W |ν2dz

≤ 2

∫
R
|ν||∂zν|eWdz +

∫
R

(
eW
)′
ν2dz

≤ 2

∫
R
|ν||∂zν|eWdz − 2

∫
R
ν∂zνe

Wdz

≤ 4

∫
R
|ν||∂zν|eWdz

≤ 4 ‖ν(t)‖L2(eW dz) ‖∂zν(t)‖L2(eW dz)

≤ 4 ‖ν(t)‖L2(eV dz) ‖∂zν(t)‖L2(eV dz) ,

where at the end we have used Cauchy-Schwarz inequality, followed by the equivalence of norms. Hence
limt→∞ supz∈R |ν(t, z)2eV (z)| = 0. Finally, since

∫
R β−(z)dz < +∞, for every a ∈ R, we have that

infz∈[a,+∞) e
V (z) > 0 and therefore limt→+∞ supz∈[a,+∞) |ν(t, z)| = 0.
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5 Asymptotic Spreading Properties

In this Section, we work under the hypothesis that the solution (ρ,N) of System (1) is well-defined for
all time, that x 7→ N(t, x) is an increasing function and we recall that x̄(t) is defined as the unique
solution N(t, x̄(t)) = Nth. As before, we consider the system in the moving frame of reference and
study (ρ(t, z), N(t, z)) solution of System (16), droping the diacritical˜for the sake of concision.

The aim of the Section is to describe the asymptotic behavior of t 7→ x̄(t). In fact, we will show that
under some assumptions on the initial datum, we have lim inft→+∞ ˙̄x(t) ≤ σ∗ and lim supt→+∞ ˙̄x(t) ≥
σ∗. The strategy of proof for both results is similar and is based on an argument by contradiction: if
those properties were not satisfied, then this would first lead to an abnormal behavior of ρ, which in
turn contradicts the equation N(t, 0) = Nth. We have not been able to prove a stronger result, such
as for instance limt→+∞ ˙̄x(t) = σ∗ and we believe that in order to achieve such a result, one needs to
study the behavior of ρ and N simultaneously, which is much more involved than our present study.
One major difficulty comes from the fact that System (1) does not have a comparison principle.

5.1 The Spreading may not be too fast

Theorem 5.1. Suppose that ˙̄x ∈ L∞(R+) and that:

ρ0

ρσ∗
∈ L∞.

Then lim inft→+∞ ˙̄x(t) ≤ σ∗.

Proof. 1. We argue by contradiction and start by showing that ρ converges to 0 uniformly on intervals
of the form [a,+∞) for a ∈ R.
Let t0 ≥ 0, δ > 0, such that for t ≥ t0, ˙̄x(t) ≥ σ∗ + δ. Set v := ρ

ρσ∗+δ
, where ρσ∗+δ is the traveling wave

profile for speed σ∗ + δ (see Theorem 3.1). We have that v satisfies the following Equation:

∂tv − ∂zzv − β(t, z)∂zv − γ(t, z)v = 0,

with β(t, z) := ˙̄x(t)−χ1z<0 +2∂zρ
σ∗+δ

ρσ∗+δ
and γ(t, z) := ( ˙̄x(t)−(σ∗+δ))∂zρ

σ∗+δ

ρσ∗+δ
. By noticing that (t, z) 7→∥∥∥ ρ0

ρσ∗

∥∥∥
∞

exp
(∥∥∥∂zρσ∗+δ

ρσ∗+δ

∥∥∥
∞

∫ t0
0 (σ∗ + δ − ˙̄x(s))+ds

)
is a super-solution to ∂t−∂zz−β(t, z)∂z−γ(t, z), we

observe that ρ(t0)

ρσ∗
∈ L∞. Hence we can suppose without loss of generality that for t ≥ 0, ˙̄x(t) ≥ σ∗+ δ.

Therefore, we have that β(t, z) ≥ σ∗ + δ − χ1z<0 + 2∂zρ
σ∗+δ

ρσ
∗+δ =: βσ

∗+δ(z) and γ(t, z) ≤ 0. Moreover,

by linearity we can suppose that
∥∥∥ ρ0

ρσ∗

∥∥∥
∞
≤ 1.

Since γ(t, z) ≤ 0 and v ≥ 0, we have that v is a subsolution of ∂t − ∂zz − β(t, z)∂z. Hence we
consider the solution v̄ of ∂t − ∂zz − β(t, z)∂z, such that v ≤ v̄, with initial datum v̄0, which we define
now. Set η := µ+(σ∗)−µ−(σ∗+δ)

2 and define g(z) = e−ηz

1+e−ηz . Let K > 0 be big enough such that:

ρ0(z)

ρσ∗+δ(z)
≤ ρσ

∗
(z)

ρσ∗+δ(z)
≤ Kg(z).

