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The cetaceans propulsion by a periodic flapping motion of their fluke is considered and studied on a benchmark flexible
straight wing. The aim of the study is to validate low order models for this configuration. First, the two-dimensional
rigid case is investigated, comparing the aerodynamic performance of the airfoil periodic motion versus the reduced
frequency, with published data and unsteady Reynolds-averaged numerical simulation results. It appears that viscous
drag modeling must be added to the discrete vortex method, in order to obtain sensible thrust results, for Garrick
frequencies below 2. All high and low order models agree at the remarkable Garrick frequency of 1.82, although the
experiment shows a lower efficiency of about 25%. The positions of the shed vortices match comparing the unsteady
Reynolds-averaged numerical simulation and the discrete vortex method. Then, the three-dimensional leading-edge-
suction-parameter modulated discrete vortex method is extended, by means of a lifting line theory. A modification of
the method is proposed in order to consider wing dihedral, resulting from the spanwise flexibility. The configuration
considers a reduced frequency of 1.82. Three types of spanwise wing flexibility are examined. For the inflexible and
flexible cases, a reasonable agreement is observed between the different methods for each coefficient. The intermediate
flexible wing provides a better thrust coefficient, while excessive flexibility proves to be detrimental. Vorticity fields
are compared with previously published data for the three wings. For the highly flexible wing and the right choice of
deformation parameters, the discrete vortex method produces reliable results.

Keywords: bio-inspired concept, multi-physics, aeroelasticity, discrete vortex method, detached flow

I. INTRODUCTION

The periodic vertical plunging of a fluke is a means of
propulsion for the cetaceans with efficiencies between 83%
and 92%1–4. For a global overview, testifying of the continu-
ous interest in the subject, see the recent review work by Wu
et al.5. This type of thrust generation is a source of inspiration
for the development of innovative propulsion systems, for wa-
ter or aerial drones, which requires a better understanding of
the fluid dynamics involved in the propulsion mechanism. In
order to study the flapping performance, for various parame-
ters, such as the wing aspect ratio and its frequency, low com-
puting cost simulation methods are necessary. They need a
preliminary validation from published data. That is the reason
why a benchmark configuration is studied hereafter.

The oscillatory motion in pure heave of an airfoil, for
propulsion purpose, is the subject of many publications. Most
of them consider a two-dimensional (2D) flow, as is done in
the very first analytical approach for an incompressible and in-
viscid flow6. In that study, the time-averaged thrust coefficient
and lift peak coefficient are obtained using a linearized poten-
tial flow theory. Lewin & Haj-Hariri7 investigated the flow
features, developing with the oscillation frequency and heave
amplitude, in an incompressible viscous flow by a numerical
model, where the governing equations are discretized using
a conformal map. Downstream of the airfoil, different vor-
tex shedding regimes are identified from the vorticity fields,

a)Electronic mail: thierry.faure@ecole-air.fr.

depending on the heave amplitude and frequency. Kamrani
et al.8 developed a discrete vortex method, with a leading
edge vortex initiation criterion, for the sinusoidal heaving and
pitching motion of an airfoil. It is based on a panel method,
and an empirical trailing-edge separation correction is imple-
mented. The range of Reynolds numbers considered in the
study is 1000−45,000 and the reduced frequency is between
0.06 and 0.16. The sinusoidal oscillation of a NACA 0012
airfoil is studied by Young & Lai9,10, for a Reynolds number
of 2×104, using a 2D Navier-Stokes solver. The development
of the thrust and power coefficients and of the propulsive effi-
ciency is given versus the plunging frequency and amplitude.
Spanwise flexibility of the wing is considered by Liu1 with
an unsteady panel method. An experimental characterization
of the flow is made in a water tunnel11, for a wing built on a
NACA 0012 airfoil with an aspect ratio of 6 and for Reynolds
numbers in the range 10,000−30,000. Three wings with dif-
ferent stiffnesses are tested, and a 50% thrust benefit is ob-
served for the wing of intermediate flexibility, while excessive
flexibility proves to be detrimental. The very same wings are
reported in high-fidelity aeroelastic computations12. These
authors find the same conclusions regarding the advantage of
a moderate flexibility, and produce data of the spanwise de-
velopment of the flow on the wing upper surface. Recently,
a non-linear three-dimensional (3D) lifting-line method is im-
plemented for wings of similar stiffness13. The interaction be-
tween the leading edge suction and the shear layer developing
on the airfoil during dynamic stall is modeled14. Wind tunnel
experiments are performed on the effects of passive, inertia-
induced surface deformation, at the leading and trailing edges,
of an oscillating airfoil energy harvester15.
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The present investigation applies the Leading-edge-
suction-parameter-modulated Discrete Vortex Method
(LDVM) and other models to the oscillatory heave of a
propulsive rectangular straight wing, built on a NACA 0012
airfoil. The Reynolds number, made on the upstream flow
velocity U∞ and the airfoil chord c, is 30,000. A sinusoidal
plunging motion along the vertical z axis is considered11:

h = hmax cos2π f t (1)

