Jordan Frecon
email: jordan.frecon@insa-rouen.fr

Lucas Anquetil
email: lucas.anquetil@insa-rouen.fr

Yuan Liu
email: yuan.liu@insa-rouen.fr

Gilles Gasso
email: gilles.gasso@insa-rouen.fr

Stéphane Canu
email: stephane.canu@insa-rouen.fr

Adversarial Dictionary Learning

Keywords:

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

With recent technological advances, the use of deep neural networks (DNN) have widespread to numerous applications ranging from biomedical imaging [START_REF] Min | Deep learning in bioinformatics[END_REF] to the design of autonomous vehicles [START_REF] Blin | Road scenes analysis in adverse weather conditions by polarization-encoded images and adapted deep learning[END_REF]. The reasons of their prosperity strongly rely on the increasingly large datasets becoming available, their high expressiveness and their empirical successes in various tasks (e.g. computer vision [START_REF] Akhtar | Threat of adversarial attacks on deep learning in computer vision: A survey[END_REF], natural language processing [START_REF] Young | Recent trends in deep learning based natural language processing[END_REF] or speech recognition [START_REF] Deng | New types of deep neural network learning for speech recognition and related applications: An overview[END_REF]).

However, their high representation power is also a weakness that some adversary might exploit to craft adversarial attacks which could potentially lead the DNN model to take unwanted actions [START_REF] Szegedy | Intriguing properties of neural networks[END_REF], [START_REF] Samuel | Adversarial attacks on medical machine learning[END_REF]. More precisely, adversarial attacks are almost imperceptible transformations aiming to modify an example well classified by a DNN into a new example, called adversarial, which is itself wrongly classified. To date, various attacks have been developed, the majority of them producing perturbations which, added to the original image, will change few pixels that cause the misclassification. In this regard, among the most popular are the fast gradient sign method (FGSM) [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF], [START_REF] Kurakin | Adversarial examples in the physical world[END_REF], DeepFool [START_REF] Moosavi-Dezfooli | Deepfool: A simple and accurate method to fool deep neural networks[END_REF], the projected gradient method (PGD) [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] or the approach of Carlini and Wagner (CW) [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF] which relies on the minimization of the perturbation's ℓ p -norm. More recently, a functional attack, called ReColorAV, has been devised in Laidlaw and Feizi [2019] and intends to learn a perturbation function while applied to the input produces an adversarial example. A peculiarity of all these attacks is that they are specific, meaning they specifically produce one adversarial noise paired to one clean example. A contrario, in [START_REF] Moosavi-Dezfooli | Universal adversarial perturbations[END_REF] the authors devised a universal perturbation, coined UAP, that can be applied to a whole set of images. However, although it is universal, it is difficult to get precisely why it works in a case to case basis. More generally, state-of-the-art attacks still suffer from a lack of universality and understanding of the attack features from one image to another.

Contributions and Outline. This paper aims to bridge the gap between specific and universal attacks of deep networks for image classification. More precisely, it introduces an adversarial dictionary learning framework that allows each individual attack to be written as different linear combinations of the same dictionary elements (i.e. dictionary atoms). To get the dictionary, we first devise in Section 3.1 a supervised adversarial dictionary learning problem Mairal et al. [2009] where the supervision term is the fooling rate of the network. Two constraints, on the dictionary atoms and coding vectors, permit to enforce some maximum ℓ p budget on the perturbation. The interests of the formulation are many: i) the learned dictionary can leverage relevant information across different images from different classes to efficiently fool the network, ii) some prior or properties such as orthogonality constraint can be enforced on the atoms, and iii) given the dictionary, the attack for any image can be scrutinized to gain in interpretation due to the linear combination.

To solve the involved dictionary learning problem, we design an algorithmic solution in Section 3.1.2 called Adversarial Dictionary Learning (ADiL) by hinging on the adaptation of the non-convex proximal splitting scheme of Sra [2012]. The proposed adversarial dictionary-based attacks are showcased on experimental evaluations in Section 4. Conducted experiments on both CIFAR-10 and Imagenet datasets reveal that our designed attacks achieve performance in between universal and specific attacks.

