
HAL Id: hal-03601625
https://hal.science/hal-03601625

Submitted on 8 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jarosite stability on Mars
Alexandra Navrotsky, Ferenc Lázár Forray, Christophe Drouet

To cite this version:
Alexandra Navrotsky, Ferenc Lázár Forray, Christophe Drouet. Jarosite stability on Mars. Icarus,
2005, 176 (1), pp.250-253. �10.1016/j.icarus.2005.02.003�. �hal-03601625�

https://hal.science/hal-03601625
https://hal.archives-ouvertes.fr


Jarosite stability on Mars 

Alexandra Navrotsky, Ferenc Lázár Forray and Christophe Drouet

Thermochemistry Facility, Department of Chemical Engineering and Materials Science, 
University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
CIRIMAT, UMR CNRS 5085, Physico-Chimie des Phosphates, ENSIACET, 118 route de 
Narbonne, 31077 Toulouse cedex 04, France 

Abstract

Jarosite, a potassium (sodium) iron sulphate hydrated mineral, has recently been identified on the 
martian surface by the Opportunity rover. Using recent thermochemical data [Drouet and 
Navrotsky, 2003, Geochim. Cosmochim. Acta 67, 2063–2076; Forray et al., 2005, Geochim. 
Cosmochim. Acta, in press], we calculate the equilibrium decomposition curve of jarosite and 
show that it is thermodynamically stable under most present martian pressures and temperatures. 
Its stability makes jarosite potentially useful to retain textural, chemical, and isotopic evidence of 
past history, including possible biological activity, on Mars. 
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1. Introduction

Jarosite, a hydrated sulphate of iron and potassium (KFe3(SO4)2(OH)6) is a widespread 
mineral on Earth Alpers et al., 1989, Stoffregen et al., 2000 and Dill, 2001, mainly formed in 
acid, sulphate rich environments associated with acid mine drainage and also commonly found in 
hydrometallurgical processes (Dutrizac and Jambor, 2000). Due its low solubility in water (Baron 
and Palmer, 1996), jarosite is a potential scavenger of heavy metals Dutrizac et al., 1996, Gieré et 
al., 2003 and Dutrizac, 2004, and plays an important role in the fate and transport of heavy metals 
in the environment. 

Recently, jarosite has been reported on the martian surface based on spectroscopy on the 
Opportunity rover Christensen et al., 2004 and Klingelhöfer et al., 2004. Although the low 
temperatures on and near the martian surface are compatible with the preservation of hydrous 
minerals, the low pressure and low water content of the atmosphere may lead to dehydration. 
Thus both for the initial formation of jarosite and for its preservation to the present day, one must 
know the minimum water fugacity under martian pressure–temperature conditions for which 
jarosite is thermodynamically stable. 



The apparent stability of jarosite in terrestrial environment is well known (e.g., Stoffregen, 1993, 
Dutrizac and Jambor, 2000, Welham et al., 2000 and Arslan and Arslan, 2003) but lack of 
thermodynamic data till very recently has made it difficult to calculate its stability under martian 
pressure and temperature conditions. Jarosite on Mars was first postulated by Burns, 1987a, 
Burns, 1987b and Burns, 1989, Burns and Fisher (1990). Based on literature data (mainly 
temperature, pH and influence of cation exchange) on the stability of different sulfates, this author 
considered that Al-bearing jarosite would be sable on the martian surface but the available 
thermodynamic data were insufficient to prove this assumption. 

Based on recently acquired thermochemical data Drouet and Navrotsky, 2003 and Forray et al., 
2005, we calculate the equilibrium decomposition curve of jarosite under estimates of present 
martian pressures and temperatures. 

2. Thermodynamic calculations and discussions

The decomposition of jarosite with increasing temperature or decreasing water fugacity 
occurs by its dehydration (Drouet and Navrotsky, 2003): 

(1)
High temperature oxide melt solution calorimetry in molten 3Na2O  4MoO3 at 700 °C has been 
used successfully to obtain enthalpies of formation of sulphates Navrotsky, 1977, Navrotsky et 
al., 1994 and Majzlan et al., 2002. Recent data on enthalpies and entropies of formation from the 
elements and standard entropies of the phases involved in reaction (1) are given in Table 1. 

Table 1. 