Such a constant exists, as a consequence of Theorem 3.1, since for z < 0, ρσ
∗

(z)

ρσ∗+δ(z)
= 1 and for z →

+∞, ρσ
∗

(z)

ρσ∗+δ(z)
= O

(
ze−(µ+(σ∗)−µ−(σ∗+δ))z

)
= O(g(z)). Thus, we set the initial datum v̄0(z) = Kg(z).

Let us show that ∂z v̄ ≤ 0. By construction, ∂z v̄0 ≤ 0. Furthermore v̄0 ∈ H2
loc(R, dz) and hence

by standard regularity theory, we have that v̄ ∈ C(R+, H
2
loc(R, dz)). Setting w := ∂z v̄, combining the

facts that w(0, · ) ∈ H1(R, dz), w ∈ C(R+, H
1
loc(R)) and that w is solution to ∂tw−∂zzw−∂z(βw) = 0,
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shows in fact that w ∈ C(R+, H
1(R, dz)). Now we can procede as in the proof of Corollay 2.1.2, to

show that w+ ≡ 0, where ( · )+ = max( · , 0):

d

dt

(
1

2

∫
R
w2

+(t, z)

)
=

∫
R
w+∂tw+dz

=

∫
R
w+∂twdz

=

∫
R
w+(∂zzw + ∂z(βw))dz

= −
∫
R

(∂zw+∂zw + βw∂zw+) dz

= −
∫
R

(∂zw+)2dz −
∫
R
βw+∂zw+dz

≤ −
∫
R

(∂zw+)2dz +
1

2

∫
R

(∂zw+)2dz +
‖β‖2∞

2

∫
R

(w+)2dz

≤
‖β‖2∞

2

∫
R

(w+)2dz,

where we have applied arithmetic and geometric means inequality |βw+∂zw+| ≤ (∂zw+)2

2 +
‖β‖2∞(w+)2

2 .
Since w+(0, · ) ≡ 0, by Grönwall’s lemma, we have that w+(t, · ) ≡ 0. Thus ∂z v̄ ≤ 0.

By the bound βσ∗+δ ≤ β and the inequality ∂z v̄ ≤ 0, we have that v̄ is a sub-solution (and not a
super-solution!) of the parabolic operator ∂t− ∂zz − βσ

∗+δ∂z. But from Corollary 4.2.1, we know that
the corresponding solution with initial datum v̄0(z) = Kg(z) converges to 0 uniformly on intervals
of the form [a,+∞). Hence so does v̄ and v by the comparison principle and thus ρ converges to 0
uniformly on compact sets.

2. Let us now show that the condition N(t, 0) = Nth cannot be satisfied for time t > 0 sufficiently
large. Let µ > 0 such that µ < σ∗

D and µ < µ−(σ∗ + δ). Let ε > 0 be sufficiently small, such
that 1+Nth

2 − ε

Dµ(σ
∗
D
−µ)

> Nth and denote B := ε

Dµ(σ
∗
D
−µ)

. Choose h > 0 big enough such that

1+Nth
2

(
1− e−

σ∗h
D

)
− B

(
1− e−

(
σ∗
D
−µ
)
h
)
> Nth, which exists by noticing that in the limit h → +∞

the inequality is satisfied by the above.
As v converges to 0 uniformly on the set [−h,+∞), and by noticing that ρσ∗+δ(z) = o (e−µz), there

exists t1, such that for t ≥ t1 and z ≥ −h, we have ρ(t, z)N(t, z) ≤ ρ(t, z) ≤ εe−µz. Finally let Z > 0
be such that N(t1, Z) > 1+Nth

2 .
We consider the parabolic equation in the domain Ω = (t1,+∞)× (−h,+∞):

∂tn− σ∗∂zn−D∂zzn+ εe−µz = 0 (51)
n(t,−h) = 0, n(t1, · ) = nt1( · ).

A stationary solution to Equation (51) is:

n∞(z) =
1 +Nth

2
−Be−µz + Ce−

σ∗
D
z,

with C := −Be−
(
σ∗
D
−µ
)
h − 1+Nth

2 e−
σ∗
D
h. Notice that n∞(0) > Nth, by the choices made above.

Consider now the solution n to Equation (51) with initial datum n(t1, · ) = n∞1z≥Z . We will show
that n(t, · )→ n∞ uniformly and in particular for z = 0, n(t, 0)→ n∞(0) > Nth.
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Figure 2: In order to prove that condition N(t, 0) = Nth cannot be satisfied, we consider solution n(t, z)
to Equation (51) with inital datum n(t1, z) = n∞(z) for z ≥ Z and n(t1, z) = 0 for z ∈ [−h, Z). Then
n(t) → n∞ uniformly. Furthermore N is a super-solution of Equation (51) and N(t1, · ) > n(t1, · ),
which leads to N(t, · ) ≥ n(t, · ) for all t ≥ t1. But n(t, 0) → n∞(0) > Nth and thus the condition
N(t, 0) = Nth is not satisfied after some time.

