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MECHANICAL CONSTRAINTS TO CELL CYCLE PROGRESSION IN A PSEUDOSTRATIFIED EPITHELIUM

 . To explore how mechanical constraints affects IKNM we devised an individual-based model that treats nuclei as deformable objects constrained by the cell cortex and the presence of other nuclei. The model predicts changes in the proportion of cell cycle phases during growth, which we validate with the cell cycle phase reporter FUCCI 26 . However, this model U

does not preclude indefinite growth, leading us to postulate that nuclei must migrate basally in order to access a putative basal signal required for S-phase entry. With this refinement, our updated model accounts for the observed progressive slowing down of growth and explains how pseudostratified epithelia reach a stereotypical thickness upon completion of growth.
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RESULTS AND DISCUSSION

Nuclear arrangement in Drosophila wing imaginal discs

To evaluate the constraints that nuclei experience during the growth of a pseudostratified epithelium, we first performed detailed morphometric analysis of wing imaginal discs of Drosophila, epithelial structures that are set aside in the embryo [START_REF] Requena | Origins and Specification of the Drosophila Wing[END_REF] before undergoing massive growth during larval stages [START_REF] Milan | Cell cycling and patterned cell proliferation in the wing primordium of Drosophila[END_REF] . We quantified the positions and morphological features of several thousand nuclei, using anti-laminB as a marker, in cleared wing imaginal discs at 72h, 96h, and 120h after egg laying (AEL) (Figure 1 A; Figure S1A,B; Materials and Methods). This showed that, with age, nuclei occupy an increasingly thicker span of the apical-basal (A-B) axis, with 75% of nuclei spread over 10 µm at 72h AEL, 15 µm at 96h AEL, and 20 µm at 120h AEL (Figure S1C,D). Therefore, the epithelium grows in thickness as well as in surface area, as shown also by Mao and colleagues [START_REF] Kirkland | Tissue Mechanics Regulate Mitotic Nuclear Dynamics during Epithelial Development[END_REF] . This is accompanied by increased nuclear crowding, as quantified by the proportion of space surrounding individual nuclei that is occupied by other nuclei (Figure 1B; Figure S1E). We also observed that nuclei became more rounded (quantified by V/lmax, the ratio between volume and largest dimension) between 96h and 116h, though not during the earlier 72h -96h period (Figure S1F). Therefore, our morphometric analysis, and the work of Kirkland et al [START_REF] Kirkland | Tissue Mechanics Regulate Mitotic Nuclear Dynamics during Epithelial Development[END_REF] , suggest that nuclei find themselves in an evolving mechanical environment during disc growth. We next investigated in silico how this could impact IKNM and hence cell cycle progression.

Modelling Interkinetic nuclear migration

We opted for an individual-based model to describe dividing nuclei in a confined space because it allowed us to readily incorporate established features of cell cycle progression in a pseudo-stratified epithelium. Since it is challenging to model 3D deformable objects, we decided to represent nuclei as 2D objects evolving within a 2D elastic box (Figure 1C and Methods S1). To account for deformability, nuclei were modelled as 20-sided polygons with variable angles and side lengths. In real life, nuclei are confined within the cell membrane, which, in pseudostratified epithelia, maintains a connection to both the apical and basal surfaces, thus preventing nuclei from straying too far laterally. The cell membrane and associated cortex are also expected to exert a squeezing force orthogonal to the A-B axis. These effects were modelled with an energy that minimises the distance between a virtual apical-to-basal cable and all the polygon's vertices (Figure 1D). This will be referred to as the cable-to-nuclei energy. The basal anchor of each cable was allowed to move along the basal surface to allow nuclei to move past each other more easily. To calculate the total energy of the system, we considered three features, the elasticity of the box, the deformation of all the nuclei, and the cable-to-nuclei energy. Additional constraints were introduced 1) to prevent nuclei from overlapping with each other or with the box, 2) to ensure surface area conservation and nuclear convexity, and 3) to limit excessive deformation and movement of the box. These energies and constraints allowed us to formally define a minimisation problem (see Methods S1). Thus, at any time t, the shape of the box and the location and shape of the nuclei are a solution of this minimisation problem; the system is at a minimal energy state and fulfils all constraints. This state was then disrupted by the growth and movement of individual nuclei and a new minimisation cycle was used to compute the next equilibrium at time t+dt (Figure 1E).

We next incorporated specific assumptions to account for the activities known to be associated with various phases of the cell cycle (Figure 1F). In pseudostratified epithelia, nuclei must migrate to the apical surface to undergo mitosis. The mechanistic basis of this requirement is unclear [START_REF] Norden | Pseudostratified epithelia -cell biology, diversity and roles in organ formation at a glance[END_REF][START_REF] Lee | Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia[END_REF][START_REF] Cammarota | Cell Division: Interkinetic Nuclear[END_REF] , but it is considered to be an essential feature of cell cycle progression in pseudostratified epithelia (assumption A1). In accordance with previous findings [START_REF] Meyer | Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia[END_REF][START_REF] Liang | Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing[END_REF][START_REF] Leung | Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia[END_REF][START_REF] Norden | Actomyosin is the main driver of interkinetic nuclear migration in the retina[END_REF][START_REF] Rujano | The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II[END_REF][START_REF] Yanakieva | Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia[END_REF] , we assume that the apical-ward movement of G2 nuclei is an active process, probably driven by actomyosin [START_REF] Meyer | Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia[END_REF][START_REF] Liang | Functional genomic analysis of the periodic transcriptome in the developing Drosophila wing[END_REF] . This was implemented by two forces: First, we introduced a spring connecting the centre of mass of the nucleus to the apical anchor point of the cable to the apical surface. The rest length of this spring was set to zero, but with the pulling force inactivated as soon as the edge of the nucleus reaches the apical surface. The second force is governed by a gradient flow energy (see Methods S1) that prevents large movements of nuclei in a single iteration. Since live imaging suggests the existence of a narrow apical region where only mitotic nuclei can enter [START_REF] Lee | Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia[END_REF][START_REF] Meyer | Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia[END_REF] , we incorporated in the model an apical zone that repels non-mitotic nuclei. (See Methods S1). In vivo, as nuclei enter this zone, they round up [START_REF] Stewart | Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding[END_REF][START_REF] Matthews | Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression[END_REF][START_REF] Cadart | Exploring the function of cell shape and size during mitosis[END_REF] , a process that we implemented by inactivating the cable-to-nuclei energy. Upon completion of nuclear division, a new cell membrane must be generated. In some cases, this is achieved by equal division of the mother cell membrane [START_REF] Kosodo | Cytokinesis of neuroepithelial cells can divide their basal process before anaphase[END_REF] . However, it is also observed that one daughter cell maintains the apical and basal connections of the mother while the other daughter grows new extensions that reach the apical and basal surface of the epithelium [START_REF] Miyata | Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics[END_REF][START_REF] Kosodo | Basal process and cell divisions of neural progenitors in the developing brain[END_REF] . We have implemented a similar activity in our simulation by allowing one of the daughters (chosen randomly) to re-establish contacts within 6 or 12 minutes after mitosis (see Methods S1). As soon as anchor points are re-established, nuclei are allowed to commence their basal-ward descent, which we considered to be passive, under the influence of other nuclei [START_REF] Leung | Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia[END_REF][START_REF] Norden | Actomyosin is the main driver of interkinetic nuclear migration in the retina[END_REF][START_REF] Azizi | Nuclear crowding and nonlinear diffusion during interkinetic nuclear migration in the zebrafish retina[END_REF] (assumption A2). Following mitosis, nuclear volume must obviously grow before another mitosis takes place. Work with cultured cells has suggested that nuclear re-growth can occur during G1 and S [START_REF] Fidorra | Cellular and nuclear volume of human cells during the cell cycle[END_REF][START_REF] Steen | CELLULAR AND NUCLEAR VOLUME DURING THE CELL CYCLE OF NHIK 3025 CELLS[END_REF][START_REF] Maeshima | Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase[END_REF] . Here, for simplicity, we specified that nuclei double in volume during S phase only (assumption A3). We now consider the duration of cell cycle phases. In our initial set of simulations, the duration of S and G1 were specified a priori, with that of G2 being an output of the model. Based on previous estimates [START_REF] Wartlick | Dynamics of Dpp signaling and proliferation control[END_REF] (see Methods S1), we set S phase to last 8h+/-2h, while G1 was set to last from 2h at the onset of the simulation (to mimic the situation in young discs) to 10 hours at the end (as observed in old discs) [START_REF] Wartlick | Dynamics of Dpp signaling and proliferation control[END_REF] (assumption A4). In subsequent simulations (described in the section entitled 'A basal signal could impose a second gate to cell cycle progression') neither G2 nor G1 were preassigned.

The model predicts that crowding affects IKNM and cell cycle progression

To initiate simulations with the above assumptions, the box was seeded with 10 nuclei, seven in G1 (red), three in S (blue), and none in G2 (magenta), in accordance with ratios measured in young imaginal discs [START_REF] Wartlick | Dynamics of Dpp signaling and proliferation control[END_REF] . Snapshots at different times (Figures 2A andS2A, see full simulation in Video S1) suggest that, as time progresses, the number of nuclear layers, the thickness of the region occupied by nuclei, and nuclear crowding increase. This was confirmed by quantifying the output of 20 simulations, as illustrated in Figures 2B-C and S2B-C (see details in Methods). Therefore, our simulations recapitulate the key features of nuclear morphology and organisation observed in fixed imaginal discs, providing support for the basic tenets of our model, and allowing us to make predictions about nuclear behaviour during proliferation.

