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With the increasing proportion of intermittent renewable generation in the energy mix and more volatile types of loads (e.g. electric vehicle charging), recent years have seen a rapidly growing interest in energy Demand-Side Response (DR). DR programmes have been identified as having the capability to provide the required flexibility in a cost-effective way, hence improve the reliability of the energy system. The requirement for large-scale DR services is often met by DR aggregators, i.e. entities which provide aggregation services and act as intermediaries between system operators and end-use consumers. The high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time decisions, means that Artificial Intelligence (AI) and Machine Learning (ML) -a branch of AI-have recently emerged as core technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and preferences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically-efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers (published between 2009 and 2019), 40 companies and commercial initiatives and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area.
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Introduction

The growing trend of Renewable Energy Resources (RES), and their rapid development in recent years, poses key challenges for power system operators. To accommodate this new energy generation mix, energy systems are forced to undergo a rapid transformation. The majority of RES are characterised by variability and intermittency, making it difficult to predict their power output (i.e. they depend on solar irradiation or wind speed). These attributes make more challenging the operation and management of power systems because more flexibility is needed to safeguard their normal operation and stability [START_REF] Eid | Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design[END_REF]. The main approaches for providing flexibility are the integration of fast-acting supply, demand side management, and energy storage services [START_REF] Luo | Overview of current development in electrical energy storage technologies and the application potential in power system operation[END_REF].

In addition, power systems operation is entering the digital era. New technologies, such as Internet-of-Things (IoT), real-time monitoring and control, peer-to-peer energy and smart contracts [START_REF] Andoni | Blockchain technology in the energy sector: A systematic review of challenges and opportunities[END_REF], as well as cyber-security of energy assets can result in power systems which are more efficient, secure, reliable, resilient, and sustainable [START_REF] Bedi | Review of Internet of Things (IoT) in Electric Power and Energy Systems[END_REF]. Moreover, several countries (both in the EU and worldwide) have set ambitious targets for mass deployment of advanced metering infrastructure (AMI) [START_REF] Zhou | Smart meter deployment in Europe: A comparative case study on the impacts of national policy schemes[END_REF]; for example, in the UK, the Office for Gas and Electricity Markets (Ofgem) has stated a target of 53 million electricity and gas smart meters to be installed by 2020 [START_REF]Office of Gas and Electricity Markets (Ofgem)[END_REF]. Artificial intelligence (AI) approaches have been utilised across a range of applications in power systems, but only recently have begun attracting significant research interest in the field of demand-side response. Demand response (DR) has been identified as one of the promising approaches for providing demand flexibility to the power system; thus, increasing the scale and scope of DR programmes is of key importance to many system operators. This enhanced function of DR schemes requires a framework which is automated and able to adjust in a dynamic environment and learn (e.g. consumers' preferences). This framework can be created with the assistance of AI techniques; in fact, it is increasingly apparent that AI can contribute greatly in the future success of DR schemes by automating the process, while learning the preferences of end-use consumers.

The rising interest in AI-based solutions in the DR sector is well illustrated by the sharp increase of research interest in this domain. The number of scientific publications on the subject has seen an order of magnitude increase (around 15 times), between 2012 and 2018, as shown in Figure 1. This trend has intensified the need for a systematic review to summarise the AI algorithms used for the various DR application areas. In fact, most of these workswhile providing valuable contributions -tend to focus on exploring only a specific AI/ML technique and application domain. In our view, the rapid development of the field highlights the need for a comprehensive review that traces the evolution of the field, and acts as a guide for the most promising AI techniques used in specific sub-areas of DR, based on the existing body of knowledge reported so far in existing publications.

Against this background, the aim of our paper is to provide a systematic review of the various AI data-driven approaches for DR applications. The goal of our review is three-fold:

• First, we aim to provide a comprehensive overview of the AI techniques underpinning this area, as well as the main specific applications/tasks in energy DR to which these techniques have been applied. Therefore, offering a broad perspective of the field's evolution and potential future research paths.

• Second, we see our review serving as a useful guide for researchers and practitioners in the field. More specifically, this means informing them, for example, which AI techniques have been found to work best for their specific DR problem or application area (or at least which techniques have been mainly used by prior research in the energy DR space). This includes a systematic discussion of the advantages and drawbacks of using a specific AI technique in each application domain.

• Third, we wanted to go one step beyond looking only at scientific papers and give some insights into the startups and more established companies applying these techniques, as well as to some of the industrially funded research projects in this area. As this is a very active field, which has seen considerable interest and investment, our review identifies no less than 40 companies/commercial initiatives and 21 large-scale projects.

To the best of our knowledge, this is the largest and most comprehensive review to date of the area of Artificial Intelligence used in energy demand-side response. More specifically, it includes 161 studies/papers (summarised in Table 1 of Appendix A), 40 companies and commercial ventures (summarised in Table 2) and 21 large-scale research projects (summarized in Table 3).

