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Abstract: The Modulated Wideband Converter (MWC) is a blind sub-Nyquist sampling system used
especially to monitor wideband spectrum. This system can be realized by existing analog components.
From a theoretical point of view, all analog components are assumed ideal. However, this hypothesis
is false in practice. Indeed, some imperfections are introduced by analog components such as
nonlinearities of mixers, phase/attenuation/selectivity of low-pass filters and desynchronization
between modulating waveforms. Consequently, it is necessary to correctly estimate the sensing
matrix to ensure correct spectrum reconstruction performance. Conventional calibration methods
are based on the measurements of different single tones. However, these approaches need to record
several measurements with single-tone inputs. To avoid this problem, this paper presents a new
hardware calibration method of MWC by using a single measurement of a white noise signal for
radio frequency spectrum monitoring. A preprocessing method is performed to resynchronize input,
output and modulating waveforms signals with each other. Our hardware calibration method is
applied to our prototype of Compressed Sensing (CS) scheme in order to estimate the corrected
sensing matrix. To prove the efficiency of our hardware calibration, reconstruction performances
were evaluated with respect to the probability of correct reconstruction and false alarm criteria. These
results are compared with those obtained with the theoretical MWC scheme, with our prototype
without calibration and with reference calibration.

Keywords: compressed sampling; hardware calibration; modulated wideband converter; signals
resynchronization method; spectrum monitoring

1. Introduction

Radio frequency spectrum monitoring is a major issue in communications applications
due to the expansion of wireless technologies which implies a reduction of available
band spectrum. For example, the Internet-of-Things (IoT) communication has recently
emerged in many applications such as Smart City which has the advantage of low power
consumption. The number of IoT connected devices will explode in the near future.
Consequently, a specific bandwidth will be saturated because several wireless devices will
be connected at the same time. It is possible to handle this problem by using cognitive
radios which are able to manage dynamically the spectrum. During many years, spectrum
monitoring has been based on the Shannon–Nyquist sampling theorem [1,2]. Indeed, it
is possible to reconstruct a signal by picking samples at periodic time. Mathematically,
the Nyquist rate FNyq is determined for a band-limited spectrum [Fmin; Fmax] by Fe ≥
2 ∗ (Fmax − Fmin) [3]. However, in practice, this method is difficult to use in a wideband
context, typically more than 1 GHz. Indeed, Nyquist frequency can exceed the specifications
of existing Analog to Digital Converters (ADC) and sampling at a high rate introduces
amount of data which requires a huge storage capacity.
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Several techniques, depending or not on the knowledge of the carrier frequency, have
been developed to monitor a multiband spectrum (random demodulator [4,5], multicoset
sampling [6,7], Modulated Wideband Converter [8], quadrature analog-to-information
converter [9], time-segmented quadrature analog-to-information converter [10], random
triggering based modulated wideband compressive sampling [11] and non uniform wavelet
sampling [12,13]). In the case of known carrier frequencies, a band of interest is firstly
chosen and the signal is demodulated by its carrier frequency. Unwanted bands of signals
were rejected by a low-pass filter. Finally, the selected band is sampled by an ADC at
a realistic rate [14]. In the case of unknown carrier frequencies, it is a hard challenge to
blindly recover a signal from the measured samples.

One major problem to monitor wideband signal is to choose appropriate ADCs. An
ADC is first characterized by a track and hold circuit which tracks the value of the analog
input signal and holds it at a constant value between clock cycles. This analog value is then
digitized by a quantization module. Therefore, an ADC is generally characterized by an
input bandwidth B corresponding to the maximal frequency supported by the Track/Hold
module and by a sampling frequency Fs equal to the inverse of the time duration Ts of the
quantization processing. Indeed, an ADC can be limited for two main reasons. Firstly, its
bandwidth B needs to be equal to the bandwidth of the signal input, which can be huge
in practice. Moreover, according to the Shannon–Nyquist sampling theorem, its sampling
frequency Fs could be very high, which can not be provided by actual ADCs. The first issue
can be addressed by multi channel sampling schemes. Uniform interleaved sampling [15]
can be used to sample a wideband signal. Assume that a wideband signal x(t) needs
to be sampled at a Nyquist frequency M times higher than the frequency Fs specified
by an ADC. Instead of using a single ADC at a high rate, a solution is to use M ADCs
in parallel and interleave them with delays. By choosing delays spaced of Ts/M, with
Ts = 1/Fs, M samples are contained in the periodic time Ts. If samples are multiplexed,
the scheme can be seen as an unique ADC with a sampling frequency F′s = MFs. To
respect the Shannon–Nyquist theorem, i.e., F′s = MFs = FNyq, it is necessary to fix the ADC
sampling frequency Fs = FNyq/M. Consequently, the sampling frequency is reduced by a
factor M. Although this approach solves the problem of limitation of the ADC sampling
frequency Fs, it still requires an ADC with bandwidth B at least equal to the input signal
bandwidth. Moreover, maintaining constant time shifts of the order of Ts/M is difficult to
implement [8]. Nonuniform interleaved sampling [16] has also been proposed to sample
multiband signals. Compared to the uniform interleaved sampling, delays are irregularly
spaced. However, to implement this algorithm, delays are assumed periodic. As in the
uniform case, the nonuniform sampling allows the ADC frequency Fs to be reduced by a
factor M; however, it is still also limited because the ADC bandwidth B must be equal to
the bandwidth of the input signal. This approach has the advantage of being compressive.
However, this method is difficult to use in practice due to the performance of the ADCs.