Indeed set w := n∞ − n, then w satisfies for (t, z) ∈ Ω:

∂tw − σ∗∂zw −D∂zzw = 0

w(t,−h) = 0, w(t1, z) = n∞(z)1z<Z .

It can be verified that for (t, z) ∈ Ω, we have the following explicit expression:

|w(t, z)| =

∣∣∣∣∣∣ e−
σ∗2
4
t−σ

∗
2
z√

4πD(t− t1)

∫ +∞

−h

(
e
− (z+h−y)2

4D(t−t1) − e−
(z+h+y)2

4D(t−t1)

)
e
σ∗
2
yn∞(y)1y≤Zdy

∣∣∣∣∣∣
≤ Ce

σ∗
2
he−

σ∗2
4
t√

(t− t1)

∥∥∥eσ∗2 yn∞(y)
∥∥∥
L1([−h,Z])

.

Hence, limt→+∞w(t, z) = 0 uniformly, which is equivalent to establishing that limt→+∞ n(t, z) =
n∞(z) uniformly. In particular there exist t2 > t1, such that n(t2, 0) > Nth.

In the final step, it remains to show thatN is a supersolution of Equation (51). Indeed for (t, z) ∈ Ω:

∂tN − σ∗∂zN −D∂zzN + εe−µz

≥∂tN − ˙̄x(t)∂zN −D∂zzN + ρN

=0.

By construction N(t1, · ) ≥ n(t1, · ) and N( · ,−h) > 0 = n( · ,−h). Hence we have for all (t, z) ∈
Ω, N(t, z) ≥ n(t, z) and in particular N(t2, 0) ≥ n(t2, 0) > Nth, which leads to a contradiction.
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5.2 The Spreading may not be too slow

In this Section, we will show that lim supt→+∞ ˙̄x(t) ≥ σ∗. The proof is based on the observation
that the norm of ρ increases exponentially in a certain weighted L1-spaces, when ˙̄x < σ∗. In fact,
as a starter, in the large bias case χ > 1, take for example the weight e

z
χ . By noticing that it is an

eigenvalue of the dual of the elliptic operator, one sees that:

d

dt

∫
R
e
z
χ ρ(t, z)dz =

χ+ 1
χ − ˙̄x(t)

χ

∫
R
e
z
χ ρ(t, z)dz.

Then if lim supt→+∞ ˙̄x(t) < σ∗, we have that
∫
R e

z
χ ρ(t, z)dz grows exponentially. Nevertheless, since e

z
χ

is unbounded, this observation is not sufficiently instructive. Hence, instead of e
z
χ an exact eigenvalue

of the dual of the elliptic operator, we consider a supersolution eu ∈ L∞(R) of the dual of the elliptic
operator, which enables us to show that ρ(t) diverges to +∞ in L1(R, eudz). Then we show that a
similar statement remains true for ρ in L1(R+, e

udz) and finally this accumulation of mass on the
half-line R+ leads to a contradiction on the condition N(t, 0) = Nth.

Theorem 5.2. Suppose that ˙̄x ∈ L∞(R+) and that ρ0 ∈ L∞. Then, we have that lim supt→+∞ ˙̄x(t) ≥
σ∗.

Proof. Suppose by contradiction that lim supt→+∞ ˙̄x(t) < σ∗ (= 2 in the small bias case χ ≤ 1, = χ+ 1
χ

in the large bias case χ > 1). Then there exists δ > 0, t0 ≥ 0, such that for t ≥ t0, ˙̄x(t) ≤ σ∗ − δ.

1. We start by constructing a function eu ∈ L∞(R), such that the quantity
∫
R e

u(z)ρ(t, z)dz tends
to infinity. Given a function u ∈ C2(R), set w(t, z) := eu(z)ρ(t, z), then:

∂tw − ∂zzw − ∂z

( ˙̄x(t)− 2u′ − χ1z≤0

)︸ ︷︷ ︸
=:β(t,z)

w

− (u′2 + u′′ − ˙̄x(t)u′ + 1z>0 + χ1z≤0u
′)︸ ︷︷ ︸

=:γ(t,z)

w. (52)

We now show that we can construct a function u such that γ is bounded below by a positive constant
η > 0. u will be of the shape u(z) = µ(z)z with µ(z) = 1

χ for z ≤ 0, µ(z) = − 1

‖ ˙̄x‖∞
for z > B, with

B > 0, and µ will decrease slowly on the interval [0, B]. The key ingredients for the construction of
the function u are Bounds (53,54) and Lemma 5.2.1.