Preliminaries and Related Works

Consider a DNN f : R P → R c used for image classification. DNN training consists of minimizing a loss H (typically cross-entropy) with respect to parameters θ to classify images drawn from an unknown joint distribution P (x, y) in which x belongs to some manifold X ⊆ R P (e.g., X = [0, 1] P or [0, 255] P) and y ∈ {1, . . . , c} denotes one of the possible labels. Given an observed (also called natural or clean) example x, an adversarial example x ′ is a slight modification of x (e.g. such that ∥xx ′ ∥ ≤ δ, for some small δ > 0) but having a different label prediction by f (i.e. fooling f), that is,

argmax k∈{1,...,c} f k (x ′) argmax k∈{1,...,c} f k (x), (1)
considering f (x) = f 1 (x), . . . , f c (x) ⊤ .
Specific Attacks. Numerous methods to generate adversarial examples exist (see for instance [START_REF] Samuel | Opportunities and challenges in deep learning adversarial robustness: A survey[END_REF] for a review), with FGSM Goodfellow et al. [2015], [START_REF] Kurakin | Adversarial examples in the physical world[END_REF] being one of the first effective algorithms aiming to craft adversarial examples. The underlined idea is to perform a one-step δ optimization in the direction given by the sign of the gradient of the training loss ∇ x H(f (x), y) with respect to the input image x. Hence, the adversarial example to x i associated with class y i is expressed as:

x ′ i = x i + ε(x i) where ε(x i) = δ sign(∇ x i H(f (x i), y i)), (2)
with ε(x i) being the added perturbation to get the closest adversarial example to x i . The PGD method [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] improves upon FGSM by updating ε i via projected gradient descent until fooling the DNN. In the same spirit, [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF] proposed a more elaborated approach that solves

min ε i ∈R P ∥ε i ∥ p + λg(x i + ε i)
where g is an objective function enforcing the fooling of the classifier. A similar idea is pursued by DeepFool [START_REF] Moosavi-Dezfooli | Deepfool: A simple and accurate method to fool deep neural networks[END_REF] which finds the specific perturbation as

argmin ε i ∈R P ∥ε i ∥, s.t. argmax k f (x i +ε i) argmax k f (x i).
All these methods boil down to generating, for a given x i , a sample-dependent perturbation ε(x i) such that x ′ i = x i +ε(x i) is adversarial to the DNN f . This requires, to attack f , to have access to the x i to be processed. In that setting, the effectiveness of an adversarial perturbation hinges on the computation budget.

Universal Attacks. To overcome these difficulties, it has been shown that a universal perturbation ε, independent of x and, thus, image-agnostic, can be designed [START_REF] Moosavi-Dezfooli | Universal adversarial perturbations[END_REF]. This universal perturbation ε allows, with high probability, to set up for any x an adversarial example x ′ = x + ε. While the prior attack, coined UAP, was built by finding a universal DeepFool perturbation, a gradient-based solution, hereafter termed UAP-PGD, was then proposed in [START_REF] Shafahi | Universal adversarial training[END_REF] as the solution of the following optimization problem:

maximize ε∈R P N i=1 H(f (x i + ε), y i) s.t. ∥ε∥ p ≤ δ ,
(3) for a given dataset {x i , y i } N i=1 . More recently, two variants of UAP-PGD have been proposed. First, the work of Zhang et al. [2020a] have designed a universal perturbation CD-UAP fooling solely a given subset of classes. Second, the authors of [START_REF] Benz | Universal adversarial training with class-wise perturbations[END_REF] have considered instead class-wise universal perturbations where a perturbation is crafted for each of the classes. Let us also note Fast-UAP [START_REF] Dai | Fast-uap: An algorithm for speeding up universal adversarial perturbation generation with orientation of perturbation vectors[END_REF] improving upon UAP Dai and Shu [2020] by additionally building upon the orientations of the individual DeepFool perturbations into the design of a universal perturbation. The reader is invited to refer to [START_REF] Zhang | A survey on universal adversarial attack[END_REF] for a survey on universal attacks. However, mainly because of poor fooling rates, the actual applicability of those universal perturbation to fool DNN is still far-fetched [START_REF] Chaubey | Universal adversarial perturbations: A survey[END_REF].

