
HAL Id: hal-03601665
https://hal.science/hal-03601665v1

Submitted on 6 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precomputation for Rainbow Tables has Never Been so
Fast

Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel

To cite this version:
Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel. Precomputation for Rainbow Tables has Never
Been so Fast. Computer Security – ESORICS 2021, 12973, Springer International Publishing, pp.215-
234, 2021, Lecture Notes in Computer Science, �10.1007/978-3-030-88428-4_11�. �hal-03601665�

https://hal.science/hal-03601665v1
https://hal.archives-ouvertes.fr

Precomputation for Rainbow Tables
Has Never Been so Fast

Gildas Avoine1,3[0000−0001−9743−1779], Xavier Carpent2[0000−0003−1697−6940], and
Diane Leblanc-Albarel3[0000−0001−5979−8457]

1 CNRS, INSA Rennes, IRISA, France
{gildas.avoine, diane.leblanc-albarel}@irisa.fr

2 KU Leuven, Belgium
xavier.carpent@kuleuven.be

Abstract. Cryptanalytic time-memory trade-offs (TMTOs) are tech-
niques commonly used in computer security e.g., to crack passwords.
However, TMTOs usually encounter in practice a bottleneck that is the
time needed to perform the precomputation phase (preceding to the at-
tack). We introduce in this paper a technique, called distributed filtration-
computation, that significantly reduces the precomputation time without
any negative impact the online phase. Experiments performed on large
problems with a 128-core computer perfectly match the theoretical ex-
pectations. We construct a rainbow table for a space N = 242 in approx-
imately 8 hours instead of 50 hours for the usual way to generate a table.
We also show that the efficiency of our technique is very close from the
theoretical time lower bound.

Keywords: Cryptography · Time-Memory Trade-Offs (TMTO) · Rain-
bow Table · Distributed Precomputation.

1 Introduction

Inverting a hash function (or equivalent cryptographic problem) can be addressed
using an exhaustive search when the problem is reasonably sized. An illustra-
tive case is password cracking, which consists in recovering a password from its
hash stored by the targeted system. The computation cost may be prohibitive,
though, when the attack is repeated. A time-memory trade-off (TMTO) is then
an efficient alternative to an exhaustive search. It consists of a precomputation
phase – or offline phase – performed once then stored, and an online phase per-
formed each time the hash function should be inverted. The precomputation
phase is therefore exploited to accelerate the online phase.

A TMTO, introduced by Martin Hellman [1], offers a significant speedup in
practice. Given a problem of size N (i.e., N = |A| where A is the considered set
of possible solutions) and a memory M , the time complexity of the online phase
is O(N2/M2) instead of N for the exhaustive search. It is worth noting that the
time complexity of the precomputation phase remains O(N). This means that
using a TMTO makes sense in specific scenarios: the attack has to be performed

2 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

several times, the attack itself has to last for a short period of time (“lunch time”
attack), or the attacker is not powerful enough to perform an exhaustive search
but he can download the result of a precomputed phase, stored in what is called
tables.

Hellman’s work has been improved over time, particularly with the rainbow
tables [2] and the distinguished points [3]. These variants are faster [2,4,5] than
the original time-memory trade-off. A few improvements [6,7] have been sug-
gested on the distinguished points, and the rainbow tables also benefited from
various optimizations concerning the online phase, notably the way of storing
and using tables [8,9,10,11], checkpoints [12] and the use of data [13]. In 2016,
Lee and Hong [4] demonstrated that, in the absence of excessive constraints such
as a very limited memory, rainbow tables are the most efficient TMTOs for both
online and precomputation phases. We consequently focus on rainbow tables in
this paper.

The precomputation phase is very costly, though, typically of the order of
160N when considering practical scenarios, even for rainbow tables. The pre-
computation phase must consequently be distributed on many computers.

This paper introduces distributed filtration-computation, a technique that
drastically decreases the cost of the precomputation phase and that is compliant
with a distribution of that phase. The filtration process identifies computations
that will eventually be useless, avoiding so to carry out computations that would
be thrown out at the end precomputation phase. The distribution trivially con-
sists in sharing the computing load among several computing units. In common
scenarios, the technique we introduce divides by 6 the precomputation time, but
the speedup can be much higher in extreme cases, namely when considering what
are called maximum tables. As far as we know, this is the first time a technique
is introduced to improve the precomputation phase of TMTOs.

After providing background on rainbow tables in Section 2, we introduce the
filters and a lower bound on the precomputation in Section 3. We provide a
distributed version of the filters in Section 4, with an optimization algorithm
for their positions, and we finally illustrate the theory with practical results in
Section 5. Note that Appendix D contains a table that recaps the notations used
through this paper.