First notice that for t ≥ t0 and by assuming that 2η < δ
χ , we have the following Bound:(

1

χ

)2

− ˙̄x(t)

(
1

χ

)
+ χ

(
1

χ

)
=
χ+ 1

χ − ˙̄x(t)

χ
≥ δ

χ
. (53)

For the second bound we introduce the functions gt : µ ∈ I :=

[
− 1

‖ ˙̄x‖∞
, 1
χ

]
7→ µ2 − ˙̄x(t)µ+ 1 and

show that it is uniformly in time bounded below by 2η for each ˙̄x(t). Without loss of generality we
suppose that ‖ ˙̄x‖∞ > 1. The minimum of gt on R is reached for µ =

˙̄x(t)
2 and its minimal value is

1− ˙̄x(t)2

4 .

• If ˙̄x(t)
2 < − 1

‖ ˙̄x‖∞
then the minimum of gt on its domain I is gt

(
− 1

‖ ˙̄x‖∞

)
= 1

‖ ˙̄x‖2∞
− ˙̄x

‖ ˙̄x‖∞
+ 1 ≥

1

‖ ˙̄x‖2∞
.

• If ˙̄x(t)
2 > 1

χ then the minimum of gt is gt
(

1
χ

)
≥ δ

χ .
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• Else if ˙̄x(t)
2 ∈ I, then: (i) in the large bias case χ > 1, we have that gt(µ) ≥ 1−min

(
1

‖ ˙̄x‖2∞
, 1
χ2

)
>

0. (ii) In the small bias case χ ≤ 1, we know that ˙̄x(t) ≤ 2− δ and ˙̄x(t) ≥ − 2

‖ ˙̄x‖∞
> −2. Hence

the minimum of gt, which is 1− ˙̄x(t)2

2 , is in that case positive.

Finally this leads for η > 0 small enough and for every t ≥ t0 to the Bound:

min
µ∈I

gt(µ) ≥ 2η. (54)

Next, we introduce the following technical Lemma 5.2.1, which will be an essential ingredient for
the construction of u(z) = µ(z)z with the function z 7→ µ(z) varying slowly in the interval I, such that
γ will stay bounded below by η.

Lemma 5.2.1. For every ε > 0, there exists a nondecreasing function θε ∈ W 2,∞([0, 1], [0, 1]) such
that θε(0) = 0, θ′ε(0) = 0, θε(1) = 1 and θ′ε(1) = 0, and that:

sup
z∈[0,1]

θ′ε(z)z ≤ ε.

Let us give a quick proof of Lemma 5.2.1.

Proof. Consider the function f(z) = zε. Then f ′(z)z = εzε−1. Hence supz∈[0,1] f
′(z)z ≤ ε. Set:

θε : z 7→


ε(ε−3)(1+ 1

ε)
(
ε1+ 1

ε (3− ε)z2 − (2− ε)z3
)

if z ∈
[
0, ε1+ 1

ε

)
f(z) if z ∈ [ε1+ 1

ε , 1− ε)
g(z) if z ∈ [1− ε, 1]

,

where g is any concave C1 function such that g(1− ε) = f(1− ε), g′(1− ε) = f ′(1− ε), g(1) = 1 and
g′(1) = 0. Notice that g′(1− ε) ≥ g′(1), hence such a concave function g exists.

First notice that by construction θε(0) = θ′ε(0) = 0, θε
((

ε1+ 1
ε

)−)
= f

(
ε1+ 1

ε

)
and θ′ε

((
ε1+ 1

ε

)−)
=

f ′
(
ε1+ 1

ε

)
. By straightforward computations, we show that θε is increasing on the interval

[
0, ε1+ 1

ε

)
and that θ′ε(z)z reaches its maximum on the interval

[
0, ε1+ 1

ε

)
at point zε :=

(
2
3

)2 3−ε
2−εε

1+ 1
ε , with value:

θ′ε(zε)zε =

(
2

3

)5 (3− ε)3

(2− ε)2
εε+1

≤
(

2

3

)5 33

12
εεε

≤ 32

9
ε.

For z ∈ [1− ε, 1], θε is increasing, as by concavity of g, we have that g′(z) ≥ g′(0) = 0. In addition:

θ′ε(z)z = g′(z)z ≤ g′(1− ε)z ≤ g′(1− ε) =
(1− ε)f ′(1− ε)

1− ε
≤ ε

1− ε
.