Related reviews

There are numerous papers which have reviewed the energy demand response literature. In a more general setting , Siano [START_REF] Siano | Demand response and smart grids-A survey[END_REF] investigated the potential benefits of DR in smart grids, along with smart technologies, control, monitoring and communication systems, while Haider et al. [START_REF] Haider | A review of residential demand response of smart grid[END_REF] focused on the development of load scheduling techniques and the communication technologies for DR. O'Connell et al. [START_REF] O'connell | Benefits and challenges of electrical demand response: A critical review[END_REF] examined the long-term and less intuitive impacts of DR, such as its effect on electricity market prices and the impact for consumers. There has also been work that has surveyed the economic impact of DR [START_REF] Conchado | The economic impact of demand-response programs on power systems[END_REF], whereas Dehghanpour and Afsharnia [START_REF] Dehghanpour | Electrical demand side contribution to frequency control in power systems: a review on technical aspects[END_REF] examined the technical aspect of demand response for frequency control. Moreover, Vardakas et al. [START_REF] Vardakas | A Survey on Demand Response Programs in Smart Grids: Pricing Methods and Optimization Algorithms[END_REF] revised various optimization models for the optimal control of DR strategies, along with DR pricing schemes.

More specifically, regarding AI approaches for DR there is the work of Shareef et al. [START_REF] Shareef | Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers[END_REF] where the authors have reviewed literature that utilise AI techniques for the development of schedule controller in a home energy management system (HEMS) which incorporates a DR tool. Dusparic et al. [START_REF] Dusparic | Residential demand response: Experimental evaluation and comparison of self-organizing techniques[END_REF] focused on the comparison and evaluation of a number of self-organizing intelligent algorithms for residential deamnd response, Yi Wang et al. [START_REF] Wang | Load profiling and its application to demand response: A review[END_REF] on load profiling in terms of clustering techniques, and Vázquez-Canteli and Nagy [START_REF] Vázquez-Canteli | Reinforcement learning for demand response: A review of algorithms and modeling techniques[END_REF] focused only on the application of reinforcement learning for DR. Furthermore, Raza and Khosravi [START_REF] Raza | A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings[END_REF], Zor et al. [START_REF] Zor | A state-of-the-art review of artificial intelligence techniques for short-term electric load forecasting[END_REF] surveyed AI based load forecast modelling work, focusing mainly on artificial neural networks (ANNs), while Merabet et al. [START_REF] Merabet | Applications of Multi-Agent Systems in Smart Grids: A survey[END_REF] reviewed the application of MAS in smart grid technologies including DR, and there has also been work which examines smart meter data analytics in applications for DR programmes [START_REF] Wang | Review of smart meter data analytics: Applications, methodologies, and challenges[END_REF]. Finally, Wang et al. [START_REF] Wang | Review and prospect of integrated demand response in the multi-energy system[END_REF] focus on the emerging concept of integrated demand response, integrating various energy types and vectors (not just electricity, but also natural gas, heat), while Lu et al. [START_REF] Lu | Thermal inertial aggregation model for integrated energy systems[END_REF] focus on aggregation of thermal inertia, especially from district heating networks. In contrast, our review focuses mostly on electrical demand, discussing more in-depth on AI techniques that can enable this process.

It is noted that, while these aforementioned reviews (which look at AI technologies for DR applications) have been very valuable, they tend to be smaller and narrower in scope, often focusing either on a specific AI/ML techniques such as reinforcement learning [START_REF] Vázquez-Canteli | Reinforcement learning for demand response: A review of algorithms and modeling techniques[END_REF], or a specific application setting, such as home energy management systems [START_REF] Shareef | Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers[END_REF]. By contrast, the purpose of this paper is to provide a more comprehensive and holistic view of the AI techniques used in DR schemes, which support power system operation. We argue that a systematic review of this scale and scope is needed and useful to highlight potential research gaps and point future research paths in this rapidly growing area.

Literature search strategy

The methodology utilised to find the relevant literature for review is shown in Figure Figure 2. The main tool used for identifying relevant literature has been Scopus1 search engine, which is the largest abstract and citation database of peer-reviewed literature 2 . The queries used in the search engine are the following:

• "Artificial Intelligence" AND "Demand Response"

• "Machine Learning" AND "Demand Response"

• "Neural Networks" AND "Demand Response"

All the results returned from the Scopus' queries have been carefully reviewed and filtered. The work included in this review are the papers where AI approaches have explicitly been used for demand-side response applications and are not just part of the wider energy domain. 

Structure of the review

The remainder of this paper is structured as follows. First, Section 2 provides the fundamental background for our review, by introducing demand response and its relationship to the electricity grid and energy markets. The subsequent two sections show the classifications of the reviewed literature, along with providing basic AI concepts and an initial discussion. In Section 3 the reviewed papers are categorised based on the type of AI algorithm(s) that is utilised, while in Section 4 the same papers are categorised based on the DR application area they cover. Next, Section 5 presents an overview of some of the key commercial use cases and industrially funded research projects, where AI approaches have been employed to perform DR. Next, Section 6 outlines which groups of AI techniques have been applied for each DR application area and focuses on the discussion of the strengths, limitations, and the potential implications of using these specific AI approaches for the respective DR application areas. Moreover, the main findings of the study are discussed, along with a presentation of potential directions for future research. Finally, Section 7 concludes.