2 Background

2.1 Rainbow Tables

Given a hash function h : A→ B, and given h(x) ∈ B, the purpose of a TMTO is
to retrieve x ∈ A. To do so, the precomputation phase of the TMTO precomputes
rainbow matrices, which consist of chains of elements xi ∈ A (0 6 i 6 t) such
that xi+1 = fi(xi), where x0 is an arbitrary value, introduced below, and fis are
hash-reduction functions defined as follows:

fi : A→ A
x 7→ Ri(h(x))

Precomputation for Rainbow Tables Has Never Been so Fast 3

where each Ri : B → A is a reduction function, that is a function that aims to
map each value in B to a value in A. The choice of the reduction functions is out
of the scope of this article, and interested readers can refer to [2]. Note however
that using a different reduction function in every iteration is a key feature of
rainbow-based TMTOs that reduces the number of merging chains. It is also
important to note that the execution time of a reduction function is negligible
compared to that of a hash function.

Once the precomputation phase is completed, the matrix (see Figure 1) con-
sists of m× (t+ 1) values denoted Xj,i with 0 < j 6 m and 0 6 i 6 t, and Xj,i

the element in row j and column i.

The length t, of a chain is the number of application of the Hash-Reduction
functions fi performed to construct the chain.

f1 f2
X1,0 −→ X1,1 −→ X1,2 X1,t

f1 f2
X2,0 −→ X2,1 −→ X2,2 X2,t

...
...

...
...

f1 f2
Xm,0 −→ Xm,1 −→ Xm,2 Xm,t

Fig. 1. Rainbow Matrix

Once the rainbow matrix is computed, only the first column that contains
the so-called Start Points (SP) and the last column that contains the End Points
(EP) are saved in what is called a table3. All intermediary columns are discarded
to save memory.

Using a different reduction function in each column reduces the number of
merging chains. Indeed, with rainbow tables, two chains merge if they collide in
the same column.

From here on we consider a single matrix for the sake of clarity, but a rainbow-
based TMTO usually consists of a few independently-computed matrices in order
to reach a high success rate, typically 4 tables guarantee the success of the online
phase with a probability greater than 99.96%.

2.2 Clean Rainbow Tables

Using a different reduction function per column reduces the number of merging
chains, but two chains colliding in the same column can still happen. Detecting
such a merge is however trivial, as it necessarily leads to equal EPs.

3 This paper will not discuss how to use the rainbow tables during the online phase,
as the approach is developed in other papers.

4 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

Given that colliding chains make the TMTO less memory-efficient due to
the overlapping values, Philippe Oechslin introduced [2] tables without merges,
which are called clean tables4[14].

Merging chains are deleted to obtain clean tables, so if a matrix contains m0

chains, the corresponding clean table only contains mt < m0 chains, with mt

the number of chains with distinct EPs in a matrix of length t.

2.3 Maximum Rainbow Tables

Given a set A with N = |A|, there is a limit to the number of EPs that can be
obtained without duplicates. This number, denoted mmax

t , depends on N and
the number of columns t in the table5. mmax

t is obtained from Eq. (1) [12] where
mi is the theoretical number of different elements in column i:

mi ≈
2N

i+ γ
, with γ =

2N

m0
. (1)

Given a number of columns t+ 1 and a sufficiently large number of elements
N , the expected maximum number of chains mmax

t per clean rainbow table is
hence given by Theorem 1 [12].

Theorem 1. Given t and a sufficiently large N, the expected maximum number
of chains per clean rainbow table is:

mmax
t ≈ 2N

t+ 2
.

Proof. The proof is presented in [12].

In practice, computing m0 = N chains is prohibitively expensive, so the
chosen m0 is generally markedly smaller than N . This produces tables of size
αmmax

t with 0 < α < 1. Usually, chains are generated until a satisfactory α
is reached and m0 is then determined retrospectively. A satisfactory α allow to
have an online success rate close to the rate of a maximal table6. When α is
close to one (e.g., α = 0.95), the table is said to be quasi-maximum.

3 Filtering Chains

3.1 Preliminary Result on Quantifying Precomputation

In order to generate clean tables containing mt = αmmax
t chains, the common

approach consists in computing chains until obtaining the desired number of

4 Initially called perfect tables by Philippe Oechslin.
5 The number of elements in a clean table is constant which implies that t is inversely

proportional to m. The larger m is, the faster the online phase will be, but the more
memory is needed for storage and inversely.

6 The probability of success for a single maximal table is 86% when t is large. For the
same t and a table of size 0.95mmax

t , the probabilitity of success for a single table is
85%

Precomputation for Rainbow Tables Has Never Been so Fast 5

unique end points. We provide in Lemma 1 and Proposition 1 formulas to predict
the value m0 required to reach on average αmmax

t unique end points. α is called
the maximality factor.

Lemma 1. Let r = m0/m
max
t . The expected number of unique EPs is given by:

mt ≈
1

(1 + 1
r)
mmax
t .

Proof. From Eq. (1), we have m0 = 2N
γ . Given that m0 = rmmax

t , we can write

γ = 2N
rmmax

t
. Using Theorem 1, we then obtain γ ≈ t+2

r ≈ t
r . Replacing γ in

Eq. (1) for i = t, we finally have:

mt ≈
2N

t(1 + 1
r)

=
1

(1 + 1
r)
mmax
t .

ut

Proposition 1. With a target of mt = αmmax
t unique endpoints, m0 = rmmax

t

chains need to be generated, with:

r ≈ α

1− α
.

Proof.

From Lemma 1: mt ≈ 1
(1+ 1

r)
mmax
t .