Recently, a new approach has been proposed allowing sampling at sub-Nyquist rate.
This approach is called compressed sensing, or more generally compressive sampling.
Compressed sensing has recently emerged as a potential framework for signal acquisition
in many applications [17], especially to monitor a wideband spectrum [18]. In [19,20], the
authors showed that a finite-dimensional signal which has a sparse representation in some
basis can be recovered from a small set of linear measurements. Theoretical aspects of com-
pressed sensing have been largely addressed in the literature. For instance, many studies
on the design of the measurements scheme have been proposed as in [21,22]. However, few
works have considered practical constraints of compressed sensing. Indeed, the design of
the measurements schemes and their application to practical acquisition systems such as
spectrum sensing systems remain a central challenge in the field of compressed sensing.
More recently, the authors in [8] proposed a new scheme, called Modulated Wideband
Converter (MWC), which allows sampling at rates much lower than the Nyquist rate while
considering practical implementation issues of compressed sensing. In this work, the band
locations are unknown to the user. Generally, the proposed scheme architecture in [8] can
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be decomposed into two main steps. Firstly, an analog processing is applied to the input
signal in order to create several channels through modulation and filtering. In the second
step, each channel is sampled by ADCs.

In this paper, the MWC scheme proposed in [8] is considered which, to the best of our
knowledge, seems to be the most convenient scheme in terms of recovering performance,
complexity and practical implementation. Some practical implementations of compressed
sensing systems have been already proposed [4,23,24]. To realize a prototype of compressed
sensing based on MWC scheme, three solutions can be followed. The first solution is to
use commercial off-the-shelf components. However, this type of solution had a significant
risk in terms of development due to the deflects introduced by all components. The second
solution would be to develop a custom silicium solution [24]. However, this solution can
be very expensive and dicey for testing and debugging steps. The third (chosen solution)
solution is to design an analog board with discrete components to achieve this functionality.
Some authors have already addressed the design of MWC system and a non-exhaustive list
of references is given here [23,25–29]. Our analog board has a number of physical channels
M limited to four channels and the length of the modulating sequences L is realistic and
set to 96. These parameters will be explained in detail in Section 2.

One important step in compressed sensing framework is the knowledge of the sensing
matrix required for the reconstruction step. In the ideal case, the sensing matrix can be
perfectly estimated from modulating waveforms. However, in practice, some problems intro-
duced by analog components (such as nonlinearities of mixers, phase/attenuation/selectivity
of lowpass filters, desynchronization between modulating waveforms) have been identi-
fied by researchers from Technion—Israël Institute of Technology [23]. The authors have
proposed a calibration method to estimate the sensing matrix. They estimate one column
of the sensing matrix by injecting sine function at a specific frequency. This step is repeated
by changing the frequency until all columns of the sensing matrix are estimated. This
technique can be considered as a reference. Some researchers have exploited this work to
propose calibration algorithms [29–33] based on the measurements of different single tones.
In our opinion, one drawback of this procedure is that this task can be time consuming and
annoying when the number of columns of the sensing matrix L is high because the same
step must be repeated many times. Consequently, the motivation of this paper is to develop
a new MWC hardware calibration technique from only one measurement. The idea has
been already proposed in [34,35] where the calibration signal is a mixture of single tones.

Table 1 sums up the difference between our MWC calibration method and other MWC
calibration methods.

Table 1. Comparison between our MWC calibration method and others MWC calibration methods
from the literature.