Finally, by construction, we have that θε ∈W 2([0, 1], [0, 1])

Using the function θε from Lemma 5.2.1, for ε > 0, B > 0 to be determined later, we choose
u(z) = µ(z)z with:

µ : z 7→


1
χ if z ≤ 0

1
χ − θε

(
z
B

)(
1
χ + 1

‖ ˙̄x‖∞

)
if z ∈ (0, B]

− 1

‖ ˙̄x‖∞
if z > B

.
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• Notice that by Bound (53), we have that for t ≥ t0, z < 0, γ(t, z) = u′2 + u′′ − ˙̄x(t)u′ + χu′ =(
1
χ

)2
− ˙̄x(t)

(
1
χ

)
+ χ

(
1
χ

)
≥ δ

χ ≥ 2η.

• Additionally by Bound (54), we have that for t ≥ t0, z > B, γ(t, z) = u′2 + u′′ − ˙̄x(t)u′ + 1 =

gt

(
− 1

‖ ˙̄x‖∞

)
≥ 2η.

• Then for t ≥ t0, z ∈ (0, B), first notice that µ(z) ∈ I and we will show that for ε > 0 small
enough and B > 0 big enough, we have |γ(t, z)− gt (µ(z))| ≤ η.
We have that:

u′(z) = µ(z)− z

B
θ′ε

( z
B

)( 1

χ
+

1

‖ ˙̄x‖∞

)
.

But according to Lemma 5.2.1, supz∈[0,B] θ
′
ε

(
z
B

)
z
B ≤ supz∈[0,1] θ

′
ε(z)z ≤ ε. Hence for ε > 0 small

enough the quantity |u′(z)− µ(z)| can be bounded uniformly in time by any arbitrary positive
constant. Similarily:

u′′(z) = − 1

B

(
z

B
θ′′ε

( z
B

)( 1

χ
+

1

‖ ˙̄x‖∞

)
+ 2θ′ε

( z
B

)( 1

χ
+

1

‖ ˙̄x‖∞

))
︸ ︷︷ ︸

bounded by C(‖θ′ε‖∞+‖θ′′ε ‖∞)

.

For B > 0 big enough, |u′′(z)| can be bounded by any arbitrary positive constant. Therefore, we
can pick ε > 0 and B > 0 such that |γ(t, z)− gt (µ(z))| ≤ η. Then by Bound (54), we have that
for t ≥ t0, z ∈ (0, B):

γ(t, z) ≥ η.

As an intermediary conclusion, on each interval (−∞, 0], [0, B], [B,+∞), γ is lower bounded by the
positive constant η > 0.

Therefore, if we consider ω the solution to Equation for t ≥ t0:

∂tω − ∂zzω − ∂z (β(t, z)ω) = 0 (55)

ω(t0, · ) = eu( · )ρ(t0, · ).

Then ω(t, z)eη(t−t0) is a subsolution of Equation (52). Of note by the asymptotic properties of eu,
we have that ω(t0, · ) ∈ L1(R). Moreover, Equation (55) is under conservative form and hence
mass is conserved. Without loss of generality, we suppose that

∫
R ω(t0, z)dz = 1 and for every

t ≥ t0,
∫
R ω(t, z)dz = 1. Hence for t ≥ t0:∫

R
eu(z)ρ(t, z)dz ≥ eη(t−t0)

2. In the next step, we show that the mass of ρ in L1(eudz) is not exclusively concentrated on
R−. More precisely, we show that lim inft→∞

∫ t
t−4

∫
R+
ω(s, z)dzds > 0. We start by considering the

quantity:

I(t) =

∫
R−

(
e
− z

2χ − 1 +
z

2χ

)
ω(t, z)dz.
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Notice that for z < 0, we have β(t, z) = ˙̄x(t)− 2
χ − χ = ˙̄x(t)−

(
χ+ 1

χ

)
− 1

χ ≤ ˙̄x(t)− σ∗ − 1
χ ≤ −δ−

1
χ

and that this quantity is finite, since ω will be dominated by e
z
χ for z < 0 and so the following series

of integration by parts is justified:

İ(t) =

∫
R−

(
e
− z

2χ − 1 +
z

2χ

)
(∂zzω + ∂z (βω))dz

=

[(
e
− z

2χ − 1 +
z

2χ

)
(∂zω(t, z) + β(t, z)ω(t, z))

]z=0

z=−∞
+

1

2χ

∫
R−

(
e
− z

2χ − 1
)

(∂zω + βω)dz

=
1

4χ2

∫
R−

e
− z

2χωdz +
1

2χ

∫
R−

(
e
− z

2χ − 1
)
βωdz

=
1

2χ

∫
R−

(
1

2χ
+ β

)(
e
− z

2χ − 1
)
ωdz +

1

4χ2

∫
R−

ωdz

=
1

2χ

∫
R−

(
1

2χ
+ β

)
︸ ︷︷ ︸
≤−δ− 1

2χ

(
e
− z

2χ − 1 +
z

2χ

)
ωdz +

1

4χ2

∫
R−

ωdz︸ ︷︷ ︸
≤
∫
R ωdz

− 1

2χ

∫
R−

(
1

2χ
+ β

)
z

2χ
ωdz︸ ︷︷ ︸

≤0

≤ − 1

2χ

(
δ +

1

2χ

)
I(t) +

1

2χ
.