Demand Response Operation and Market Structure

The traditional model of the electric grid feeds electricity to the end consumers through a unidirectional power flow. This flow is supplied by high voltage generators, which are centrally controlled. With the development of markets for grid services and the growing proportion of DER in the energy mix, demand side management and especially demand response have emerged as smart solutions to reliably and efficiently manage the electric grid. However, in contrast to traditional power grids, a DR model requires a bidirectional communication mechanism and smart algorithms to process the generated data. Consequently, smart metering devices are really important for DR models, and they are one of the key components in a smart grid [START_REF] Baloglu | A bayesian game-theoretic demand response model for the smart grid[END_REF]. Additionally, the data produced can be utilised by AI-based solutions to further facilitate DR programmes.

The main focus of this section is to introduce and present DR services, as well as describe how they fit in the current electricity market structure. 

Demand Response

Energy demand response in broad terms can be considered as one of the mechanisms within demand side management [START_REF] Palensky | Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads[END_REF] and possible with ongoing smart grid activities. In this paper, with the term Demand Response we are specifically referring to the changes in electricity usage by the end-use customers (industrial, commercial, or domestic). The customers commit to change their normal consumption patterns by temporarily using on-site standby generated energy, or reducing/shifting their electricity consumption away from periods with low generation capacity in response to a signal from a system operator, or a service provider (i.e. aggregator) [START_REF] Palensky | Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads[END_REF]. We acknowledge that DR is a broader term (i.e. including thermal energy, gas, etc.), but the focus, in this paper, is on electrical power systems. There are numerous types of DR programmes, and their most frequently used classification is based on which party initiates the demand reduction [START_REF] Siano | Demand response and smart grids-A survey[END_REF]. As displayed in Figure 3, DR schemes can be partitioned into two classes [START_REF] Haider | A review of residential demand response of smart grid[END_REF][START_REF] Mohagheghi | Demand Response Architecture: Integration into the Distribution Management System[END_REF][START_REF] Goldman | Coordination of Energy Efficiency and Demand Response[END_REF].

• Price-based DR programmes. In this setting the price of electricity changes over different time periods, with the purpose of motivating end-use consumers to vary their energy consumption patterns. Schemes that fall under this category are time of use (ToU), critical-peak price (CPP), and real-time price (RTP) [START_REF] O'connell | Benefits and challenges of electrical demand response: A critical review[END_REF].

• Incentive-based (or Contract-based) DR schemes. This type of schemes incentivises end-use consumers to reduce their electricity consumption upon request offers or according to a contractual agreement. Examples of this kind of programmes are direct-load controls (DLCs), interruptible tariffs, and demand-bidding programmes [START_REF] Albadi | A summary of demand response in electricity markets[END_REF].

Each of these control strategies require to design the incentives or contracts that are proposed to the consumers, while taking into account the consumers' behaviours and preferences. To achieve this goal, DR solutions extensively use AI-based solutions, as is shown in Section 3.

In the next subsection, the main principles of electricity markets are described, and we explain how DR is used as a key tool to maintain the integrity of electricity grids.

Electricity Markets and their Relationship with Demand Response

Electricity markets are split between retail markets, in which electricity retailers contract the supply of electricity with the end-users, and wholesale markets, in which retailers, suppliers, producers, grid operators and third parties as aggregators interact to allow retailers to supply their customers while maintaining the integrity of the grid. The wholesale electricity market is split into the energy market, the capacity market and the ancillary services market, all of which which are designed to provide economic incentives to different types of stakeholders to contribute to the energy supply and to the grid operation and integrity. Demand-side response is associated with the energy and ancillary services markets. Depending on the country, contracts between the market stakeholders can be done through bilateral trades (over the counter (OTC)) or through an organized market (exchanges, pool auction with price clearing). In both cases, the products can be traded in the spot market (day ahead and/or intra-day), or in the TSO's managed spot market for ancillary services markets.

Once a resource (supplier) commits to provide a certain amount of energy into the grid, compliance is expected, otherwise there is a penalty incurred. Thus, it is of great importance for DR aggregators to make sure that end-users commit and provide the expected power flexibility. Below, we briefly describe the different stakeholders that interact through electricity markets and that are related to DR mechanisms.

Electricity markets stakeholders

The main stakeholders in an electricity market are the following:

• Grid operators: The TSO (Transmission System Operator) is a facilitator of the markets who ensures that every trade meets the grid constraints. Also, TSOs are usually the operators of ancillary services markets. Both TSOs and DSOs (Distribution System Operators) can buy or sell products in all markets.