MWC Calibration Number of Calibration Time
Method Measurements Signal Consumption

Israeli et al. [23]

L
2 + 1 single tone high

Liu et al. [29]
Wang et al. [30]

Fu et al. [31]
Park et al. [32]
Alp et al. [33]

Byambadoryj et al. [34] 1 mixture of single
tones low

This paper 1 white noise signal low
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The main contributions of this paper are:

• A prototype of compressed sensing based on MWC scheme has been developed to
monitor a wideband spectrum at Nyquist frequency FNyq = 1 GHz. The prototype
has M = 4 physical channels. The total equivalent sampling rate is equal to M× Fs =
291.6 MHz which is 29.16% of the Nyquist rate.

• The calibration signal is a white noise signal. Compared to methods based on iterative
single-tones or mixture of single-tone signals, our new calibration method has the
advantage of being more practical in terms of simplicity of implementation and
time saving because only one measurement is used to complete the calibration. The
calibration signal spectrum is totally flat in the band of interest and covers all the
bandwidths of the spectrum to analyze.

• The calibration method uses an advanced resynchronization preprocessing. Our cali-
bration method offers slightly better spectrum reconstruction performances compared
to reference method [23].

The remainder of this paper is organized as follows: Section 2 describes the MWC
theoretical background. Section 3 presents our prototype of compressed sensing based
on MWC scheme. Section 4 presents our calibration method. Section 5 presents spectrum
reconstruction performances and examples of spectrum reconstruction obtained with our
calibration method from MWC output.

2. MWC Theoretical Background

This section develops the MWC physical scheme and a Nyquist-equivalent model
of MWC.

2.1. Physical Scheme

MWC scheme which allows sampling a wideband sparse signal at sub-Nyquist rate
has been introduced in [8]. The block diagram of MWC scheme is illustrated in Figure 1.
In this scheme, a signal x(t) is modulated by a set of Tp-periodic waveforms pi(t) on M
parallel channels with i ∈ [1; M]. For each channel i, the modulated signal is low-pass
filtered with a filter of bandwidth Fs and the filtered signal is sampled at frequency Fs into
yi[n] output samples.

x(t)

ADC

y1(t)

yi(t)

yM(t)

y1[n]

yi[n]

yM[n]

...

p1(t)

pi(t)

pM(t)

...

ADC

ADC

Fs

Fs

Fs

Figure 1. Block diagram of the MWC scheme.
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2.2. Nyquist-Equivalent Model of MWC

A Nyquist-equivalent model of MWC, shown in Figure 2, has been introduced in [26].
This MWC-equivalent model modulates the input signal x(t) by carrier frequencies spaced
by Fp. Consequently, L channels are processed in parallel and, for each channel, the
spectrum X( f ) is shifted by a multiple l of the frequency Fp.

x(t)

ADC

z-L0
(t)

zl(t)

zL0
(t)

y1[n]

yM[n]
...exp(j2 lFpt)

...

ADC

ADC

Fs

Fs

Fs

Sensing matrix

P

...

z-L0
[n]

zl[n]

zL0
[n]

exp(j2 (-L0)Fpt)

exp(j2 (L0)Fpt)

Figure 2. Nyquist-equivalent model of MWC.

Due to the periodic functions, L is determined by computing the ratio between the

bandwidth of the input signal and the frequency of periodic functions (L =
FNyq

Fp
). The

L-channels are then low-pass filtered with an ideal filter of bandwidth Fs and response
frequency H( f ). For each internal channel, low-pass filtered signals are then sampled at
frequency Fs into samples zl [n] with l ∈ [−L0; L0] such that L0 = L−1

2 . The output samples
yi[n] are finally obtained by applying a M× L sensing matrix P such as:

y = Pz (1)

The system can also be written as:

yi[n] =
L0

∑
l=−L0

pilzl [n] (2)

where pil are the Fourier coefficients of the Tp-periodic waveform pi.
Each internal channel zl [n] can be computed by:

zl [n] = IDFT
(
X( f − lFp)H( f )

)
(nTs) (3)

where IDFT is the Inverse Discrete Fourier Transform.
In practice, it is impossible to deploy all mixers, low-pass filters and ADCs for all

channels when M (number of channels) is high. In [36], the authors introduced a collapsing
factor q = Fs

Fp
which allows to reduce the number of physical channels by a factor q.

Theoretically, the system works as if there are q×M channels and the output is sampled at
Fp. Consequently, the system defined by Equation (1) can be extended to q×M outputs:

ye = Pez (4)

with a qM× L sensing matrix Pe which is an extension version of P. For the rest of the
paper, the extended version of matrices are used for the reconstruction.
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The challenge is to reconstruct the signal x(t) or only its spectrum depending on the
application, with knowledge of ye and the matrix Pe by solving Equation (4). To achieve
this task, the authors [8] introduced a Continuous-To-Finite (CTF) reconstruction block.
In this paper, the number s of active channels are estimated from ye by using different
classical algorithms such as Akaike Information Criterion [37] or Minimum Description
Length [38]. By knowing ye, Pe and s, the solution ẑ of Equation (4) is estimated by the
Orthogonal Matching Pursuit (OMP) algorithm [39].