Since mt = αmmax
t : α ≈ 1

(1+ 1
r)

Which conduct to : 1
r ≈

1
α − 1⇔ r ≈ α

1−α
ut

0 2500 5000 7500 10000

i

109

1010

1011

1012
m0 = N

m0 = 20mmax
t

Fig. 2. Number of unique elements mi remaining in column i (log scale) according to
the value of m0 for N = 242 and t = 10 000.

6 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

To illustrate Proposition 1, let us consider the case r = 20, which results in
mt ≈ 0.95mmax

t . This is a reasonable number that provides a high quality table
(mt relatively close to mmax

t), while significantly reducing the precomputation
cost (compared to the m0 = N case). With N = 242 and t = 10 000 for in-
stance, generating 20mmax

t chains instead of N brings the number of chains to
be generated from 440×1010 to 1.7×1010 – a 258-fold reduction – while keeping
the number of endpoints very close to the maximum, and thus preserving the
density of the trade-off.

Figure 2 illustrates the difference between the scenarios m0 = rmmax
t and

m0 = N in terms of maximum number of elements in each column.

3.2 Intermediary Filtration

Classically, computing a rainbow table requires m0×(t+1) elements to compute,
although only mt × (t+ 1) elements are represented in the final (clean) matrix.
Discarding merged chains at the end of the precomputation is a wasted effort,
because a single chain is kept among multiple chains with the same EP (i.e., hash
operations performed after a merge occurs are useless). An option to mitigate
this waste is to remove duplicated values progressively.

So, instead of computing the full chains in a row, from the SPs to the EPs,
chains are divided into sub-chains, and merging chains are detected and dis-
carded at the end of each sub-chain. A sub-chain is delimited by Intermediary
Points (IPs). Computation of chains is thus performed “column by column” (or
group of columns after group of columns), as opposed to the typical “chain-by-
chain” method. A filter is placed in selected columns (IPs): when all sub-chains
have been computed up to the filter, a filtration is performed: only one of the
merged chains is saved. Figure 7 in appendix C, presents the mechanism of
filtration with an example zooming on 2 filters.

3.3 Filtration in Each Column

The minimum number of elements to be computed to generate a table is obtained
when duplicates are removed in each column, i.e., if each chain of length t is
divided in t sub-chains of length 1.

Proposition 2. Let mi denote the number of unique elements in column i of a
rainbow matrix. The number P of hash operations to precompute a mt × (t+ 1)
clean rainbow matrix is lower bounded by:

P ≥
t−1∑
i=0

mi.

Proof. Given that the minimum hash operations to compute in order to obtained
a table is when duplicates are removed in each column and that mi denote the
number of unique elements in column i, then the expression of the lower bound
is trivial.

Precomputation for Rainbow Tables Has Never Been so Fast 7

ut
Theorem 2 quantifies this with results from Section 3.1.

Theorem 2. Given m0 = rmmax
t the number of SPs, t + 1 the number of

columns, and r � t, we have that the näıve precomputation cost is:

Pnaive = m0t ≈ 2rN, (2)

and the minimum precomputation cost is:

Pmin =

t−1∑
i=0

mi ≈ 2N ln(1 + r). (3)

Proof. The proof of Eq. (2) follows directly from m0 = 2N
γ ≈

2rN
t . For Eq. (3),

we have:
t−1∑
i=0

mi = 2N

t−1∑
i=0

1

i+ γ
= 2N

t+γ−1∑
i=γ

1

i
= 2N

[
t+γ−1∑
i=1

1

i
−
γ−1∑
i=1

1

i

]
= 2N [Ht+γ−1 −Hγ−1] ≈ 2N [ln(t+ γ − 1)− ln(γ − 1)]

= 2N ln

(
t+ γ − 1

γ − 1

)
with Hn =

∑n
k=1

1
k the n-th harmonic number. Using γ ≈ t

r and given that
r � t, the exected result is obtained. ut

For values of r such that m0 � N (i.e., “reasonable” values), we can make
the approximation that γ is large (leading itself to the asymptotic approximation
of Hn). This allows an expression of Pmin that only depends on N and r and is in
particular virtually independent of t. For m0 = N however these approximations
do not hold, and the resulting expression of Pmin does depend on t (Corollary 1).
We remark that the precomputation cost in all cases is linear in N .

Corollary 1. For the case m0 = N , precomputation costs are respectively Pnaive =
Nt and Pmin ≈ 2N(Ht+1 − 1), with Hn the n-th harmonic number.

Proof. The expression for Pmin results from instantiating 2N [Ht+γ−1 −Hγ−1]
(similarly to the proof of 2) to γ = 2 (from Eq. (1)).

From Theorem 2, we observe, for instance, that using a filter in each column
with a typical r = 20 reduces the number of performed hash operations by
about 85% (regardless of N or t). Tables 1 and 2 display the maximum speedup
Pnaive/Pmin that can be obtained when filtering in each column with respect to
no intermediary filtering. Results in Table 1 are valid for any (sensible) N and
t.