Thus by Grönwall’s Lemma, we obtain:

I(t) ≤ I(t0)e
− 1

2χ

(
δ+ 1

2χ

)
(t−t0)

+
1

4χ2
≤ I(t0) +

1

4χ2
.

Furthermore z 7→ e
− z

2χ − 1 + z
2χ is decreasing on R−, hence by a Markov inequality, we obtain that:∫ −h

−∞
ω(t, z)dz ≤ I(t)

e
h
2χ − 1− h

2χ

≤ 8χ2

h2

(
I(t0) +

1

4χ2

)
,

where we haved used that e
h
2χ − 1− h

2χ ≥
h2

8χ2 . Hence, if we choose h sufficiently large then for t ≥ t0,
we have: ∫ −h

−∞
ω(t, z)dz ≤ 1

2
.

Next, we use a parabolic Harnack inequality, such as it is stated in Theorem 1.1 in [49], to obtain the
following Lemma:

Lemma 5.2.2. Let Q1 := (−1, 0)× (−h, h) and Q2 := (−4,−2)× (−h, h), then there exists a constant
C > 0, such that for every t2 > t0 + 4, we have the following inequality:

sup
(t2,0)+Q2

ω ≤ C inf
(t2,0)+Q1

ω. (56)

We will use Inequality (56) to establish that for every t2 > t1 + 4:∫ t2

t2−4

∫
R+

ω(s, z)dzds ≥ 1

1 + 2C
. (57)
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Either, for every s ∈ (0, 1), we have that
∫
R ω(t2 − s, z)dz ≥ 1

1+2C and then Inequality (57) follows.
Or, there exists s ∈ (0, 1), such that

∫
R ω(t2 − s, z)dz < 1

1+2C . Then:

1

1 + 2C
>

∫
R+

ω(t2 − s, z)dz ≥
∫ h

0
ω(t2 − s, z)dz ≥ h inf

(t2,0)+Q1

ω.

By using Inequality (56), we then have that for every s ∈ (−4,−2):∫ 0

−h
ω(t− s, z)dz ≤ h sup

(t2,0)+Q2

ω ≤ Ch inf
(t2,0)+Q1

ω ≤ C

1 + 2C
.

But: ∫
R+

ω(t− s, z)dz = 1−
∫ −h
−∞

ω(t− s, z)dz −
∫ 0

−h
ω(t− s, z)dz ≥ 1

2
− C

1 + 2C
.

Hence: ∫ t2−2

t2−4

∫
R+

ω(s, z)dzds ≥ 1

1 + 2C
.

Thus, we have established Inequality (57).

3. In the final step we show that the last result contradicts with the condition that N(t, 0) = Nth.
We multiply Equation (16b) by eu and integrate over R+:

d

dt

∫
R+

euNdz = ˙̄x

∫
R+

eu∂zNdz +D

∫
R+

eu∂zzN −
∫
R+

ρeuN

=− ˙̄x

(
N(t, 0) +

∫
R+

Nu′eudz

)

+D

−∂zN(t, 0)︸ ︷︷ ︸
≤0

+
N(t, 0)

χ
+

∫
R+

(
u′′ + u′2

)
euNdz

− ∫
R+

ρeuNdz

≤C(1 + ‖ ˙̄x‖∞) ‖N‖∞ −Nth

∫
R+

ρeudz

≤C(1 + ‖ ˙̄x‖∞)−Nth

∫
R+

ωeη(t−t0)dz,

where we have used the fact that eu and its derivatives are integrable, N is bounded above by 1 and
below by Nth on R+ and ρeu is bounded below by ωeη(t−t0) (the latter being a subsolution). Finally,
we integrate between [t− 4, t] and obtain:∫

R+

euN(t, z)dz ≤
∫
R+

euN(t− 4, z)dz + 4C(1 + ‖ ˙̄x‖∞)−Nth

∫ t

t−4

∫
R+

eη(s−t0)ωdzds

≤
∫
R+

eudz + C(1 + ‖ ˙̄x‖∞)−Nthe
η(t−4−t0)

∫ t

t−4

∫
R+

ωdz

≤C(1 + ‖ ˙̄x‖∞)− Nthe
η(t−4−t0)

1 + 2C
.