Thermodynamic data used to calculate the stability of jarosite 
Compound (kJ mol−1) S○ 

(J mol−1 K−1)
(J mol−1 K−1)

KFe3(SO4)2(OH)6 (jarosite) −3829.6±8.3 a 388.9 b −1648.8 a

KFe(SO4)2 (yavapaiite) −2042.8±6.2 c 224.7±5.0 c −751.9±1.0 c

α-Fe2O3 (hematite) −826.2±1.3 d 87.4±0.2 d

H2O (gas) −241.8±0.0 d 188.8±0.0 d

a (Drouet and Navrotsky, 2003).
b (Stoffregen, 1993).
c (Forray et al., 2005).
d (Robie and Hemingway, 1995). 

The yavapaiite heat capacity in the temperature range relevant to Mars is estimated from 
thermodynamic data on KAl(SO4)2, Fe2(SO4)3, Al2(SO4)3, Fe2O3, and Al2O3 (Forray et al., 
2005), using solid state reactions Figs. (2) and (3), under the assumption that the heat capacities 
of the assemblages on the left and right sides of the reactions are equal (Helgeson et al., 1978). 

2KAl(SO4)2 + Fe2O3 → 2KFe(SO4)2 (yavapaiite) + Al2O3, (2)
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2KAl(SO4)2 + Fe2(SO4)3 → 2KFe(SO4)2 (yavapaiite) + Al2(SO4)3. (3)
We also calculate, using the same method, the heat capacity of KAl(SO4)2 and compare it 

to available experimental data (Barin et al., 1977), in order to estimate the errors involved in this 
type of heat capacity estimation. For KAl(SO4)2, this method introduces an error of less than 1% 
in the heat capacity at temperatures between −150 and 300 °C. 

The calculated equilibrium p(H2O)–T curve for reaction (1) is shown in Fig. 1. The total 
atmospheric pressure estimated and measured Zurek et al., 1992, Burns, 1993, Bridger and 
Murphy, 1998, Haberle et al., 1999 and Haberle et al., 2003 ranges from 5 to 10 mbar. 

Fig. 1. Stability fields of jarosite and yavapaiite under martian pressure and 
temperature conditions (the partial pressure of water is expressed in atmospheres).

 The dotted horizontal line represents the partial pressure of water on the present 
martian surface, calculated using the abundance of H2O in the atmosphere Owen et 
al., 1977, Jakosky and Phillips, 2001 and Bish et al., 2003 and the total atmospheric 
pressure (Kliore et al., 1965). The dotted vertical line represents the average surface 
temperature at the equator. The light grey area represents normal surface conditions 
on Mars at Meridiani Planum, based on measured temperature values (Smith et al., 
2004) and calculated values for water vapour pressure. The dark curve represents the 
phase boundary for reaction (1). The lighter curves represent the H2O phase diagram. 
The dark curve barely intersects the light grey area, indicating that jarosite is 
thermodynamically stable under normal conditions on the present martian surface 
(Meridiani Planum). 

Thermodynamic calculations show that under the low average total atmospheric pressure 
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(6.76 mbar) on Mars (Haberle et al., 1999), where the partial pressure of H2O is 2.5×10  −3     mbar  , 
the equilibrium decomposition of jarosite to yavapaiite, hematite and water vapour (Eq. (1)) takes 
place at +18 °C. At the Opportunity landing site at Meridiani Planum, where jarosite was 
identified (Klingelhöfer et al., 2004), the rover measured temperatures between −91 and +14 °C 
(Smith et al., 2004) with an uncertainty of measurement less than 0.5 °C. The average surface 
temperature at the equator is around −58 °C (Kieffer et al., 1977). 

Considering that the sedimentary layered formations have low thermal conductivity, it is 
reasonable to consider any anomalous short-lived temperature above 0 °C to affect only the 
surface layers. For layered deposits, calculations show that the temperature can quickly decrease 
by 60 °C in the first 50 cm (Mellon et al., 2004). Thus we conclude that jarosite is within its 
thermodynamic stability field under present surface conditions on Mars. 

Photodecomposition of sulphates by intense solar ultraviolet radiation offers another potential 
decomposition pathway. Experimental simulation of the photodecomposition of carbonates and 
sulphates (Mukhin et al., 1996) shows that solar ultraviolet radiation is indeed able to decompose 
sulphates and may raise the temperature of the minerals by about 25 °C. Such a rise of 
temperature might bring jarosite to its decomposition boundary, but only in anomalously warm 
locations. This thermal and/or photocatalysed decomposition will probably be limited to a thin 
surface layer, and the decomposition products (iron oxide and yavapaiite) on the jarosite surface 
would probably prevent decomposition below the surface. Thus photodecomposition is probably 
not a major mechanism for destruction of jarosite on the martian surface. 

