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Abstract

We propose a self-supervised method that
builds sentence embeddings from the combi-
nation of diverse explicit syntactic structures
of a sentence. We assume structure is cru-
cial to building consistent representations as
we expect sentence meaning to be a function of
both syntax and semantic aspects. In this per-
spective, we hypothesize that some linguistic
representations might be better adapted given
the considered task or sentence. We, there-
fore, propose to learn individual representation
functions for different syntactic frameworks
jointly. Again, by hypothesis, all such func-
tions should encode similar semantic informa-
tion differently and consequently, be comple-
mentary for building better sentential seman-
tic embeddings. To assess such hypothesis,
we propose an original contrastive multi-view
framework that induces an explicit interaction
between models during the training phase. We
make experiments combining various struc-
tures such as dependency, constituency, or se-
quential schemes. Our results outperform com-
parable methods on several tasks from stan-
dard sentence embedding benchmarks.

1 Introduction

We propose a self-supervised method that builds
sentence embeddings from the combination of di-
verse explicit syntactic structures. The method
aims at improving the ability of models to yield
compositional sentence embeddings. We evaluate
the embedding potential to solve downstream tasks.

Building generic sentence embeddings remains
an open problem. Many training methods have
been explored: generating past and previous sen-
tences (Kiros et al., 2015; Hill et al., 2016), discrim-
inating context sentences (Logeswaran and Lee,
2018), predicting specific relations between pairs
of sentences (Conneau et al., 2017; Nie et al., 2019).
While all these methods propose efficient train-

ing objectives, they all rely on a similar Recurrent
Neural Network (RNN) as encoder architecture.
Nonetheless, model architectures have been sub-
ject to extensive work as well (Tai et al., 2015; Zhao
et al., 2015; Arora et al., 2017; Lin et al., 2017), and
in supervised frameworks, many encoder structures
outperform standard RNN networks.

We hypothesize structure is a crucial element to
perform compositional knowledge. In particular,
the heterogeneity of performances across models
and tasks makes us assume that some structures
may be better adapted for a given example or task.
Therefore, combining diverse structures should be
more robust for tasks requiring complex word com-
position to derive their meaning. Hence, we aim
here to evaluate the potential benefit from inter-
actions between pairs of encoders. In particular,
we propose a training method for which distinct
encoders are learned jointly. We conjecture this as-
sociation might improve our embeddings’ power of
generalization and propose an experimental setup
to corroborate our hypothesis.

We take inspiration from multi-view learning,
which is successfully applied in a variety of do-
mains. In such a framework, the model learns rep-
resentations by aligning separate observations of
the same object. Such observations are referred
to as views. In our case, we consider a view for
a given sentence as the association of the plain
sentence with a syntactic structure.

As proposed in image processing (Tian et al.,
2019; Bachman et al., 2019), we aim to align the
different views using a contrastive learning frame-
work. Indeed, contrastive learning is broadly used
in NLP (Mikolov et al., 2013b,a; Logeswaran and
Lee, 2018). We intend to enhance the sentence em-
bedding framework proposed in Logeswaran and
Lee (2018) with a multi-view paradigm.

Combining different structural views has already
been proven to be successful in many NLP applica-
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tions. Kong and Zhou (2011) provide a heuristic to
combine dependency and constituency analysis for
coreference resolution. Zhou et al. (2016); Ahmed
et al. (2019) combine Tree LSTM and standard se-
quential LSTM with a cross-attention method and
observe improvements on a semantic textual simi-
larity task. Chen et al. (2017a) combine CNN and
Tree LSTM using attention methods and outper-
form both models taken separately on a sentiment
classification task. Finally, Chen et al. (2017b)
combine sequential LSTM and Tree LSTM for nat-
ural language inference tasks.

The novelty here is to combine distinct struc-
tured models to build standalone sentence embed-
dings, which has not yet been explored. This
paradigm benefits from several structural advan-
tages. It pairs nicely with contrastive learning,
as already mentioned. It might thus be trained
in a self-supervised manner that does not require
data annotation. Moreover, contrary to models pre-
sented in Section 2.2, our method is not specific to
a certain kind of encoder architecture. It does not
require, for example, the use of attention layers or
tree-structured models. Our setup could therefore
be extended with any encoding function. Finally,
our training method induces an interaction between
models during inference and, paramountly, during
the training phase.