One prediction of the model is that the apical-ward motion of G2 nuclei would slow down as the environment becomes increasingly crowded. Indeed, we found that the motion of virtual G2 nuclei during the hour preceding mitosis was on average 1.5-fold slower at the end of simulations than at the beginning (Figures 2D andS2D). As a consequence, G2 nuclei are predicted to need an increasing amount of time to reach the apical surface and being allowed to undergo mitosis (Figures 2E andS2E). Our simulations also predict that, with 'tissue age', an increasing number of G2 nuclei may not reach the apical surface within the duration of the simulation (Figures 2F andS2F), thus being unable to complete the cell cycle. As G2 lengthen, the proportion of G2 nuclei is expected to rise. Indeed, our simulations compute this parameter to be 17.9% at the beginning and 40.7% at the end. Interestingly, this increase was accompanied with a reduction in the computed proportion of S phase nuclei (Figures 2G andS2G) and a slowing down of the growth rate. The model also predicts a change in the spatial distribution of G2 nuclei, with a progressive accumulation in the middle of the A-B axis as the simulations progress (Figures 2H andS2H). In summary, our simulations make predictions about the rate of apical-ward movement of G2 nuclei, the duration of the G2 phase, the percentage of G2 and S nuclei and the spatial distribution of G2 nuclei.

Comparing the distribution of cell cycle stages in vivo and in silico

We now evaluate to what extent the predictions of our model are borne out by in vivo observations. The apical-ward velocity of G2 nuclei during IKNM was experimentally measured recently and found to decrease with age [START_REF] Kirkland | Tissue Mechanics Regulate Mitotic Nuclear Dynamics during Epithelial Development[END_REF] . And a second prediction of our model, the increasing duration of G2 during imaginal disc growth was inferred from measurements of EDU incorporation at different stages (compare Figure 2E-F to Figure S6D in [START_REF] Wartlick | Dynamics of Dpp signaling and proliferation control[END_REF] and to Figure 2D in [START_REF] Neufeld | Coordination of growth and cell division in the Drosophila wing[END_REF] ). To assess the remaining two predictions, we used FUCCI, which allows determination of cell cycle phases 26 (Figure 3A). A FUCCI-encoding transgene was included in the imaginal discs used for the earlier morphometric analysis, as illustrated in Figure 3B and Figure S3A. The proportion of nuclei in G2 was found to increase from 19.2% at 72h AEL to 53.2% at 116h AEL (Figure 3C and Figure S3B). During the same period, the proportion of nuclei in S decreased 2.1-fold while that of G1 nuclei remained constant at about 24.9 % of the total number. These observations match qualitatively with the prediction of the model. We then turned to the distribution of cell cycle phases along the A-B axis (Figure 3D and figure S3C). To this end, we divided the tissue along the A-B axis in 5 µm deep bins and counted the proportion of the three cell cycle phases for all the nuclei within each bin. As expected from the fact that mitosis takes place only at the apical surface, there was an excess of G1 nuclei and a dearth of G2 nuclei in the most apical bins (both 96h and 116h). The overall increase in the proportion of G2 nuclei was particularly noticeable in the middle of the A-B axis, in accordance with our simulations. In the simulations, the A-B distributions of G2 and G1 nuclei did not match, as they do in vivo. Nevertheless, the simulations qualitatively recapitulated several in vivo observations, including the increases in nuclear layers and crowding, the changes in proportions of nuclei in the different cell cycle phases, the lengthening of the G2 phase duration and the reduction in the terminal G2 speed.

A basal signal could impose a second gate to cell cycle progression

According to our model, nuclei progressively undergo cell cycle arrest as they become increasingly unable to reach the apical surface. However, if apical localisation was the only gate to cell cycle progression, apical nuclei would be expected to proliferate indefinitely. Since this is not observed in vivo, we hypothesise that an additional signal controls cell cycle progression. For example, one could envision that a basal signal is required for S-phase entry, forcing nuclei to move basally if they are to continue cycling. Although hypothetical, the existence of a basal signal is not without precedent since basal Wnt5 has recently been show to control IKNM in the small intestine of the mouse [START_REF] Wang | Radial WNT5A-Guided Post-mitotic Filopodial Pathfinding Is Critical for Midgut Tube Elongation[END_REF] . Moreover, since the basal surface of wing imaginal discs is facing the circulation, a basal signal could mediate systemic control of cell cycle progression, allowing tissue intrinsic and extrinsic influences to be integrated. We formalised the requirement for a basal signal by modifying assumption A4 (Figure 4A and Methods S1). In this framework, the duration of G1 no longer needs to be specified a priori.

Nevertheless, the model was still able to recapitulate all the experimentally observed features, including the proportion of cell cycle phases observed over time in vivo (Figure 4B; Figure S4A-E). In addition, the refined model confirmed the expectation that increasing the range of the basal signal would lead to a larger number of nuclear layers (Figure 4C; Figure S4F; Video S2 to S4), perhaps by allowing nuclei to enter S-phase more rapidly (Figure S4G).

Conclusion

Here we have taken a computational approach to investigate how mechanical constraints could impact on IKNM and hence proliferation in a pseudostratified epithelium. Previous models of nuclear mechanics within tissues have either taken a macroscopic view [START_REF] Azizi | Nuclear crowding and nonlinear diffusion during interkinetic nuclear migration in the zebrafish retina[END_REF][START_REF] Postel | A multiscale mathematical model of cell dynamics during neurogenesis in the mouse cerebral cortex[END_REF][START_REF] Murciano | Interkinetic nuclear movement may provide spatial clues to the regulation of neurogenesis[END_REF] ) or have considered a microscopic view without allowing nuclear deformation [START_REF] Ferreira | Interkinetic nuclear movements promote apical expansion in pseudostratified epithelia at the expense of apicobasal elongation[END_REF][START_REF] Kosodo | Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain[END_REF] ). By representing nuclei as 20-sided polygon, we were able to infer their deformability, compute the forces that impact their movement, and thus build a mechanical model of IKNM. Our model was able to reproduce experimentally observed features of growing wing imaginal discs, including progressive nuclear layering, the distribution of cell cycle phases across the A-B axis, the accumulation of G2 nuclei with time. It also confirmed earlier suggestions that "congestion" [START_REF] Okamoto | TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding[END_REF] , "traffic bottleneck" [START_REF] Miyata | Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics[END_REF] or nuclear density [START_REF] Kirkland | Tissue Mechanics Regulate Mitotic Nuclear Dynamics during Epithelial Development[END_REF] affect the apical-ward component of IKNM. Crowding is also expected to impede basal-ward movement, which is needed to make space for incoming G2 nuclei and also, possibly to allow G1 nuclei to access a basal signal needed for S-phase entry. Such a signal remains hypothetical but the need for nuclei to sample both the apical and basal regions for cell cycle progression would explain why IKNM is such a common feature of developing epithelia [START_REF] Leung | Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia[END_REF][START_REF] Norden | Actomyosin is the main driver of interkinetic nuclear migration in the retina[END_REF] . Our study adds nuclear crowding to the list of processes that could contribute to growth deceleration in developing tissues, besides nutrient access, dwindling growth factor signalling, changes in hormonal control [START_REF] Boulan | The Systemic Control of Growth[END_REF][START_REF] Harmansa | Forward and feedback control mechanisms of developmental tissue growth[END_REF][START_REF] Boulan | What determines organ size during development and regeneration? Development[END_REF] , and/or mechanical feedback through adherens junctions. It remains a challenge to figure out how these processes are genetically controlled and integrated to ensure reproducible tissue size in a wide variety of conditions. 
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EXPERIMENTAL MODEL AND SUBJECT DETAIL

The only experimental model used in this study is Drosophila melanogaster. No regulatory approval is needed for this species. Relevant information on the crosses, genotypes and husbandry are indicated in the Methods Details.

METHODS DETAILS

Fly stocks and husbandry

Flies were reared in standard cornmeal/agar media at 25C. Larvae were staged from the time of L2-L3 transition. The following strains were obtained from the Bloomington stock center: nubbin-Gal4, UAS-FUCCI (UAS-GFP.E2f1.1-230, UAS-mRFP1.NLS.CycB.1-266 on the III) and pdm2 R11F02 -Gal4. S3: the same dataset of 11 discs was used in these figure panels. For the 96h and 116h AEL wing discs, the genotype was nubbin-Gal4/UAS-FUCCI and for the 72h AEL wing discs, it was pdm2 R11F02 -Gal4/UAS-FUCCI.

Genotypes

Pdm2 R11F02 -Gal4 is a pouch marker which is stronger at 72h AEL than nubbin-gal4 [START_REF] Boulan | Inter-Organ Growth Coordination Is Mediated by the Xrp1-Dilp8 Axis in Drosophila[END_REF] .

Figure S1B: tub-G4/UAS-CD8-GFP Immunohistochemistry and imaging

Wing imaginal discs were fixed in 4% formaldehyde for 40 min using standard procedures.

The discs were then incubated overnight at 4 o C with a mixture of two anti-Lamin B (1:100, ADL67.10-s, DSHB and ADL84.12-s in PBS with TritonX at 0.5%) antibodies, followed by two hours in anti-mouse Alexa Fluor Plus 647 (1:1000, A32728, Invitrogen) at room temperature. To preserve 3D structure, the fixed and stained discs were deposited in warm low melting agar (1% low melting point agar (A9414 Sigma-Aldrich) in PBS). 10µl of liquid agar containing the wing disc was then transferred onto a 1.5x coverslip. Before solidification of the agar, the wing disc was positioned at the bottom of the drop, with the pouch area facing down. The drop was surrounded with a ring of silicone grease (Z273544 Aldrich), creating a small chamber. 10µl of FocusClear TM (FC-101, 2Bscientific) was then added on top of the agar drop and allowed to act for 1h in a dark humid chamber. Subsequently, FocusClear TM was removed and 20µl of MountClear TM (MC-301, 2Bscientific) was added. A slide was then positioned on top of the grease to close the chamber. The slide was then inverted, and the discs were imaged with an upright Leica SP5 confocal microscope equipped with a 63x glycerol (1.3 NA) objective, with a pixel size of 0.24 x 0.24 µm and a z step of 0.7 µm.