By letting t→ +∞, we have that
∫
R+
euN(t, z)dz < 0, which is a contradiction.
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6 Traveling Waves for a Two-Velocity System with Persistence

In this Section, we exhibit all subsonic (σ < ε−1) traveling wave solutions to System (6). It is known [9]
that in hyperbolic models with growth supersonic traveling wave solutions can exist, but for the sake
of concision we discard them in this discussion. Furthermore by following the terminology in [9], there
exist a parabolic regime ε−2 > 1 and a hyperbolic regime ε−2 < 1. Of note, the relevant quantities
to compare are the tumbling rate, normalized to ε−2 here, and the growth rate, normalized to 1 here.
Therefore we write the parabolic regime as ε−2 > 1 and not as ε−1 > 1, which is equivalent in our case.
Theorem 6.1 notably states that subsonic traveling waves only exist in the parabolic regime, which
was already observed in another model [9].

We will procede similarily than in the parabolic case (Section 3) and consider that ∂zN > 0. In
that case Equation (6) reduces in the moving frame of reference to:

for z < 0,

{
(−σ + ε−1)f+′ = ε−2

2 ((1 + εχ) f− − (1− εχ) f+)

(−σ − ε−1)f−
′
= ε−2

2 ((1− εχ) f+ − (1 + εχ) f−)
(58a)

for z > 0,

{
(−σ + ε−1)f+′ = ε−2+1

2 f− − ε−2−1
2 f+

(−σ − ε−1)f−
′
= ε−2+1

2 f+ − ε−2−1
2 f−

(58b)

Theorem 6.1. Assume that ∂zN > 0. In the parabolic regime ε−2 > 1, there exists a minimal speed
σ∗ ∈ (1, ε−1), such that for any σ ∈ [σ∗, ε−1), there exists a corresponding bounded and nonnegative
traveling wave profile (f+,σ, f−,σ, Nσ). In addition, for σ ∈ [σ∗, ε−1) fixed, the traveling wave profile
(f+,σ(z), f−,σ(z), Nσ(z)) is unique. For σ ∈ [0, σ∗), there does not exist a traveling wave profile. The
expression of σ∗ is given by Formula (7) and depends on the value of χ:

– If χ ∈ (1, ε−1), then σ∗ =
χ+ 1

χ

1+ε2
. Note that in that case σ∗ < ε−1.

– If χ ≤ 1, then σ∗ = σF/KPP := 2
1+ε2

.

In the hyperbolic regime ε−2 < 1, there doesn’t exist any subsonic traveling wave profile, i.e a wave
travaling with speed σ < ε−1.

Furthermore, in the parabolic regime ε−2 > 1, for σ ∈ [ 2
1+ε2

, ε−1), define µ±(σ) :=
σ(1−ε2)±

√
σ2(1+ε2)2−4

2(1−ε2σ2)
.

We then have the inequality, for σ > σF/KPP :

0 < µ−(σ) < µ−
(
σF/KPP

)
= 1 = µ+

(
σF/KPP

)
< µ+ (σ)

The functions f±,σ have the following behavior for z > 0:

– for σ ∈ (σ∗, ε−1), z > 0, f±,σ(z) = A±e−µ−(σ)z +B±e−µ+(σ∗)z

– for χ > 1, σ = σ∗ =
χ+ 1

χ

1+ε2
, z > 0, f±,σ

∗
(z) = B±e−µ+(σ∗)z and µ+(σ∗) = χ(1+ε2)

1−ε2χ2

– for χ < 1, z > 0, σ = σF/KPP, f
±σF/KPP (z) = (A±z +B±)e−z

– for χ = 1, z > 0, σ = σF/KPP, f
±σF/KPP (z) = B±e−z

As before note that
χ+ 1

χ

1+ε2
≥ 2

1+ε2
= σF/KPP, with equality if and only if χ = 1.

Proof. The proof relies on similar arguments than the proof in the parabolic case (Section 3). Since
we are looking for subsonic solution, we suppose througout the proof that σ2 < ε−2.
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Set F (z) =

(
f+(z)
f−(z)

)
, A− = ε−2

2

(
− 1−εχ
ε−1−σ

1+εχ
ε−1−σ

− 1−εχ
ε−1+σ

1+εχ
ε−1+σ

)
and A+ = 1

2

(
− ε−2−1
ε−1−σ

ε−2+1
ε−1−σ

− ε−2+1
ε−1+σ

ε−2−1
ε−1+σ

)
. Then for

z < 0, F ′(z) = A−F (z) and for z > 0, F ′(z) = A+F (z).
As in the parabolic case (Section 3), the characteristic polynomial of A− has two roots 0 and

ε−2

2

(
1+εχ
ε−1+σ

− 1−εχ
ε−1−σ

)
, the later being negative, by an argument similar to the proof of Theorem 3.1.