2 Method

Given a sentence s, the model aims at discriminat-
ing the sentences s+ in the neighborhood of s from
sentences s− outside of this neighborhood. This is
contrastive learning (Section 2.1). The representa-
tion of each sentence is acquired by using multiple
views (Section 2.2).

2.1 Contrastive learning

Contrastive learning is successfully applied in a
variety of domains including audio (van den Oord
et al., 2018), image (Wu et al., 2018; Tian et al.,
2019), video or natural language processing for
word embedding (Mikolov et al., 2013b) or sen-
tence embedding (Logeswaran and Lee, 2018).
Some mathematical foundations are detailed in
(Saunshi et al., 2019). The idea supposes to build a
dataset such that each sample x is combined with
another sample x+, which is somehow close. For
word or sentence embeddings, the close samples
are the words or the sentences appearing in the
given textual context. For image processing, close

samples might be two different parts of the same
image. Systems are trained to bring close samples
together while dispersing negative examples.

In particular, a sentence embedding framework
is proposed by Logeswaran and Lee (2018). The
method takes inspiration from the distributional
hypothesis successfully applied for word, but this
time, to identify context sentences. The network
is trained using a contrastive method. Given a sen-
tence s, a corresponding context sentence s+ and a
set of K negative samples s−1 · · · s

−
K , the training

objective is to maximize the probability of discrim-
inate the correct sentence among negative samples:
p(s+|S) with S = {s, s+, s−1 · · · s

−
K}.

The algorithm architecture used to estimate p is
close to word2vec (Mikolov et al., 2013b,a). As
illustrated in Figure 1, two sentences encoders f
and g are defined and the conditional probability is
estimated as follow1:

p(s+|S) = ec(f(s),g(s
+))

ec(f(s),g(s+)) +
∑N

i=1 e
c(f(s),g(s−i ))

At inference time, the sentence representation is
obtained as the concatenation of the two encoders
f and g such as s→ [f(s); g(s)], as illustrated in
Figure 2. In Logeswaran and Lee (2018), f and g
use the same RNN encoder. However, the authors
observe that the encoders might learn redundant
features. To limit this effect, they propose to use a
distinct set of embeddings for each encoder.

We propose addressing this aspect by enhancing
the method with a multi-view framework and using
a distinct structured model for the encoders f and
g. We hypothesize that some structures may be
better adapted for a given example or task. For
example, dependency parsing usually sets the verb
as the root node. Whereas in constituency parsing,
subject and verb are often the right and left child
from the root node. Therefore, the combination of
different structures should be more robust for tasks
requiring complex word composition and be less
sensitive to lexical variations. Consequently, we
propose a training procedure that allows the model
to benefit from the interaction of various syntactic
structures. The choice for the encoder architecture
is detailed in the following section.

1Logeswaran and Lee (2018) simply use an inner product
for c such as c (x, y) = xT y. In our case, as the encoders f
and g are distincts, we choose a bilinear function defined as
c (x, y) = xTWy (Tschannen et al., 2020).



73

Figure 1: Contrastive training method. The objective is to reconstruct the storyline. Sentences are presented in
their original order. Given an anchor sentence x, the model should identify the context sentence x+ out of negative
samples x−1 , x

−
2 . Sentences are encoded using separate views, which are composed within a pairwise distance

matrix.

2.2 Language views

Multi-view aims as learning representations from
data represented by multiple independent sets of
features. As depicted in Section 1, we generalize
the notion of view for a sentence as the application
of a specific syntactic framework. For each view,
we use an ad-hoc algorithm that maps the structured
sentence into an embedding space.

We consider structures including sequence and
trees detailed below. Although equivalences
might be derived between the two representations
schemes, we hypothesize that, in our context, the
corresponding sequence of operations might allow
capturing rather distinct linguistic properties. The
various models may, therefore, be complementary
and their combination allows for more fine-grained
analysis.

Vanilla GRU (SEQ) assumes a sequential struc-
ture where each word depends on the previous
words in the sentence. The framework is a bidi-
rectional sequential GRU (Cho et al., 2014). The
concatenation of the forward and backward last
hidden state of the model is used as sequence em-
bedding.

