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As in most of the domains in physics, finite element formulation is a very common method for electromagnetic fields computation.
Since many years both proper orthogonal decomposition and empirical interpolation method are also often used in a model order
reduction context. If these methods are efficients, their application is intrusive because it requires an access to the matrices and the
assembly step. To avoid such an aspect, a data-driven model order reduction based on proper orthogonal decomposition with an
approximation of the nonlinear terms by radial basis functions interpolation is applied to a magnetostatic problem coupled with
circuit equations. The nonlinear reduced order model only needs solutions of a finite element analysis to be generated.

Index Terms—nonlinear magnetic problem, model order reduction, data driven

I. INTRODUCTION

MODEL order reduction (MOR) approaches are widely
used in all the engineering sciences to decrease sim-

ulations durations of complex systems [1], [2]. In electro-
magnetic fields computation, MOR methods are often applied
to finite element (FE) problems using proper generalized
decomposition [4]–[6], Padé expansion [7], proper orthogonal
decomposition [3], [8], [9],... Among these methods the proper
orthogonal decomposition (POD) is probably one of the most
popular. Based on the solutions (called snapshots) of the FE
simulation for different values of parameters, the POD enables
to approximate the solution of the FE problem in a reduced
basis. Then the initial FE system is projected onto the reduced
basis decreasing the number of degrees of freedom to find for
new parameter values. However this method is intrusive in the
sense that an access to the matrix of the FE system is needed.
Moreover in the nonlinear case, POD is classically combined
with empirical interpolation method (EIM) [10], [11] which is
even more intrusive since an access to the assembly process
of the nonlinear terms is required. Indeed this method consists
in interpolating the nonlinear terms of the full model by
calculating only some of their entries. Consequently inference
based or data-driven MOR strategies [12]–[15] are interesting
because they are non intrusive and allow to obtain a reduced
model only from full model solutions. Nevertheless, if data-
driven strategy is well defined when the non-linear expression
is clearly identified [12], it could be more complex to deal
with if the nonlinear behaviour is not known. In this article we
investigate a data-driven strategy for model order reduction of
an electromagnetic device simulated by FE analysis with no a
priori knowledge of the nonlinear expression, this expression
being treated in a more general way using an interpolation
method.

We consider the Maxwell equations in magnetostatics low
frequency case: displacement current density is neglected, no
eddy current is considered and a current density source is
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imposed through a winding. The common A-formulation is
appplied to express magnetic induction from a vector poten-
tial. Moreover Maxwell equations are coupled with circuit
equations where the magnetic flux is linked with winding’s
resistance, winding’s current and a voltage source, introducing
a time dependancy. From this problem a data-driven method
is developped. The data-driven method is based on POD with
an approximation of the nonlinear terms based on radial basis
functions (RBF) interpolation [16]. The reduced order model
(ROM) is obtained from snapshots of classical tests, at no load
and in short circuit, usually used in electrical engineering to
characterize an electromagnetic device. The POD is applied on
the snapshots, after what the reduced matrices are identified
using operator inference [12], [13]. The key point of the
proposed method is to be able to finally approximate the
reduced nonlinear terms without any a priori knowledge or
hypothesis about it, using RBF interpolation.

The contents of this article is as follows. Firstly the problem
statement and the variationnal formulation are introduced.
Secondly the model order reduction method is developped
with details about proper orthogonal decomposition, operator
inference and nonlinear terms interpolation. Finally in an
offline/online context [19], [20] the ROM generated offline
should be able to simulate a different case online. Conse-
quently the reduction strategy is applied on a 3D transformer
simulation with validations on different load connected to the
device.