where h is the wing position along the z axis, hmax = 0.175c
its maximum value, f the plunging motion frequency and t the
time. A comparison between the reduced order LDVM, the
dynamic stall model16 and the Unsteady Reynolds-Averaged
Navier-Stokes (URANS) simulation is presented in 2D, with
the development of the propulsive coefficients with respect to
the reduced flapping frequency. Then, an extension of the 3D
LDVM17 is proposed in order to take into account wing dihe-
dral, resulting from the spanwise flexibility. The 3D configu-
ration is also considered using a pseudo-stationary lifting line
theory and the 3D LDVM, for the aforementioned three wings
with different stiffnesses, referred to as inflexible, flexible and
highly flexible cases. The thrust, lift and quarter-chord pitch-
ing moment coefficients are given for these flexibility cases.
The comparison between LDVM predictions and experimen-
tal data of the vortices shed from the wing is presented.

II. NUMERICAL METHODS

A. Dynamic stall model and pseudo-stationary non-linear
lifting line theory

1. Dynamic stall model

The 2D model used hereafter is a low computational cost
model presented by Bøckmann16, which derives from the
Beddoes–Leishman dynamic stall model18. It provides the
unsteady aerodynamic forces acting on a 2D airfoil with an
arbitrary development of the angle of attack α . The model
is composed of three main contributions representing various
flow regimes: unsteady attached flow, trailing edge separa-
tion and leading edge separation. Some empirical time lags
are included to model the vortex dynamics properly. In par-
ticular, the lift due to a vortex developing near the leading
edge is also accounted for. Bøckmann adds some modifica-
tions: in particular, the effect of compressibility is removed.
The non-circulatory normal force (also known as added mass
force) is calculated differently and as proposed in Moriarty &
Hansen19, the separation point locations are expressed slightly
differently, in order to be able to recreate the static data, for
large values of the angle of attack. Static forces coefficients
tables are used to calculate the separation points location. In
present study, in order to be consistent with the experiment11,
static lift data20 are used for a Reynolds number of 30,000 in
the range −20◦ ≤ α ≤ 20◦. For higher angles of attack and
static drag, data21 for a Reynolds number of 20,000 are used.

FIG. 1: Example of a low discretized lifting line model with
sweep and dihedral22 with resulting lift L and thrust Th.

2. Pseudo-stationary non-linear lifting line theory

The method used in 3D is a pseudo-stationary version of
the non-linear lifting-line theory of Prandtl13. The non-linear
lifting-line theory is a reduced order method giving the lift
and drag on a finite wing with sweep and/or dihedral in an
incompressible, irrotational and steady flow22–24. The wing
is sliced into sections with constant circulations. 3D effects
are modeled by a vortex sheet composed of horseshoe vor-
tices starting at the quarter chord of the wing (figure 1). Solv-
ing the non-linear problem consists in finding the piece-wise
constant circulation evolution along the span, satisfying both
Kutta-Joukowski theorem and 2D external data for each sec-
tion. The external data are 2D lift and drag curves relatives
to the angle of attack, coming from experiments or higher or-
der simulations, and in that sense viscosity can be accounted
for. In present work, a thin symmetrical airfoil law is used,
CL = 2πα . The wing oscillation is modeled by a succession
of stationary calculations. At each time step, the shape of the
wing and the apparent velocities of the sections are updated
and the non-linear problem is solved. The aerodynamic forces
are then integrated over the oscillation cycle and divided by
the period to obtain the mean aerodynamic coefficients.

B. Reynolds-averaged numerical simulation

2D URANS are carried out for a Reynolds number of
30,000, following a finite volume method using the Open-
Foam software suite. Solver parameters, mesh and turbulence
modeling are validated on static cases, compared to literature
results. The numerical scheme is a merge between Pressure
Implicit with Splitting of Operators (PISO) and Semi-Implicit
Method for Pressure Linked Equation (SIMPLE), second or-
der in space and implicit Euler (first order) in time. Boundary
layer resolution (see below) and the need to predict a moving
laminar separation followed by prospective turbulent reattach-
ment, lead to a refined mesh around the airfoil and, through
stability considerations, a very short time step (the order of
5×10−5/ f ).

A C-shape structured mesh is used, and independency
checked by monitoring the values of aerodynamic coeffi-
cients and location of characteristic stations (separation and
reattachment for the laminar separation bubble obtained in
static computations), for mesh sizes ranging from 82,370 to
296,300 points. The two finest meshes, namely 163,000 and
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mesh points CL CD CM

coarse 82,370 0.500 0.0300 0.0340

medium 99,800 0.541 0.0217 0.0315

fine 163,000 0.560 0.0222 0.0362

very fine 296,300 0.556 0.0222 0.0356

TABLE I: Lift, drag and quarter chord pitching moment
coefficients for an angle of attack of 4◦ and different meshes.