Table 1. Speedup for quasi-maximum
tables for different values of r.

r 10 15 20 30 50
r

ln(1+r)
4.17 5.41 6.57 8.74 12.72

Table 2. Speedup for maximum tables
of various lengths.

t 1 000 10 000 100 000
t

2(Ht+1−1)
77.03 568.98 4508.50

8 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

3.4 Filtration in Chosen Columns

In practice, it may not always be beneficial to filter in every column, because
this may involve an excessive overhead due to the filtering cost (results provided
in Section 3.3 consider the number of hash operations, but they do not consider
the additional time due to filtration and communication). Before considering this
cost, an intermediary step consists in evaluating the number P of hash operations
to be performed if the filtering technique is applied to a < t+ 1 columns only:

P =
a∑
i=0

mci(ci+1 − ci), (4)

where ci the column of the i-th filter, and c0 = 0 and ca = t+1. Given a number
of filters a and t very large compared to this number7, the optimal average
number of hash operations is given in Theorem 3.

Theorem 3. The optimal average number of hash operations for precomputa-
tion with a filters and a� t is:

P = 2Na

[(
t+ γ − 1

γ

) 1
a

− 1

]
.

The optimal placement of the filters is given by:

ci = γ

(
t+ γ − 1

γ

) i
a

− γ + 1.

Proof. See Appendix A. ut

7 If a is too close to t, several filters could be affected to the same column. Choosing
a� t is not a problem, as presented in Figure 3.

Precomputation for Rainbow Tables Has Never Been so Fast 9

0 20 40 60 80 100
a

0.2

0.3

0.5

1.0

2.0
×1014

P with a filters

P with t filters

Fig. 3. Number of hash operations P (log scale) according to the number of filters used
a, with N = 242, t = 10 000, and r = 20. P with a filters according to Theorem 3 and
P with t filters according to Theorem 2.

Figure 3 illustrates Theorem 3 for N = 242, t = 10 000, and r = 20. It shows
the number of hash operations needed for precomputation with varying number
of filters a, placed according to Theorem 3. It also displays the lower bound
(Pmin) in terms of hash operations, which is reached when a filter is applied in
each column. The case a = 1 corresponds to Pnaive (filtration only in the last
column).

It indicates diminishing returns in increasing a. For instance in that scenario,
P with a single filter is 2.88 times faster than using no filter. On the other
hand, using a filter in each column is only about 1% faster than using 50 filters.
Note that the optimal distribution of filters is actually not uniform. Indeed,
detecting merges as soon as they occur avoids to waste time computing the
useless remaining parts of the chains. As a consequence filters are mostly located
on the left-hand parts of the chains.

This, together with the fact that the cost of non-hashing operations is not
necessarily negligible in a practical implementation, implies that a limited num-
ber of filters is preferable. The next sections discuss an implementation and
quantify this effect.

4 Distributing Precomputation

4.1 Distribution and Filtration

Even with filters, generating rainbow tables on a single computing node takes
too much time when considering practical cases. To compute m0 chains of length
t, m0t = 2rN hash operations are needed. For example, for N = 242 and r = 20,
building a clean table of about 0.95mmax

t chains with optimal filters requires

10 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

2.7×1013 hash operations, which would take about 40.5 days on a single processor
core.

To generate tables of such size, precomputation should be distributed. With-
out filters, the precomputation phase is easily parallelizable. If nh hashing nodes
are available, the total precomputation time is simply divided by nh, with each
hashing node performing 2rN

nh
hash operations (assuming only the hashing time

is taken into account and all hashing nodes have the same performances).
However, as seen in Section 3.2, precomputing a (quasi-maximum) clean rain-

bow table without intermediary filtering wastes significant effort due to merging
chains. Therefore considering both distributing and filtering is essential8.

4.2 Distributed Architecture

Distribution of the precomputation phase with intermediate filtering requires the
nodes to communicate. We consider in what follows that nh nodes are dedicated
to perform hash operations and nf nodes to filter chains, with nh + nf = n.
Filtration and computation of chains are carried out in parallel9, in an effort to
minimize the number of non-hashing operations. Sub-chains computed by the
nh hashing nodes are sent eagerly to the nf filtration nodes.

In the environments and problem sizes we considered, the filtration effort
was not significant enough compared to the hashing effort to warrant using
more than a single filtration node. It is possible that for other environments
(e.g., low bandwidth) or larger spaces, dedicating more nodes to filtering could
be beneficial.

4.3 Estimation of the Precomputation Time

Precomputation Process In an environment with a single filtration node,
this node is also in charge of the different tasks sequencing. A job is defined as a
number of sub-chains to be computed between two filters. A job of size s contains
s SP-IP pairs. Precomputations are hence divided in two main parts: jobs to
be performed between filters and the filtration of these jobs. Precomputations
consists of managing, for each filter, the sending of jobs to the hashing nodes
and the filtration of the completed jobs.

The rationale behind choosing to bundle sub-chains into jobs is to mitigate
the communication overhead. Using s = 1 is, for instance, a bad idea, because
the overhead due to the communication, would significantly hinder performance.
On the other hand, using a very large s may result in additional idle time by
the computing nodes, for instance if there is no available chains left to compute
for an idling computing node but some other computing nodes are still busy10.
In what follows, we consider that the value of s is reasonable.