Image analysis

Before segmentation, the region of interest was manually cropped using FIJI [START_REF] Schindelin | Fiji: an open-source platform for biological-image analysis[END_REF] . For eight of the eleven discs analysed, nuclei were segmented using the Nessys module of PickCells 52 . For the 3 remaining discs a machine learning algorithm (see below) was used to generate a binary mask of the segmented nuclei. This binary mask was then fed into Nessys to segment individual nuclei.

Nessys then calculated the center of mass, volume, length of the longest axis (lmax) as well as the mean fluorescence values in the different channels (E2F1 and CycB) inside each segmented nuclei.

To rotate the sample, a custom-made python code using the Numpy and Scikit-image libraries was used to define a plane based on three points manually picked and located in the most apical part of the disc. This plane coupled to a normal vector allowed to define a new frame-ofreference, and to re-calculate the coordinates of each of the center of mass of the nuclei.

The wing disc curvature was accounted for by first binning the nuclei in squares defined orthogonally to the apical plane. The coordinates of the most apical nucleus were then used as the reference point to recalculate the position along the z-axis (depth) of all the other nuclei present in the bin.

The cell cycle-phase was determined by comparing the binarized values of the E2F1 and CycB signals (Figure 3A). Nuclei in early or late S phase were pooled together in all the analyses and considered as S phase.

Crowding was calculated by first generating a 3D box surrounding each nuclei. This box was 30 pixels bigger than the most extreme values of the nucleus on the x and y axis and 10 pixels on the z axis. Then, after ignoring the voxels containing the nucleus of interest for the analysis, for each box, the number of voxels containing another nucleus (volume of surrounding nuclei) was divided by the total number of voxels (theoretical available volume). Nuclei located at a distance below 4 µm of the border of the segmentation area where ignored.

Machine learning for the segmentation of the nuclei

Images were processed using a modified 3D Unet 53 to create a distance transform that Nessys 52 could segment. The network produced 3 output layers: the nuclei's boundary, a mask of nuclei and background, and a distance transform of segmented images. Training labels were created using segmentation outputs from Nessys. Each labelled cell was converted into a binary mask, a binary border, and a distance transform. The distance transform was performed by eroding the binary blob that represents an individual cell. Our unet implementation using python and tensorflow source code is available online [START_REF] Smith | Active Unet Segmentations[END_REF] .

Mathematical simulations

Simulations were performed according to the model and method described in Method S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data for the sample number (number of wing discs, nuclei or simulations), statistical significance (represented as * p<0.05, ** p<0.01, *** p<0.001) as well as dispersion measures (standard deviation) is given in the figures and the figures legends. All statistical tests were performed using the stats module from the SciPy python library.

A Wilcoxon signed rank sum test was used after testing for normality using a Shapiro-Wilk test. There was no blinding performed.

The graphs in Figure 1B, Figure 2H, Figure 3C In all the videos, the nuclei are colour-coded according to the cell cycle phase: G1 (red) , S (blue) and G2 (magenta). Nuclei in mitosis appear in white.

METHODS S1: NUMERICAL SIMULATIONS

In this section we describe the Individual-Based Models used for simulating the imaginal disc of Drosophila. The flowchart presented in Fig. A1 explains the structure of the model. The model is constructed such that at each time step the variables of the system are at a minimal energy state. Then at each time step the system is disrupted by biological phenomena. These phenomena are linked to the growth of the tissue and to the evolution of the nuclei, including their growth and motion during IKNM. The minimal energy state is then restored by minimising the energy functional subject to constraints. Therefore, the model was developed in an optimisation framework. We first introduce the different agents of the model, as well as the energies and constraints inherent to the biological relevance of the model with no consideration of time. Secondly, the minimisation problem is introduced, including the minimisation algorithms and the choice of the minimisation parameters. Then, a description of the time dependent part of the model is provided. Last, we present the choice of parameters.

Choice of the agents

Because the aim of the model is to study the influence of crowding on IKNM during tissue growth, the nuclei are a key component of the model. We chose to develop an off-lattice model where each nucleus is represented individually by a polygon. The choice of polygons is critical because it allows the deformation of nuclei, which is known to take place S1 . Let 𝑁 be the number of cells in the tissue. For each cell 𝑖 = 1, . . . , 𝑁, its nucleus is represented by a polygon of 𝑁 ! vertices. The position of the vertices is given by 𝑋

= (𝑋 " # ) " ∈[',)],#∈[',) ! ] with 𝑋 " # = (𝑥 " # , 𝑦 " # ) ∀𝑘 ∈ [1; 𝑁 ! ], ∀𝑖 ∈ [1; 𝑁].
To simplify the notations in the following sections, we introduce some quantifiers that are specific to the nuclei. These quantifiers are not variables of the model and depend entirely on the polygon vertices X representing the nuclei. For each cell i=1,...,N, we denote as follows:

• 𝑋 " = ' ) ! ∑ 𝑋 " # ) ! #+'
, the position of the center of mass of the nucleus i. . # / , the radius such that the surface 𝑆 " of the nucleus 𝑖 is equal to the surface of a ball with radius 𝑅 " . The tissue is represented by an elastic box. We denote the edges of the box by 𝑌 = (𝑌 0 ) 0∈{',,,2,3} ∈ ℝ , and consider the notations 𝑗 ± ≡ 𝑗 ± 1 [4]. The vertices of the box 𝑌 0 and 𝑌 0 " are linked by springs of stiffness 𝑘 0 6 and rest length 𝑙 0 6 for 𝑗 ∈ [1,4]. In addition, the angles of the box (𝑌 0 $ 𝑌 0 𝑌 0 " ) are linked by torques of stiffness 𝑘 0 7 and rest angle 𝜃 0 7 for 𝑗 ∈ [1,4]. The springs and torques linking the vertices of the box allow deformation of the box to accommodate possible internal pressure created by the nuclei. Since the model aims to describe nuclear motion along the apical/basal (A-B) axis during the cell cycle, it is essential that the movements of the nuclei are restricted by vertical upper and lower bounds, representing the apical and basal surfaces.

• 𝑆 " = ∑ ' , ) ! #+' |𝑋 " 𝑋 " # ∧ 𝑋 " 𝑋 " # " | ,
Another major component of the model is the cable that mimics the effect of the cell membrane and associated cortex, which connects the basal to the apical surfaces. While these cables are not variables of the model, they are one of its essential ingredients. Indeed, their role of constricting the lateral movement of nuclei cannot be ignored when studying the motion of the nuclei during development. To avoid adding a lot of complexity to the model, the cell cortices are represented by an abstract straight line. For each cell 𝑖 with 𝑖 = 1, . . . , 𝑁, the coordinates of the attachment point of the cortex to the basal and apical surfaces are given by 𝑀 " 8 = (𝑥𝑚 " 8 , 𝑦𝑚 " 8 ) ∈ ℝ , and 𝑀 " 9 = (𝑥𝑚 " 9 , 𝑦𝑚 " 9 ) ∈ ℝ , , respectively. The positions of the apical attachment point is fixed while the positions of the basal attachment can evolve over time to accommodate the surrounding forces.

Energies

Because the agents of the model rely on springs and torques, different energies arise from the system. These energies inform us on the way the elements of the model behave. We distinguish three categories for the energies of the model:

• The tissue energy 𝐸 7"66:; = 𝐸 8<= + 𝐸 9! composed of the energy 𝐸 8<= related to the elasticity of the box and of the apical energy 𝐸 9! . The assembly of spring and torques linking the vertices of the box creates the energy of the box. It is given by

𝐸 8<= (𝑌) = ∑ ' , 3 
0+' 𝑘 0 6 F |? % @? % " |@A % & A % & G , + ∑ ' , 3 0+' # % ' A % ' ( F ? % @? % " |? % @? % " | • ? % @? % $ B? % @? % $ B -𝜏 0 7 G , ,
where 𝑗 @ ≡ 𝑗 -1 [4] for 𝑗 ∈ [1,4] and (𝜏 0 6 ) 0∈[',3] , (𝜏 0 7 ) 0∈[',3] are the rest lengths and angles of the springs and torques respectively. The apical energy 𝐸 9! models a region of length 𝑙 9 near the apical surface where only dividing nuclei can enter. The expression of 𝐸 9! is calculated as follows:

𝐸 9! (𝑋, 𝑌) = ∑ ' , ) "+' 𝑘 0 9 K𝑙 9 -𝑑 (? ) ? ( ) (𝑋 " )M - ,
, with the function (𝑢) -= max(0, 𝑢) is the positive part function and 𝑑 (E) (𝑍) is the distance of the point Z to the straight line (D).

• The nuclei energy 𝐸 F:GH;" models the cost of the deformation of the nuclei. In a resting position the nuclei are supposed to be in a spherical configuration. The nuclei energy 𝐸 F:GH;" is decomposed into two energies: the bending energy 𝐸 8;FI , acting on the angles of the polygon, and the perimeter energy 𝐸 !;J , acting on the lengths of the edges. These two energies are expressed by

𝐸 8;FI = ∑ ∑ ' , 𝑘 ' 8 Q KLMNO # * P@KLMQO + , R KLMQO + , R R , ) ! #+' ) "+' + ∑ ∑ ' , 𝑘 ' 8 Q MSTNO # * P@MSTQO + , R MSTQO + , R R , ) ! #+' ) "+' , 𝐸 !;J = ∑ ∑ ' , 𝑘 ! F |U # * U # * " |@H + , H + , G , ) ! #+' ) "+'
, where 𝜃 " # is the angle 𝑋 " # $ 𝑋 " # 𝑋 " # " and 𝑘 ' 8 , 𝑘 , 8 , 𝑘 ! are the stiffness of the energies and

with 𝜃 V 8 = ,/ ) ! and 𝑙 V ! = ,/W # ) !
.