• Retailers and suppliers: they are both in the retail and wholesale markets, and make sure the quantity of energy they purchase on the wholesale market will balance the consumption of their end-users in their portfolio. To achieve this balance, they can either have a sub-contract with balance responsible parties (BRPs) or manage their portfolio themselves. They can propose particular contracts to the end-customers as flat tariffs or DR programmes. When proposing DR programmes, the challenge for suppliers is to assess how these programmes will affect their portfolio's consumption. This is why AI based tools reviewed in this paper are important for suppliers to provide solutions to reduce their losses due to portfolio imbalance.

• End-customers, who buy electricity from a supplier. When they subscribe to a DR program, they can either respond manually to a request or a price, or automatically through a home energy Management system. AI methods reviewed in this paper also address the challenges faced by end-customers' HEMS.

• Balance Responsible Parties: they are responsible for balancing the portfolio of their customers (retailers/suppliers). They purchase electricity production or consumption in the wholesale markets.

• Producers: they produce electricity and propose their production at a particular price on the wholesale markets.

Their products can either be only energy and/or grid services as frequency response.

• Aggregators and service providers: they aggregate end-customers or small producers in order to reach the minimum capacity allowed to provide flexibility products in the energy and ancillary services markets. Hence, they have direct contracts with end-customers, and propose their aggregated flexibility to suppliers or BRP in the wholesale market. As for the retailers/suppliers, they must ensure that end-customers will commit to the flexibility that was traded in the wholesale market. Hence AI tools reviewed in this paper apply particularly to aggregators in order to minimize the difference between the flexibility traded and actual flexibility.

The end of this subsection describes the different markets listed previously and specify how DR products can participate to these markets.

Capacity markets

In these long-term markets, the regulators ensure that the production capacity for the following years will meet the evolution of the demand. DR products are rarely exchanged within these markets.

Energy markets

These are the main markets that allow retailers to buy electricity from electricity producers. In these markets, retailers or suppliers are usually required to maintain a balanced portfolio at every market time interval, with as much electricity consumption as electricity production, in order to maintain the frequency of the grid at its nominal level. DR is a particular product exchanged in this market in order to allow suppliers to adjust their demand and maintain balance at every time interval.

Ancillary services markets

Electricity can be considered as a product carried by the electric grid that must satisfy contractual characteristics and requirements. The electric grid operator is responsible to make sure those requirements are met, in exchange for remuneration. Electric grid regulation can be summarised as the control of the grid frequency, of the voltage at each node of the grid, of the power quality (harmonics, flickers, etc.), and also the control of downtime minutes per customer per year. To ensure that these controls are well provided, the System Operator makes sure that a portion of producers and consumers contribute to these services, either by providing market-based incentives, or by setting up mandatory requirements. These services are called Ancillary Services. Specific ancillary services markets can be distinguished depending on the type of product that is required. For example, the Australian Energy Market Operator currently facilitates eight separate markets that can be classified into frequency control ancillary services markets, network control ancillary services markets or into the system restart ancillary services markets category [START_REF] Wang | Review of real-time electricity markets for integrating distributed energy resources and demand response[END_REF]. In most countries, to contribute to the ancillary market managed by the TSO, it is first necessary that the resource (a generator, a battery or load) is certified by the system operator [START_REF] Rte | Documentation technique de référence[END_REF]. Demand response can mainly contribute to two of these services, which are frequency control, at a nation scale, and voltage control, at a local level. Indeed, although DR is mostly associated with the frequency control in current practice, it could also provide local voltage support as it involves assets that are potentially available at every node of the grid. 1. Frequency Control. For the effective operation of the power grid, system operators (SOs) are required to control the power system frequency between a range of specific acceptable values. In the majority of the cases, this range has a central value of either 50Hz or 60Hz, depending on the national power system. In order to maintain the system frequency between the acceptable boundaries, the active power generated and/or consumed needs to be controlled to keep demand and supply balanced at all times. When demand is higher than generation, the system frequency decreases, and vice versa. This type of control is achieved by keeping a particular volume of active power as reserve, usually called frequency control reserve [START_REF] Rebours | A Survey of Frequency and Voltage Control Ancillary Services-Part I: Technical Features[END_REF].

In general, based on the Continental European synchronous area3 framework [START_REF]for the Coordination of the Transmission of Electricity (UCTE), P1: Load-Frequency Control and Performance, Operation Handbook[END_REF] (former UCTE), as can be seen in Figure 4, there are three levels of control used to balance the demand and supply [START_REF] Rebours | A Survey of Frequency and Voltage Control Ancillary Services-Part I: Technical Features[END_REF]:

(a) Frequency Containment Reserve (FCR), also called primary frequency control is a local automatic control that changes the active power production and the consumption of controllable loads to restore the balance between power supply and demand [START_REF] Grigsby | Power system stability and control[END_REF], with a maximum activation time of 30 seconds. This level was introduced to control the frequency in the event of large generation or load outages. Both the supply and demand side participate in this control with the use of self-regulating equipment. For comparison purposes, in the US market this frequency response corresponds to the Regulation response provided by the automatic governor of the turbines and the automatic generation control [START_REF] Ela | Operating Reserves and Variable Generation[END_REF][START_REF] González | Joint energy and reserve markets: Current implementations and modeling trends[END_REF]. Most of the FCR is currently provided by gas turbines, hydro power plants, and storage as batteries or flywheels. However, these technologies also have a negative impact on the environment [START_REF] Kuriqi | Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants[END_REF]. In many cases, DR solutions are both the most cost-effective and most environmentally friendly technology to provide this service, if well coordinated.