Proposed Dictionary-Based Attack. We propose to learn the perturbation ε to any x as a linear coding over a dictionary D of M basic adversarial perturbations (called atoms hereafter). The atoms themselves are also learned based on some adversary training set {x i , y i } N i=1 . Hence such dictionary is independent from any specific input images to attack and may be deemed universal. On the contrary, the linear combination have to be tailored for each image at hand. In fact, our adversarial dictionary-based attack bridges the gap between specific and universal attacks. Close to our approach is the recent principal component (PC) adversarial example method Zhang et al. [2020b] that can be seen as an unsupervised adversarial dictionary learning with the dictionary given by the M leading PC of the training data. Instead, we rely on a supervised approach by taking into account the targeted fooling classes. In the following, we introduce this adversarial dictionary learning problem and expose a corresponding algorithmic solution.

Adversarial Dictionary Framework

The originality of the proposed method is to find an additive perturbation ε(x) of some clean image x expressed as a linear combination of a few shared attacks. More formally, let µ be a distribution of images on X ⊆ R P . We aim to learn a dictionary of attacks D ∈ R P ×M , made of M ≪ P atoms d j ∈ R P , so that for every x i ∼ µ, with high probability,

x i + ε i (x i), with ε i (x i) = Dv i (x i), is an adversary example for some vector v i (x i) ∈ R M . Note that D is shared across all attacks while v i (x i) is tailored to the image x i .
In that sense, the proposed attack is semi-universal. To ease the reading, in what follows we drop the dependency and simply denotes v i in place of v i (x i).

Adversarial Dictionary Learning

In this section, we first present the proposed framework to find a dictionary of shared universal attacks, named ADiL for Adversarial Dictionary Learning. Then, an algorithmic solution is provided to learn such adversarial dictionary.

Principle

In order to learn the dictionary of shared attacks, we propose to address the following optimization problem reminiscent of classical dictionary learning problems (see, e.g., Mairal et al. [2009], [START_REF] Rakotomamonjy | Direct optimization of the dictionary learning problem[END_REF]).

Problem 3.1 (Adversarial dictionary learning). Let a classifier f : R P → R c and a dataset {x i , y i } N i=1 made of N ∈ N + samples where each x i ∈ R P is a valid instance associated to the label y i ∈ {1, . . . , c}. Solve

minimize D∈D V =[v 1 ,...,v N]∈V N N i=1 J f (x i + Dv i , y i), (4)
where J f is an adversarial loss whereas D ⊆ R P ×M and V ⊆ R M encode some constraints on D and the v i 's, respectively.

The choice of the adversarial loss plays a central role since it measures the closeness between the predicted target and a chosen target. It is typically quantified using a loss H such as the cross-entropy or the difference of logit outputs [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], see function f in Section VI.A]. As such, we can distinguish two settings:

(untargeted) J f (•, y) = -H(f , y) (5) (targeted) J f (•, y) = H(f , t) (6)
On the one hand, the untargeted setting (5), promotes attacks so that the predicted target by f is far from the true label y.

On the other hand, the targeted setting (6) aims to find attacks whose predicted label is an adversary target t ∈ {1, . . . , c} chosen among the c classes.

Algorithm 1 ADiL

Require:

Step-sizes

{γ k } K-1 k=0 Set D (0) ∼ D Set V (0) = 0 M×N for k = 0 to K -1 do D (k+1/2) = Proj D (D (k) -γ k ∇ D L(D (k) , V (k))) V (k+1/2) = Proj V N (V (k) -γ k ∇ V L(D (k) , V (k))) end for return Adversarial dictionary D (K)
Remark 3.1. There exist many ways to choose the adversary target t to an clean example x. A common choice is to set t as the second most probable label predicted by the DNN f . In other words, let ŷ = argmax j∈{1,...,c} f (x), then t = argmax k∈{1,...,c}\{ ŷ} f k (x).

Depending on the choice of the constrained sets D and V , one can ensure that the attacks are ℓ p -norm constrained. This is the subject of the following proposition. Proposition 3.1 (ℓ p -Attacks). Given some budget δ > 0, we have that ∥Dv∥ p ≤ δ for every D ∈ D and v ∈ V where

D = {D ∈ R P ×M | (∀m ∈ {1, . . . , M}), ∥d m ∥ p ≤ 1}, (7)
and

V = {v ∈ R M | ∥v∥ 1 ≤ δ}. (8
)
Note that, for such choice, both D and V are convex sets. Additional comments can be found in the supplementary material.