• The energy 𝐸 G98H;@7<@F:GH;" represents the action of the cable representing the cell cortex on the nuclei. In the tissue, for a given cell it is clear that the cell cortex constricts the lateral movement of the nucleus. In addition, we suppose that the cortex constraints the shape of nuclei. Then we consider that each vertex of a polygon 𝑋 " # is linked by a spring of rest length zero to the cell cortex (𝑀 " 9 𝑀 " 8 ). The attachment of the spring on the cortex is defined such that the distance between the vertices and the cortex is minimal. The resulting energy created by the action of the cortex on the nuclei is defined as follows:

𝐸 G98H;@7<@F:GH;" = S S 1 2 𝑘 " G U |𝑋 " # 𝑃 (X # -X # , ) (𝑋 " # )| 𝑅 " W , , ) ! #+' ) "+'
where 𝑃 (E) (𝑍) is the projection of 𝑍 on the straight line (𝐷) and 𝑘 " G is the stiffness of the energy.

Constraints

To ensure the biological relevance of the model, some interactions between the different agents must be introduced. For example, it is crucial for the integrity of the tissue that the nuclei stay inside the elastic box. The interactions considered are various, including nuclei/nuclei interactions, nuclei/tissue interactions, nuclei/cable interactions, etc. These interactions are modeled by dimensionless inequality or equality constraints. To simplify the notations, the argument of the constraint functions are the polygon vertices 𝑋 and the box vertices 𝑌. We list the constraints considered in the model below.

• Nuclei/nuclei non-overlapping constraint 𝜑 ! : the constraint considered has the following form:

𝜑 " ) ,#," ( ! (𝑋) ≤ 0, ∀(𝑖 ' , 𝑖 , ) ∈ [1, 𝑁] , , 𝑘 ∈ [1, 𝑁 ! ],
where 𝜑 " ) ,#," ( ! is defined later. Let us consider two cells 𝑖 ' and 𝑖 , and one vertex 𝑘 of the nucleus 𝑖 ' . We denote by 𝑘 * the vertex of the polygon 𝑖 , such that the quantity

|𝑑 (U # ) U # ( ) (𝑋 " ) # ) -𝑑 (U # ) U # ( ) (𝑋 " ( # * )| is minimal, with 𝑑 (E) (𝑍)
being the distance between the point 𝑍 and the straight line (𝐷). Since there might be two solutions 𝑘 ' * and 𝑘 , * , we choose 𝑘 * such that the distance between 𝑋 " ) # and 𝑋 " ( # * is minimal. The expression of 𝑘 * is determined as follows:

𝑘 * = 𝑎𝑟𝑔𝑚𝑖𝑛 H∈[',) ! ],|U # ) * U # ( / |Z|U # ) U # ( | |𝑑 (U # ) U # ( ) (𝑋 " ) # ) -𝑑 (U # ) U # ( ) (𝑋 " ( [ )|.
Then the expression of the non-overlapping constraint is given by: 𝜑 " ) ,#," (

! (𝑋) = |𝑋 " ) 𝑃 (U # ) U # ( ) (𝑋 " ) # )| + |𝑋 " ( 𝑃 (U # ) U # ( ) (𝑋 " ( # * )| -|𝑋 " ) 𝑋 " ( |.
• Nuclei/tissue non-overlapping constraint 𝜑 7 : to ensure the integrity of the tissue, it is necessary that the nuclei remain within the tissue. For reason, we impose a nonoverlapping constraint between the nuclei and the edges of the box. The nonoverlapping between tissue and nuclei is expressed as follows:

𝜑 ",#,0 7 (𝑋, 𝑌) ≤ 0, ∀𝑖 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝑁 ! ], 𝑗 ∈ [1,4].
where 𝜑 ",#,0 7 is defined by

𝜑 ",#,0 7 (𝑋, 𝑌) = U # * U # * $ |U # * U # * $ | ∧ ? % U # * |? % U # * | , ∀𝑖 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝑁 ! ], 𝑗 ∈ [1,4],
with 𝑘 ± ≡ 𝑘 ± 1 _𝑁 ! `. • Box constraints 𝜑 8 ) , 𝜑 8 ( : we choose to restrict the box movement by fixing the left bottom vertex of the box 𝑌 3 to a given value 𝑌 V = (𝑥 V , 𝑦 V ), and by fixing the vertical coordinate of the right bottom vertex of the box 𝑌 2 to the value 𝑦 V . With this last constraint, the point 𝑌 2 is able to slide on the horizontal axis given by 𝑦 = 𝑦 V . The two constraints are calculated as follows:

𝜑 ' 8 (𝑌) = |𝑌 3 -𝑌 V | = 0 and 𝜑 , 8 (𝑌) = |𝑦 2 -𝑦 V | = 0.
• Surface constraint 𝜑 6 : while at a fixed time the nucleus can deform, its volume remains constant. Since the model is two-dimensional, the volume constraint translates into a surface constraint. Thus, we introduce a surface constraint intended to maintain the surface of a cell 𝑖 to a surface 𝑆 " V . The surface constraint is expressed as follows:

𝜑 " 6 (𝑋) = . # @. + # . + # = 0 ∀𝑖 ∈ [1, 𝑁].
• Convexity constraint 𝜑 G : the last constraint we impose on the system is the convexity of nuclei. The expression of the convexity constraint is calculated as follows:

𝜑 ",# G (𝑋) =
The constraints applied to the system are the nuclei/nuclei non-overlapping constraints, nuclei/box non-overlapping constraints, box constraints, surface constraints, and convexity constraints. To simplify the notation, we consider that the inequality constraints and the equality constraints are expressed as follows: 𝜑 ^≤ 0, ∀𝜐 ∈ {𝑝, 𝑡, 𝑏 , , 𝑐}, and 𝜑 ^= 0, ∀𝜐 ∈ {𝑏 ' , 𝑠}. We define by 𝑄 the set of admissible configurations of the system:

𝑄 = {(𝑋, 𝑌, 𝑀 8 ) ∈ (ℝ , ) )×) ! × (ℝ , ) 3 × (ℝ , ) ) |𝜑 ! (𝑋) ≤ 0, 𝜑 7 (𝑋, 𝑌) ≤ 0, 𝜑 8 
) (𝑌) = 0, 𝜑 8 ( (𝑌) ≤ 0, 𝜑 6 (𝑋) = 0, 𝜑 G (𝑋) ≤ 0}. The minimisation problem is formulated as follows: find (𝑋, 𝑌, 𝑀 8 ) ∈ (ℝ , ) )×) ! × (ℝ , ) 3 × (ℝ , ) ) such that (𝑋, 𝑌, 𝑀 8 , ) = 𝑎𝑟𝑔𝑚𝑖𝑛 (U,?)∈_ 𝑊(𝑋, 𝑌, 𝑀 [START_REF] Zecca | Recruitment of cells into the Drosophila wing primordium by a feed-forward circuit of vestigial autoregulation[END_REF] ). The potential 𝑊 and the constraint functions 𝜑 F , 𝜑 7 , 𝜑 8 , 𝜑 6 , 𝜑 G are continuous but are not all necessarily convex. Therefore, the solution of the minimisation problem (𝑋, 𝑌)may not be unique. We consider the Lagrangian ℒ: (𝑋, 𝑌, 𝑀 8 ) ∈ (ℝ , ) )×) ! × (ℝ , ) 3 × (ℝ , ) ) → ℝ associated with the minimisation problem which defined as follows:

ℒ(𝑋, 𝑌, 𝑀 8 ) = 𝑊(𝑋, 𝑌, 𝑀 8 ) + 𝜆 ! 𝜑 ! + 𝜆 7 𝜑 7 + 𝜆 8 ) 𝜑 8 ) + 𝜆 8 ( 𝜑 8 ( + 𝜆 6 𝜑 6 + 𝜆 G 𝜑 G , where 𝜆 ! = (𝜆 " ) ,#," ( ! ) (" ) ,#," ( )∈[",)]×[',) ! ]×[',)] , 𝜆 7 = (𝜆 ",#,0 7 ) (",#,0)∈[",)]×[',) ! ]×[',3] , 𝜆 8 = (𝜆 ' 8 , 𝜆 , 8 ), 𝜆 6 = (𝜆 " 6 ) "∈[',)] ,
and

𝜆 G = (𝜆 ",# 6 ) (",#)∈[',)]×[',) ! ]
are the Lagrangian multipliers associated with the nuclei/nuclei non-overlapping constraints, nuclei/box non-overlapping constraints, box constraints, surface constraints, and convexity constraints, respectively. The notation 𝜆 ^𝜑^ for 𝜐 ∈ {𝑝, 𝑡, 𝑏 ' , 𝑏 , , 𝑠, 𝑐} implicitly considers the element-by-element product. For example, for the surface constraint, 𝜆 6 𝜑 6 = ∑ 𝜆 " 6 ) "+' 𝜑 " [START_REF] Zecca | A feed-forward circuit linking wingless, fatdachsous signaling, and the warts-hippo pathway to Drosophila wing growth[END_REF] .