(b) Automatic Frequency Restoration Reserve (aFRR), also called secondary frequency control is a centralised automatic control that fine-tunes the active power production of the generating assets to reinstate the frequency and the interchanges with other systems to their target range after an imbalance event. Secondary frequency control is used in all large interconnected systems and the activation time generally ranges between 30 seconds and 15 minutes (depending on the specific requirements of the interconnected system). This regulation is provided in the US by the Spinning Reserve and Regulation response.

(c) Manual Frequency Restoration Reserve (mFRR) and Replacement Reserve (RR), also called tertiary reserve involves the manual changes in the dispatching and commitment of generating units. This reserve can be used to replace secondary reserve when the secondary reserve is not enough to regulate the frequency back to its nominal value. mFRR response can be below 15 minutes, whereas RR activation time varies from 15 minutes up to hours. The purpose of this type of control includes the recovery of the primary and secondary frequency control reserves, the management of congestion in the transmission network, and the restoration of frequency to its intended value when secondary control has not been successful. In the US market, the tertiary response corresponds to Non-Spinning Reserve and Replacement Reserve.

Different countries have different power systems, resulting to different implementations, and also diverse descriptions for the reserves related with each type of frequency control [START_REF] Rebours | A Survey of Frequency and Voltage Control Ancillary Services-Part I: Technical Features[END_REF]. For example, in the UK the SO (National Grid) has an obligation to control the system frequency at 50 Hz ±0.4% (49.8Hz -50.2Hz) for operational limits [START_REF] Vogler-Finck | Evolution of primary frequency control requirements in Great Britain with increasing wind generation[END_REF]. Moreover, in the UK and Sweden there is no reserve defined for secondary frequency control, and there is a division of the primary frequency control reserves in various categories.

Providing frequency control becomes more challenging due to the higher penetration of intermittent renewable energy sources in the power generation mix, resulting in lower inertia in the system [START_REF] Su | Stochastic Energy Scheduling in Microgrids With Intermittent Renewable Energy Resources[END_REF][START_REF] Zhang | Competition and Coalition Formation of Renewable Power Producers[END_REF], and the introduction of new types of loads with higher variability (e.g. EVs) [START_REF] Robu | An Online Mechanism for Multi-Unit Demand and its Application to Plug-in Hybrid Electric Vehicle Charging[END_REF]. This fact calls for research and use of novel techniques and flexibility, including through DR at the end-user level, which requires AI-based solutions to increase the reliability of this flexibility provision.

2. Voltage Control. Along with frequency, voltage is a contractual characteristic which the system operators must ensure to confine within certain bounds set by the regulator. However, unlike frequency, which is mainly addressed at the transmission grid level, voltage is a challenge faced by TSOs and DSOs. The voltage drop across a line of an impedance z = r+ jx is due to the consumption or production of an apparent power S = P+ jQ, and is given below:

∆V V ≈ rP + xQ V 2 (1)
where V is the average between the voltage at both ends of the line. Hence, a bus' voltage fluctuates continuously depending on the power that flows through the lines that are connected to this bus. Voltage control consists in the action of different mechanisms that ensure that the voltage stays within contractual boundaries at every bus of the grid. According to (1), the transmission grid and the distribution grid must be differentiated. Indeed, for the transmission grid, the resistance of the lines is small compared to their reactance. Thus, the voltage drop is mainly due to the transit of reactive power. Hence, voltage control at the TSOs level is mainly realised by injection or consumption of reactive power. This control can be done by generators, synchronous condensers, capacitors or flexible AC Transmission Systems [START_REF] Kirby | Ancillary service details: Voltage control[END_REF]. On the distribution grid side on the other hand, active power and reactive power are both responsible for voltage drops. Hence, the growing proportion of DER creates challenges in voltage profile management. While previously voltage was decreasing closer to the loads, the high penetration of DERs, such as as rooftop solar panels, can increase the voltage locally by producing variable active power. To control the voltage at the distribution level, DSO currently use tap changer mechanisms in transformers. However, although primary substations, which connect distribution grids to transmission grids, are often equipped with online tap changer mechanisms, secondary substations are usually only equipped with de-energized tap changers, which require to disconnect the feeding line before adjusting the voltage. Given volatility of distributed generation and EVs charging power at the low voltage level, new services are needed at the distribution grid side to maintain the voltage within acceptable limits, while minimising load and generation curtailment. This is where smart solutions for residential demand-side response could prove to be very useful in practice and would make it possible for the DSO to integrate more DER and EVs in the system, without costly grid reinforcements [START_REF]Study on the future design of the ancillary service of voltage and reactive power control[END_REF].