Dependency tree (DEP) In the dependency tree
model, words are connected through dependency
edges. A word might have an arbitrary number of
dependents. The sentence can be represented as a
tree where nodes corresponding to words and edges
indicate whether or not the words are connected in
the dependency tree. In our case, the dependency
tree is obtained using the deep biaffine parser from
Dozat and Manning (2017). The details of the pars-
ing operations are detailed in Appendix A.1. For
this view, we compute sentence embeddings with

the Child-Sum Tree LSTM model described in Tai
et al. (2015): Each node is assigned an embedding
given its dependent with a recursive function. The
recursive node function is derived from standard
LSTM formulations but adapted for tree inputs. In
particular, the hidden state is computed as the sum
of all children hidden states. Here, we consider an
Attentive Child-Sum Tree LSTM and we compute
h̃j as the weighted sum of children vectors as in
Zhou et al. (2016). The computation of h̃j in Equa-
tion 1 allows the model to filter semantically less
relevant children.

h̃j =
∑

k∈C(j)

αkjhk (1)

With C(j), the set of children of node j. All equa-
tions are detailed in Tai et al. (2015). The param-
eters αkj are attention weights computed using a
soft attention layer. Given a node j, we consider
h1, h2, . . . , hn the corresponding children hidden
states. the soft attention layer produces a weight αk

for each child’s hidden state. We did not use any
external query to compute the attention but instead
use a projection from the current node embedding.
The attention equations are detailed below:

qj =W (q)xj + b(q); pk =W (p)hk + b(p) (2)

akj =
qj · pᵀk

‖qj‖2 · ‖pk‖2
(3)

αkj = softmaxk(a1j · · · anj) (4)

The embedding at the root of the tree is used as
the sentence embedding as the Tree LSTM model
computes representations bottom up.

Constituency tree (CONST) Constituent analy-
sis describes the sentence as a nested multi-word
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structure. In this framework, words are grouped
recursively in constituents. In the resulting tree,
only leaf nodes correspond to words, while inter-
nal nodes encode recursively word sequences. The
structure is obtained using the constituency neural
parser from Kitaev and Klein (2018). The frame-
work is associated with the N-Ary Tree LSTM,
which is defined in Tai et al. (2015). Similarly to
the original article, we binarize the trees to ensure
that every node has exactly two dependents. The
binarization is performed using a left markoviza-
tion and unary productions are collapsed in a single
node. Again the representation is computed bottom-
up and the embedding of the tree root node is used
as sentence embedding. The equations detailed in
Tai et al. (2015) make the distinction between right
and left nodes. Therefore we do not propose to
enhance the original architecture with a weighted
sum as on the DEP view.

Figure 2: Multi-view sentence embedding. At in-
ference, embeddings are the concatenation from both
views.

3 Experiments

3.1 Training configuration

We train our models on the UMBC dataset 2,3 (Han
et al., 2013). We limited our corpus to the first
40M sentences from the tokenized corpus. Indeed,
Logeswaran and Lee (2018) already analyze the
effect of the corpus size, and we focus here on the
impact of our multi-view setting. We build batches
from successive sentences. Given a sentence in a
batch, other sentences not in the context are consid-
ered as negatives samples as presented in Section
2.1. Hyperparameters of the models such as the
hidden size and the optimization procedure such as
learning rate are detailed in Appendix A.2.

2https://ebiquity.umbc.
edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/

3The bookcorpus introduced in Zhu et al. (2015) and tradi-
tionally used for sentence embedding is no longer distributed
for copyright reasons. Therefore, we prefer a corpus freely
available. The impact of the training dataset choice is analyzed
in Appendix A.3.

3.2 Evaluation on downstream tasks

As usual for models aiming to build generic sen-
tence embeddings (Kiros et al., 2015; Hill et al.,
2016; Arora et al., 2017; Conneau et al., 2017; Lo-
geswaran and Lee, 2018; Nie et al., 2019), we use
tasks from the SentEval benchmark (Conneau and
Kiela, 2018)4. SentEval is specifically designed to
assess the quality of the embeddings themselves
rather than the quality of a model specifically tar-
geting a downstream task, as is the case for the
GLUE and SuperGLUE benchmarks (Wang et al.,
2019b,a). Indeed, the evaluation protocol prevents
for fine-tuning the model during inference and the
architecture to tackle the downstream tasks is kept
minimal. Moreover, the embedding is kept identi-
cal for all tasks, thus assessing their properties of
generalization.