Algorithmic Solution

Herein we propose a procedure for solving Problem 3.1. Note that minimizing the objective in (4) is a challenge due to the nonconvexity inherent to the dictionary learning formulation and the neural network f . We stress out that we are only interested in finding a good stationary point in a limited time. Since classical dictionary learning problems are bi-convex, they are usually solved by alternating the optimization over D and V since each alternating problem is convex. However, here this no longer the case because of the adversarial loss involving a neural network. Hence, we embrace a direct optimization scheme over (D, V) in the spirit of the nonconvex proximal splitting framework of Sra [2012] which has also been applied in the context of classical dictionary learning in [START_REF] Rakotomamonjy | Direct optimization of the dictionary learning problem[END_REF]. To that purpose, we begin by recasting Problem 3.1 as follows.

minimize

D∈D V ∈V N        L(D, V) ≜ N i=1 J f (x i + Dv i , y i)        , (9
)
where L is smooth, provided that f is smooth as well. Note that, when f is not smooth, such as in the case of neural networks with non-smooth activation functions, it is unlikely that one lies at a discontinuity point during the forward pass when f is trained. However, in these cases, we consider a sub-gradient instead while still making use of the gradient notation for the ease of reading. Given some sequence of step-sizes {γ k } k∈N , problem (9) is addressed by successive projected gradient steps of the form

       D (k+1/2) = Proj D D (k) -γ k ∇ D L(D (k) , V (k)) V (k+1/2) = Proj V N V (k) -γ k ∇ V L(D (k) , V (k)) (10)
The full scheme is sketched in Algorithm 1. Remark 3.2. In order to promote different dictionary elements while still being the least informative possible, we suggest to resort to a randomize initialization of D. The coding vectors are simply initialized as zero-valued vectors. Remark 3.3. In order to lighten the memory load associated to both large-scale datasets and very deep neural architectures, one may consider stochastic variants instead.

Attacking Unseen Examples

We now turn to the crafting of dictionary-based attacks to unseen examples, coined ADiL attacks.

Provided that the dictionary D is known, we propose two ways to learn an attack x + Dv to a new example x ∼ µ.

(unsupervised) v ∼ V (11) (supervised) v = argmin u∈V J f (x + Du, y) (12
)
The first is an unsupervised technique where v is randomly sampled in V , i.e., the ℓ 1 -ball of radius δ. In order to find perturbation closer to the given budget, we suggest to sample on the ℓ 1 sphere, instead. Various sampling strategies can be considered. The reader is invited to report to the supplementary material for additional details. Remark 3.4. One can repeat the sampling of (11) multiple times until either the classifier f has been fooled or a number of maximum trials has been reached.

The second adversarial attack is, a contrario, a supervised technique where v is optimized by solving Problem 3.1 for a fixed D. This can be done by resorting to Algorithm 1 where the optimization steps over D have to be omitted. However, the learned perturbation Dv might still be far from the ℓ p -budget δ. Instead, we suggest to solve an alternative problem of the form min

v∈R M J f (x + Dv, y) s.t. ∥Dv∥ p ≤ δ. (13
)
For the sake, let define z = Dv. As D ∈ R P ×M with M ≪ P and by assuming that D is of full rank, we may write

v = D † z with D † = (D ⊤ D) -1 D ⊤ .
Therefore, problem (13) becomes

min z∈R P J f (x + DD † z, y) s.t. ∥z∥ p ≤ δ (14)
which can be solved via Algorithm 1 restricted to the optimization of z and by substituting DD † to D in the optimization scheme.

For both unsupervised and supervised techniques, in order to ensure that the adversarial example x + Dv is a valid image, we additionally perform a projection onto the input manifold X ⊆ R P , i.e., x ′ = Proj X (x + Dv).

Numerical Experiments

In this section, the proposed supervised untargeted ADiL attack (see (14) and (5)) is evaluated and compared with state-of-the-art attacks on benchmark datasets. To this effect, we resort to the TorchAttack repository [START_REF] Kim | Torchattacks: A pytorch repository for adversarial attacks[END_REF] which contains Pytorch implementation of the most popular specific attacks. On the contrary, we have implemented by ourselves the universal attacks since their code was not made publicly available1 .

CIFAR-10 Experiments

In order to illustrate the good behavior of the proposed attack and gain some insights, we conducted the following experiments on the CIFAR-10 dataset [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF].