To our knowledge, no spot market has yet been implemented for voltage control at the transmission grid level, because of the need for very local solutions (mostly reactive power injection) [START_REF] Rebours | A Comprehensive Assessment of Markets for Frequency and Voltage Control Ancillary Services[END_REF]. In some countries (including most of the countries in the European Union), the MVAR service (Voltage and Reactive power control) is a mandatory service that can be contracted through bilateral or tendering trades and settled at regulated prices.

At the distribution grid level, many local markets are currently under test to provide local support to the grid, including voltage support [START_REF]Cornwall local energy market[END_REF]. Even though open markets for contracting voltage support are not as wellstructured and adopted as those for frequency response, contracting such services will likely still be needed in the next decades.

The evolution of power systems, driven by an increasing penetration of DER, calls for new solutions to address the technical challenges of a smart grid (mainly frequency and local voltage regulation). DR is one of these solutions. The installation of smart meters and the increasing adoption of IoT devices at home lay the foundations for smart DR strategies. On top of that, these strategies will rely on the implementation of smart algorithms based on AI solutions to achieve an efficient regulation of the demand without severally affecting the end-users' comfort.

In the subsequent section (Section 3) we provide a comprehensive review and discussion of the AI solutions that have been proposed and investigated so far by the research community for automating DR. Next, Section 4 reviews and provides a discussion of specific DR services and areas where AI/ML techniques have been applied.

AI Approaches/Techniques in Demand Response

AI is a multidisciplinary domain employing techniques and insights from various fields, such as computer science, neuroscience, economics, information theory, statistics, psychology, control theory and optimisation. The term artificial intelligence is referring to the study and design of intelligent entities (agents) [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. These intelligent agents are systems that observe their environments and act towards achieving goals. In this work, the adopted definition of an agent is the one presented in the seminal AI work of Russell and Norvig [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.

Hence AI-enabled agents can range from machines truly capable of reasoning to search algorithms used to play board games. Since the birth of AI in the 1950s various approaches have been applied to create thinking machines. These approaches include symbolic reasoning [START_REF] Newell | Computer science as empirical inquiry: symbols and search[END_REF], logic-based [START_REF] Green | Theorem Proving by Resolution as a Basis for Question-Answering Systems[END_REF], knowledge-based systems [START_REF] Buchanan | Heuristic dendral: A program for generating explanatory hypotheses in organic chemistry[END_REF], soft computing [START_REF]Advances in Intelligent Systems and Computing[END_REF], and statistical learning [START_REF] James | An Introduction to Statistical Learning[END_REF][START_REF] Norvig | On chomsky and the two cultures of statistical learning[END_REF]. The focus of this paper is on the non-symbolic, soft computing, data-driven paradigm of AI. Furthermore, to present a more holistic view in this review the AI approaches are studied both in the single-agent and the multi-agent setting. The various AI techniques used for DR and their classification can be seen in Figure 5, whereas Figure 6 displays the proportion of the reviewed literature that has utilised a particular category of AI techniques.

Machine Learning and Statistical Methods

As we enter the big data and the IoT era, there is a great need for automated analysis of the "data tsunami" that is being continuously created. Machine learning includes a set of methods that try to learn from data, and it is a core subset of AI. This group of AI techniques envelopes methods that can identify patterns in the data in an automatic way, and then use these patterns to predict, and techniques to perform other ways of decision making in an uncertain environment [START_REF] Murphy | Machine Learning : A Probabilistic Perspective[END_REF]. Machine learning is a multi-disciplinary domain that draws concepts from various domains, primarily computer science, statistics, mathematics, and engineering. The main types of machine learning, as stated in Murphy [START_REF] Murphy | Machine Learning : A Probabilistic Perspective[END_REF], are supervised learning, unsupervised learning, and reinforcement learning.

Supervised Learning

In the supervised learning setting, the goal is to learn a mapping between the input vector x and the outputs y, provided that there is an existing labelled set of input-output pairs D = {(x i , y i )} K i=1 . This set of data is called training set, and the inputs x i can be something as simple as a real number to a complex structured object (e.g. an image, a time-series, a graph, etc.). The outputs y i in general can be of any type; the two most common cases are when y i is a categorical variable in which case we have a classification problem, and when it is a real-valued scalar variable where we have a regression problem.

Supervised learning tries to tackle an inductive problem, as from a finite set D we need to find a function f which will give an output for the whole spectrum of possible inputs. In simpler terms, the end goal is to find a mapping that will generalise well in data that the algorithm has not encountered before. The set of unseen data which is used to calculate how well the algorithm generalises is called test set and should not include datapoints which are part of the training set. In cases where a more/less flexible approach than the optimal is used, resulting in a learning algorithm that does not generalise well in unseen data, we say that the algorithm overfits/underfits the data.