Therefore, classification tasks from the SentE-
val benchmark are usually used for evaluation
of sentence representations (Conneau and Kiela,
2018): the tasks include sentiment and subjectiv-
ity analysis (MR, CR, SUBJ, MPQA), question
type classification (TREC), paraphrase identifica-
tion (MRPC) and semantic relatedness (SICK-R).
Contrasting the results of our model on this set of
tasks will help to better understand its properties.

The MR, CR, SUBJ, MPQA tasks are binary
classification tasks with no pre-defined train-test
split. We therefore use a 10-fold cross valida-
tion. For the other tasks we use the proposed
train/dev/test splits. We follow the linear evalua-
tion protocol of Kiros et al. (2015), where a logistic
regression or softmax classifier is trained on top of
sentence representations. The dev set is used for
choosing the regularization parameter and results
are reported on the test set.

For the vocabulary, we follow the setup proposed
in Kiros et al. (2015); Logeswaran and Lee (2018)
and we train two models in each configuration. One
initialized with pre-trained embedding vectors. The
vectors are not updated during training and the
vocabulary includes the top 2M cased words from
the 300-dimensional GloVe vectors5 (Pennington
et al., 2014). The other is limited to 50K words
initialized with a Xavier distribution and updated
during training. For inference, the vocabulary is
expanded to 2M words using a linear projection.

4Senteval is posterior to most of the references. How-
ever, these studies do evaluate on tasks later included in the
benchmark.

5https://nlp.stanford.edu/projects/
glove/

https://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
https://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
https://ebiquity.umbc.edu/blogger/2013/05/01/umbc-webbase-corpus-of-3b-english-words/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Model Dim Hrs MR CR SUBJ MPQA TREC MRPC SICK-R
Acc F1 r ρ MSE

Context sentences prediction

FastSent ≤ 500 2 70.8 78.4 88.7 80.6 76.8 72.2 80.3 — — —
FastSent + AE ≤ 500 2 71.8 76.7 88.8 81.5 80.4 71.2 79.1 — — —
Skipthought 4800 336 76.5 80.1 93.6 87.1 92.2 73.0 82.0 85.8 79.2 26.9

Skipthought + LN 4800 672 79.4 83.1 93.7 89.3 — — — 85.8 78.8 27.0
Quickthoughts 4800 11 80.4 85.2 93.9 89.4 92.8 76.9 84.0 86.8 80.1 25.6

Sentence relations prediction

InferSent 4096 — 81.1 86.3 92.4 90.2 88.2 76.2 83.1 88.4 — —
DisSent Books 5 4096 — 80.2 85.4 93.2 90.2 91.2 76.1 — 84.5 — —
DisSent Books 8 4096 — 79.8 85.0 93.4 90.5 93.0 76.1 — 85.4 — —

Pre-trained transformers

BERT-base [CLS] 768 96 78.7 84.9 94.2 88.2 91.4 71.1 — 75.7† — —
BERT-base [NLI] 768 96 83.6 89.4 94.4 89.9 89.6 76.0 — 84.4† — —

Our models (GloVe & Pretrained Embeddings)

SEQ, CONST† 4800 41 79.8 82.9 94.6 88.5 90.4 76.4 83.7 86.1 78.9 26.3
DEP, SEQ† 4800 27 79.7 82.2 94.4 88.6 91.0 77.9 84.4 86.6 79.8 25.5