Setting. We consider a pre-trained VGG 11-layer model with batch normalization neural network f achieving a validation accuracy of 91. 95% Phan [2021]. To this regard, the dictionary D is learned using a first subset made of N = 700 images (70 images per class out of the 10 classes) of the validation set. Then, a second subset of 150 images is sampled from the same validation set and is considered as the test set to evaluate to what extent D is relevant to craft attacks to unseen examples. In what follows, we resort to the cross-entropy loss H in (5).

Illustration. We report in Fig. 1 the learned adversarial dictionary (made of M = 5 atoms) for performing ℓ 2 attacks with a budget δ = 0.5. Although all atoms are different, they still exhibit patterns in common. Indeed, since they are all used to fool a peculiar neural network f on a given dataset, they should bear the mark of both. For the VGG 11-layer model studied here, this translates into small horizontal and vertical strides. Complementary experiments reported in the supplementary material highlight the difference in patterns for different f . We additionally report one ADiL attack in Fig. 2 where an image of a cat is attacked to be predicted as a frog. The corresponding coding vector v permits to gain some insight about how the atoms are linearly combined to produce the adversarial perturbation.

Impact of the Number of Atoms. In the proposed framework, the number of atoms M in the dictionary acts as an hyper-parameter controlling to what extent the attacks on different images are similar. On the one hand, for M = 1 each attack only differs by the intensity of the added perturbation through the quantity v i ∈ R M . On the other hand, for M = N , there exist enough degrees of freedom so that attacks can be crafted specifically for each image. Here, we investigate how the choice of M impacts the performance of the attacks. We report the training losses for various number of atoms M in Fig. 3 (a) as well as the corresponding test fooling rates. We do observe that ADiL reaches lower loss values as M grows, hence confirming that better minima can be found by increasing the learning space. This fact is also seconded by the test fooling rates indicating better performance with larger M.

Distribution of Coding Vectors. For each of the 10 original classes, we a posteriori study the empirical distribution of the coding vectors v. To this purpose, we report in Fig. 3 (b) the quantity |v|/∥v∥ 1 averaged over all attacks and conditioned to the original label. These distributions are good indicators of which of the M = 10 atoms are the most important to fool the network depending on the original class. We see that, on average, all atoms are used for each of the class. Indeed, this makes sense since no sparsity constraint is explicitly imposed on v. Interestingly, we observe different distributions for each of the classes, hence suggesting that the atoms might play different roles. Now, we compare the proposed ADiL attack with both ℓ 2 and ℓ ∞ baseline attacks with budget 0.5 and 8/255, respectively. Baselines. Comparisons are drawn with the following specific ℓ p -attacks. For the sake of reproducibility, we also provide the grids on which the hyper-parameters are selected. If not mentioned, hyper-parameters values are kept as the default ones [START_REF] Kim | Torchattacks: A pytorch repository for adversarial attacks[END_REF].

• FGSM [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF] (ℓ ∞);

• FFGSM Wong et al. [2020a] (ℓ ∞) with step-size selected in {0.01, 0.02, 0.03};

• MIFGSM [START_REF] Dong | Boosting adversarial attacks with momentum[END_REF] (ℓ ∞) with step-size validated in {0.001, 0.006, 0.011, 0.016};

• PGD [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] (ℓ 2 , ℓ ∞) with step-size in {0.1, 0.2, 0.3, 0.4};

• C&W [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF] (ℓ 2) with box-constraint parameter in {0.1, 1.77, 31.6, 562, 10 4 };

• APGD [START_REF] Croce | Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks[END_REF] (ℓ 2 , ℓ ∞) with step-size chosen {0.5, 0.75, 1., 1.25}.

We additionally consider the following two universal attacks.

• UAP-PGD [START_REF] Shafahi | Universal adversarial training[END_REF] (ℓ 2 , ℓ ∞) with step-size in {0.1, 2.575, 5.05, 7.525, 10};

• FastUAP [START_REF] Dai | Fast-uap: An algorithm for speeding up universal adversarial perturbation generation with orientation of perturbation vectors[END_REF]

(ℓ 2 , ℓ ∞).
Attacks of State-of-the-Art Classifiers. The purpose of this experiment is to compare ADiL with both specific and universal attacks on a panel of pre-trained models (i.e., VGG11, DenseNet121 and ResNet50) depicting the variety of state-of-the-art neural network architectures. Performance, in terms of fooling rate, are reported in Table 1 (a) and Table 1 (b) for ℓ 2 and ℓ ∞ -attacks, respectively. Unsurprisingly, we observe an important difference of performance between universal and specific attacks. This difference is even greater with ℓ 2 -based attacks (see Table 1 (a)) since universal attacks are known to perform relatively poorly in such setting. Overall, ADiL yields balanced results in between both ends of the spectrum. Such balance can be tuned by choosing the number atoms M, hence acting as a trade-off between specific and universal attacks.