II. NONLINEAR CIRCUIT-FIELD MAGNETIC PROBLEM

Let consider the circuit-field magnetic problem on a domain
Ω with a magnetic subdomain Ωm and ni windings (figure 1)
such that

∇×H =

ni∑
k=1

Jk (1)

with H the magnetic field and Jk the current density vector
source in the k-th winding. From the conservative law ∇.B =
0, the magnetic induction B is expressed as B = ∇×A with A
the vector potential. Moreover in the ferromagnetic material,
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Fig. 1. Domain and subdomains of the problem.

the permeability µ is nonlinear depending on the magnetic
field H in the constitutive law B = µ(H)H; otherwise the law
is B = µ0H with µ0 the vacuum permeability. In the case of
A formulation, it is necessary to express H as a function of B.
Then, magnetic field is espressed as H = ν(B)B with ν(B)
the reluctivity. The boundary condition B.n = 0 is imposed
on ∂Ω, with n the outgoing normal vector. Consequently the
Ampere’s law (1) rewrites

∇× [ν(B)∇×A] =

ni∑
k=1

Jk. (2)

The current density vector is imposed in the ni inductors by

Jk =
Tkik
Sk

Dk with Tk the number of turns, ik the current, Sk

the equivalent surface and Dk the normalised current direction
for the k-th stranded inductor.

The magnetic flux allows to couple the local equation (1)
with circuit equation by adding the ni equalities

dφk(t)

dt
+Rkik(t) = vk(t) (3)

with φk the magnetic linkage flux, Rk the winding’s resistance
and vk the source voltage for the k-th inductor.

Applying a variationnal formulation (1) leads to [23]

(∇× [ν(B)∇×A] , A′)Ω=

ni∑
k=1

(Jk, A
′)Ωk

⇒ (ν(B)∇×A,∇×A′)Ω+(A′, n×H)∂Ω = (4)
ni∑
k=1

(Jk, A
′)Ωk

,

where (., .) is the dot product and A′ the test function. The
contour integral onto ∂Ω will vanish by imposing A× n = 0
on ∂Ω to satisfy B.n = 0, with n the outgoing normal vector.
The nonlinear term can be transfered only on the right-hand-
side such that

(ν0∇×A,∇×A′)Ω=

ni∑
k=1

(Jk, A
′)Ωk

(5)

− ((ν(B)− ν0)∇×A,∇×A′)Ω ,

with ν0 the slope of ν in 0.

Adding to these expressions the circuit equations (3) in each
winding where the magnetic linkage flux φk can be expressed
as a function of A by [21], [22]

φk =

(
Tk
Sk
Dk, A

)
Ω

, (6)

Finally after a Ritz-Galerkin discretization we obtain for
linear case the system{

MX(t)− FI(t) = 0,

Ft dX(t)

dt
+ RI(t) = V(t),

(7)

and for nonlinear case MX̃(t)− FĨ(t) = G(X̃(t)),

Ft dX̃(t)

dt
+ RĨ(t) = V(t),

(8)

with X ∈ Rnx and X̃ ∈ Rnx the circulations of potential
vector A for all edges of the mesh, I ∈ Rni and Ĩ ∈ Rni

the vector of winding currents, V ∈ Rni the source voltage
vector. M ∈ Rnx×nx is the ”curl-curl” matrix such that

M`,k =

∫
Ω

ν0∇× w` · ∇ × wk dΩ, (9)

with (wk)k=1,...,nx the edge shape functions. The nonlinear
vector is such that

G`(X̃(t)) =

nx∑
k=1

∫
Ω

(ν(B)− ν0)∇× w` · ∇ × wkX̃k(t) dΩ,

(10)
R ∈ Rni×ni is the diagonal matrix of resistor and F ∈

Rnx×ni the matrix

F`,k =

∫
Ω

Tk
Sk
Dk · ∇ × w` dΩ, (11)

such that the magnetic fluxes can be expressed by

Φ(t) = FtX(t) ∈ Rni (12)

and
Φ̃(t) = FtX̃(t) ∈ Rni , (13)

discrete forms of equation (6).