296,300, are found to give the same results as far as global
coefficients values (table I) and laminar separation bubble po-
sition are concerned. So that the 163,000 mesh points grid
is kept for the dynamic simulations. These values are to be
compared with the drag coefficient value of 0.0218 obtained
by Galbraith & Visbal25, who used high-order LES to draw the
SD 7003 polar plot at the same Reynolds number, and the LES
result of 0.0226 obtained by Cataleno & Tognaccini26. During
dynamic runs, the mesh is deforming to follow the movement
of the airfoil. Deformation is computed using Laplacian diffu-
sion of mesh points displacement and preserves the mesh reso-
lution in the vicinity of the wall. Turbulence modeling is given
special attention as the flow is likely to be transitional on the
airfoil at the considered Reynolds number. The present work
follows the idea, initially exposed by Spalart & Strelets27 and
further exemplified by Crivellini & d’Alessandro28, accord-
ing to which, with some care, the Spalart-Allmaras model can
correctly predict the flow around an airfoil at low Reynolds
number, including the so-called laminar separation bubble and
induced transition to turbulence. As exposed in the aforemen-
tioned papers, the mesh is designed so as to ensure that wall
ordinate remains the order of unity on the whole wall, and
inflow turbulent viscosity νt is set at a very low level. The
value νt = 10−14ν is selected, with ν the flow viscosity. Re-
sults published for a SD 7003 airfoil at 4◦ of angle of attack
and chord Reynolds number of 60,000 are used for further
validation29. Simulations are carried out for the same airfoil,
angle of attack and Reynolds number, using the retained mesh
and solver parameters, and are found to correctly predict the
location of separation and reattachment of the laminar sepa-
ration bubble: the two finest meshes lead to the same values
of 0.28 chord length and 0.66 chord length for the separation
and reattachment respectively, while results compiled in Ol et
al.29 ranged from 0.2 to 0.33 for separation and 0.59 to 0.63
for reattachment.

C. LDVM

1. 2D LDVM

The 2D LDVM is a reduced order unsteady flow simulation
method around an airfoil which requires low computing power
and short simulation time30–32. It is based on the thin airfoil

theory and models the time-dependent vorticity distribution
along the chord-wise x axis as a Fourier series33:

γ (θ , t) = 2U∞

[
A0 (t)

1+ cosθ

sinθ
+

∞

∑
n=1

An (t)sinnθ

]
(2)

where U∞ is the upstream flow velocity, A0, . . . ,An are the
time-dependent Fourier coefficients calculated from the in-
duced velocity wi normal to the airfoil34 and the new variable
θ resulting from the transformation of the chord-wise coordi-
nate x such as:

x =
c
2
(1− cosθ) (3)

The bound circulation attached to the airfoil is then:

ΓB(t) =
� c

0
γ(x, t)dx (4)

The method considers an unsteady potential flow augmented
by the modeling of a possible detachment, according to the
Leading Edge Separation Parameter (LESP), which reaches a
threshold (LESPcrit) if a leading edge separation occurs. The
LESP and its critical value can be obtained with a technique,
which uses a few pressures in the airfoil leading edge region
for deducing the aerodynamic state of an airfoil35. In this
unsteady method, for each time step, a Trailing Edge Vortex
(TEV) is computed if the flow is attached. If the flow is de-
tached, according to the LESP, in addition to the TEV, a Lead-
ing Edge Vortex (LEV) is computed. For further details on the
LDVM, the reader can refer to Faure et al.31. For the NACA
0012 airfoil considered hereafter36, the value of LESPcrit is
0.25 for the Reynolds number range 10,000− 30,000. The
viscosity is a key feature determining the optimum oscillation
frequency of an airfoil37. Thus, in present study, a viscous
drag correction is added when the flow is attached, in order
to stray away from the purely potential thrust prediction. This
situation arises either for kG < 1.2 during the whole cycle, or
during part of the cycle for higher frequencies. The correction
consists in the addition, to the computed drag coefficient, of
the static drag coefficient CD (α) in the attached flow region21.
This drag coefficient is obtained considering the relative an-
gle of attack αrel, which is the angle between the chord and
the combination of the upstream velocity U∞ and the relative
velocity induced by the heave motion ḣ, for each time step:

αrel = arctan
(

ḣ
U∞

)
(5)

with ˙ the time derivation. If the flow is detached (LESP >
LESPcrit), no more correction is added since the drag is mainly
due to flow detachment.
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2. 3D LDVM

A coupling between the 2D LDVM and the lifting line
theory38 has been developed for a finite aspect ratio unswept
wing17,39, consisting in 2D LDVM calculations in each span-
wise sections, with a coupling with the lifting line theory. This
approach results in the addition of a correction term A0,3D in
the formulation of the A0 Fourier coefficient. Consider a wing
of finite span b and chord c with no sweep or dihedral, decom-
posed into N sections along its span. The span direction is y,
with the variable ψ such as:

y =−b
2

cosψ (6)