ImageNet Experiments

In this section, we further investigate how ADiL performs in a more challenging large scale scenario such as ImageNet.

Experimental Setting. Experiments are conducted on the ILSVC2012 [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] validation subset of ImageNet consisting of 50K RGB images. They are resized and cropped around the center to match the input size of 224 × 224. The dataset is split into three parts with an equal distribution of samples among the 1000 classes. If not mentioned otherwise, we use 10 images per class for learning the attack, 2 for validating the hyper-parameters and 5 for for evaluating the attack performance. All experiments are carried out on GPU Volta V100-SXM2-32GB Departing from the CIFAR-10 experiments restricted to the cross-entropy loss H (see (5)), we additionally compare with the difference of logit outputs [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], see function f in Section VI.A], hereafter called logits loss. In order to deal with the computational cost inherent to the ImageNet dataset, we resort to the AdamW [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] stochastic gradient in place of the full-batch gradient of Algorithm 1. In what follows, we restrict the study to ℓ ∞ -attacks of budget δ = 8/255. The maximum number of iterations is set to 500 and 30 for learning the dictionary and crafting the attacks, respectively. Details and additional information about the selection of the hyper-parameters can be found in the supplementary material.

Impact of Number of Atoms. In order to complement the study done in Section 4.1, we further take a glance at the impact of the number of atoms M on the performance. To this regard, we have trained multiple dictionaries on N = 1000 samples so as to attack a MobileNet classifier. Results, displayed in Fig. 5a still support that a larger number of atoms relates to higher fooling rates but, more interestingly, also goes in pair with a lower mean squared error (mse).

Let us also note that although ADiL with both cross-entropy and logits loss perform equally well for large M, they exhibit very different performance for small values of M. In that setting, we suggest to resort the cross-entropy instead.

In the remaining of the experiments we solely consider M = 100 and further compare the cross-entropy loss against the logits loss. 3.

Impact of

On the one hand, results once again shed light on the superiority of specific attacks (e.g. AutoAttack [START_REF] Croce | Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks[END_REF]) managing to achieving up to 100% fooling rate. However, such performance comes at a price of high computational cost up to 10 times more than that required to perform universal attacks. The only two exceptions are FGSM [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF] and its variant FFGSM Wong et al. [2020b] being both one-shot specific attacks. Still, their efficiency and low complexity comes at the expense of the highest mse of any attacks.

On the other hand, universal attacks perform relatively well in this large scale experiment mostly because of the many existing classes that allows them to easily find an adversarial label to target. Nonetheless, their fooling rates are still significantly far behind those of specific attacks.

Concerning ADiL, it displays competitive results at a much lower computational cost than specific attacks while also benefiting from low mse. Indeed, it performs at most 5 times faster than iterative specific attacks and still achieves relatively high fooling rates (e.g., 98.14% for ADiL-ce on MobileNet). In addition, ADiL always drastically improves upon universal attacks in terms of fooling for at most twice or three times their execution times and a comparable mse. Finally, it is unclear whether using the logits loss over the cross-entropy is beneficial since both yields equivalent results on average. Hence, confirming the observation drawn in the previous experiment. Therefore, in what follows we restrict to the cross-entropy loss.

Illustration of Atoms. We display in Fig. 4 a selection of 5 atoms of ADiL-100 learned on ImageNet for fooling either a MobileNet or a GoogleNet network. We observe that they all exhibit strong structured patterns reminiscent of those found in the UAP perturbation [START_REF] Shafahi | Universal adversarial training[END_REF]. However, contrary to universal attacks which merge all individual perturbations into a single one, the proposed dictionary framework allows to split the individual contributions onto multiple diverse atoms.