III. NONLINEAR DATA-DRIVEN MODEL ORDER REDUCTION

Both linear and nonlinear problems (7)-(8) are solved using
a time stepping scheme to obtain ns solutions X(tk), I(tk) and
X̃(tk), Ĩ(tk) for time steps tk with k = 1 to ns. The associated
flux Φ(tk) and Φ̃(tk) are also computed. The solutions are
stored in snapshot matrices with

SX =
[
X(t1),X(t2), . . . ,X(tns

)
]
∈ Rnx×ns (14)

SI =
[
I(t1), I(t2), . . . , I(tns

)
]
∈ Rni×ns (15)

SΦ =
[
Φ(t1),Φ(t2), . . . ,Φ(tns

)
]
∈ Rni×ns (16)

SX̃ =
[
X̃(t1), X̃(t2), . . . , X̃(tns)

]
∈ Rnx×ns (17)

SĨ =
[
Ĩ(t1), Ĩ(t2), . . . , Ĩ(tns)

]
∈ Rni×ns (18)

SΦ̃ =
[
Φ̃(t1), Φ̃(t2), . . . , Φ̃(tns)

]
∈ Rni×ns (19)

The matrix R is known and the number of currents is small
so the reduction will be applied only on the vectors X and X̃.
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A. Proper orthogonal decomposition

A first reduced basis Ψ is computed using proper orthogonal
decomposition (POD) from SX and a second ones Ψ̃ from SX̃.
The POD consists in applying a singular value decomposition
(SVD) to SX and SX̃ to obtain the decompositions

SX = UXΣXWt
X with SX̃ = UX̃ΣX̃Wt

X̃
, (20)

with UX,UX̃ ∈ Rnx×nx and WX,WX̃ ∈ Rns×ns orthonor-
mal matrices and ΣX,ΣX̃ ∈ Rnx×ns diagonal matrices of
singular values σX,k and σX̃,k, k = 1 to ns. The projection
matrices Ψ and Ψ̃ are made of the first columns of UX and
UX̃ respectively, the number of columns being chosen most of
the time using the singular values by the following energetic
criterion∑rX

k=1 σX,k∑ns

k=1 σX,k
≤ 1− ε and

∑rX̃
k=1 σX̃,k∑ns

k=1 σX̃,k

≤ 1− ε, (21)

with ε a given tolerance.
Once Ψ and Ψ̃ are computed then the final basis P ∈

Rnx×nr is obtained by a third SVD on the concatenated matrix
S =

[
Ψ, Ψ̃

]
∈ Rnx×rS with rs = rX + rX̃ in order to

optimize the size of the basis. Once again S = UΣWt with
U ∈ Rnx×nx and W ∈ Rrs×rs orthonormal matrices and
Σ ∈ Rnx×rs a diagonal matrix of singular values σk, k = 1
to rs. Finally P is made of the nr first columns of U, the
choice of nr being based on the same criterion∑nr

k=1 σk∑ns

k=1 σk
≤ 1− ε. (22)

The reduced basis is used to perform projection of the
solutions onto the reduced space by

sx = PtSX =
[
x1,x2, . . . ,xns

]
∈ Rnr×ns (23)

for the linear solutions and

sx̃ = PtSX̃ =
[
x̃1, x̃2, . . . , x̃ns

]
∈ Rnr×ns (24)

for the nonlinear ones.

B. Operators inference

The first aim is to obtain the reduced matrices f ∈ Rnr×ni

and m ∈ Rnr×nr , reduced forms of M and F by Galerkin
projection, respectively

m ' PtMP, (25)

f ' PtF. (26)

To do so we consider that the reduced vectors xk from sx

must verify [12], [13], [15]

f tx(tk) = Φ(tk) ∀k ∈ {1, . . . , ns} (27)
and mx(tk) = fI(tk) ∀k ∈ {1, . . . , ns}, (28)

reduced expressions of (12) and the first equation of (7).
Equation (27) can be written with snapshots matrices as

f tsx = SΦ and by applying transpose operator sx
tf = SΦ

t.
Consequently a minimization problem allows to obtain the

matrix f because fk, k-th column of f , is solution of the
problem

min
y∈Rnr

‖sx
ty − ck‖, (29)

with ck the k-th column of SΦ
t which is

ck = [φk(t1), φk(t2), . . . , φk(tns
)]
t
. (30)

In the same way (28) can be written msx = fSI or sx
tmt =

SI
tf and so a minimization allows to obtain the matrix m by

solving a problem as in (29) with ck the k-th column of SI
tf .