The initial thermodynamic calculations were done assuming that the jarosite present on 
Mars is the pure potassium endmember. The quadrupole splittings intensities of Mössbauer 
spectra recorded by Opportunity rover indicate that the jarosite probably is a K/Na type 
(Klingelhöfer et al., 2004). This finding is also consistent with the K and Na abundance reported 
by the rover's alpha particle X-ray spectrometer (Rieder et al., 2004). However, the actual K/Na 
ratio in the martian jarosite is not known. The thermodynamic effects of this partial sodium 
substitution or the dehydratation reaction cannot be calculated because, although the energetics of 
K/Na substitution in jarosite are well know Drouet and Navrotsky, 2003 and Drouet et al., 2004, 
those in the yavapaiite phase have not been determined. The jarosite mineral inferred from the 
Opportunity rover explorations is therefore reasonable on both thermodynamic and kinetic 
grounds. These jarosite minerals persist to the present day because they are thermodynamically 
stable, but their initial formation presumably required wetter conditions for effective mass 
transport and crystallisation. 

On Earth, there are various pathways for jarosite formation: alteration of Fe bearing 
sulphates Dutrizac and Jambor, 2000 and Stoffregen et al., 2000, genesis by volcanic activity 
(alteration of volcanic rocks in acid fumaroles Johnston, 1977, Golden et al., 1996 and Fulignati 
et al., 2002, or hydrothermal activity (Oue et al., 2002)) with or without bacterial activity Sasaki 
and Konno, 2000 and Kawano and Tomita, 2001. It is very difficult to present a scenario of 
jarosite formation on Mars because of lack of information regarding the wider area distribution 
and types of jarosite occurring on and below the surface. The mineral is found as part of a finely 
layered sedimentary rock sequence Klingelhöfer et al., 2004 and Squyres et al., 2004 with a 
concentration of less than 10 wt% within the outcrops (Christensen et al., 2004). The layered 
sequences themselves appear quite extensive. The presence of igneous rocks on Mars and 
indications of past volcanic activity (Hartmann and Berman, 2000) indicate that jarosite could 
have formed in hot-spring or volcanic environments by alteration of basaltic rocks (Burns, 1987a, 
Burns, 1987b and Burns, 1993. It is not excluded that jarosite could also form in environment 
similar to impact craters. Regardless of initial formation, post formation transport/redeposition 
could also have taken place. Jarosite formation requires, in addition to Fe and K (and Na), the 
presence of water and sulphate at temperatures below 200 °C. Under these conditions, jarosite 
could achieve stability only if the partial pressure of H2O were higher (to the left of the dark 
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curve in Fig. 1) than its present value (horizontal dotted line). It is important to note that jarosite 
stability does not need liquid water, and jarosite is stable to lower P than the H2O liquid–vapour 
or solid–vapour equilibrium. As thermal activity subsided on Mars, the H2O vapour pressure and 
surface temperature would have decreased. We suggest that temperature and water vapour 
pressure decreased in such way that jarosite remained continually in its stability field (the left side 
of the dark curve in Fig. 1). This constrains a record of environmental changes (variation of 
temperature and water vapour pressure) on Mars from the time of jarosite formation to the present 
day. Jarosite age could be determined by measuring the 40Ar/39Ar isotopic ratio (Vasconcelos, 
1999). This would only be applicable as long as the jarosite contains significant potassium, as 
would be the case for a mixed (K, Na) phase. Additionally, determination of 34S isotopic 
composition (Habicht and Canfield, 1996) would provide information about possible biological 
activity. Arguing that jarosite remained in its thermodynamic stability field at all times, without 
decomposition or major recrystallisation, we suggest that its morphological (Sasaki and Konno, 
2000), chemical, and isotopic Habicht and Canfield, 1996 and Vasconcelos, 1999 signatures may 
provide clues about the past history of Mars, including evidence of possible biological activity 
(such as sulphur or iron metabolising microorganisms). 

3. Conclusions

Our calculations indicate that jarosite is thermodynamically stable under most present-day 
martian surface pressures and temperatures. The calculated dehydratation curve gives the relation 
between maximum temperature and minimum water fugacity through a large part of martian 
history. Our study highlights the usefulness of this sulphate mineral for understanding the climate, 
evolution and possible biological activity on Mars. Thus, we suggest the jarosite outcrop on 
Meridiani Planum should be sampled in any future sample return mission. 
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