2.3. Parameters Constraints

Performance of MWC scheme depends on several parameters such as the number of
channels M, the sampling frequency Fs, the Tp-periodic sequences pi(t) and their period Tp.
One important problem is how to choose these parameters. To set these parameters, some
conditions must be met in order to achieve successful signal recovering: the bandwidth
filter Fs and the hypothesis of sparsity of the signal.

The modulation operator shifts the spectrum X( f ) of the signal x(t) by frequencies
multiple of Fp. Therefore, it is necessary to fix Fs ≥ Fp otherwise some frequency bands
will not be represented on any channel [8] and, therefore, signal recovering will fail. When
considering Fs = Fp, the frequency bands on the different channels are disjointed.

For the condition of sparsity, knowing the qM× L sensing matrix Pe and the measure-
ments vector ye and in order to recover z, the sensing matrix Pe needs to be invertible or
pseudo-invertible, i.e., qM ≥ L. Under this condition, we obtained:

qMFs ≥ LFs ≥
FNyq

Fp
Fs ≥ FNyq (5)

However, Equation (5) shows a contradiction because the sub-Nyquist condition is
not verified anymore. Therefore, the hypothesis on the signal sparsity needs to be assumed
on the multiband signal x(t) to be able to recover the spectrum. x(t) can be considered
sparse in the frequency domain if only some unknown sub-bands of the spectrum X( f ) are
occupied, represented by the active components in vector z. By assuming the sparsity of z
(which is a consequence of the sparsity of x(t) in the frequency domain), it is possible with
qM < L to recover the vector z from the measurements vector ye.

The next section describes our prototype of compressed sensing based on MWC scheme.

3. MWC Hardware Prototype

The genesis of this work, which is a part of a large innovative project dedicated to coastal
surveillance, is to monitor a wideband spectrum at Nyquist frequency FNyq = 1 GHz. To
the best of our knowledge, the MWC seems to be the most convenient scheme in terms of
recovering performance, complexity and practical implementation. Some prototypes [23,25,28]
of compressed sampling scheme based on MWC with different parameters have been
already developed. For simplicity of implementation, the number of physical channels
M must be realistic as in [23,25,28]. For simplicity of generation, the length of mixing
sequences L has been chosen lower than the length of mixing sequences used in [23,25,28].
The values of these parameters are given in Section 3.1. Figure 3 shows our prototype of
compressed sampling scheme based on MWC.

In this section, we motivate the choice of the prototype parameters and we present
the analog board. An example of spectrum reconstruction without calibration is directly
processed from data acquired by the prototype.
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Figure 3. Photo of our compressed sampling testbed: (a) ML605 board for modulating waveforms
generation, (b) PC control, (c) MWC analog front-end board, (d) Arbitrary waveform generator,
(e) Spectrum analyzer, (f) DSO90404A Agilent Infiniium four-channel scope and (g) PC for spectrum
reconstruction.

3.1. Prototype Parameters

The Nyquist frequency is set to FNyq = 1 GHz. The number of physical channels is
set to M = 4 in order to save hardware size and price. Pseudo-random binary signal have
been chosen for simplicity of generation for the mixing sequences which length is fixed
L = 96. In our scenario, the bandwidth of each transmitter is set to B = 2Fp/3. To choice
the collapsing factor, a trade-off between reasonable total equivalent sampling rate and
maximal number of symmetric transmitters Ntmax must be conducted. Related to the model,
the input bandwidth is divided into L subbands with a bandwidth Fp. With this choice,
each transmitter can be positioned inside one channel of the MWC or it can be astride
at most two channels. The worst case should be taken into account, namely, that each
transmitter can locate astride two channels of the equivalent model. We choose a collapsing
factor q = 7. The condition of sparsity must be verified such as Lz < M× q where Lz is
the maximum number of active channels in the MWC equivalent model. The number of
active channels in the MWC equivalent model is strictly set Lz = M× q− 1 and to take into
account the worst case that the transmitters can be astride two active channels, then we set
Lzmax = (M× q− 1)/2. Since the transmitters are symmetric in real case; then, we finally set
the maximum number of transmitters Ntmax = bLzmax /2c = b(M× q− 1)/4c, which leads
to Ntmax = 6. The bandwith of ideal low-pass filter and ADC (and the sampling rate) is equal
to Fs = qFNyq/L = 72.9 MHz, which involves a cut-off frequency Fc = Fs/2 = 36.5 MHz.
The repetition frequency of modulating waveforms is equal to Fp = FNyq/L = 10.4 MHz.
The bandwidth of each transmitter is fixed to B = 2Fp/3 = 6.9 MHz. The total equivalent
sampling rate is equal to M× Fs = 291.6 MHz which is 29.16 % of the Nyquist rate.