For further details on 3D LDVM applied to a straight wing,
the reader can refer to Faure & Leogrande17. For a rigid wing
with no sweep, the vortices representing the spanwise vortic-
ity distribution are collinear and their mutual interaction is
null. But this is no more true for a wing with dihedral, in-
duced for instance, by spanwise flexibility as in present study.
Thus, in addition to the 3D LDVM, to take into account a pos-
sible dihedral24, the inclusion of a weak coupling between the
different wing sections is implemented in the method (figure
2). It is based on the interaction between the bound vorticity
ΓB, j,ΓB,l of different spanwise sections of the wing23, but ne-
glects the interaction between the shed vortices developing in
different spanwise sections. However, as in 2D LDVM, there
are interactions between LEV, TEV and bound vorticity in a
given section. The velocity normal to the airfoil section results
in the addition of a coupling term between the other sections:

wi (y, t) = wi,rigid (y, t)+wi, f lex (y, t) (7)

=−U∞

N

∑
n=1

nPn
sinnψ

sinψ
+

1
4π

N

∑
j=1

ΓB, j (ψ)
N

∑
l=1,l 6= j

1
r2

l, j

where wi,rigid is the induced velocity resulting from the cou-

FIG. 2: Sketch of the weak coupling in the 3D LDVM: the
interaction between the different spanwise sections is

considered for the bound circulation (in green), for a wing
with dihedral.

pling between 2D LDVM and lifting line theory for a straight

and rigid wing, wi, f lex is the induced velocity resulting from
the interaction between the N wing sections due to dihedral,
and Pn the coefficients of the lifting-line theory such as:

ΓB (ψ, t) = 2bU∞

N

∑
n=1

Pn (t)sinnψ (8)

with:

rl, j =

√(
y f ,l− y f , j

)2
+
(
z f ,l− z f , j

)2 (9)

with (y f ,l ,z f ,l) and (y f , j,z f , j) the coordinates of wing sections
l and j. As a result, the modification of the 3D LDVM for a
wing with dihedral appears in the expression of the correction
term:

A0,3D(t) =
N

∑
n=1

nPn
sinnψ

sinψ
− 1

4πU∞

N

∑
j=1

ΓB, j

N

∑
l=1,l 6= j

1
r2

l, j
(10)

The time-dependent Fourier coefficients of the thin airfoil the-
ory (Eq. 2) are written as17,40:

A0(t) = A0,2D(t)+A0,3D(t) (11)
An(t) = An,2D(t)

with A0,2D, . . . ,An,2D are the time-dependent Fourier coeffi-
cients for the 2D LDVM defined in equation 2.

III. 2D RESULTS

The Garrick reduced frequency6,11 is defined as:

kG =
π f c
U∞

(12)

In this section relative to the 2D flow, different reduced fre-
quencies between 0.5 and 5.5 are considered. The maximum
heave amplitude of the wing is hmax = 0.175c. The thrust Th
and power P coefficients are defined as:

CT =
Th

1
2 ρU2

∞c
(13)

CP =
Lḣ

1
2 ρU3

∞c
(14)

with ρ the fluid density, L the lift and ḣ the vertical wing root
velocity. The propulsive efficiency is obtained as:

η =
CT

CP
(15)

where � denotes time-averaging over a complete number of
oscillations.
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Figures 3 to 5 present the comparison of the thrust and
power coefficients and the propulsive efficiency for dif-
ferent 2D references: analytical model6, numerical panel
method, flow simulation using a compressible Navier–Stokes
solver9,10, water tunnel experiments11 and present dynamic
stall model, URANS and LDVM.

FIG. 3: Comparison of thrust coefficient versus Garrick
frequency kG for a NACA0012 airfoil in pure heave, for

present study dynamic stall model, LDVM and URANS with
published data of linear theory (Garrick6), panel method,

Navier-Stokes solver (Young & Lai9) and experiment
(Heathcote et al.11).

FIG. 4: Comparison of power coefficient versus Garrick
frequency kG for a NACA0012 airfoil in pure heave, for

present study dynamic stall model, LDVM and URANS with
published data of linear theory (Garrick6), panel method,

Navier-Stokes solver (Young & Lai9) and experiment
(Heathcote et al.11).

The thrust coefficient increases with the reduced frequency
(figure 3), a good agreement is found between the simulations,
dynamic stall model, experiments and LDVM, while much
larger values are found for the potential methods which fail to
predict the flow detachment. For reduced frequencies lower
than 1.2, no flow detachment is observed in the LDVM which
behaves in a way similar to the potential method, and for
1.2≤ kG≤ 1.5, the detached region is relatively limited during
a cycle. A small bump is observed in the LDVM prediction

FIG. 5: Comparison of propulsive efficiency versus Garrick
frequency kG for a NACA0012 airfoil in pure heave, for

present study dynamic stall model, LDVM and URANS with
published data of linear theory (Garrick6), panel method,

Navier-Stokes solver (Young & Lai9) and experiment
(Heathcote et al.11).