Minimisation algorithm

The resolution of non-convex minimisation problems with constraints is not trivial. Because the system is not convex, a multitude of minima may exist. Note that our aim is not to find a global minimum of the problem but rather a local minimum. Indeed, in the system the actors seek to achieve the local optimum configuration closest to their initial configuration. The algorithm used to solve the minimisation problem is named the Damped Arrow-Hurwicz Algorithm (DAHA) S2 . It is a modification of the classical Arrow-Hurwicz Algorithm with the addition of a damping term to ensure the convergence of the algorithm.

The DAHA algorithm is an iterative algorithm. The paramter 𝜏 denotes the index of the iteration. Knowing all previous iterates, the new iterate 𝜏 + 1 is calculated as follows:

⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ 𝜆 " ) ,#," ( ! A-' = max(0, 𝜆 " ) ,#," ( ! A + 𝛽 ! 𝜑 " ) ,#," ( ! (𝑋 A )), ∀(𝑖 ' , 𝑘, 𝑖 , ) ∈ [1, 𝑁] × [1, 𝑁 ! ] × [1, 𝑁],
𝜆 ",#,0 7

A-' = max(0, 𝜆 ",#,0

7 A + 𝛽 7 𝜑 ",#,0 7 (𝑋 A , 𝑌 A )), ∀(𝑖, 𝑘, 𝑗) ∈ [1, 𝑁] × [1, 𝑁 ! ] × [1,4], 𝜆 8 ) A-' = 𝜆 8 ) A + 𝛽 8 ) |𝜑 8 ) (𝑌 A )|, 𝜆 8 ( A-' = max(0, 𝜆 8 ( A + 𝛽 8 ( 𝜑 8 ( (𝑌 A )), 𝜆 " 6 A-' = 𝜆 " 6 A + 𝛽 6 |𝜑 " 6 (𝑋 A )|, ∀𝑖 ∈ [1, 𝑁], 𝜆 ",# G A-' = max(0, 𝜆 ",# G A + 𝛽 G 𝜑 ",# G (𝑋 A )), ∀𝑖 ∈ [1, 𝑁], 𝑘 ∈ [1, 𝑁 ! ],
and

⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ 𝑌 0 A-' = 1 1 + 𝑐 ? 2 w K2𝑌 0 A -K1 - 𝑐 ? 2 w M𝑌 0 A@' M - 𝛼 ? , 1 + 𝑐 ? 2 w ∇ ? % ℒK𝑋 A , 𝑌 A , 𝑀 # 8 A M - 𝛾 ?,7 1 + 𝑐 ? 2 w S 𝜑 ",#,0 7 (𝑋 A , 𝑌 A )𝜆 ",#,0 7 ∇ ? % 𝜑 ",#,0 7 (𝑋 A , 𝑌 A ) (",#)∈[',)]×`',) ! a 0∈[',3] - 𝛾 ?,8 ) 1 + 𝑐 ? 2 w 𝜑 8 ) (𝑌 A )𝜆 8 ) ∇ ? % 𝜑 8 ) (𝑌 A ) - 𝛾 ?,8 ( 1 + 𝑐 ? 2 w 𝜑 8 ( (𝑌 A )𝜆 8 ( ∇ ? % 𝜑 8 ( (𝑌 A ), ∀ j ∈ [1,4], 𝑀 # 8 A-' = 1 1 + 𝑐 X 2 w |2𝑀 # 8 A -K1 - 𝑐 ? 2 w M𝑀 # 8 A@' } - 𝛼 X , 1 + 𝑐 X 2 w ∇ X * , ℒK𝑋 A , 𝑌 A , 𝑀 # 8 A M 𝑋 # " A-' = 1 1 + 𝑐 U 2 w |2𝑋 # " A -K1 - 𝑐 U 2 w M𝑋 # " A@' } - 𝛼 U , 1 + 𝑐 ? 2 w ∇ U * # ℒK𝑋 A , 𝑌 A , 𝑀 # 8 A M - 𝛾 U,! 1 + 𝑐 U 2 w S 𝜑 " ) ,#," ( ! (𝑋 A )𝜆 " ) ,#," ( ! ∇ U * # 𝜑 " ) ,#," ( ! (𝑋 A ) (" ) ," ( )∈[',)] ( #∈`',) ! a - 𝛾 U,7 1 + 𝑐 U 2 w S 𝜑 ",#,0 7 (𝑋 A , 𝑌 A )𝜆 ",#,0 7 ∇ U * # 𝜑 ",#,0 7 (𝑋 A , 𝑌 A ) (",#)∈[',)]×`',) ! a 0∈[',3] - 𝛾 U,6 1 + 𝑐 U 2 w S 𝜑 " 6 (𝑋 A )𝜆 " 6 ∇ U * # 𝜑 " 6 (𝑋 A ) "∈[',)] - 𝛾 U,G 1 + 𝑐 U 2 w S 𝜑 ",# G (𝑋 A )𝜆 ",# G ∇ U * # 𝜑 ",# G (𝑋 A ) (",#)∈[',)]×`',) ! a , ∀ i ∈ [1, N], j ∈ _1, 𝑁 ! `,
where 𝛼 ? , 𝛼 U , 𝛼 X are parameters that control the actualisation of the variables 𝑋, 𝑌 and 𝑀 8 , 𝛽 ! , 𝛽 7 , 𝛽 8 = (𝛽 8 ) , 𝛽 8 ( ), 𝛽 [START_REF] Zecca | A feed-forward circuit linking wingless, fatdachsous signaling, and the warts-hippo pathway to Drosophila wing growth[END_REF] and 𝛽 G are parameters that control the actualisation of the Lagrangian multipliers and 𝛾 ?,7 , 𝛾 ?,8 ) , 𝛾 ?,8 ( , 𝛾 U,! , 𝛾 U,7 , 𝛾 U,G , 𝛾 U,6 , 𝑐 ? , 𝑐 U and 𝑐 X are actualisation parameters.

The stopping criterion of the minimisation algorithm is determined by

ℒ(U 0") ,? 0") )@ℒ(U 0 ,? 0 ) ℒ(U 0 ,? 0 ) ≤ 𝜖,
where 𝜖 > 0 is the tolerance. This condition ensured that the Lagrangian variations were small and therefore that the minimum configuration of the system is close enough, depending on the threshold 𝜖. We fix 𝜖 = 10 @c .

The parameters 𝛼 are related to the speed of actualisation of the position of the polygons and the box vertices in the opposite direction of the gradient of the Lagrangian (and therefore of the potential 𝑊). The speeds of actualisation of the Lagrangian multipliers associated with the constraints are controlled by the parameters 𝛽. The parameters 𝛾 control the weight of the constraints in the Lagrangian. In the initial version of the DAHA S2 , the parameters 𝛾 are calculated using 𝛾 = 𝛼𝛽. However, it has been observed by the authors that considering 𝛾 independent of 𝛼 and 𝛽 leads to faster convergence results. It explains why 𝛾 are full-fledged parameters in this model. The parameters 𝑐 are related to the damping term. In accordance with 2 we fixed 𝑐 U = 𝑐 ? = 𝑐 X , = 2 because it has been observed that it provides better results. The values of 𝛼 , 𝛽, and 𝛾 listed below have been chosen to ensure a rapid convergence of the system to the minimal energy state.

X Y 𝑀 8 𝛼 0.1 0.1 0.1 c 2 2 2

Time-dependent model: the cell cycle

We introduce the time dependency part of the model. During the development of the tissue, cells are subject to the cell cycle, which describes the process that cells undergo to divide. It is composed of four phases: 𝐺 ' , S, 𝐺 , , and M. Let us consider the time 𝑡 ∈ [0, 𝑇] with 𝑇 > 0.

We introduced a time discretization

(𝑡 F ) F∈[V,) ' ] of [0, 𝑇] with 𝑡 F = 𝑡 F@' + 𝑑𝑡 where 𝑑𝑡 > 0.
At each time step 𝑡 F , a cell 𝑖 is in a phase of the cell cycle, namely 𝐺 ' , 𝑆, 𝐺 , , or 𝑀. In the model the M phase is divided into 3 steps, while the other phases are described by one step each. Accordingly, the total number of steps in the model is 6 6 (see Figure 2D). The various steps are described in the following paragraphs.

• Steps 0 (equivalent to 𝐺 ' ): the phase 0 is characterised by an apical-to-basal movement of the nuclei along their cortex. In the fish retina S3 and mouse brain S4 this motion is considered passive. It is a consequence of other cells going through the cell cycle pushing neighbouring cells away to reach the apical surface, sending new daughter cells inside the depth of the tissue. In the model, this phase was therefore characterized by passive motion. • Steps 1 (equivalent to S): for simplicity we decided to limit the growth of the nucleus to this phase. When a cell enters this phase at time 𝑡 F * , a clock 𝐶 " F * is defined to determine the time the nucleus remains in S. In the model, the increase of the volume is given by an increase in surface area. Let us consider a nucleus i that enters phase 1 at time 𝑡 * = 𝑡 F * . The number of iterations in which the nucleus has to double its volume is given by 𝑛 " = de # 1 * f I7 . The increase of surface area is then calculated as follows:

𝑆 " F = 𝜋(𝑅 " F * 2 + F@F * F # 𝑅 " F * 2 ) ,/2 .
• Steps 2 (equivalent to 𝐺 , ): phase nuclei migrate towards the apical region. We suppose that this motion is active S3-S5 . The implementation of the active movement is made via the addition of an energy 𝐸 hi)X during the minimisation. At the cell level, apical movement is executed by the action of actomyosin S6,S7 . We chose to model this action with a spring linking the centre of mass of the nucleus to the apical point of its

𝜑 ! 𝜑 7 𝜑 8 ) 𝜑 8 ( 𝜑 6 𝜑 G 𝛽 0.1 0.1 1 1 0.01 0.1 𝛾 0.01 0.5 1 1 1 0.01 cortex.
During 𝐺 , , the rest length of the spring is fixed to zero. Such a configuration induces the drag of the nuclei towards the apical region. Therefore, the energy 𝐸 hi)X is calculated as follows:

𝐸 hi)X (𝑋) = ∑ ' j "∈[',) ! ],k # +, 𝑘 hi)X | |U # @X # -| A ( & } j ,
where 𝑘 hi)X is the stiffness of the spring and zeta is a parameter linked to the type of spring. Fixing 𝜁 = 1 induces the force to be constant while 𝜁 = 2 describes a hookean spring. To simulate the fact that the upward movement is not continuous in vivo S3-S5 , we define the apical-ward motion as a processive mechanism whereby the underlying motor can engage and disengage. In the model, we considered that this mechanism takes some time to organise and can also break. Let 𝑝 hi)X <F and 𝑝 hi)X <ll denote the probability of engaging and disengaging the motor driving apical-ward movement, respectively. The deacrease of 𝑝 hi)X <F and the increase of 𝑝 hi)X <ll then slow down the active motion in 𝐺 , . The creation of the new energy in the minimisation causes the introduction of another energy into the system. So far, all the movements associated with the minimisation are internal and independent of time. However, the apical-ward movement energy produces a time-dependent process that takes place over many time iterations. In the absence of other constraints, a lone nucleus would be able to cross the whole depth of the tissue in one iteration. To prevent this, we introduced a gradient flow energy. This energy adds a weight to the movement of the nucleus. At each time step 𝑡 F , the energy 𝐸 mn is expressed as follows:

𝐸 mn (𝑋) = ∑ ' , "∈`',) ! a 𝑘 mn F |U # @U # 1 | U # 1 G , ,
with 𝑘 mn as the stiffness of the energy.

Once the nucleus i is close enough to the apical surface, i.e. ‡𝑑 (? ) ? ( ) (𝑋 " ) -𝜖 m ( ‡ ≤ 0 with 𝜖 m ( > 0 as a small threshold, the nucleus enters mitosis. Mitosis is the fastest phase of the cell cycle. However, in the model we split this phase in three steps, are described as follows:

1. Steps 3: Nuclei undergo mitosis in a narrow apical zone where only dividing nuclei can enter S6 . There, nuclei round up, pushing neighbors away S8,S9 . During this phase the apical stiffness energy 𝑘 " 9 is set to zero. In this region, nuclei are located above all the other nuclei and, being free of pressure, become spherical. In this subphase, we set the stiffness of the cable energy to zero 𝑘 " G = 0. 

H = 𝑋 " H + @' + | H@) * ) * -, } * |𝑋 " H + -) * -𝑋 " H + @' } , ∀𝑙 ∈ _𝑁 * , 𝑁 ! `.
The different steps of the definition of the daughter nuclei are represented in Fig. A2. Note that to store the value of the new cells, one of the daughter nuclei is stored in the place of its mother, while the other one is created as a new nucleus. 

Steps 5:

The last phase of the model is related to construction of the cable (cell cortex) of the two new daughter nuclei. One of the daughter nuclei will keep the cable of its mother S10 . This nucleus then enters phase 0. The other nucleus 𝑖 , will enter phase 5 to be given time to construct its cortex. The average time 𝑇 2 spent by the nucleus in this phase is considered to be equal to 12 minutes. The creation of the cortex associated with nucleus 𝑖 , is made to ensure that the cables are ordered and do not cross. The new cortex anchor points 𝑀 " ) [START_REF] Harmansa | Forward and feedback control mechanisms of developmental tissue growth[END_REF] and 𝑀 " ) [START_REF] Zecca | Recruitment of cells into the Drosophila wing primordium by a feed-forward circuit of vestigial autoregulation[END_REF] are chosen randomly in the intervals 𝐼 [START_REF] Harmansa | Forward and feedback control mechanisms of developmental tissue growth[END_REF] = _𝑃 (? ) ? ( ) K𝑋 " ( M -𝜈, 𝑃 (? ) ? ( ) K𝑋 " ( M + 𝜈`∩ _𝑀 0 $ 9 , 𝑀 0 " 9 `, and 𝐼 8 = [𝑃 (? 2 ? 3 ) (𝑋 " ( ) -𝜈, 𝑃 (?

2 ? 3 ) (𝑋 " ( ) + 𝜈] ∩ [𝑀 0 $ 8 , 𝑀 0 " 8 ],
respectively, with 𝑗 @ and 𝑗 -as the indices defining the nuclei directly to the left and right of the nucleus 𝑖 , . The parameter 𝜈 is given by 𝜈 = 2 # 𝑅 " ( , with 𝑘 as the smallest integer such that the sets 𝐼 9 and 𝐼 8 are not empty.

This concludes the description of the cell cycle phases. The duration of theses phases are denoted by 𝑇 V , 𝑇 ' , 𝑇 , , 𝑇 2 , 𝑇 3 , 𝑇 c respectively. In addition, we consider the growth of the elastic box. For the sake of simplicity, the vertical dimension of the box (along the apical-basal axis) is fixed and set to provide sufficient space for multiple layers to form. This assumes that the basal surface does not constrain growth (as suggested by Fig. 1B) although we cannot exclude the possibility that actin accumulation could impair the free mouvement of nuclei in this region S1 . In contrast, we expect the lateral sides of the box to constrain growth. This is represented by allowing elastic deformation of the box perpendicular to the apical-basal axis.

To allow progressive expansion of the box, at a given time step 𝑡 F , the lateral rest length of 

Choice of the model parameters

To finish the presentation of the model we discuss the choice of its parameters. The aim of this project is to reproduce the development of the imaginal disc of Drosophila. Therefore, whenever possible, parameter values are chosen in accordance with experimental results. However, in some situations, it was difficult to relate parameters to actual data, therefore, some approximations had to be made.

To initialise the model we considered data given from S11 . This shows that at 𝑡 = 36ℎ, around 70% of the cells are in the 𝑆 phase, 30% in 𝐺 ' , and 0% in 𝐺 , . In the model we decided to start with a small number of nuclei 𝑁 = 10 at a developmental time of 60h. We initialised the model with seven nuclei in the 𝑆 phase and three nuclei in 𝐺 ' . The initialisation of the positions of the nuclei and the elastic box are made to match the configuration of the imaginal disc of Drosophila. We initialised the nuclei and box as follows:

• The tissue was initialised as a rectangular box. The vertices of the box are defined as follows: 𝑌 ' = (-5, 4), 𝑌 , = (5, 4), 𝑌 2 = (5, -4), and 𝑌 3 = (-5, -4). • The nuclei were initialised on the horizontal line of coordinate 𝑦 = 0.5 such that the nuclei were spread uniformly on this axis. This position was then perturbed by a small noise. For all 𝑖 ∈ 𝑁 "F" , the position of the vertices of the polygons are given as follows:

𝑋 " H = 𝑋 " + 𝑅 " " cos( ,H/ ) ! ) sin( ,H/ ) ! ) • ∀𝑙 ∈ [1, 𝑁 ! ],
with 𝑋 " = (-4.5 + 𝑖 -1. ,0.5) + 0.5𝑅 " 𝜖 U with 𝑋 " as the position of the center of mass of the polygon and 𝜖 U as a random number between zero and one chosen according to a uniform law. The radius 𝑅 " depends of the cell cycle phase the nuclei 𝑖 is into. If the nuclei 𝑖 is in phase 𝐺 ' , then 𝑅 " = 0.5. For the rest of the annexwe call this value 𝑅 "F" = 0.5. If the nuclei 𝑖 is in phase 𝑆, 𝑅 " is chosen randomly between 𝑅 "F" and 2 ,/2 𝑅 "F" . It models the distribution of the nuclei in phase S. The number of vertices of the polygon is fixed to 𝑁 ! = 20. This parameter is chosen to be large enough to observe the deformation and the motion of the nuclei but small enough to avoid large computational times.

In order to be able to observe phenomena with a duration of less than an hour we choose as a time step 𝑑𝑡 = ' 'V ℎ = 6 𝑚𝑖𝑛. In addition to the information on the distribution of the nuclei in 𝐺 ' , 𝑆, and 𝐺 , during development of the imaginal disc of Drosophila, the reference S11 also gives us information about the duration of the cell cycle phases as a function of the development time.

As previously mentioned, 𝑇 V , 𝑇 ' , 𝑇 , , 𝑇 2 , 𝑇 3 and 𝑇 c are the average durations of the different steps of the model. Notice that these durations can depend on time. The choice of these durations (except for 𝑇 , , which is an output of the model) has been made with information presented in S11 as outlined next:

• We observed that the average duration of 𝐺 ' increases over time. With a basic regression, we choose 𝑇 V (𝑡) = ( 7,3 ) , with t as the time in hours.

• The duration of the S phase seems to be roughly constant. We choose 𝑇 ' (𝑡) = 8ℎ.

• The disengagement of the cortex action on a nucleus that has reached the apical surface is considered to happen over a short period of time (within a few minutes). Therefore, we have 𝑇 2 (𝑡) = 𝑑𝑡 + 2𝜖 2 𝑑𝑡 with 𝜖 2 as a random number between zero and one chosen according to a uniform law. • The division of the nuclei is assumed to be instantaneous. Therefore, 𝑇 3 (𝑡) = 0.

• The construction of the new cortex is considered to take a few minutes, meaning that 𝑇 c (𝑡) = 𝑑𝑡 + 2𝜖 c 𝑑𝑡 with 𝜖 c as a random number between zero and one chosen according to a uniform law.