DEP, CONST† 4800 39 80.7 83.6 94.9 89.2 92.6 76.8 83.6 87.0 80.3 24.8

Table 1: SentEval Task Results Using Fixed Sentence Encoder. We divided the table into sections. The first
range of models is directly comparable to our model as the training objective is to identify context sentences.
The second section objective is to identify the correct relationship between a pair of sentences. The third section
reports pre-trained transformers based-models. The last section reports the results from our models. FastSent is
reported from Hill et al. (2016). Skipthoughts results from Kiros et al. (2015) Skipthoughts + LN which includes
layer normalization method from Ba et al. (2016). We considered the Quickthoughts results (Logeswaran and Lee,
2018) with a pre-training on the bookcorpus dataset. DisSent and Infersent are reported from Nie et al. (2019)
and Conneau et al. (2017) respectively. Pre-trained transformers results are reported from Reimers and Gurevych
(2019). The Hrs column indicates indicative training time, the Dim column corresponds to the sentence embedding
dimension. † indicates models that we had to re-train. Best results in each section are shown in bold, best results
overall are underlined. Performance for SICK-R results are reported by convention as ρ and r × 100.

3.3 Results analysis

We compare the properties of distinct views combi-
nation on downstream tasks. Results are compared
with state of the art methods in Table 1. The first
set of methods (Context sentences prediction) are
trained to reconstruct books storyline. The sec-
ond set of models (Sentence relations prediction)
is pre-trained on a supervised task. Infersent (Con-
neau et al., 2017) is trained on the SNLI dataset,
which proposes to predict the entailment relation
between two sentences. DisSent (Nie et al., 2019)
proposes a generalization of the method and builds
a corpus of sentence pairs with more possible re-
lations between them. Finally, we include models
relying on transformer architectures (Pre-trained
transformers) for comparison. In particular, BERT-
base model and a BERT-model fine-tuned on the
SNLI dataset (Reimers and Gurevych, 2019). In
Table 1, we observe that our models expressing a
combination of views such as (DEP, SEQ) or (DEP,
CONST) give better results than the use of the same

view (SEQ, SEQ) used in Quick-Thought model. It
seems that the entanglement of views benefits the
sentence embedding properties. In particular, we
obtain state-of-the-art results for almost every met-
ric from MRPC and SICK-R tasks, which focus
on paraphrase identification. For the MRPC task,
we gain a full point in accuracy and outperform
BERT models. We hypothesize structure is impor-
tant for achieving this task, especially as the dataset
is composed of rather long sentences. The SICK-
R dataset is structurally designed to discriminate
models that rely on compositional operations.

This also explains the score improvement on this
task. Tasks such as MR, CR or MPQA consist in
sentiment or subjectivity analysis. We hypothesize
that our models are less relevant in this case: such
tasks are less sensitive to structure and depend more
on individual word or lexical variation.

3.4 Impact of the multi-view
We aim to measure the impact of multi-view specif-
ically. Table 2 compares all possible view pairs out
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of DEP, CONST and SEQ views. For each multi-
view model, we report the average score from Sen-
tEval tasks6. The first section of the Table corre-
sponds to single-view models, for which both views
from the pair are identical. The second section re-
ports multi-view models.

Multi-view models outperform those using a sin-
gle view. Given our experiment, it is advantageous
to use multiple views instead of one. It also con-
firms our hypothesis that combining multiple struc-
tured models or views yield richer sentence embed-
dings.

Model Avg. SentEval Score

Single-view models

CONST, CONST 84.4
DEP, DEP 84.6
SEQ, SEQ 84.9

Multi-view models

SEQ, CONST 85.1
SEQ, DEP 85.3

DEP, CONST 86.0

Table 2: Impact of the multi-view. The first section
corresponds to single-view setups for which f and g
are the same views. The second section reports multi-
view models. For each model, we report the average
score on the SentEval benchmark.

4 Conclusion and future work

Inspired from linguistic insights and supervised
learning, we hypothesize that structure is a central
element to build sentence embeddings. The novelty
here is detailed in Section 2 and consists in jointly
learning structured models in a contrastive frame-
work. In Section 3 we evaluate the standalone
sentence embeddings and use them as a feature
for the dedicated SentEval benchmark. We obtain
state-of-the-art results on tasks which are expected,
by hypothesis, to be more sensitive to sentence
structure. We show in Section 3.4 that multi-view
embeddings yield better downstream task results.
Our setup confirms our hypothesis that combin-
ing diverse structures should be more robust for
tasks requiring to perform complex compositional
knowledge.