The least square problem (29) is basically solved by com-
puting the pseudo-inverse of the matrix sx

t.

C. Nonlinear terms interpolation

Now that the matrices of the reduced system are known, the
snapshot matrix of the reduced nonlinear term is approximated
by sg = msx̃ − fSĨ ∈ Rnr×ns , containing the reduced term
g of the nonlinear vector G at each time step tk, k = 1
to ns. These reduced terms will be interpolated for each
component during the solving of the reduced problem to obtain
an approximation of the nonlinear term depending on the
vector x using radial basis functions (RBF). Consequently the
reduced nonlinear term g is approximated for a reduced vector
x by

g(x) '


α11 α12 . . . α1ns

α21 α22 . . . α2ns

...

αnr1 αnr2

... αnr,ns



r
(
‖x− x1‖, a1

)
r
(
‖x− x2‖, a2

)
...

r
(
‖x− xns

‖, ans

)
 ,

(31)
with αk`, ` = 1 to ns, the interpolation coefficients associated
with the k-th component of g(x) for k = 1 to nr. Function
r
(
‖x − x`‖, a`

)
is the RBF centered on the point x`, a`

a hyperparameter of the function and ‖.‖ the 2-norm. The
hyperparameter is usually chosen and imposed by the user and
the same for all the functions but multiple hyperparameters are
possible and their computation can be done by cross-validation
[17]. The function r can classically be [16]

• Gaussian r(x, a) = exp

(
−x

2

a2

)
.

• Inverse quadratic r(x, a) =
1

1 + x2

a2

.

• Multiquadric r(x, a) =

√
1 +

x2

a2
.

• Inverse multiquadric r(x, a) =
1√

1 + x2

a2

.

• Thin plate spline r(x) = x2 lnx.
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The coefficients αk` are computed by solving the ns × ns
system
r (‖x1 − x1‖) r (‖x2 − x1‖) . . . r (‖xns − x1‖)
r (‖x1 − x2‖) r (‖x2 − x2‖) . . . r (‖xns − x2‖)

...
r (‖x1 − xns‖) r (‖x2 − xns‖) . . . r (‖xns − xns‖)



αk1

αk2

...
αkns



=


gk1
gk2

...
gkns

 (32)

Once the coefficients αk` are known, the interpolation is fast
because it just requires to compute the distance ‖x− xk‖ for
the ns points then the matrix-vector product (31). Always from
(31), we see that nr interpolations are performed to evaluate
g(x). Among the interpolation methods, interpolation based on
RBF has the advantages to be used whatever the dimension of
the input coordinates and does not require a mesh. Indeed
the interpolation uses the euclidian distance between the
interpolated points and functions with a continuous support.

D. Reduced system solving

Finally, the system to solve is mx̃(t)− f ĩ(t) = g(x̃(t)),

f t
dx̃(t)

dt
+ Rĩ(t) = V(t).

(33)

An implicit Euler time-scheme is applied then at each
time-step a nonlinear problem is solved using a fixed-point
strategy to deal with the nonlinear behaviour of the magnetic
reluctivity. During the fixed-point iterative process the reduced
vector g(x) is approximated by the RBF interpolation (31).
It is known that fixed-point strategy is less efficient than
a Newton method, however solving reduced system is very
fast so the low convergence of fixed-point is not prohibitive.
Moreover the RBF interpolation does not guarantee a good
approximation of the derivative of the interpolated function
consequently the use of the jacobian could be disadvantageous.

E. Procedure summary

Now that all the steps are detailed, the order reduction
procedure can be summarised as following:

1) Solve the linear and nonlinear problems (7) and (8) for
ns time-steps.

2) Create the snapshots matrices.
3) Solve the minimization problem (29) with ck the k-th

column of Φt.
4) Solve the minimization problem (29) with ck the k-th

column of SI
tf .