For the rest of the paper, input signal has Nt = 4 transmitters which corresponds to the
occupancy of 4 subbands which are symmetric, equivalent to occupy 2× Nt = 8 subbands
in Nyquist bandwidth.

Table 2 sums up the parameters of the MWC.



Electronics 2022, 11, 774 8 of 20

Table 2. Parameters of MWC prototype.

Symbol Meaning Value

M Number of MWC channels 4

q Collapsing factor 7

L Length of mixing sequence 96

FNyq Nyquist frequency 1 GHz

Fp
Repetition rate of mixing

sequence 10.4 MHz

Fs Sampling rate 72.9 MHz

B Bandwidth of each active
subband 6.9 MHz

Nt Number of transmitters 4

SNR Signal to Noise Ratio 5, 10, 15, 20,
in the transmitting subbands 25, 30, 40 dB

The relation between the Signal to Noise ratio (SNR) in the transmitting subbands and
the Signal to Noise ratio in the whole spectrum is computed by:

SNR = SNRNyq + 10 log10

(
FNyq

2Nt × B

)
(6)

3.2. Analog Board

A (Avnet) “ML605 DSP Kit with AD/DA board” embedding a (Xilinx) Virtex-6 FPGA
is used to generate pseudo-random modulating waveforms. The Gigabit-Transceiver X
(GTX) high-speed SERDES (SERializer-DESrializer) transceivers embedded in its (Xilinx)
LX240T Virtex-6 FPGA model and the different debugging cores from (Xilinx) Chipscope
Pro for the Virtex-6 FPGA gave us the required programmability, speed and development
flexibility to output the differential signals implementing the mixing sequences. This
allowed us to dynamically choose (per channel) the sequence from a compiled list, fix its
size, turn on and off channels, adjust output amplitudes and add some pre-emphasis or
post-emphasis effects to signals. With recompilation, we can also add new sequences to
the list and change the bit rate. The clock source can be physically changed to appropriate
external generators. GTXs 0, 1, 2 and 3 are, respectively, connected to channels 1, 2, 3 and 4
of a MWC analog frond-end board.

A Keysight 81180A arbitrary waveform generator is used to generate the input signal.
The channel 1 is plugged to a Keysight N9320B spectrum analyzer (range frequency 9 kHz
to 3 GHz) to control the simulated input signal and the channel 2 is plugged to a SCA-4-10+
splitter from Mini-Circuits® of the MWC analog front-end board with four channels. Each
channel has one M1-0008 mixer from MArki® and one SXLP-36+ low-pass filter from
Mini-Circuits® with a cut-off frequency Fc(−3 dB) = 40 MHz. The SXLP-36+ filter has
been chosen to match the design of the ideal low-pass filter (sharp cut-off, flat band in
frequency range [DC-36] MHz). Figure 4 shows a block diagram of the analog board.

A PC controls the generation of the modulating waveforms with the ML605 board and
also the generation of the input signal with the arbitrary waveform generator.

Output signals yi(t) are acquired and saved by a DSO90404A Agilent Infiniium four-
channel scope which provides up 8 GHz real-time bandwidth and 40 Gsample/s sample
rate. The outputs are acquired at 40 Gsample/s. To be able to synchronize the acquisition
with respect to the modulating waveforms, an extra signal equivalent to a pulse is also
generated by the GTX 7 of ML605 board which is plugged to the scope external trigger.
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Figure 4. Block diagram of the analog board.

Figure 5 shows our compressed sampling prototype analog front-end board and the
ML605 control board.

A PC is used to apply a post-processing for the reconstruction. MWC outputs are
downsampled at Fss = 10× Fp = 104 MHz. Then a digital filter with a bandwidth Fs is
applied to eliminate aliasing effect and filtered outputs are downsampled at Fs.

Figure 5. Photo of compressed sampling prototype analog board (bottom) and the ML605 board (top).