8 Distributed filtration-computation has negligible impact on the online phase, includ-
ing its many improvements. See Appendix B for more details.

9 Technically, filtration starts and stops slightly after computation of chains.
10 Experiments show that, for the typical problem sizes and architecture considered,

choosing s to be anywhere from 1 000 to 100 000 mitigates both of these issues. The

Precomputation for Rainbow Tables Has Never Been so Fast 11

Once receiving a job, a hashing node starts from each IP to compute the new
IPs corresponding to the column of the next filter. Once these computations are
done, it returns the SPs and the new IPs to the filtration node, which sends a new
job back to it. The filtration node purpose is to receive jobs from hashing nodes
and send new ones as soon as it receive it. At the meantime the filtration node
filters already received jobs. This procedure is repeated between each filter until
the end of the computation phase. As described in Section 3.4, it is not possible
in a distributed architecture to filter in every column since the filtration adds
an overhead. The problem of choosing the positions of the filters is discussed in
Section 4.4.

Impacting Functionalities Several functionalities are required to perform
the precomputation phase: hashing (i.e., computing sub-chains), filtration, and
communication. In this section the way to evaluate the time needed for each of
these functionalities is described.

Hashing time (H). Jobs computations are carried out by hashing nodes. Given
a filters with a < t+ 1, the total number of hash operations to be performed is∑a
i=1mci−1

(ci − ci−1) (Eq. (4)) with ci the column of the i-th filter, c0 = 0 and
ca = t+1. A hashing node can perform vh applications of fi = Ri ◦h per second.
vh is determined before the beginning of precomputations and depends of the
hashing nodes performance. Computations of chains are considered to be done in
parallel, by nh hashing nodes with equal performances. The total hashing time
can therefore be estimated as:

H =
1

nhvh

a+1∑
i=1

mci−1(ci − ci−1). (5)

Filtration time (F). For a filter in column i, the number of points that have to
be filtered is mci−1 . The total number of points that have to be filtered in the

entire precomputation is hence
∑a+1
i=1 mci−1

. We consider that a filtration node
can perform vf filtrations per second. The total time due to filtration is thus:

F =
1

vfnf

a+1∑
i=1

mci−1 . (6)

We also model for a potential overhead due to the filtration. This can for instance
result from processing the output of the filtration into jobs to be sent to hashing
nodes. This overhead depends on the number of elements generated and depends
on the implementation (filtration algorithm, memory allocation, etc.). Given do
the average overhead time per point, the total overhead O can be expressed as:

O = do

a+1∑
i=1

mci−1
. (7)

particular choice of s therefore has negligible impact on the performance, provided
it lies in that range

12 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

Communication time (C). Communication time is the time needed for the com-
munication of jobs between filtration nodes and computing nodes. Let dc be the
average time for a job to be sent from a filtration node to a hashing node and
back. We assume that when a communication is in progress with one hashing
node all the other hashing nodes are computing. The impacting communication
time can then be estimated by:

C =
dc
nh

a+1∑
i=1

mci−1
(8)

Total time. Given that computation of sub-chains and filtration are performed
in parallel, the most impacting component in the total time spend to generate
a rainbow table is the maximum time between the hashing time H and the
filtration time F i.e., Max(H,F)11. To obtain the total time, the communication
time has to be added as well as the overhead time due to filtration. The total
time T needed to generate a clean rainbow table is hence:

T = Max(H,F) + C +O. (9)

4.4 Optimal Configuration

The number of filters and their positions have a considerable impact on the
precomputation time. Let a configuration be a set C = {c1, . . . , ca}, where a is
the number of filters, and ci the position (column number) of the i-th filter. Let
C∗
a be the configuration of a filters that minimizes Eq. (9), and C∗ = min

a
C∗
a .

Due to the various operations outside of hashing, in particular the filtering
process (which, to some extent, can be done in parallel to hashing) and other
communication/data processing overheads, the configuration given by Theo-
rem 3 typically gives sub-optimal results. For this reason we rely instead of
numerical minimization of Eq. (9), which models the precomputation time given
by our implementation.

We settled on a truncated-Newton method [15], an optimization algorithm
suitable to solving bounded optimization problems with many variables (see
e.g., [16] for a thorough description). The minimization is used to find C∗

a , cou-
pled with an exhaustive search on a12. The optimality of the configuration found
by the numerical minimization is predicated on the two following conjectures:
(1) C∗

a is a convex function of a and (2) Eq. (9) is smooth enough (w.r.t. C)
to guarantee or approach the conditions of optimality of the truncated-Newton

11 In general, for an architecture with a single filtration node, hashing time is much
bigger than the filtering time. If the parameters of the problem and the architecture
are such that it is not the case, then an other architecture with several filtration
nodes should be considered.

12 To keep things efficient, the search is from 0 up to a reasonable upper bound amax.
A more sophisticated approach could be used here (e.g., Newton descent on a), but
we found it to be unnecessary.

Precomputation for Rainbow Tables Has Never Been so Fast 13

search13 [15]. We offer no proof of these conjectures, but note that they seem to
hold true both intuitively and after extensive testing.