Cross-Model Performance. Finally, we study the cross-model performance, that is, to what extent the dictionary learned for attacking one model is also pertinent to attack another target model. Results, presented in the Table 4, show the powerful transferability of the proposed ADiL attack.

For most models, we do observe that the learned dictionary on one model is also the best dictionary to attack that aforementioned model (see diagonal of Table 4). Nonetheless, ADiL dictionary elements show great transferability across various models with an average decrease of 5% in fooling rate. It is also worth noting that learning a dictionary on the InceptionV3 model allows to craft attacks roughly matching the best performance on other models. This suggest that learning an adversarial dictionary on a deeper and more complex model may be a good way to craft quality attacks on shallower and simpler networks. More generally, it raises the question of which model attacks yield better generalization properties.

Conclusions

The present paper introduces ADiL, a dictionary learning framework for finding adversarial perturbations in the form of a linear combination of shared dictionary elements. Once the dictionary is learned, it allows to craft an adversary perturbation in the manifold spanned by the dictionary atoms. Numerical experiments on a panel of pre-trained deep architectures show that ADiL offers competitive trade-off between specific and universal attacks by tuning the number of atoms. Future works will be devoted to the design of an efficient unsupervised ADiL attack by sampling the coding vectors (see (11)) through a generative adversarial network. We believe that such approach might permit to yield quasi instantaneous attacks without hampering too much the prediction performance. In addition, we plan to embrace a linear programming reformulation for ReLu based networks in order to find a global optima of Problem 3.1.

Figure 1 :

 1 Figure 1: Atoms of ℓ 2 -ADiL on VGG trained on CIFAR-10. Atoms are represented from left to right while their positive and negative parts are represented at the top and bottom, respectively. All atoms have been rescaled for display purposes

Figure 2 :

 2 Figure 2: Examples of ℓ 2 -ADiL attacks on VGG trained on CIFAR-10. Note that the adversarial noises have been magnified for display purposes. The original example being a cat has been attacked to be predicted as a frog. The coding vector for this attack is: v = [0.3625, 0.1189, 0.0163, -0.2157, 0.1877]

Figure 3 :

 3 Figure 3: Insights about ℓ ∞ -ADiL attacks on CIFAR-10.

Figure 4 :

 4 Figure 4: Illustration of some ADiL's atoms on ImageNet.

Table 1 :

 1 2 . Performance of

					Attacks	VGG DenseNet ResNet50
	Attacks	VGG DenseNet ResNet50	APGD FGSM	100 63.57	100 51.37	100 56.03
	PGD	96.43	95.89	98.58	FFGSM	65.71	43.15	59.57
	CW	96.43	95.21	97.87	MIFGSM	100	100	100
	APGD	97.14	97.26	98.58	PGD	100	100	100
	ADiL-2	05.00	05.48	04.26	ADiL-2	08.57	16.44	07.80
	ADiL-5	07.14	09.59	06.38	ADiL-5	15.00	19.18	11.35
	ADiL-10	09.29	10.27	07.09	ADiL-10	16.43	22.60	12.77
	UAP-PGD 01.43	00.68	00.71	UAP-PGD 14.29	17.12	10.64
	Fast-UAP 01.43	02.05	01.42	Fast-UAP 08.57	10.96	09.93
			(a) ℓ 2 -attacks				(b) ℓ ∞ -attacks	

 Number of Training Samples. We additionally investigate the influence of the number of training samples on the quality of the learned dictionary on MobileNet. To this effect, we consider N ∈ {1000, 2000, 5000, 10000} corresponding to respectively 1, 2, 5 and 10 samples per classes. Results are illustrated in Fig 5.As expected, the fooling rate increases as N grows. Note that the slight decrease in slope around 5000 samples suggest saturating performance beyond some sufficient number samples. Simultaneously, the mse decreases as N increases, thus indicating that the learned atoms are better fitted to the examples distribution. Finally, it is worth mentioning that, on merely Impact of parameters. We investigate how the parameters M and N influence the performance (fooling, rate) of ADiL with either cross-entropy loss (blue) or logits loss (orange) 1000 samples, one can already achieve competitive fooling rates about 88.75% using logits loss or even 92.48% for cross-entropy.Comparison with State-of-the-Art Attacks. We now compare ADiL with the baseline attacks on multiple pre-trained models on ImageNet from the TorchVision repository. Namely, we consider MobileNetV2, DenseNet121, InceptionV3, ResNet18, GoogleNet and VGG11, achieving accuracy of 71.88%, 74.43%, 69.54, 69.76%, 69.78% and 69.02%, respectively. Performance in terms of fooling rate (fr), mean squared error (mse) and time are reported in Table