5) Compute the nonlinear term snapshot matrix sg =
msx̃ − fSĨ.

6) Find the interpolation coefficients of the RBF by solving
(32).

7) Solve the reduced system (33) on the whole time-
domain.

IV. APPLICATIONS

The data-driven strategy is applied to 3D single-phase and a
three-phase 50 Hz transformers simulated using finite element
solver Gsmh/GetDP [24], [25]. Considering symetries of the
device, only one quarter of the transformers is simulated. The
solver used an implicit Euler scheme in time with a time-step
equal to 0.25 milliseconds and a Newton strategy to solve the
nonlinear problem at each time step. The simulations are done
on a cluster allowing a parallel solving of the matrix systems
using MUMPS solver with 8 cores. The magnetic cores of
both transfomers are similar. The nonlinear magnetic law is
interpolated from a set of measured points [26] as shown on
figure 2.

Fig. 2. Nonlinear magnetic law [26].

In order to obtain a reduced model valid on the whole
operating range of transformers (i.e. for any load connected
to the secondary windings), the solutions are computed for
two typical configurations corresponding to extreme operating
points: short-circuit to have a linear response; at no-load
to have a strongly nonlinear response. Based on previous
experimentations [18] the inverse multiquadric functions are

used as RBF and the hyperparameter chosen is
1

σ2
with σ the

standard deviation of the distances between the vectors x̃k,
k = 1 to ns. The different POD are done with the tolerance
ε = 10−12 in equations (21)-(22).

Once the reduced model is obtained, it is simulated coupled
with different loads (resistance Rc or/and inductance Lc) on
a different time-window then the results are compared with a
reference that is the same initial system with addition of the
loads in circuit equation MX̃(t)− FĨ(t) = G(X̃(t)),

Ft dX̃(t)

dt
+ Lc

dĨ(t)

dt
+ (R + Rc)Ĩ(t) = V(t)

(34)

with Lc a diagonal matrix. The aim is to highlight that once
the reduced model is obtained, it can be used for different
configurations.

The mesh is the same for both transformers and it is
made of 7808 nodes and 41224 tetrahedrons leading to 40766
unknowns in the finite element formulation. Figure 3 presents
the mesh of the magnetic core and of the windings.
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Fig. 3. Mesh of the one-phase (top) and three-phase (bottom) transformers.

A. Single-phase transformer

First the current responses are plotted figure 4 at no-load
and in short-circuit. These simulations are done one the time
window [0,0.06] seconds corresponding to three periods of the
voltage source. The reduced order model is extracted from
the solutions as explained in section III. Then the reduced
order model allows to simulate the transformer coupled with
a resistive load Rc equal to 30 Ω on the time window [0,0.1]
seconds and a second case with resistive Rc and inductive Lc

loads equal to 30 Ω and 0.1 H respectively, currents being
plotted figure 5. The reduced system has 66 unknowns and
the RBF interpolation is done with 160 vectors.

To compare the currents we define a temporal norm ‖ · ‖t
such that

‖i(t)‖t =

∥∥∥∥∥∥∥∥∥
i(t1)
i(t2)

...
i(tn)

∥∥∥∥∥∥∥∥∥
2

, (35)

with ‖ · ‖2 the Euclidian norm.
To compare the solution vectors we use the 2-norm on a

matrix

‖X(t)‖2 =
∥∥∥[X(t1),X(t2), . . . ,X(tn)

]∥∥∥
2
. (36)

TABLE I
SINGLE-PHASE TRANSFORMER: ERRORS BETWEEN REDUCED AND FULL

SOLUTIONS FOR RESISTIVE LOAD SIMULATION.

100.
‖iref

1 −imor
1 ‖t

‖iref
1 ‖t

100.
‖iref

2 −imor
2 ‖t

‖iref
2 ‖t

100.
‖Xref−Xmor‖2
‖Xref‖2

Error (%) 1.10 0.42 0.51

TABLE II
SINGLE-PHASE TRANSFORMER: ERRORS BETWEEN REDUCED AND FULL

SOLUTIONS FOR RESISTIVE-INDUCTIVE LOAD SIMULATION.