3.3. Example of Reconstruction without Calibration

Figure 6 shows an example of spectrum reconstruction without calibration at SNR = 30 dB
from the theoretical sensing matrix. Each reconstructed spectrum is in linear scale and
has been normalized such that the power of each reconstructed spectrum is equal to the
power of the input spectrum. Real data have been acquired and saved by the scope.
Spectrum reconstruction of measured data with the theoretical sensing matrix (calculated
directly from modulating waveforms) have bad detection performances and high false
alarm compared to the results obtained for the simulated data. This result is due to incorrect
estimation of the sensing matrix linked to analog components. Indeed, analog components
introduce phases which change the theoretical sensing matrix. Consequently, the goal of the
next section is to present a new calibration method to estimate sensing matrix coefficients.
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Figure 6. Comparison of reconstructed spectrum with four transmitters and SNR = 30 dB using
theoretical sensing matrix (simulated data vs. measured data).

4. Proposed Calibration Method

To ensure correct spectrum recovery, the major problem is to estimate precisely the
sensing matrix Pe. In ideal case, it is possible to compute the sensing matrix by knowing
the modulating waveforms. However, in practice, this process brings bad results due
to the hardware design such as nonlinearities of mixers and amplifiers, filters deflects,
desynchronization of modulating waveforms, connectors and cables. Consequently, a
calibration method must be used to estimate sensing matrix coefficients.

In 2014, a calibration method for MWC system, developed by Technion, has been
proposed in [23] and provides good reconstruction performance for SNR in the whole
spectrum greater than 8 dB. The process estimates the system’s response for every frequency
band by injecting consecutive sinusoidal inputs at incremental rates. By knowing the sine
frequency of input signal and MWC outputs, it is possible to identify one column of the
sensing matrix. This step must be repeated with sine functions at different frequencies to
estimate all columns of the sensing matrix. From our experience it appears that this process
can be long and difficult because the same step must be repeated for all columns. For our
system configuration with 96 columns, the process should be repeated 49 times to complete
the calibration (due to symmetries, some columns can be estimated by pairs). That is the
reason why we propose a new calibration method which estimates the sensing matrix Pe
by injecting a single white noise signal.

Note that the calibration developed by Technion can be considered as a reference.
Indeed, researchers who design the MWC system come also from Technion. For the rest
of the paper, our results will be compared with those obtained with calibration technique
developed by Technion.

4.1. Calibration Algorithm

The calibration algorithm is divided into two main steps: preprocessing resynchro-
nization step and sensing matrix estimation step.

A specific white noise signal, called “calibration signal”, is first generated (Figure 7).
This signal is periodic with the period equal to the size of the block used for the reconstruc-
tion. Its basic pattern (N samples at Fnyq) is first generated in the Fourier domain, specifying
perfectly flat amplitudes and random phases, then an inverse-Fast Fourier Transform (FFT)
provides the samples in the time domain.
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After injection of input signal, the outputs of MWC system are recorded. In parallel,
we also record a pulse wave (output of GTX 7) which identifies the beginning of modulating
waveforms.
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Figure 7. Representation of calibration signal in time and frequency domains.

4.1.1. Resynchronization Preprocessing Step

The resynchronization preprocessing step estimates the optimal shift value dopt which
minimizes the Frobenius norm (or maximizes the inverse Frobenius norm) of the residual
matrix between shifted version of output signal and reconstructed output (relative to the
equivalent model) knowing the input signal.

To complete the calibration, we must synchronize three signals:

• the input calibration signal (composed of a repetition of N samples blocks);
• the modulating waveforms;
• the MWC outputs.

In practice, it is possible to synchronize together only two signals (for example, the
outputs and the pulse wave which identifies the modulating waveforms starts), but not
three signals. To achieve this task, digital processing must be followed.

Figure 8 illustrates the synchronization method. At the beginning of the process,
we know:

• The synchronization pulse wave (output of GTX 7) related to the modulating waveforms;
• The periodic pattern of the input signal with no knowledge of the delay;
• The four outputs of MWC.

Firstly, a coarse synchronization is conducted to determine the starting sample value
dcoarse corresponding of the beginning of the input pattern. Let us note Ns = NFs/Fnyq the
number of samples in an output block (corresponding to an input block of N samples).
Output blocks, shifted by d ∈ [0; 2Ns − 1] samples from the beginning of recorded output
yp, noted ypd , are formed to be able to estimate dcoarse. By knowing zc, which is the vector
z restricted to its active components, with Equation (3), and using the pseudo-inverse with
Equation (4), the sensing matrix P̂e can be estimated by:

P̂e = ypd zc
∗(zcz∗c )

−1 (7)

Then, the reconstructed signal yrd relative to the equivalent model knowing the input
signal is computed by:

yrd = P̂ezc = ypd zc
∗(zcz∗c )

−1zc (8)
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dcoarse is obtained by minimizing the Frobenius norm on the residual matrix R =
yrd − ypd :

dcoarse = min
d∈[0;Ns−1]

||yrd − ypd ||F (9)

with ||.||F the Frobenius norm.