of CT for kG ≤ 1.7 (figure 3), and is understood as a draw-
back of the method to correctly predict the viscous drag. That
is the reason why a viscous correction has been implemented
when the flow is attached. Similar agreement is observed for
the power coefficient (figure 4), with a lower estimate for the
potential methods and dynamic stall model. Note that, accord-
ing to the experimental results, there is very little effect of the
Reynolds number in the range of study. The propulsive effi-
ciency (figure 5) shows a maximum for reduced frequencies
between 1 and 1.3, with maximum values between 0.27 and
0.4. Some discrepancies are observed between the references,
because of the different approach and the low numerical or
experimental signal-to-noise ratio for low frequencies, with a
laminar or transitional flow. As a consequence, for this low
frequency range, the efficiency is the ratio of two small quan-
tities, which can explain the dispersion. The dynamic stall
model predicts the efficiency, within the range of other meth-
ods, up to kG = 2 but gets a threshold around η = 0.28 for
larger reduced frequencies, because of the under-prediction
of the power coefficient. This may be caused by the cal-
ibration of the dynamic stall model which is conducted for
kG ≤ 0.516. When the frequency is low kG < 1.5, the results
of the LDVM without viscous correction agree with the panel
method, whereas with the viscous correction there is a better
agreement with the experimental and other numerical results.
The URANS points are slightly overestimating the predictions
of previous simulation9 and experiment11. A good agreement
is found for kG = 1.82 between dynamic stall model, Navier-
Stokes solver9, URANS and LDVM with viscous correction.
All these methods present values of efficiency approximately
25% higher than the experimental data11.

Figure 6 presents the comparison of the 2D simulations be-
tween URANS and LDVM at a Reynolds number of 30,000
for four different relative time steps over a period T of the
plunge. The following flow fields are obtained after at least
one flapping cycle. Note the general feature of the flow de-
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veloping downstream of the airfoil, with a typical reverse Von
Kármán vortex street, with an anticlockwise vortex row above
the airfoil chord axis and a clockwise vortex row below the
airfoil chord axis, typical of a thrust producing wake9. For
each relative time, over a plunging period, the positions of
the shed vortices are in accordance between the two meth-
ods. Most of the vortices generated on the suction and pres-
sure sides of the airfoil, are also equally depicted. Despite
the difference between the simulation method, no noticeable
change in the flow feature is observed. For t/T = 0 (figures
6a and 6e), the airfoil reaches its maximum amplitude and
its velocity is null. Negative vorticity vortices are advected
on the suction side towards the trailing edge while a positive
vorticity vortex is present on the pressure side and a vortex
is starting shedding from the trailing edge. For t/T = 0.25
(figures 6b and 6f), the airfoil gets its maximum downward
vertical velocity. The pressure side positive vorticity vortex is
advected and present around the mid-chord, the negative vor-
ticity vortices are just before the trailing edge and the positive
vortex develops downstream from the airfoil. A new cluster
of negative vorticity is starting near the suction side leading
edge. For t/T = 0.5 (figures 6c and 6g), the airfoil reaches its
minimum amplitude and its velocity is null again. Negative
vorticity near the leading edge develops on the suction side,
a negative vorticity vortex is shedding from the trailing edge
and the pressure side positive vorticity is advected and placed
after the mid-chord. For t/T = 0.75 (figures 6d and 6h), the
airfoil achieves its maximum upward vertical velocity. The
shed negative vortex is developing while the previously shed
positive vortex is completely detached.

IV. 3D RESULTS

A. Spanwise wing deformation

The fluid density and spanwise flexibility play an important
role in the steady and dynamic performance of the wing41.
For a flexible wing of span b, the vertical deformation z as a
function of the span direction y and time t, is obtained by the
formulation1:

z(y, t) = h(t)+d (y, t) (16)

with h(t) the wing root sinusoidal plunging motion along the
vertical axis z and d (y, t) the function governing the shape of
the spanwise deflection:

d (y, t) = dmax

[
2
(

2y
b

)2

∓ 4
3

(
2y
b

)3

+
1
3

(
2y
b

)4
]

sin(ωt +Φ) (17)

with dmax the maximum deflection at the wing tip, ω the heave
angular frequency and Φ the spanwise deflection phase an-
gle relative to the heave motion. In present formulation, the

maximum deformation is located at the wing tip. The values
of the parameters d0 and Φ are determined from the inflexi-
ble, flexible and highly flexible experimental cases11 and con-
verted into the formulation13 of equation 17 and presented in
table II. Note that the computation of Gordnier et al.12 in-
cludes a structural dynamic solver, and some phase shift is
observed between the experimental values, especially for the
highly flexible case.

wing stiffness d0/c Φ

inflexible Heathcote et al. (2008) 0.0265 56.9◦

flexible Heathcote et al. (2008) 0.148 34.9◦

Gordnier et al. (2013) 0.146 29.68◦

highly flexible Heathcote et al. (2008) 0.418 −48.9◦

Gordnier et al. (2013) 0.444 −61.2◦

TABLE II: Deformation parameters13 for the three wings of
different stiffnesses and kG = 1.82.