100.
‖iref

1 −imor
1 ‖t

‖iref
1 ‖t

100.
‖iref

2 −imor
2 ‖t

‖iref
2 ‖t

100.
‖Xref−Xmor‖2
‖Xref‖2

Error (%) 0.69 0.35 0.39

The errors are compiled in tables I and II: the errors are
inferior to 1% on the primary current and even inferior to 0.5%
on the secondary current, and less than 1% on the solution
vector. The reduced model is able to approximate correctly
both global and local values. For that matter the magnetic
induction are compared at time t = 9 ms corresponding to
the maximum nonlinear behaviour onto the current: the fields
for full and reduced models along with the difference between
the fields are presented figures 6 and 7. Once again we see
that the reduced order model is able to simulate the nonlinear
behaviour of different load configurations and to be accurate
over the local fields.

The magnetic induction B is computed from potential vector
A with B = ∇×A. Vector solution X contains the circulations
of A over the edges of the mesh consequently B is obtained
on each volume element v by

B|v =
∑
e∈v

(∇× we)Xe, (37)

with we the edge shape functions associated with the edge e.
For the reduced case the formula becomes

B|v '
∑
e∈v

(∇× we) (Px)e. (38)

To illustrate the contribution of the ROM modes we com-
pute the contribution B(k) of a single vector basis k from P,
thus defined

B(k)|v =
∑
e∈v

(∇× we) (P:k)e, (39)

with P:k the k-th column of P. Figure 8 presents the first
four modes of B. The first mode has a physical sense, B(1)

gives the main contribution on the magnetic induction. For the
next ones, the contribution is local with a maximal magnitude
localised in the internal corners where the saturation of the
magnetic core is strong.

Table III shows simulation durations which are: 24 minutes,
36 minutes, 63 minutes and 85 minutes for the short-circuit,
no-load and loaded full simulations respectively. Regarding
the reduced model, less than 13 seconds are needed to read
the datas, less than four seconds to compute the basis and the
interpolation coefficients and about one minute fifteen seconds
to solve the reduced system. Considering only the solving part,
the speed-up is between 40 and 60.
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Fig. 4. Single-phase transformer: currents obtained with full and reduced
models for no-load and short-circuit cases.

Fig. 5. Single-phase transformer: currents obtained with full and reduced
models with resistive load (top) and resistive+inductive load (bottom).

TABLE III
SINGLE-PHASE TRANSFORMER: COMPUTATION DURATIONS FOR THE

DIFFERENT SIMULATIONS.

Simulation Duration
Full model short-circuit 24 min
Full model no-load 36 min
Full model resistive load 63 min
Full model resistive-inductive load 85 min
ROM resistive load 1 min 27 s
ROM model resistive-inductive load 1 min 30 s

Fig. 6. Single-phase transformer: magnetic induction B (T) obtained with full
(Bref) and reduced (Bmor) models with resistive load, and the error between
the fields (bottom) at time t = 9 ms.
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Fig. 7. Single-phase transformer: magnetic induction B (T) obtained with
full (Bref) and reduced (Bmor) models with resistive and inductive loads, and
the error between the fields (bottom) at time t = 9 ms.

B. Three phase transformer

As in previous section the current responses are plotted
figure 9 at no-load and in short-circuit. Then the transformer
is coupled with balanced resistive loads (Rc = 30 Ω) on the
time window [0,0.12] seconds then with unbalanced resistive
loads (Rc = 30 Ω but Rc = 10 Ω on secondary winding), the
currents being available figure 10. The reduced system has 166
unknowns and the RBF interpolation is done with 240 vectors.

The errors are compiled in tables IV and V: the errors are
inferior to 10% on the primary current and even inferior to 5%
on the secondary current, and less than 2% on the solution
vector. The reduced model is able to approximate correctly
both global and local values.

