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ABSTRACT 

 The modification of the composition of apatites materials can be made by several 

processes corresponding to ion exchange reactions which can conveniently be adapted to 

current coatings and ceramics and are an alternative to the set up of new synthesis methods. In 

addition to high temperature thermal treatments, which allow to virtually replace partly or 

totally monovalent OH
-
 anion of stoichiometric hydroxyapatite by any halogen ion or 

carbonate, aqueous processes corresponding to dissolution-reprecipitation reactions have also 

been proposed and used. The most interesting possibilities are however provided by aqueous 

ion exchange reactions involving nanocrystalline apatites. These apatites are characterised by 

the existence on the crystal surface of a hydrated layer of loosely bound mineral ions which 

can be easily exchanged in solution. This layer offers a possibility to trap mineral ions and 

possibly active molecules which can modify the apatite properties. Such processes are 

involved in mineralised tissues and could be used in biomaterials for the release of active 

mineral species.   
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INTRODUCTION 

 One of the most interesting property of apatites is their ability to accept ionic 

substituents and vacancies. Although living creatures have fully used these abilities to adapt 

mineralised tissues to their physiology and functional needs [1,2], substituted apatites are only 

at the beginning of their development in elaborated tailored biomaterials and some of them 

have been shown to exhibit improved biological properties compared to stoichiometric 

hydroxyapatite (s-HA) [3-7].  Most substituted apatites are obtained by synthesis and in 

addition to bulk composition alterations, modifications of crystal size, morphology, surface 

composition, physical-chemical properties (zeta potential, surface energy, solubility) and 

materials properties (microstructure, texture, porosity) may also occur which do not allow a 

clear identification of the factors involved in the biological behaviour of these materials [6]. 

Ion exchange processes have been the subject of different studies and are an interesting 

alternative to synthesis to modify fully or partly the composition of apatite and their 

properties in a controlled way. Considering the composition of apatites :  

Me10 (XO4)6 (Y)2, 

where Me are bivalent cations, XO4 trivalent anions and  Y monovalent anions. High 

temperature reactions allow exchange of Y ions and in a few cases removal of cations. 

However most exchange reactions involved in living beings concern nanocrystalline apatites 

and are related to the exchange of surface ions. These ionic exchanges play a considerable 

role in homeostasis and in intoxication (and sometimes detoxification) by mineral ions, but at 

a very different time scale they seem also to participate in slower phenomenon resulting in 

diagenetic alterations of geologic sediments and fossils. Such exchanges are made possible 

because of the very high specific surface area of the nanocrystals but also, essentially, because 

of the existence of metastable hydrated layer on the crystals surface containing loosely bound 



ions [8]. The aim of this report is to review and describe some of the ions exchange processes 

in apatites and their related effect on materials properties and biological behaviour.  

 

TYPES OF ION EXCHANGES 

 

High temperature exchanges reactions. 

High temperature exchange reactions were the first to be utilised to change apatite 

composition. Elliott and Young [9] could thus prepare the first synthetic HA monocrystals 

from Chlorapatite monocrystals obtained by a flux method, and solve  the crystal structure of 

HA [10]: 

Ca10 (PO4)6 Cl2 + H2O  ↔ Ca10 (PO4)6 (OH)2 + 2HCl    (I) 

The exchange reaction involved only ion diffusion at temperature close to 1300 °C and kept 

the monocrystals unchanged. Several other reactions were then done using this principle and 

it is now possible to replace virtually any Y ion from the apatite structure using an adequate 

gaseous atmosphere. Thus the reverse reaction of reaction (I) can also be used to prepare 

Chlorapatite from s-HA crystals and similar reactions may be carried on to prepare 

Fluorapatite, Bromapatite or carbonate apatite (type A, where OH ions are replaced by CO3
2-
 

ions)[11]: 

Ca10 (PO4)6 (OH)2 + HX  ↔ Ca10 (PO4)6 X2 + H2O    (X=Cl, F, Br)  (II) 

Ca10 (PO4)6 (OH)2 + CO2  ↔ Ca10 (PO4)6 CO3 + H2O    (III) 

Although Fluorapatite are among the most stables apatites it is also possible to replace F
-
 ions 

at high temperatures by Cl
-
 ions using several Chlorinated  compounds (SO2Cl2,  POCl3, or 

even Cl2) : 

Ca10 (PO4)6 F2 + Cl2  ↔ Ca10 (PO4)6 Cl2 + 2ClF 



The advantage of these processes is that they can be easily performed from existing HA (or 

FA) synthesis and they do not disturb, generally, the ceramic microstructure (crystal size, 

porosity) provided the exchange temperature is lower than 1000°C. All these reactions 

involve ion diffusion in apatites and in some cases restructuration. The reaction rates depend 

of course on the temperature, on the size of ions and crystals, and on the porosity of the 

ceramics. Thus fluoridation and chlorination of HA are relatively fast reactions and crystals of 

a few hundred of microns can be totally exchanged in a few hours at 900°C. Carbonation on 

the contrary appears much slower. 