The relative vertical position of the wing root and tip z/c
for the oscillatory motion in pure heave at a Reynolds number
of 30,000 is given in figure 7 for two periods11. The reduced
frequency is kG = 1.82. For the 3D study, the wing aspect
ratio considered is AR = 6, taking into account the side root
wall mirror effect. The continuous black line is the vertical
displacement of the wing root. For the rigid wing, the same
motion is theoretically expected at the wing tip. However,
because of some limited flexibility in the wing structure, the
observed vertical motion of the tip in the experiment is plotted
by the dotted green line, and the case is hereafter referred to as
the inflexible case. For the flexible and highly flexible wings,
larger tip amplitudes and phase lags are observed.

B. In�exible wing

In this section, we compare experimental, numerical and
theoretical results11–13 with 2D LDVM and 3D LDVM sim-
ulations, for an inflexible wing. The thrust coefficient is pre-
sented for two periods of the vertical oscillation in figure 8. A
two peak pattern is observed for each cycle, which is consis-
tent with the shedding of two vortices downstream from the
airfoil. A general agreement is found between the available
data and the 2D or 3D LDVM. The 2D estimates (URANS and
LDVM 2D) slightly overestimate the 3D predictions (Navier-
Stokes solver of Gordnier et al.12 and LDVM 3D), while the
measurements of Heathcote et al.11 present a lower peak of
negative thrust for each period around t/T = 0.55, which may
be due to the experimental device. The approach based on
the pseudo-stationary non-linear lifting line theory13 provides
larger maximum peak values.

Figure 9 shows the lift coefficient. This quantity is one or-
der of magnitude larger than the thrust coefficient, and a good
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6: NACA 0012 airfoil in pure heave for a Reynolds number of 30,000: comparison between 2D finite volume simulation
(first row) and 2D LDVM simulation (second row) for different relative times. The dimensionless vorticity Ωc/U∞ is provided

for finite volume simulation: (a) t/T = 0, (b) t/T = 0.25, (c) t/T = 0.5, (d) t/T = 0.75 and the dimensionless circulation
Γ/(U∞c) is represented for LDVM : (e) t/T = 0, ( f ) t/T = 0.25, (g) t/T = 0.5, (h) t/T = 0.75.

FIG. 7: Wing root and tip vertical displacement as a function
of time for the inflexible, flexible and highly flexible wing11.

agreement is found between all the 2D or 3D data sets. Sim-
ilar comments are valid for the quarter chord pitching mo-
ment coefficient (figure 10) with some discrepancies for 2D
LDVM after the first cycle. The larger amplitude observed in
2D LDVM after the first period could be caused by the in-
fluence, on the pitching moment, of a larger shed vortex cre-
ated after the first period. This vortex could be tempered in
3D LDVM by the spanwise effects imposed by the lifting line
correction.

C. Flexible wing

For the flexible wing, a similar two peak pattern is observed
for each cycle in the thrust coefficient (figure 11). Despite
some dispersion between the maximum peak values, note that

FIG. 8: Comparison for the inflexible wing, of the time
histories of the thrust coefficient from experimental results of
Heathcote et al.11 and computational results of Gordnier et

al.12 with present study results of the pseudo-stationary
lifting line theory, 2D URANS, 2D LDVM and 3D LDVM.

in each data set, the thrust coefficient is larger than what is
found for the inflexible wing, indicating a beneficial effect of
a limited flexibility. For the lift and moment coefficients (fig-
ures 12 and 13), there is few published data and only limited
possible comparison12 showing a relatively good agreement,
with the pseudo-stationary lifting line theory (for the lift), and
3D LDVM.

D. Highly �exible wing

The thrust coefficient for the highly flexible wing is given
in figure 14. As previously observed11–13, the thrust coeffi-
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FIG. 9: Comparison for the inflexible wing, of the time
histories of the lift coefficient from computational results of

Gordnier et al.12 with present study results of the
pseudo-stationary lifting line theory, 2D URANS, 2D LDVM

and 3D LDVM.

FIG. 10: Comparison for the inflexible wing, of the time
histories of the quarter-chord pitching moment coefficient

from computational results of Gordnier et al.12 with present
study results of the 2D URANS, 2D LDVM and 3D LDVM.

cient is much lower than for the inflexible or flexible wing. A
two peak per cycle pattern is observed in some data12,13 but
there is no clear periodic pattern in measurements of Heath-
cote et al.11 and 3D LDVM. For the lift and moment coeffi-
cients (figures 15 and 16) the amplitudes are comparable but a
surprising phase shift of half a period is observed between the
high-fidelity aeroelastic simulation of Gornier et al.12 and the
pseudo-stationary lifting line theory model and 3D LDVM.
It may be due to a second order flexion mode of the highly
flexible wing, resulting from the results of the structural dy-
namics solver12, which is not considered in the formulation of
the spanwise deflection (equation 17).

E. Comparison between the three wings

Figures 17 and 18 represent the fields of the y axis vortic-
ity component Ω at two relative times for the three wings of
different stiffnesses, and compare Particle Image Velocimetry

FIG. 11: Comparison for the flexible wing, of the time
histories of the thrust coefficient from experimental results of
Heathcote et al.11 and computational results of Gordnier et

al.12 with present study results of the pseudo-stationary
lifting line theory and 3D LDVM.