Therefore there exist a constant a ∈ R, such that F (z) = a

(
1 + εχ
1− εχ

)
. The negativity of the second

root also shows that there cannot exist a traveling wave profile with velocity σ < χ.
The characteristic polynomial of A+ is (up to a multiplicative constant) P (X) = (ε−2 − σ2)X2 +

σ(ε−2 − 1)X + ε−2. In the hyperbolic regime ε−2 < 1, we have that P (0) > 0 and P ′(0) < 0. But the
leading coefficient of P is positive, hence the roots of P have positive real part, which is in contradiction
with the fact that we are looking for a bounded solution. Hence in the hyperbolic regime, there do not
exist any (subsonic) traveling wave solutions.

For the rest of the proof, we suppose that we are in the parabolic regime ε−2 > 1. The discriminant
of the characteristic polynomial P is σ2(ε−2 − 1)2 − 4ε−2(ε−2 − σ2) = σ2(ε−2 + 1)2 − 4ε−4. As in
the parabolic case (Section 3) σ = σF/KPP cancels the discriminant and we yield the condition that
σ ≥ σF/KPP , since otherwise we would have complex roots and oscillating functions.

Suppose σ > σF/KPP, the roots of the characteristic polynomial are then −µ±(σ). By continuity
of F at z = 0 and elementary computations, we find that:

F (z) = a
µ+(σ − χ)− 1

ε−2(µ+ − µ−)

(
µ−(σ)(ε−1 + σ)− 1
µ−(σ)(ε−1 − σ) + 1

)
e−µ−(σ)z − aµ−(σ − χ)− 1

ε−2(µ+ − µ−)

(
µ+(σ)(ε−1 + σ)− 1
µ+(σ)(ε−1 − σ) + 1

)
e−µ+(σ)z.

First we show that the two components of the vectors are of the same sign. Indeed (µ±(ε−1 +
σ) − 1)(µ±(ε−1 − σ) + 1) ≥ 0 ⇐⇒ −µ± ≤ − 1

σ . Or equivalently − 1
σ is bigger than the two roots

of the characteristic polynomial P . But P
(
− 1
σ

)
= 1

ε2σ2 > 0 and P ′
(
− 1
σ

)
= 1

σ(ε−2+1)

(
σ2 − 2

1+ε2

)
≥

1
σ(ε−2+1)

(
σ2 − 4ε−4

(ε−2+1)2

)
≥ 0, where we used the fact that 4ε−4

(ε−2+1)2
≥ 2

1+ε2
, which is equivalent to

ε−2 ≥ 1. Hence the components are of the same sign, that is the positive sign, since the second
component of each vector is positive.

Therefore we observe that F is positive if and only if g(σ) := µ+(σ)(σ − χ) − 1 ≥ 0. g is an
increasing function, as g′(σ) = µ+(σ) + µ′+(σ)(σ − χ) > 0 (one easily checks that µ′+(σ) > 0). One
checks that in the case χ ≤ 1, g(σF/KPP ) ≥ 0, which establishes existence of waves for σ > σF/KPP ,

and that in the case χ > 1, g(σ∗) = 0, which establishes the existence of waves for σ ≥ σ∗ =
χ+ 1

χ

1+ε2
and

the nonexistence of waves for σ ∈ (σF/KPP , σ
∗).

Suppose σ = σF/KPP, then one shows that for z ≥ 0:

F (z) = A

(
1 + εχ+ z (1+ε2)2(1−χ)

(1−ε2)(1−ε)

1− εχ+ z (1+ε2)2(1−χ)
(1−ε2)(1+ε)

)
e−z. (59)

Hence F is positive if and only if χ ≤ 1, which establishes the criterion for existence in the last
remaining case.

The decay properties follow immediately and the existence of the profile for N is treated exactly
as in the parabolic case.

Let us make some comments on Theorem 6.1 to show how it is linked to Theorem 3.1 in the limit
ε→ 0. First of all, considering Formula (7) for σ∗ given by Theorem 6.1, we observe that in the limit
ε→ 0, Formula (4) given by Theorem 3.1 is recovered. Furthermore, the limit of all the values µ±(σ∗)
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coincide and so do the shapes of the wave. For example, consider Expression (59) in the limit ε→ 0,
we obtain for z > 0:

F (z) = A

(
1 + (1− χ)z
1 + (1− χ)z

)
e−z.

As a consequence ρ(t, z) = A(1 + (1−χ)z)e−z, which is exactly the form that we obtained in the proof
of Theorem 3.1.
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