•

The other parameters that need to be defined are 𝑝 hi)X <F and 𝑝 hi)X <ll . These two parameters provide the probability of engagement of a given nucleus with the machinery that drags it towards the apical surface. We consider that these mechanisms follow Poisson processes of parameters 𝜈 <F and 𝜈 <ll , respectively. This means that the probability of starting and stopping the mechanism during a time interval 𝑑𝑡 can be approximated by 𝑝 hi)X <F = 1 -𝑒 q 41 I7 𝑎𝑛𝑑 𝑝 hi)X <ll = 1 -𝑒 q 455 I7 , provided that dt is so small that 𝜈 <F 𝑑𝑡 ≪ 1 and 𝜈 <ll 𝑑𝑡 ≪ 1 . We assumed that motor engagement occurs frequently, 10 times an hour. Therefore, 𝜈 <F = 10 ℎ @' . To ensure that the global movement of the nuclei was oriented towards the apical membrane, we determined that the probability to disengage must be smaller than the probability to engage the motor. However, if nuclei were prevented from moving because of other nuclei, we supposed that the probability to disengage would become larger. We defined 𝑡 hi)X as the time in which the nuclei position has moved by a distance smaller than 0.5𝑅 "F" . We then choose

𝜈 <ll = 𝜈 <ll (1 + 7 6789 7 + 6789 
), with 𝜈 <ll = 1 ℎ @' as the frequency of the event when the nucleus is moving and 𝑡 V hi)X as the time it takes for a nucleus to reach the apical membrane without any exterior constraint. This time is expected to be between 30 minutes and 1 hour. In this case, we choose 𝑡 V hi)X = 1 h.

The last parameters to define are the ones related to the energies. They are defined as follow:

• We first considered the energies related to the elastic box. We considered the springs and torques of the box to be of the same order as those related to the nuclei and cell cortex. We then chose 𝑘 6 = 1 and 𝑘 7 = 1. The rest length and rest angles were chosen such that the equilibrium position is that at initialisation. This means that 𝑙 ' 6 = 𝑙 2 6 = 10, 𝑙 , 6 = 𝑙 3 6 = 8 and 𝜏 0 7 = 𝜋/2 for 𝑗 ∈ {1,4}.

• The apical energy prevents nuclei from getting too close to the apical membrane. So that this energy is stronger than the one of the nuclei, we choose 𝑘 " 9 = 10 𝑖𝑓 𝐶 " ∈ {0,1} and 𝑘 " 9 = 0 if 𝐶 " ∈ {2,3,4,5}. The thickness of the apical layer was chosen to be 𝑙 9 = 3𝑅 "F" .

• The distance energy models the action of the cell cortex on nuclei while the bending energy models the preferred shape of the nuclei. Here we have chosen parameters that reproduce experimental nuclear shapes. On this basis, we have fixed 𝑘 ' 8 = 0.1 and 𝑘 G = 0.1.

• The IKNM energy controls the migration of the nuclei in the 𝐺 , phase (equivalent to phase 2 in the model); therefore, for a given nucleus 𝑖, when 𝐶 " ∈ {0,1,3,4,5} , 

Figure 1 :

 1 Figure 1: Simulating interkinetic nuclear migration (IKNM) in a confined space (A) Optical cross-section of the wing discs shown in Figure S1A. Individual segmented nuclei have been colored randomly. Scale bars represent 50 µm. (B) Distribution of crowding indices in 72h, 96h and 116h AEL wing discs (Nuclei located at the border of the segmented area were excluded; see Material and Methods for more details. 72h AEL: 4 discs, 490 nuclei. 96h AEL: 4 discs, 1968 nuclei. 116h AEL: 3 discs: 5221 nuclei). Wilcoxon rank-sum statistic test for two samples was performed in D and H. ** P<0.01 *** P<0.001. (C) Overview of the model's main elements. The edges of the disc (including the apical and basal surfaces) are represented by an elastic box and the nuclei by polygons. The natural curvature of imaginal discs, as seen on Fig 1B, was ignored for simplicity. The energies and constraints of the model are listed. (D) Nuclei were represented as 20-sided deformable polygons, allowing a realistic representation, while limiting computational costs. The constraining effect of the cell cortex was represented by a cable tethered to the apical and basal sides. (E) Iterative progression from one minimal energy state (at time t) to the next (at time t+dt). (F) Behaviour of nuclei during the different phases of the cell cycle. Unless stated differently, the duration of the S and G1 phases was defined a priori whereas the duration of G2 was an output of the model. See also Figure S1.

Figure 2 :

 2 Figure 2: In silico, crowding perturbs interkinetic nuclear migration and affects the distribution off cell cycle phases (A) Snapshots of a simulation at 72h, 96h, and 116 h AEL. Nuclei were coloured according to the cell-cycle phase: G1 in red, S in blue and G2 in magenta. A yellow ribbon represents the mitotic zone where non-mitotic nuclei are excluded. (B) Distribution of nuclei along the apical-basal axis (expressed in units of a spherical G1 nucleus diameter, G1AE) (C) Distribution of computed crowding indices at different ages (see Sup. Exp. Pro. Annex 1) for 20 simulations. With time, nuclei occupy deeper positions, form more layers, and become increasingly crowded. (D) Terminal velocity (G1AE/h) of migrating G1 nuclei one hour

Figure 3 :

 3 Figure 3: Spatio-temporal distribution of cell cycle phases in Drosophila wing imaginal discs (A) Schematic representation of the FUCCI system coupled with a Lamin B staining. Nuclei in G1, late S and G2 appear in red, blue, and magenta (respectively). There is no FUCCI staining in early S, while lamin B is not detectable at M. In the following analysis, early and late S nuclei were pooled together (B) Optical cross-section of 72h, 96h and 116h AEL wing discs expressing E2F1-RFP and CycB-GFP (same preparation as those shown in Fig. 1). (C) Percentage of nuclei in G1, S and G2 at different stages. Note the increase of G2 nuclei and increase of S nuclei, as predicted by the model. The same discs as those used to generate Figure 1A, B and Figure S1 were used (72h AEL: 4 discs, 836 nuclei. 96h AEL: 4 discs, 2562 nuclei. 116h AEL: 3 discs: 5889 nuclei). Error bars represent standard deviation. (D) Distribution of nuclei along the apical-basal axis (µm). Nuclei in each of phases were counted in slices of 5 µm (half the average spherical diameter of G1 nuclei) and normalised over the total number of nuclei. The relative increase of G2 nuclei at late stages is consistent with 'congestion' impairing apical-ward movement. Each dot is an average from 4 discs (72h, and 96h AEL) or 3 discs (116h AEL). Panel C and D were generated from the same dataset. Error bars represent standard deviation. Scale bars represent 50 µm. See also Figure S3.

Figure 4 :

 4 Figure 4: A two-gate model of IKNM: A basal signal could regulate nuclear layering, crowding and proliferation rates

Figure

  Figure 1A, B, Figure 3B-D, Figure S1, Figure S3: the same dataset of 11 discs was used in

  , Figure S1D,F,G, Figure S2H, Figure S3 B,C and Figure S4E were performed using the python libraries Seaborn and MatplotLib. The graphs in Figure 2B-G, Figure 4B, Figure S2B-G, Figure S4A-D,F-M were performed with MATLAB. SUPPLEMENTAL VIDEO LEGENDS Video S1: Simulation of IKNM in a confined space. Related to Figure 2. Video S2:Simulation of IKNM in a confined space with a basal signal range of l = 2. Related to Figure 4. Video S3: Simulation of IKNM in a confined space with a basal signal range of l = 4. Related to Figure 4. Video S4: Simulation of IKNM in a confined space with a basal signal range of l = 10. Related to Figure 4.

Fig. A1 :

 A1 Fig. A1: Flowchart of the Individual Based Model.

Fig. A2 :

 A2 Fig. A2: Representation of the different steps leading to the division of a nucleus i. Left: Step a; Middle: Step b; Right: Step c.

  the spring of the elastic box is updated 𝜏 o 6 F-' = |𝑌 p F-' OEOEOEOEOEOE -𝑌 p " F-' OEOEOEOEOEOE | with 𝑌 OE the solution of the minimisation problem and 𝐽 the indices corresponding to the lateral spring.

FFigure S1 :Figure 1 .

 S11 Figure S1: Nuclear organisation in a growing wing imaginal disc of Drosophila. Related to Figure 1. (A) Max projection of 72h, 96h and 116h AEL wing imaginal discs stained with anti-Lamin B (white) and mounted in an agar drop infused with FocusClear TM . The Nessys Module of the PickCells program, and custom algorithms (see Methods) were used toidentify nuclei. Our analysis was confined to the pouch, the area that gives rise to the wing proper. And to ease segmentation, which still requires manual correction, only the dorsal compartment was considered since its behaviour can be considered representative of the whole pouch ( S1,S2 ). Nuclei located near the dorso-ventral boundary were not included in the analysis since they terminate proliferation in response to a specific genetic program S3 . Thus, in the blue-shaded areas, we catalogued 836 nuclei from 4 discs at 72h after egg laying (AEL), 2562 nuclei from 4 discs at 96h AEL and 5889 nuclei from 3 wing discs at 120h AEL. (B) Optical cross-section of a 116h AEL wing imaginal disc expressing CD8-GFP to highlight cell membranes. The region where nuclei were segmented (the dorsal compartment) is shaded blue. (C) 3D reconstruction of segmented nuclei from the discs showed in A and C. Nuclei are colour-coded according to their depth along the apical-basal axis. Note the increased number of layers. (D) Distribution of nuclei along the apical-basal (in µm) axis in 72h, 96h and 116h AEL wing discs. As discs grow, nuclei are increasingly occupying more basal positions (72h AEL: 4 discs, 836 nuclei. 96h AEL: 4 discs, 2562 nuclei. 116h AEL: 3 discs: 5889 nuclei). (E) Crowding index and examples of a low and high crowding situation. A crowding index was measured for each nucleus by first creating a box enclosing the nucleus of interest 30 pixels beyond the edge of the nuclei in the x and y axis, and 10 pixels in the z axis. We then measured the proportion of voxel occupied by other nuclei (volume of surrounding nuclei) in this box (theoretical available volume). (F-G) Nuclear 'roundness' (V/l max ) along the A-B axis and the distribution of nuclear volumes (µm 3 ) at three developmental times. The biphasic trend for both parameters (down between 72 and 96 hAEL and up between 96 and 116 hAEL) is consistent with the observations of Kirkland and colleagues S4 . This is not predicted by the model; it could result from additional physiological or mechanical features not incorporated in our model S5-S7 . Data was from 72h AEL: 4 discs, 836 nuclei. 96h AEL: 4 discs, 2562 nuclei. 116h AEL: 3 discs: 5889 nuclei. Wilcoxon rank-sum statistic test for two samples was performed in B-D. * P<0.5 *** P<0.001. The scale bars in the figure represents 50 µm.