FIG. 12: Comparison for the flexible wing, of the time
histories of the lift coefficient from computational results of

Gordnier et al.12 with present study results of the
pseudo-stationary lifting line theory and 3D LDVM.

(PIV) measurements with LDVM results. The upstream flow
is in the positive direction of the x axis, and to minimize the
overlap of the fields, the y axis is scaled differently to the x
and z axes. The six spanwise visualization sections (y/c =0.5,
1, 1.5, 2, 2.5, 2.85) are identical for the PIV measurements
and LDVM simulations. In these figures, the arrows indicate
the direction of motion of the wing root and tip. For PIV mea-
surements, only the flow downstream from the trailing edge
is plotted, while the suction and pressure side flows are also
plotted for LDVM. In addition, in LDVM flow fields, the rigid
wing position is represented by light dotted lines and the ac-
tual (flexible) wing position by bold dotted lines. For t/T = 0,
in the first section from the root (y/c = 0.5), two vortices of
opposite sign are visible (figures 17a and 17b), and the flow is
similar to the 2D flow (figure 6). In this plane, the flow pattern
is identical for the three wings with a stronger vorticity for the
flexible wing and a weaker intensity for the highly flexible
wing. The vorticity pattern is similar in section y/c = 1, but
nearer the tip for y/c≥ 2, the clockwise vortex (light shading
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FIG. 13: Comparison for the flexible wing, of the time
histories of the quarter-chord pitching moment coefficient

from computational results of Gordnier et al.12 with present
study results of the 3D LDVM.

FIG. 14: Comparison for the highly flexible wing, of the time
histories of the thrust coefficient from experimental results of
Heathcote et al.11 and computational results of Gordnier et

al.12 with present study results of the pseudo-stationary
lifting line theory and 3D LDVM.

or red points) forks into two clusters. In LDVM, this behav-
ior is observed except for the inflexible wing. For the highly
flexible wing (figure 18b), the vorticity centers for y/c≥ 1.5,
which are forming larger scattered clusters, are the evidence of
a more complex shedding downstream from the trailing edge.

For t/T = 0.25 (figure 18), corresponding to a downward
motion of the wing root, the tips of the inflexible and flexible
wings move in the same direction, but the tip of the highly
flexible wing moves in the opposite direction. This results in
vorticity of opposite sign shed in the flow, immediately down-
stream from the trailing edge, between the tip and the root,
for the highly flexible wing. Thus, positive vorticity (light
shade or red points) is created immediately downstream from
the trailing edge for y/c ≤ 2, while negative vorticity (black
shade or blue points) is created immediately downstream from
the trailing edge for y/c > 2. The wing flexibility is an im-
portant parameter for the shed vortices, and opposite vorticity
generation between wing root and tip is correlated with lower

FIG. 15: Comparison for the highly flexible wing, of the time
histories of the lift coefficient from computational results of

Gordnier et al.12 with present study results of the
pseudo-stationary lifting line theory and 3D LDVM.

FIG. 16: Comparison for the highly flexible wing, of the time
histories of the quarter-chord pitching moment coefficient

from computational results of Gordnier et al.12 with present
study results of 3D LDVM.

aerodynamic performance.
Figures 19 and 20 compares the vorticity fields obtained by

the high-fidelity aeroelastic simulation12 with LDVM simula-
tion for the very same stiffness parameters presented in table
II and a similar point of view of the 3D wing, with the wing
root in the foreground and the tip in the background. Note
that the six spanwise visualization sections (y/c =0.5, 1, 1.5,
2, 2.5, 2.85) are identical for the computations downstream
of the trailing edge12 and LDVM simulations. Because of a
longer time simulated and a larger downstream view, an addi-
tional downstream vortex is plotted in LDVM. This vortex, lo-
cated farther from the trailing edge, is not depicted in the high
fidelity computations of the vorticity field. For the flexible
case and t/T = 0, the similarity between high fidelity compu-
tation and LDVM is observed in the vortex shedding from the
trailing edge (figures 19a and 19c) with a rather 2D flow up to
y/c = 2. The same comment is valid for t/T = 0.25, with the
division of the negative vorticity structure into several scat-
tered vortices near the wing tip (figures 20a and 20c). For the
highly flexible case, it has been reported that the differences
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(a) (b)

FIG. 17: Spanwise vorticity fields for t/T = 0 for the inflexible (top), flexible (middle), and highly flexible (bottom) wings;
Re = 30,000, kG = 1.82: (a) dimensionless vorticity Ωc/U∞ contours plotted from PIV measurements downstream of the
trailing edge11 Reproduced with permission from J. Fluids Struct. 24 (2008). Copyright 2008 Elsevier, (b) dimensionless

circulation Γ/(U∞c) vortical centers from LDVM simulation. The six spanwise visualization sections (y/c =0.5, 1, 1.5, 2, 2.5,
2.85) are identical for the PIV measurements and LDVM simulations.