Fig. 8. Single-phase transformer: contribution of the 4 first modes (i.e. the 4
first columns) of the reduced basis P .
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TABLE IV
THREE-PHASE TRANSFORMER: ERRORS BETWEEN REDUCED AND FULL

SOLUTIONS FOR BALANCED RESISITIVE LOAD SIMULATION.

Error (%) Error (%)

100.
‖iref

11−imor
11 ‖t

‖iref
11‖t

7.94 100.
‖iref

12−imor
12 ‖t

‖iref
12‖t

0.43

100.
‖iref

21−imor
21 ‖t

‖iref
21‖t

2.45 100.
‖iref

22−imor
22 ‖t

‖iref
22‖t

0.21

100.
‖iref

31−imor
31 ‖t

‖iref
31‖t

2.52 100.
‖iref

32−imor
32 ‖t

‖iref
32‖t

0.56

100.
‖Xref−Xmor‖2
‖Xref‖2

1.53

TABLE V
THREE-PHASE TRANSFORMER: ERRORS BETWEEN REDUCED AND FULL

SOLUTIONS FOR UNBALANCED RESISTIVE LOAD SIMULATION.

Error (%) Error (%)

100.
‖iref

11−imor
11 ‖t

‖iref
11‖t

3.03 100.
‖iref

12−imor
12 ‖t

‖iref
12‖t

0.35

100.
‖iref

21−imor
21 ‖t

‖iref
21‖t

2.50 100.
‖iref

22−imor
22 ‖t

‖iref
22‖t

0.18

100.
‖iref

31−imor
31 ‖t

‖iref
31‖t

2.02 100.
‖iref

32−imor
32 ‖t

‖iref
32‖t

0.49

100.
‖Xref−Xmor‖2
‖Xref‖2

1.71

Table VI shows simulation durations which are: 24 minutes,
48 minutes, 86 minutes and 88 minutes for the short-circuit,
no-load and loaded full simulations respectively. Regarding
the reduced model, less than 13 seconds are needed to read
the datas, less than four seconds to compute the basis and the
interpolation coefficients and about thirty seconds to solve the
reduced system. Considering only the solving part, the speed-
up is here between 130 and 180.

TABLE VI
THREE-PHASE TRANSFORMER: COMPUTATION DURATIONS FOR THE

DIFFERENT SIMULATIONS.

Simulation Duration
Full model short-circuit 24 min
Full model no-load 48 min
Full model resistive balanced loads 96 min
Full model resistive unbalanced loads 88 min
ROM resistive balanced loads 44 s
ROM resistive unbalanced loads 32 s

Fig. 9. Three-phase transformer: currents obtained with full and reduced
models for no-load and short-circuit cases.

V. CONCLUSION

In order to reduce simulation duration for the modeling of
a physical phenomena, two main families of methods exist:
model order reduction and metamodel. However most of the
reduced order model are intrusives notably in the nonlinear
case: on acces to the matrix of the system or to the assembly
process is required. To avoid this problem metamodels can be
used instead of reduced order model but they are not based
on physical formulations so their usage is less adapted in
a offline/online strategy or for a multiphysic simulation. On
the opposite the data-driven philosophy is to create a reduced
model only from the solutions of a problem called snapshots,
based on the knowledge of the physical and mathematical
formulation. From the solutions a reduced basis is obtained
using proper orthogonal decomposition allowing to project
the full solutions onto a reduced space. Then through least
square problems and radial basis function interpolations a
precise and fast reduced order model can be simulated even
for a configuration not used for the snapshots. The method
is described for magnetostatic problems with a nonlinear
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Fig. 10. Three-phase transformer: primary currents obtained with full and
reduced models with balanced resistive loads (top) and unbalanced resistive
loads (bottom).

magnetic law coupled with time-dependant electric equations.
From both application examples, the proposed approach is
efficient to simulate fastly a configuration that is not used for
the snapshots. In order to improve the solving of the nonlinear
reduced order model, the development of an approach allowing
to use a Newton method could be considered.
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