6We scale all metrics as percentages. In particular, we use
100 - MSE for the SICK-R task. The final score corresponds
to the average of all tasks. We average the scores for tasks
with multiple metrics (MRPC and SICK-R).
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A Appendices

A.1 Parsing procedure
We use an open-source implementation7 of the de-
pendency parser (Dozat and Manning, 2017) and
replace the pos-tags features with features obtained
with BERT. Therefore we do not need pos-tags
annotations to parse our corpus. Regarding the
inference speed, The constituency parser is the
bottleneck in this case and parse around 500 sen-
tences/second. In our case, the parsing of the entire
corpus (40M sentences) take about a day to com-
plete. Regarding the model, we implemented tree
models using an efficient batching method which
allows us to keep training in a reasonable range
(maximum 41 hours.)

A.2 Hyper parameters
Model hyper parameters are fixed given literature
on comparable work (Tai et al., 2015; Logeswaran
and Lee, 2018). All models are trained using a
batch size of 400 and the Adam optimizer with a
5e−4 learning rate. Regarding the infrastructure,
we use a Nvidia GTX 1080 Ti GPU. All model
weights are initialized with a Xavier distribution
and biases set to 0. We do not apply any dropout.

A.3 Impact of the training dataset
We train our model on the UMBC dataset. We have
chosen to make use of a distinct corpus as the Book-
Corpus dataset is no longer distributed for copy-
right reasons. We have run QuickThought scripts
(Logeswaran and Lee, 2018) using our dataset
based on the UMBC corpus to compare both setups.
Results are detailed in the first Section from Table 3
and are rather close in both configurations. Indeed,
except for the SUBJ and MR task, the use of our
dataset penalizes the results. Our corpus is indeed
restricted to 40M sentences, in comparison with
74M for the Bookcorpus. Regarding the dataset
size and the SentEval results, we have considered
the comparison holds.

A.4 Biases toward embedding size
SentEval evaluation framework is suspected to suf-
fers from biases toward the embedding size (Eger
et al., 2019). Moreover, some works on sentence
embedding evaluation methods points surprising
good results may be achieved using randomly ini-
tialized encoders (Wieting and Kiela, 2019). We

7https://github.com/yzhangcs/
biaffine-parser
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Model MR CR SUBJ MPQA TREC MRPC SICK-R
Acc F1 r ρ MSE

Impact of the pretraining corpus on QuickThought

Quickthoughts (results from paper) 80.4 85.2 93.9 89.4 92.8 76.9 84.0 86.8 80.1 25.6
Quickthoughts (UMCB 40M)† 80.9 84.4 95.1 88.9 92.2 75.8 — 86.0 — —

Impact of the embedding size

BERT-base [CLS] † 77.3 81.3 92.7 85.0 80.2 69.9 — 61.0 — —
BERT-base [CLS] /w random projection † 77.1 82.6 93.1 85.9 80.8 71.3 — 71.0 — —

Impact of pre-training

DEP, CONST† 80.7 83.6 94.9 89.2 92.6 76.8 83.6 87.0 80.3 24.8
Rand LSTM 77.2 78.7 91.9 87.9 86.5 74.1 — 86.0 — —

Table 3: Ablation study on SentEval task results. The first section compares the impact of the training dataset for
QuickToughts. The next section focuses on the impact of the embedding size. To this end, hidden representations
are projected into a larger embedding space using a random, fully connected layer. The final Section compares
models randomly initialized with those pre-trained on our self-supervised task. † indicates models that we had to
re-train.

provide extra analysis to discuss these potential
pitfalls.

Regarding the dependency on the embedding
size, we run experiments to analyze if such bias
could explain BERT low performances on SentEval
since the output hidden size is only of 768. Follow-
ing the protocol from Wieting and Kiela (2019), we
project the embedding from the CLS token using
a random matrix initialized with a glorot distribu-
tion. This setup expands BERT embedding into
4096 dimensions. We reported the results in Ta-
ble 3. We observe expanding the embedding size
seems to slightly improve the results. However, the
results are still below Quickthought vectors by a
large margin.

Regarding the effect of randomly initialized en-
coders (Wieting and Kiela, 2019), we reported the
results in Table 3. Although randomly initialized
encoders achieve surprisingly good results, they are
still below our results obtained with pre-training.