Regardless of the validity of these conjectures however, the configuration
obtained through numerical minimization presents a significant improvement
over the analytical minimization that assumes no overhead or filtration cost
(Theorem 3). In addition, the estimated precomputation time comes very close
to the theoretical minimum, as detailed in Section 5.

5 Experiments

5.1 Computing Environments

We conducted our experiments on two different environments that are described
below. We benchmarked these two environments before starting the precompu-
tation phase in order to measure the hashing speed vh, the filtration speed vf ,
the overhead do related to the implementation of the filtration, and the com-
munication cost dc. The benchmark has been done by generating tables on a
small-sized problem (N = 232) with filters placed according to Theorem 3.

Environment 1 consists of a computer hosting two AMD EPYC 7742 3.2 GHz
processors composed of 64 cores each, for a total of 128 cores14. The bench-
mark measured vh = 7 747 002 hashs per seconds, vf = 15 949 709 filtrations
per second, and v0 = 1.37 × 10−10. The communication overhead is negligible
compared to vh and vf , it can hence be considered that dc = 0 which implies
that do + dc

nh
= do = 1.37× 10−10 seconds to treat one point.

Environment 2 is a cluster of 8 computers with 2 CPUs per machine and 14 cores
for each CPU, i.e., a total of 224 cores. Each CPU is an Intel Xeon E5-2680 v4
(Broadwell, 2.40GHz, 14 cores). The computers are directly connected through
switches, meaning that they commnicate using the ethernet protocol. The bench-
mark provided vh = 6 403 611 hashs per seconds, vf = 7 918 745 filtrations per
second, and do + dc

snh
= 7.5× 10−10 seconds to treat one point.

5.2 Filtration Implementation

For the filtration, we used an open addressing hash table with the following
parameters:

– A load factor λ = 2/3, which is a good compromise between size overhead
and low probability of collision.

– The number of slots of the table is k = mci/λ = 1.5mci with mci the
theoretical number of different points after filtration (given by Eq. (1)).

13 Namely strong convexity and Lipschitz-continuous Hessian.
14 We used 127 of them to be sure that all cores are fully exploited for the precompu-

tation, and the last core was left available for the basic operations performed by the
system.

14 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

– The hash function used is IP mod k.

We used linear probing for collision resolution (with interval of 1). This is ap-
propriate because inputs to the hash table are uniformly distributed in A (by
construction). At each filtration the following steps are carried out:

– A hash table of size k = 1.5mci is created.

– As soon as a job is received by the filtration node this job is filtered as follow:

1. For each couple (SP ;IP) of the job, IP mod k is computed.

2. The index IP mod k of the table is checked.

3. If at the index computed no value is present then IP and its correspond-
ing SP are inserted at this index.

4. If at the index computed the same value equals to IP is present then
a merge has occurred between two chain and IP and its corresponding
SP are deleted.

5. If at the index computed, a different value of IP is present then a new
value of index is computed and is equals to IP + 1 mod k, the index
IP + 1 mod k is checked and the steps 3. to 5. are repeated.

– When all jobs have been filtered, the hash table is scanned and all the IPs
and their corresponding SPs are transferred by copying them to an array in
a form facilitating the sending of the jobs.

– The hash table is deleted.

5.3 Positions of the Filters

We conducted experiments where filters were optimally placed using the Trun-
cated Newton Constrained (TNC) algorithm (Section 4.4) applied to Eq. (9).

For environment 1, the optimal configuration was 31 filters, with positions as
provided in Figure 4. The latter figure also displays the positions of the 31 filters
in the theoretical case where filtering and communicating are free (Theorem 3).

Figure 5 displays the number of hash operations needed to generate a clean
rainbow table in our scenario, when: (left case) there are no filters, which is the
current state of the art; (middle case) there are filters optimally placed, which
is our approach ; and (right case) filtration and communication are free, with so
a filter in each column, which is the theoretical lower bound. It is worth noting
that our approach is tightly close to the theoretical lower bound (about 10% of
the theoretical lower bound).

Precomputation for Rainbow Tables Has Never Been so Fast 15

0 10 20 30

i

0

2000

4000

6000

8000

10000
numerical minimization

theoretical hashing only

Fig. 4. Positions of the 31 filters

No filters Environment 1:
31 filters

Theorical
minimal :
a filter in

every column

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

×10
14

Fig. 5. Number of hash operations

5.4 Considered Parameters

180000

5000 10000 15000 20000

0

10000

20000

30000

40000

t

Using filters

Theoritical lower bound

Usual method

Fig. 6. Time (sec) to generate a clean rainbow table according to t (N = 242, r = 20)

Experiments were performed with the following parameters that represents a
realistic scenario: N = 242, t = 10 000, and r = 20.

Corollary 1 provides the number of starting points in the experiment: m0 =
2rN/t ≈ 1.76×1010. According to Proposition 1, the expected number of chains
in a single such table is: 0.9524mmax

t ≈ 8.38× 108.

The chain length (t = 10 000) has an impact on the online phase: when t de-
creases, the time required for the online phase decreases as well, but the required
memory increases. The chain length also has an impact on the precomputation

16 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

phase when filters are used, but this effect is much smaller. As shown in Figure 6,
the smaller t is, the greater the precomputation time.