Figure S2 :

 S2 Figure S2: Cell cycle phase analysis in simulated epithelia. Related to Figure 2. (A) Apicalbasal position (G1AE) of individual nuclei G1 (red), S (blue) and G2 (magenta) over the course of a representative simulation. The yellow ribbon represents the mitotic zone where nonmitotic nuclei are excluded. Panels B-H show parameters for each of the 20 simulations performed: (B) average apical-basal position (G1AE) (C) average crowding index, (D) average terminal G2 velocity (G1AE/h) (E) average time spent in G2 before mitosis (h), (F) number of G2 arrested nuclei. (G) Percentage of nuclei in the different phases along time, and (H) nuclear distribution along apical-basal axis (G1AE), at 72 +-6h, 96 +-6h, and 116 +-6h.

  

  

  

  the surface of the nucleus 𝑖 . The surface 𝑆 " of each nucleus 𝑖 is computed by adding the area of every triangle 𝑋 " 𝑋 " # 𝑋 " # " , with 𝑘 ∈ [1; 𝑁 ! ] and 𝑘 -≡ 𝑘 + 1 [𝑁 ! ]. The wedge symbol denotes the cross product between two vectors and [.] denotes the modulo operation (i.e. k [N] is the remainder in the Euclidean division of k by N). .

• 𝑅 " = ;

  2. Steps 4 of the model corresponds to actual mitosis. Since this process is fast compared to the duration of the cell cycle, we considered this step to happen in one iteration. Let us consider a nucleus 𝑖 in phase 4 at time 𝑡 F and its two daughter nuclei of indices 𝑖 ' and 𝑖 , . The new daughters are characterised by the surface 𝑆 " ) F-' and 𝑆 " ( ] is as perpendicular as possible to the apical surface [𝑌 ' , 𝑌 , ], i.e.,𝑙 V = 𝑎𝑟𝑔𝑚𝑖𝑛 H∈[',) * ] 𝑋 " H 𝑋 " H-) * • 𝑌 V 𝑌 ' a.Define the position of the first 𝑁 * vertices of the polygons representing the two daughter nuclei:𝑋 " ) H = 𝑋 " H + @'-H and 𝑋 " ( H = 𝑋 " H + -) * @'-H , ∀𝑙 ∈ [1, 𝑁 * ].b. Complete the definition of the last 𝑁 * vertices of the polygons representing the two daughter nuclei:

	F-' , both of F . It is known that nuclei which are equal to half the surface of the mother nucleus 𝑆 " divide perpendicular to the apical plane. To satisfy this condition, the position of the daughter cell is computed with the following steps: Let 𝑁 * be the floor value of ) ! , . Find the indices 𝑙 V such that [𝑋 " H , 𝑋 " H-) 𝑋 " ) H = 𝑋 " H + -) * @' + ( 𝑙 -𝑁 * 𝑁 * + 2 ) * (𝑋 " H + -𝑋 " H + -)

* * ), ∀𝑙 ∈ [𝑁 * , 𝑁 ! ] and 𝑋 " (
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METHODS S1.

This section describes in detail the Individual-Based Models used to simulate the behaviour of nuclei in imaginal disc of Drosophila. Related to STAR Methods.

𝑘 "

hi)X = 0. When 𝐶 " = 2, we consider 𝑘 " hi)X = 𝑘 hi)X , which does not depend on time. Given that at early stages the duration of 𝐺 , is less than one hour, we fix 𝑘 hi)X = 0.05 and 𝑘 mn = 0.01 so that the duration for one nucleus to reach the apical membrane is between 30 minutes and 1 hour.

In the paper, each model simulation has been run for 20 initialisations. The difference between each initialisation is produced by a change of the random seed (all the other parameters are similar). For an initialisation 𝑖𝑛𝑖 the seed is defined by the following FORTRAN code:

Analysis of the simulations

In this section we describe the tools used to analyse the results of the Individual-Based Model. In particular we detail the quantifiers used in this study: the number of layer, the crowding, the apical/basal position of the nuclei, the average time spent in 𝐺 , , velocity of the nuclei during the last hour in 𝐺 , . The numerical simulations have been performed in FORTRAN and we compare the results of 20 initialisations. In the simulations, we observe an increase in the number of layers of nuclei. To quantify this increase in the numerical simulations we study the quantity 𝑁 H = ,W) (|? ) @? ( |-|? 2 @? 3 |)/, , as a function of the time iteration (see Fig. 5F). As previously mentioned, 𝑁 is the number of nuclei at a given time and 𝑅 is the radius of a spherical nuclei in the 𝐺 ' phase. The distance (|𝑌 ' -𝑌 , | + |𝑌 2 -𝑌 3 |)/2 represents the average length of the box, taking into account its possible deformation. The formula

then corresponds to the number of nuclei organised in one layer that can fit in the length of the tissue. Therefore, 𝑁 H gives us an insight into the number of layers of nuclei present in the tissue at a given time.

The apical basal depth of the nuclei in the tissue is quantified by considering the average depth of the nuclei in the tissue 𝐷 = ' ) ∑ 𝑑 ) "+' (? ) ? ( ) (𝑋 " ). This quantity is presented in Fig. 3B.

Another parameter we are interested in is the crowding observed in the tissue. To quantify this increase in the simulation, we computed the crowding in a similar manner to the experimental data treatment presented in Fig. 1F with the difference that surfaces are considered instead of volumes. This quantity is plotted in Figs. 3C and5F).

To compare the overall behaviours of the nuclei as functions of space we consider the distribution of the nuclei in phases 𝐺 ' , 𝑆, and 𝐺 , along the A-B axis (see Figs. 3G and5B). In the simulations, the apical/basal axis was discretised in small subsets of length ℎ = 0.2𝑅 "F" . For each subset, the number of nuclei in 𝐺 ' , 𝑆, and 𝐺 , were computed. We then had the number of nuclei in each of the phases relative to the position on the basal/apical axis. This value can be reformulated to obtain the number of nuclei in each of the phases as a function of the apical distance. Finally we are interesting in the evolution of the nuclei during 𝐺 , . Let 𝑖𝑡 m ( "F (𝑖) and 𝑖𝑡 m ( <:7 (𝑖) be the iteration number corresponding to the time a nucleus i enters and leaves 𝐺 , , respectively. Then we can compute the average time 𝑇 m ( "F/<:7 needed for a nucleus that has entered 𝐺 , to reach the apical membrane. 𝑇 m ( "F/<:7 (𝑡) is then calculated as follows:

In addition we compute the apical distance 𝐷 m ( "F/<:7 of the nuclei to the apical membrane when they enter the phase 𝐺 , :

.

Finally, we consider the velocity 𝑉 m ( <:7 )< of the nuclei in the hour before their division:

Description of the basal mechanism

We hypothesise that the nuclei are able to transition from 𝐺 ' to 𝑆 when the nuclei receive a signal from the basal membrane. We define the range of diffusion by λ.

In the model, the transition to the 𝑆 phase is considered to follow a Poisson process of parameters 𝜈 m ) /. . This means that the probability 𝑃 m ) /. of a nucleus in 𝐺 ' changing phase at each time step is approximated by 𝑃 m ) /. = 1 -𝑒 @q : ) /@ I7 , provided that dt is small enough to verify 𝜈 m ) /. 𝑑𝑡 ≪ 1. The parameter 𝜈 m ) /. is idealistically computed as a function of the distance of a nucleus to the basal membrane. However, in the model, the width of the box is fixed, which is not the case in real tissue. Therefore, the probability 𝑃 m ) /. is instead a function of the distance of a given nucleus to the nucleus that is the closest to the basal membrane at the time of its birth. At a given birth time , we denote by 𝑖 7 * the nucleus that is the closest to the basal membrane. Then the distance to the basal membrane is given by 𝑑 8 = 𝑑 (? 2 ? 3 ) K𝑋 0 M -𝑑 (? 2 ? 3 ) K𝑋 " ' * M. We define the probability of a nucleus 𝑗 to transition from 𝐺 ' to 𝑆 of at time t as follows:

with 𝜈 m ) /. and 𝜆 the maximal frequency and the diffusion length, respectively. This formula means that the frequency of the transition from 𝐺 ' to 𝑆 for the nuclei that are closest to the basal membrane is 𝜈 m ) /. . The frequency decreases to zero for nuclei located at a distance 𝜆 from the nucleus 𝑖 7 * , meaning that the probability of entering S is equal to zero. The probability is then set to zero for the rest of the nuclei. The frequency 𝜈 m ) /. is set to 0.7 per hour, meaning that the transition of the nuclei closest to the basal membrane occurs less than once every hour. The diffusion length varies between 2, 4 and 10 depending on the simulations.
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