(a) (b)

FIG. 18: Spanwise vorticity fields for t/T = 0.25 for the inflexible (top), flexible (middle), and highly flexible (bottom) wings;
Re = 30,000, kG = 1.82: (a) dimensionless vorticity Ωc/U∞ contours plotted from PIV measurements downstream of the
trailing edge11 Reproduced with permission from J. Fluids Struct. 24 (2008). Copyright 2008 Elsevier, (b) dimensionless

circulation Γ/(U∞c) vortical centers from LDVM simulation. The six spanwise visualization sections (y/c =0.5, 1, 1.5, 2, 2.5,
2.85) are identical for the PIV measurements and LDVM simulations.

in comparison between experiments11 and computations12 are
attributed in part to the phase shift between the structural
deflection. This discrepancy is probably due to the deflec-
tion formulation (Eq. 17) which does not take into account
the higher order deflection modes obtained by the structural

solver. However, if the computed deflection parameters ob-
tained by Gordnier et al.12 and presented in table II are used
in LDVM simulation, a good agreement is found between the
shed vortices (for t/T = 0 in figures 19b and 19d and for
t/T = 0.25 in figures 20b and 20d).
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(a) (b)

(c) (d)

FIG. 19: Spanwise vorticity fields for t/T = 0 for the flexible (top) and highly flexible (bottom) wings; Re = 30,000,
kG = 1.82: dimensionless vorticity Ωc/U∞ contours plotted from computations downstream of the trailing edge12: (a) flexible,
Reproduced with permission from J. Fluids Struct. 40 (2013). Copyright 2013 Elsevier, (b) highly flexible, Reproduced with

permission from J. Fluids Struct. 40 (2013). Copyright 2013 Elsevier, dimensionless circulation Γ/(U∞c) vortical centers from
LDVM simulation: (c) flexible, (d) highly flexible. The six spanwise visualization sections (y/c =0.5, 1, 1.5, 2, 2.5, 2.85) are

identical for the computations downstream of the trailing edge12 and LDVM simulations.

(a) (b)

(c) (d)

FIG. 20: Spanwise vorticity fields for t/T = 0.25 for the flexible (top) and highly flexible (bottom) wings; Re = 30,000,
kG = 1.82: dimensionless vorticity Ωc/U∞ contours plotted from computations downstream of the trailing edge12: (a) flexible,
Reproduced with permission from J. Fluids Struct. 40 (2013). Copyright 2013 Elsevier, (b) highly flexible, Reproduced with

permission from J. Fluids Struct. 40 (2013). Copyright 2013 Elsevier, dimensionless circulation Γ/(U∞c) vortical centers from
LDVM simulation: (c) flexible, (d) highly flexible. The six spanwise visualization sections (y/c =0.5, 1, 1.5, 2, 2.5, 2.85) are

identical for the computations downstream of the trailing edge12 and LDVM simulations.
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CONCLUSION

A low order discrete vortex method is considered to predict
the performance and flow field produced by a periodic flap-
ping wing. The LDVM is validated on a benchmark configu-
ration of the sinusoidal heave motion of a rectangular wing
of aspect ratio of 6, for Reynolds numbers of the order of
30,000. First, a 2D characterization of the thrust and power
coefficients, propulsive efficiency and flow field is conducted,
comparing low order dynamic stall model and LDVM with
a URANS simulation. A good agreement is found between
the last two methods and published data. Then, 3D pseudo-
stationary lifting line theory and LDVM are adapted to con-
sider the wing spanwise flexibility. The integration of a dihe-
dral, resulting from the spanwise wing deformation, is inte-
grated in the method. Three wings with different stiffnesses
are considered from previous experiment11: inflexible, moder-
ately flexible and highly flexible cases. A general agreement
between the methods is found for the thrust, lift and quarter
chord pitching moment. Note that, as previously published,
the intermediate flexible wing provides a better thrust coeffi-
cient while excessive flexibility proves to be detrimental. For
the highly flexible wing, there is a larger dispersion between
simulations and experiment for lift coefficient. In particular,
the lift and moment coefficients show a phase shift of half a
period between the numerical simulation12 and the pseudo-
stationary lifting line theory and 3D LDVM. This may be due
to higher order flexion modes present for the highly flexible
wing. These modes could result from the structural dynam-
ics solver12, which is not considered in the present formula-
tion of the spanwise deflection. For the inflexible and flexi-
ble cases, comparisons between measured flow features and
LDVM predictions show the development of similar vortex
clusters during the oscillating motion. The position of the
shed vortices from the vorticity field is accurately predicted
by the method for the highly flexible case, whenever proper
stiffness is considered12. The main result of the study is that a
low order 3D discrete vortex method can predict the aerody-
namic coefficients and the flow features of the periodic heave
motion of wings of different stiffnesses, with a good accu-
racy and at a small computing cost. The LDVM is able to
run on a laptop. Reported efficiencies between 83% and 92%
are found1–4 for the propulsion by periodic flapping of a fluke
used by the cetaceans. These wing flows are developing for
much larger Reynolds numbers and amplitudes, combining
heave and pitch, maintaining the wing section relative angle
of attack to a small value, with an attached flow. This con-
figuration could be investigated in a similar way from present
study using the LDVM.
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