We chose t = 10 000 because this value leads to a very fast online phase in the
order of a few seconds with a reasonably-sized memory (for N = 242). Choosing
t = 20 000 for instance would provide a 20% faster precomputation but would
increase the time of the online phase four-fold.

Figure 6, also shows that our experimental results (green curve) is close to the
theoretical lower bound (red curve) and that our method is much more efficient
that the usual way to generate table (blue curve) as detailed in Section 5.5.

5.5 Results

Environment 1. Precomputing a single rainbow table without any filter requires
m0 t hash operations in our scenario, which is 100×242. Given that vh = 7 747 002
and the environment consists of 127 cores (each core corresponding to one node)
with 1 filtration node and 126 hashing nodes, the precomputation time is esti-
mated to be 180 225 seconds (50 hours and 3 minutes), which is very close from
our experimental result of 179 850 seconds (49 hours and 57 minutes).

Now, using 31 filters optimally placed significantly reduces the precomputa-
tion time. Using Eq. (9), we obtain that the predicted precomputation time is
as low as 30 657 seconds (about 8 hours). Filters thus divide by 5.9 the precom-
putation time in this scenario. The experimental result is 31 029 seconds.

Environment 2. According to the TNC algorithm, without any filter, the pre-
computation time of a single rainbow table should be around 123 194 seconds
(about 34 hours and 13 minutes).

If 11 filters optimally placed are used, our experimental results show that
a table can be generated in 26 499 seconds (about 7 hours and 20 minutes).
According to TNC algorithm with the parameters for this second environment,
given in Section 5.1, this precomputation time is estimated to 26 139 seconds
(about 7 hours and 12 minutes). Our experimental results are therefore very
close from the predicted one.

Utilization of filters on this environment hence allows to generate a table in
about 5 times less time than the naive method. Table 3 provides a summary of
the results obtained for environments 1 and 2.

Precomputation for Rainbow Tables Has Never Been so Fast 17

Table 3. Summary of the results (N = 242, t = 10 000, r = 20)

Scenario
#Filters #Hashes

(×1012)

#Cores Time

Experimental Predicted

Environment 1
(state of the art)

0 176 127 179 850 180 225

Environment 1
(our approach)

31 28 127 31 029 30 657

Environment 1
(theoretical bound)

10 000 26.8 127 - 27 452

Environment 2
(state of the art)

0 176 224 123 717 123 194

Environment 2
(our approach)

11 31 224 26 499 26 139

Environment 2
(theoretical bound)

10 000 26.8 224 - 18 765

6 Conclusion

This paper introduces the concept of distributed filters to precompute rainbow
tables. Such tables are widely used by the community of security experts, espe-
cially, but not only, to tests passwords. Given that the precomputation phase is
highly resource-consuming, the technique we introduce in this paper has a strong
practical impact. It also comes with formulas to compute the optimal positions
of the filters, and to evaluate the precomputation time.

We illustrate our technique on a typical scenario, namely a problem of size
N = 242 (t = 10 000 and r = 20). In such a scenario, the precomputation phase
requires 1.76× 1014 hash operations, which takes about 50 hours on a 128-core
computer, while our technique requires 2.8 × 1013 hash operations, which were
performed (including filtering) in about 8 hours and 36 minutes on the same
128-core computer. Distributed filtration-computation thus divides by about 6
the expected precomputation time. It is also close to the theoretical lower bound
of 27 452 seconds i.e., 7 hours and 33 minutes (for r = 20), with the difference
due to the filtering and communication overheads.

We considered a typical scenario in the sense that we used quasi-maximum
tables (r = 20) instead of maximum tables. Such maximum tables (corre-
sponding to r = 5 001 in our case) are usually considered in the literature,
but they are never used in practice because precomputing maximum tables
is prohibitive. However, considering maximum tables would make distributed
filtration-computation much more valuable still (e.g., increasing the speedup
from 6 to 4 500 with the same parameters).

It is worth noting that our technique to speed up the precomputation phase
has been applied to classical rainbow tables but we state in this article that it is
fully compliant with the improvements published during the last years to make
the online phase more efficient.

18 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

References

1. Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf.
Theory, 26(4):401–406, 1980.

2. Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 617–630, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

3. Dorothy Elizabeth Robling Denning. Cryptography and data security. USA, 1982.
Addison-Wesley Longman Publishing Co., Inc. p.100.

4. Ga Won Lee and Jin Hong. Comparison of perfect table cryptanalytic tradeoff
algorithms. volume 80, page 473–523, USA, September 2016. Kluwer Academic
Publishers.

5. Jin Hong and Sunghwan Moon. A comparison of cryptanalytic tradeoff algorithms.
volume 26, pages 559–637. Springer, 2013.