	0 10 20 30 40 50 60 70 80 90 100 Fooling rate	1	5 Number of atoms 10 20 50 100 Logit loss cross entropy loss MSE 100 0 10 20 30 40 50 60 70 80 90	1	5 10 20 50 100 Number of atoms Logit loss CrossEntropy loss	1000 2000 5000 10000 Training samples 85 90 95 100 92.48 95.49 97.77 97.94 92.92 96.63 96.97 MSE 85 86 Fooling rate 88.75 Logit loss cross entropy loss 1000 2000 5000 10000 85.44 84.82 86.16 86.15 85.14 84.88 Training samples 83 84 83.44 83.37 Logit loss cross entropy loss
			(a) Impact of number of atoms M	(b) Impact of number of samples N
	Figure 5:				

Table 3 :

 3 Performance of ℓ ∞ -attacks on ImageNet. Comparisons are drawn in terms of fooling rates (fr), mean squared error (mse) and average time for evaluating the attack (in ms). Results are divided between specific (top cell), ADiL with M = 100 atoms (middle cell) and universal attacks (bottom cell)

			VGG			DenseNet			GoogleNet	
	Attacks	fr	mse	time	fr	mse	time	fr	mse	time
	APGD	99.96 95.41	689 99.99 71.67	526	100	69.57	283
	AutoAttack	100	95.45	688	100	71.63	536	100	69.57	291
	FGSM	97.84 144.43	21	94.16 144.35	55	91.96 144.38	51
	FFGSM	98.76 114.83	21	96.43 114.67	55	94.00 114.71	51
	MIFGSM	99.93 94.05	594 99.99 74.46	460	100	73.08	233
	PGD	99.96 91.74	593 99.99 73.10	458	100	71.69	234
	ADiL-ce	86.08 90.76	140 88.97 88.12	187 84.12 88.82	101
	ADiL-logits 84.52 89.02	140 87.86 86.41	183 86.76 86.05	101
	UAP-PGD 68.44 121.70	59	68.14 102.75	67	72.72 120.65	56
	UAP	60.37 84.62	71	57.52 79.28	67	42.15 74.32	48
			Inc.V3			ResNet18			MobileNet	
	Attacks	fr	mse	time	fr	mse	time	fr	mse	time
	APGD	99.99 66.47	910	100	77.23	180	100	69.31	364
	AutoAttack	100	66.49	913	100	77.23	180	100	69.31	365
	FGSM	83.40 140.50	65	97.89 144.41	45	96.16 144.39	51
	FFGSM	85.35 112.93	65	99.08 114.70	45	98.77 114.74	51
	MIFGSM	99.99 68.51	899	100	79.03	171	100	73.24	354
	PGD	99.99 68.53	899	100	77.38	170	100	71.78	352
	ADiL-ce	86.16 75.41	162 92.46 89.38	88	98.14 85.25	86
	ADiL-logits 87.75 78.16	139 89.79 87.78	89	96.69 83.43	86
	UAP-PGD 52.27 96.10	66	70.85 107.20	50	91.66 106.27	46
	UAP	18.33 55.44	61	65.37 89.84	53	85.44 91.02	50
		VGG DenseNet GoogleNet InceptionV3 ResNet18 MobileNet
	VGG	86.08	84.02		79.79	82.12		88.37	91.63
	DenseNet 84.24	88.97		79.16	81.16		89.65	92.02
	GoogleNet 84.89	84.40		84.12	81.84		88.40	92.30
	Inception	86.09	85.62		83.61	86.16		89.23	93.13
	ResNet	84.77	85.87		78.94	80.61		92.46	92.40
	MobileNet 83.92	81.84		75.74	78.50		86.13	98.14

Table 4 :

 4 Cross-model performance of ℓ ∞ -attacks on ImageNet. Models used to learn the adversarial dictionary are listed column-wise while models on which the attacks are evaluated are reported row-wise

All codes will be made available to contribute to the TorchAttack repository.

Courtesy of CRIANN (https://www.criann.fr)