Figure 8. Synchronization between input signal, modulating waveforms and MWC outputs.

For example, dcoarse is equal to 2041 in Figure 9. Note that for easier visualization it is
the inverse of the Frobenius norm (with respect to d) which is shown on the figure.

Since, as previously mentioned, we computed it for d ∈ [0; 2Ns − 1], we have two
peaks on Figure 9, while computation could be restricted to d ∈ [0; Ns − 1], this extension
is preferred, in order to confirm visually (by the presence of two similar peaks separated by
Ns samples) the validity of the obtained synchronization.
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Figure 9. Coarse synchronization with identification of pulses.

A fine synchronization (see Figure 10) is then performed. Small corrections d f ine ∈
[−2; 2]/32 are applied to dcoarse and evaluated using the same procedure as described
above, that is using Equation (7), Equation (8) and Equation (9). The samples required for
this fine synchronization are obtained by oversampling the outputs by a factor 32. The
computational load remains small because we have to test only a few values of d f ine.
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Figure 10. Fine synchronization.

Now, we know that the first output block corresponding to an input pattern starts at
dopt = dcoarse + d f ine samples from the beginning. This is represented by “input synchro”
in Figure 8.

However, at this step, the calibration can not be conducted because there is no reason
that the “input synchro” is synchronous with the modulating waveforms. To solve this
problem, the second step enables to select the time corresponding to the pulse of modu-
lating waveform which has just preceded the “input syncho”. We obtained a corrected
synchronization (“corrected synchro” in Figure 8), which is now synchronous with the
modulating waveforms, but not with the input pattern anymore. To solve this problem,
we recalculated the input pattern (framed part in Figure 8). This was easy to carry out
because we know that the input signal is periodic, so it is just a circular permutation of the
input pattern.

4.1.2. Sensing Matrix Estimation Step

By knowing the corrected input pattern and the synchronized outputs of MWC system
ysync, it is possible to estimate the sensing matrix with only one step. The estimated sensing
matrix P̂e is equal to:

P̂e = ysynczc
∗(zcz∗c )

−1 (10)

Note that the zc which appears in this equation has been recomputed because it now
corresponds to the corrected input pattern.

4.2. Examples of Calibration Sensing Matrices

To validate the programming of the reference calibration method, the sensing matrix
coefficients are firstly estimated by using Matlab simulation. Figure 11a shows the mod-
ulus of the theoretical sensing matrix Pe and estimated sensing matrix obtained by the
reference calibration method P̂eref . The modulus of the difference between the theoretical
and estimated sensing matrices shows that the matrices are equal because the maximum of
the difference is very small, i.e., less than 12× 10−8. The same conclusion can be conducted
with the sensing matrix P̂eour method estimated by our method (Figure 11b). However, our
proposed calibration method seems to be more accurate because the maximum of modu-
lus of the difference between the theoretical and estimated sensing matrices is less than
2.5× 10−15.

Figure 12 shows the comparison between theoretical matrix and calibration matrices
estimated from real measurements. The estimated sensing matrices have been normalized
relative to the Frobenius norm of the theoretical sensing matrix.
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Figure 11. Comparison between theoretical matrix and calibration matrices with Matlab simulation
(left: Modulus of theoretical sensing matrix; middle: Modulus of estimated sensing matrix; right:
Modulus of difference). (a) Reference calibration. (b) Our proposed calibration.
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Figure 12. Comparison between theoretical matrix and calibration matrices estimated from real
measurements (left: Modulus of theoretical sensing matrix; middle: Modulus of estimated sensing
matrix; right: Modulus of difference). (a) Reference calibration. (b) Our proposed calibration.
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Although these matrices have strong similarities, the modulus of the difference be-
tween the theoretical and estimated sensing matrices shows that the matrices are quite
different. That is the reason why the calibration is essential.

The next section presents reconstruction performances of our proposed calibration
method compared to the reference calibration method.

5. Performances

In order to prove the efficiency of the proposed calibration method, the probabilities
of correct reconstruction and false alarm are measured and studied correspondingly to
the levels of SNR. The results are compared to those obtained with the theoretical MWC
scheme and data from the prototype without calibration and with the reference calibration
method [23].