Such processes have been applied to study the effect of carbonation in type A position 

on biological properties [12-13]. The surface of a HA dense ceramic could be totally 

transformed into type A carbonate apatites. The carbonation was related to a decrease of the 

dipolar component of the surface energy and to a lower initial adhesion and spreading of 

osteoblast  compared to HA associated with a lower production of collagen [12]. The same 

samples showed a poor adhesion of osteoclasts  and a low resorption ability [13]. 

 High temperature solid-gas reactions, using chlorinated gas, may also be used to 

remove volatile chlorine compounds. These reactions have been involved in the recuperation 

of Uranium and rare earth from apatites as well as elements such as V and Mn.  They could be 

used for the purification of HA ceramics and the removal of trace elements [14]. 

 

Low temperature aqueous ion exchange reactions involving well crystallized apatites. 

Although low temperature exchange reactions have also been described [15] they generally 

occur in aqueous media and they involve in most instances a dissolution-reprecipitation 

mechanism. Such reaction may be used to modify partly or totally the surface composition of 

ceramics or coatings. In order to observe such reactions the resulting apatites shall be less 

soluble than the starting compounds in the solution conditions. This is the case, for example, 



of fluoride uptake by HA. Due to the existence of solid solution and epitaxial growth however 

surface equilibration may often occur limiting the extent of the pseudo-exchange phenomenon 

especially at physiological temperatures. Such reactions may however be useful and they have 

been proposed for the transformation of coatings and ceramics surfaces. They essentially lead 

to more stable, less absorbable coatings with increased surface area, nucleation ability and 

adsorption properties.  

As an example aqueous fluoridation of plasma-sprayed HA coatings can be obtained by 

treatment of the raw coating in a fluoride-containing solution (KF : 0.05 M at 100 °C). The 

addition of phosphate (F/P = 1/3) in the solution and the neutral pH, prevent the formation of 

calcium fluoride and favour the formation of fluoridated apatites [16]. The treatment is 

completed after 10 hours and results in the formation of fluoridated apatite crystals on the 

surface of the coating (figure 1) essentially at the expense of the amorphous fraction of the 

plasma sprayed coating. The modified surfaces have been tested in cell culture with human 

osteoblasts, although cell adhesion was found about equivalent on treated and raw surfaces, 

cell proliferation greatly improve, after 10 days, on the fluorinated surface (figure 2 and 3). In 

addition the fluoridation treatment considerably reduced the degradation of the coating. 

The two processes which have been described lead to well crystallised apatites very different 

from nanocrystalline bone apatites. These offer in addition to simple ionic substitution in the 

lattice enhanced possibilities of reactivity and ion substitution due to their remarkable surface 

properties.  

 

Ion exchange reactions involving nanocrystalline apatites.  

Nanocrystalline apatites offer faster and improved capabilities for ion exchanges than well 

crystallized apatites. This phenomenon has been described several decades ago, for the first 

time by Newman [17], but its interpretation was not clear. Since then several spectroscopic 



studies have consistently confirmed the existence in apatite nanocrystals of non-apatitic 

environments of the mineral ions. Solid state NMR data have indicated that these 

environements corresponded to a hydrated layer probably located at the crystal surface[18-

19]. Very recently it has been shown that the hydrated surface layer was structured in aqueous 

media, but very fragile and that it was destroyed by drying the samples [20]. However, even 

in aqueous media, the hydrated layer is metastable, compared to an apatite structure, and it is 

irreversibly transformed into apatite on ageing in aqueous media [8]. It has been suggested 

that the hydrated layer could lower the surface energy of the nanocrystals and thus favour 

their nucleation in aqueous media [21]. With its loosely bounds mineral ions, this layer seems 

involved in homeostasis and in other interactions of bone mineral crystals with their 

surrounding media. It might also play a role in mechanical properties of mineralised tissues, 

strongly related to the hydration level, and also possibly in biological regulation processes 

involving specific bone proteins and organic constituents [22]. The interactions of the 

nanocrystal surface with its aqueous environment are summarised in figure 4.  

The exchange reactions involving the surface layer are fast and easy. Concerning Ca-Mg 

exchange, for example, the equilibrium is reached in a few minutes and the reaction can be 

made at room temperature. The level of exchange seems always related to the maturation 

stage of the crystals: it decreases considerably in matured crystals (figure 5) due to the 

reduction of the surface hydrated layer. The exchange level depends also on the nature of the 

mineral ions. For example for identical solution concentrations the exchange rate of Sr 

appears always higher than that of Mg at any maturation stage [23]. When the foreign mineral 

ions remain located in the hydrated surface layer they are available for reverse exchange. Like 

the direct ion exchange reaction, the reverse reactions are fast and rapid although incomplete: 

an ion residue remain always in the nanocrystals.  