6. Jin Hong, Kyung Chul Jeong, Eun Young Kwon, In-Sok Lee, and Daegun Ma. Vari-
ants of the distinguished point method for cryptanalytic time memory trade-offs.
In Liqun Chen, Yi Mu, and Willy Susilo, editors, Information Security Practice and
Experience, pages 131–145, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

7. Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, and Jean-
Didier Legat. A time-memory tradeo. using distinguished points: New analysis &
fpga results. In Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2002, pages 593–609, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

8. Gildas Avoine, Adrien Bourgeois, and Xavier Carpent. Analysis of rainbow tables
with fingerprints. In Ernest Foo and Douglas Stebila, editors, Information Security
and Privacy, pages 356–374, Cham, 2015. Springer International Publishing.

9. Gildas Avoine and Xavier Carpent. Optimal storage for rainbow tables. In Hyang-
Sook Lee and Dong-Guk Han, editors, Information Security and Cryptology –
ICISC 2013, pages 144–157, Cham, 2014. Springer International Publishing.

10. Gildas Avoine and Xavier Carpent. Heterogeneous rainbow table widths provide
faster cryptanalyses. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, ASIA CCS ’17, page 815–822, New York,
NY, USA, 2017. Association for Computing Machinery.

11. Gildas Avoine, Xavier Carpent, and Cédric Lauradoux. Interleaving cryptanalytic
time-memory trade-offs on non-uniform distributions. In Günther Pernul, Peter
Y A Ryan, and Edgar Weippl, editors, Computer Security – ESORICS 2015, pages
165–184, Cham, 2015. Springer International Publishing.

12. Gildas Avoine, Pascal Junod, and Philippe Oechslin. Characterization and im-
provement of time-memory trade-off based on perfect tables. volume 11, New
York, NY, USA, July 2008. Association for Computing Machinery.

13. Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved time-memory
trade-offs with multiple data. In Bart Preneel and Stafford Tavares, editors, Se-
lected Areas in Cryptography, pages 110–127, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

14. Gildas Avoine, Xavier Carpent, Barbara Kordy, and Florent Tardif. How to handle
rainbow tables with external memory. In Josef Pieprzyk and Suriadi Suriadi,
editors, Information Security and Privacy, pages 306–323, Cham, 2017. Springer
International Publishing.

15. Stephen G. Nash. A survey of truncated-newton methods. volume 124, pages 45–59,
2000. Numerical Analysis 2000. Vol. IV: Optimization and Nonlinear Equations.

Precomputation for Rainbow Tables Has Never Been so Fast 19

16. Stephen G Nash. A survey of truncated-newton methods. Journal of computational
and applied mathematics, 124(1-2):45–59, 2000.

Appendix

A Proof of Theorem 3

We have P =
∑a
i=0mci(ci+1 − ci). Deriving for each filter column position, we

obtain:
∂P

∂ci
=

∂

∂ci

[
mci(ci+1 − ci) +mci−1

ci)
]
.

Inserting mi = 2N
i+γ−1 we have:

∂P

∂ci
= 2N

∂

∂ci

[
ci+1 − ci
ci + γ − 1

+
ci

ci−1 + γ − 1

]
= 2N

[
1

ci−1 + γ − 1
− ci+1 + γ − 1

(ci + γ − 1)2

]
.

To minimize P , we must have ∂P
∂ci

= 0, and thus:

ci =
√

(ci−1 + γ − 1)(ci+1 + γ − 1)− γ + 1.

It is easy to verify that a solution to this recurrence relation with terminal
conditions c0 = 1 and ca = t is:

ci = γ

(
t+ γ − 1

γ

) i
a

− γ + 1.

Replacing in the expression for P gives the expected result.

B Online Phase Improvements and their Impact on
Precomputation

There exists many significant algorithmic improvements on the online phase and
optimizations of the storage of tables. Their impact on the distribution and
intermediate filtering of precomputation is briefly discussed below.

– Chain storage optimizations (prefix/suffix decomposition or compressed delta
encoding [9]): lossless compression can be applied at the end of the table gen-
eration, with no impact on the precomputation process.

– Truncated endpoints [8]: Endpoints can be truncated at the end of the table
generation, again with no impact.

– Checkpoints [12,8]: Saving checkpoints can be done during the filtered and
distributed precomputation with ease, although specific care must be taken.
Hashing nodes must be made aware of which columns are checkpoint columns,
and the filtration node needs to keep track of this. This adds no significant
burden on either.

20 Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel

– Heterogeneous tables [10]: Precomputation of tables of different shapes is
done independently, regardless of whether they operate on the same input
set. Consequently The use of heterogeneous tables has no impact on precom-
putation improvements.

– Interleaving [11]: Just like with heterogeneous tables, the different tables
are independently computed, again having no impact on precomputation
improvements

C Intermediary Filtration

filter i filter i+1a b c

sub-chains merged in column a

sub-chains merged in column b

sub-chains merged in column c

sub-chains without merges

Fig. 7. Intermediary filtration with 2 filters.

Precomputation for Rainbow Tables Has Never Been so Fast 21

D Notation Through this Paper

Table 4. Notation

N Cardinality of A

t Number of columns in a table

m Number of rows in a table

mi Number of different elements in column i

a Number of filters

nh Number of computing nodes

nf Number of filtration nodes

n Number of nodes n = nh + nf
α maximality factor

r α
1−α

ci Column of the ith filter

s Job size

vh hashing speed

vf Filtration speed

dc Communication cost

do Filtration overhead