Based on the principle of the MWC, the input bandwidth is divided into L subbands
with a bandwidth Fp (dash lines in Figure 13 represent subbands for positive frequencies).
The goal of reconstruction algorithm is to seek the active subbands, which contain the
information of input signal. Denote Bd the detected subband from the MWC output and Br
the real subband from input signal.
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Figure 13. Comparison of reconstructed spectrum (4 transmitters, SNR = 30 dB).

The probability of correct detection Pc includes the expected activity elements among
all the reconstructed activity elements in the reconstructed channel; and Pc is estimated by
the percentage of occupation between the detected and real channels related to the real
channels occupied by the spectrum:

Pc =
%(Br ∩ Bd)

%Br
, (11)

where Bd is the detected channels occupation and Br is the real channels occupation.
The probability of false alarm Pf a is the unexpected subbands which are introduced

by the MWC output. The probability Pf a is determined by the percentage of detected
subbands different to real subbands occupation which intersect the complement of real
subbands occupied by the spectrum:

Pf a =
%((Bd \ Br) ∩ B̄r)

1−%Br
. (12)

Correct reconstruction and false alarm rates are averaged over 50 trials for each SNR
belonging to 5, 10, 15, 20, 25, 30 and 40 dB. Central frequencies of each subband of the test
signals have been randomly generated.

Figure 13 illustrates an example of spectrum reconstruction (4 transmitters at SNR = 30 dB)
obtained with theoretical MWC scheme and data from prototype with calibration versus
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without calibration. It can be noted that the locations of input spectrum are correctly
reconstructed with the calibration and similar to the theoretical MWC scheme whereas
the results are bad in location and high false alarm without calibration. Compared to
the theoretical MWC scheme, more noise is reconstructed with the calibration due to the
additional noise of analog components. Note that one false alarm appears for the frequency
range [26;36.5] MHz with the reference method. Figure 14a (resp. Figure 14b) is obtained
by zooming Figure 13 between frequency range [119;136] MHz (resp. [190;209] MHz) and
by plotting the input spectrum and spectrum reconstructed with the reference calibrated
matrix and with our calibrated matrix. From Figure 14a, it is clear that the position of the
transmitter has been correctly detected by both calibration methods. In the transmitter
subband, amplitudes reconstructed with both calibration methods are slightly different due
to the effect of noise. In the active subbands, the only noise is reconstructed depending on
the calibration method. Figure 14b illustrates partial reconstruction of transmitter position
obtained with the reference method whereas our calibration method can correctly detect
transmitter position.
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Figure 14. Zoom of Figure 13 between frequency ranges [119;136] MHz and [190;209] MHz. (a) Ex-
ample of correct reconstruction of transmitter position obtained with both calibration methods.
(b) Example of partial (resp. correct) reconstruction of transmitter position obtained with the refer-
ence method (resp. our method).

Figure 15 presents correct reconstruction and false alarm rates at each SNR level. It
can be seen that the proposed calibration method provides high performance above 15 dB
SNR, which is approximately equal to 2.4 dB in the whole spectrum. Our proposed method
seems to give slightly better results compared to the reference calibration method. Indeed,
correct reconstruction rates are 6 % higher than the reference calibration method and false
alarm rates are lower for low SNRs. The results obtained without calibration show that
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it is essential to complete a calibration because the correct reconstruction rates are very
low and the false alarm rates are very high. We also show the results obtained with the
theoretical MWC in simulation. The correct reconstruction are greater than those obtained
with the calibration. The difference can be explained by the impact of measurement on the
reconstruction. For low SNR, we obtained high correct reconstruction and false alarm rates
because there is an overestimation of the number of active channels.
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Figure 15. Correct reconstruction and false alarm rates in function of SNRs. (a) Correct reconstruction
rate. (b) False alarm rate.
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6. Conclusions

This paper presents a new hardware calibration method of Modulated Wideband
Converter based on a single measurement of a white noise signal with advanced resyn-
chronization preprocessing. The proposed method has the advantage to be simple and
time saving compared to methods based on iterative single-tones or mixture of single-tones
signals. The proposed method has been used to estimate the calibrated sensing matrix
coefficients from our prototype of Compressed Sampling based on Modulated Wideband
Converter scheme. Calibration performances have been evaluated with percent of cor-
rect reconstruction and false alarm averaged over 50 trials for 7 SNRs. As expected, the
spectrum reconstruction from measured data fails with the theoretical sensing matrix.
The proposed method proves that reconstruction with calibrated matrix provides high
performance for SNRs in the whole spectrum higher than 2.4 dB compared to the reference
calibration method.
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