The foreign mineral ions behaviour can however be very different when ageing (maturation) 

is involved. When the foreign mineral ion can enter the apatitic lattice and substitute for 

calcium, phosphate or OH
-
 ions, they do not disturb the maturation process and, as they enter 

in the growing apatitic domains, their concentration in the hydrated layer progressively 

decreases and they become unavailable for reverse exchange reactions. On the contrary if the 

foreign mineral ions cannot enter or enter with difficulties in the apatitic domains they remain 

exchangeable and they may possibly stabilise the hydrated layer [23]. These different 

behaviour are illustrated by Sr and Mg ion exchanges. In the case of Sr, which can form 

continuous solid solutions with calcium phosphate apatites, the exchange rate decreases as the 

maturation time increase after a primary exchange reaction. This behaviour indicate the 

incorporation of the ion in the growing apatitic domain during maturation. On the contrary for 

Mg
2+
 ions, which can only very partly substitute for Ca in the apatitic lattice, it remain 

exchangeable even in coprecipitated (Ca and Mg) apatites for any maturation time (table 2). 

The reverse exchange reaction testifies for the availability of the Mg
2+
 ions and their 

preference for the hydrated layer. Carbonate shows an intermediate behaviour. Part of the ions 

can be incorporated in apatitic sites but some may remain in the hydrated layer depending on 

the maturation stage. These ions (Mg
2+
 and carbonate) disturb the growth of the apatite lattice 

at they may delay the maturation process. Living beings have learned to control and use these 

specificities to regulate their homeostasis. It can then be understood that fresh mineral crystals 

with a well developed hydrated layer are a living necessity and it is one of the reasons why 

energy is spent, in mammals, for bone renewal and remodelling. 

An example of use of these possibilities is given by strontium uptake and release from bone 

mineral. Sr
2+
 ions have been shown to have a direct effect on bone cells and they are proposed 

for the treatment of osteoporosis [24]. Sr
2+
 has been shown to be taken up, like many other 

bone seeking elements, preferably by recent mineral deposits, for example the amount of Sr
2+
 



was found to be 2 times higher in cancellous bone than in compact bone [23].  This 

phenomenon can be due to several causes : better blood supply and contact with the mineral, a 

faster turn-over rate, but also a higher amount labile non-apatitic environment in cancellous 

than in compact bone. In fact the non-apatitic environment may appear as a  reservoir for the 

storage and regulation of circulating Sr
2+
.  

Several mineral ions have a direct action on cells when they are in solution (Sr
2+
, Mg

2+
, Mn

2+
, 

Zn
2+
) and nanocrystalline apatites can be used as ion reservoir for the slow release of these 

mineral ions. The release would be determined by two processes a spontaneous release by a 

reverse ion exchange with calcium ions of  body fluids, determined only by the local 

equilibrium conditions and a cell-mediated release resulting from the complete dissolution of 

the crystals by osteoclast cells. The first process could be interesting for the local stimulation 

of stem cells or osteoblast on a nanocrystalline Ca-P material.  The second would be a long 

term effect, necessitating a remodelling process to be activated, and involving both osteoblast 

and osteoclast cells. In addition it shall be emphasized that the hydrated layer offer a wider 

range of ion substitution and uptake than the apatite lattice.  

 

CONCLUSION 

Ion exchange can be used at different levels to modify the properties of apatite ceramics. 

Nanocrystalline apatites especially offer different levels of ionic susbtitution which are used 

in certain living creatures but which have not yet been utilised in biomaterials. The main 

difficulty is the very high reactivity and the unstability of these compounds which raise 

problems of accurate caracterisation and reproducibility, stability and materials preparation. 

In order to take advantage of these properties, low temperature processes of ceramic making 

have to be investigated and developed. 
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Table 1 : Sr
2+ 
ions released after primary exchange and increasing ageing time before 

reversion. 

Maturation

time

Sr released

(% of initial

content)

no maturation 90

1 day 39

3 days 23

10 days 23

30 days 20



Table 2 : Mg
2+ 
ions released from coprecipitated (Ca

2+
 + Mg

2+
) nanocrystalline apatites after 

different maturation times. 

 

 

 

 

Maturation

time

Mg released

(%)

1 day 84

3 days 84

10 days 87

30 days 82



Figure Legends : 

Figure 1: SEM micrograph of the surface after treatment in the fluoridating solution (KF: 0.05 

M; KH2PO4: 0.15M; pH: 7, temperature:  100 °C). The layer is constituted of thin needle-like 

crystals (0.5 to 3 micrometer long, 0.1-0.3 width). The fluoridation rate is close to 80%. 

 

Figure 2: Human osteoblast cells adhesion on the raw (vacuum plasma-sprayed HA) and the 

Fluoridated surface after 3 and 6 hours. 

 

Figure 3: Human osteoblast cells  proliferation on the raw (vacuum plasma-sprayed) and 

fluoridated surface. 

 

Figure 4: Nanocrystalline apatite model. The hydrated surface layer may trap and release 

several ions from the solution. Due to ions mobility and disturbances related to substitution, 

charged proteins moieties may also be attached to the surface layer. Some of the mineral ions 

may be included in the regular, non-stoichiometric apatite domains during their growth. 

 

Figure 5: Example of Ca-Mg exchange in apatite at different maturation stages. The exchange 

rate (Ca/Mg) decreases as the maturation time increase. The exchange is almost totally 

reversible (Ca/Mg/Ca). 
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