In DR, supervised learning techniques have been primarily applied to forecast the demand and electricity prices, by employing kernel-based, tree-based methods, and linear regression models. ANNs -trained in a supervised fashion -are also extensively used for forecasting but will be discussed in their respective section because they are heavily utilised in research. Kernel-based methods create representations of the input data to a new feature space, and subsequently find an appropriate hypothesis in this feature space [START_REF] Schölkopf | Learning with kernels : support vector machines, regularization, optimization, and beyond[END_REF]; popular kernel-based techniques include support vector machines (SVM) and Gaussian processes (GPs). Support Vector Regression (SVR) has been used in Giovanelli et al. [START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF], Pal and Kumar [START_REF] Pal | Price prediction techniques for residential demand response using support vector regression[END_REF] for price forecasting, whereas Yang et al. [START_REF] Yang | Data-Driven Modeling for Energy Consumption Estimation[END_REF], Zhou et al. [START_REF] Zhou | Residential demand response targeting using machine learning with observational data[END_REF][START_REF] Zhou | A Bayesian perspective on Residential Demand Response using smart meter data[END_REF] employ SVR for STLF, even for non-aggregated loads. The regression is obtained by solving the dual form of an optimisation problem as defined in Drucker et al. [START_REF] Drucker | Support vector regression machines[END_REF], and using Equation (2) to determine the regression function p(x), with β and β * the Lagrange multipliers, x the inputs for the forecast, b a primal variable and K(x i , x j ) a Kernel function, often chosen as the Gaussian Radial Basis Kernel function (K(x i ,

x j ) = e -(x i -x j ) 2 σ 2 ). p(x) = N i=1 β i -β * i K (x, x i ) + b (2) 
Gaussian process regression models have been used to determine a probabilistic baseline estimation in Weng and Rajagopal [START_REF] Weng | Probabilistic baseline estimation via Gaussian process[END_REF] and Weng et al. [START_REF] Weng | Probabilistic baseline estimation based on load patterns for better residential customer rewards[END_REF], as well as for forecasting the consumption of controllable appliances in Tang et al. [START_REF] Tang | Adaptive segmentation and machine learning based potential DR capacity analysis[END_REF]. GPs have the advantage of being probabilistic models. Probabilistic approaches can potentially lead to better informed forecasts for DR; they output an estimate of the uncertainty in the predictions of the model -not just point estimates. Thus, prior knowledge can be included in the learning algorithm and subsequently domain knowledge can be incorporated in the model [START_REF] Murphy | Machine Learning : A Probabilistic Perspective[END_REF].

Unlike kernel-based methods, linear regression is a simple tool, easily implementable, which offers a good interpretability of how the inputs affect the output [START_REF] Murphy | Machine Learning : A Probabilistic Perspective[END_REF]. These attributes explain why it has been used across various domains. Even though linear regressions are often employed as a baseline algorithm by researchers to compare their proposed algorithms [START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF][START_REF] Yang | Data-Driven Modeling for Energy Consumption Estimation[END_REF][START_REF] Zhou | A Bayesian perspective on Residential Demand Response using smart meter data[END_REF][START_REF] Liu | Analysis and Accurate Prediction of User's Response Behavior in Incentive-Based Demand Response[END_REF][START_REF] Arunaun | Baseline Calculation of Industrial Factories for Demand Response Application[END_REF], they have also been used as the main modelling technique in MacDougall et al. [65] to forecast the flexibility of Virtual Power Plants (VPP), in Dehghanpour et al. [START_REF] Dehghanpour | Agent-Based Modeling of Retail Electrical Energy Markets With Demand Response[END_REF] to determine the aggregated power of price-sensitive loads at each hour of the day, in Klaassen et al. [67] to forecast the aggregated power for heating, as a function of the temperature, the time of the day, the type of day and the price, and in Grabner et al. [START_REF] Grabner | Statistical Load Time Series Analysis for the Demand Side Management[END_REF] where multivariate linear regression is used for daily peak loads estimation. In the DR space, for STLF, the output of the regression is the power of the considered load (thermal load or building) at time t (P t ∈ [0,24] ), while the inputs or features can be time-related (hour, day, type of day), the temperature (T), the electricity price p, and/or a product of these inputs (e.g. hour × T , hour × p) to reflect the interactions between the inputs. A generic formulation can be found below:

            P 1 . . . P 24             = i∈inputs             a i 1,1 • • • a i 1,24 . . . . . . a i 24,1 • • • a i 24,24                         I i 1 . . . I i 24             +             P 0 1 . . . P 0 24             (3) 
where P j is the power consumption forecast for time t = j. The vectors I i j represent the inputs or features, where i corresponds to one type of feature (temperature, type of day, ...). For example, if there are three features considered, the temperature (i = T ), the type of day (i = d) and the product of the price and the hour (i = p • h), I T 11 is the temperature at time t = 11, I d 11 is the type of day, and I p•h 11 is the product of the price at t = 11 and the hour [START_REF] Conchado | The economic impact of demand-response programs on power systems[END_REF]. The terms P 0 j correspond to baseline consumption or offsets, and the a i k,l coefficients are the linear coefficients for each of the features, that are computed and updated to minimize an error function (residual sum of squares for example). Moreover, there are also a few papers that have utilised Gaussian Copulas, primarily for load forecasting, in DR. Tavakoli Bina and Ahmadi [START_REF] Bina | Stochastic modeling for scheduling the charging demand of ev in distribution systems using copulas[END_REF] applied this technique for the prediction of EVs' charging demand for day-ahead DR strategies, Bina and Ahmadi [START_REF] Bina | Aggregate domestic demand modelling for the next day direct load control applications[END_REF] for the day-ahead estimation of the aggregate power demand of particular household appliances, and Bina and Ahmadi [START_REF] Bina | Stochastic modeling for the next day domestic demand response applications[END_REF] for non-controllable load forecasting in day-ahead DR. Besides DR, there is also work applying Gaussian copulas in the, more general, power system setting. E.g. in PV power forecasting [START_REF] Golestaneh | Generation and evaluation of space-time trajectories of photovoltaic power[END_REF][START_REF] Iria | Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets[END_REF], in short-term wind power forecasting [START_REF] Pinson | From probabilistic forecasts to statistical scenarios of short-term wind power production[END_REF], and in the forecasting of inflexible loads [START_REF] Iria | Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets[END_REF].

Tree-based methods have also been used extensively in DR for load forecasting [56-58, 75, 76] and price forecasting [START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF], where [START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF] includes a comparison with other methods (Linear regression, SVR, Gradient boosting decision tree). Yang et al. [START_REF] Yang | Data-Driven Modeling for Energy Consumption Estimation[END_REF] uses regression trees to model the energy consumption of cooling systems and compares the outputs with SVR methods. Behl et al. [START_REF] Behl | DR-Advisor: A data-driven demand response recommender system[END_REF] uses multiple regression trees to predict the power consumption of a building as a function of the temperature, humidity, wind, time of day, type of day, schedule, lighting level, water temperature and historic power consumption. Zhou et al. [START_REF] Zhou | Residential demand response targeting using machine learning with observational data[END_REF][START_REF] Zhou | A Bayesian perspective on Residential Demand Response using smart meter data[END_REF] use classification and regression tree (CART) algorithms for short term load forecasting. Regression trees are hierarchical, non-parametric methods that segment the feature space (e.g. time of day, type of day, temperature) into a number of simple regions and subsequently fit a simple model in each one [START_REF] Hastie | The elements of statistical learning : data mining, inference, and prediction[END_REF]. Regression trees are interpretable, scalable, handle missing data well, but on the other hand they can be prone to overfitting, and are generally unstable [START_REF] Murphy | Machine Learning : A Probabilistic Perspective[END_REF][START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF]. However, regression trees have been reported to provide accurate results even for complex prediction tasks, such as 48h ahead predictions of aggregated demand with time step of 15 minutes [START_REF] Simmhan | Cloud-Based Software Platform for Big Data Analytics in Smart Grids[END_REF].

Another commonly used approach, found in the review, for load forecasting in DR is ensemble learning. Ensemble learning is based on the idea of constructing a prediction model through a combination of multiple simpler base models (weak learners). Cheung et al. [START_REF] Cheung | Temporal ensemble learning of univariate methods for short term load forecasting[END_REF] propose a variation of ensemble learning called Temporal Ensemble Learning (TEL) that partitions the dataset by temporal features and forecasts demand in specific time ranges per day. The ensemble of these generated forecasts, with kernel regression as the base model, is the model that yielded the best results in this paper. Yang et al. [START_REF] Yang | Data-Driven Modeling for Energy Consumption Estimation[END_REF] apply methods based on voting or stacking strategy to combine weak learners based on regression trees and SVM, to estimate the energy consumption of buildings that have an EMS which responds to DR signals, and Giovanelli et al. [START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF] use Gradient boosting decision tree (GBDT) to build an additive regression model, with the use of regression trees as the weak learner. This model is used to predict the prices in the FCR market. Ensemble learning approaches can potentially improve the forecasting accuracy (compared to the base models); such as in work of Cheung et al. [START_REF] Cheung | Temporal ensemble learning of univariate methods for short term load forecasting[END_REF], where ensemble learning techniques achieved higher accuracy for short term (1-hour) load forecasts compared to the linear regression and SVR approaches.

Besides forecasting, supervised learning models have been utilised for other tasks in DR as well. Goubko et al. [START_REF] Goubko | Bayesian Learning of Consumer Preferences for Residential Demand Response[END_REF] apply a Bayesian learning framework to estimate the consumer's comfort level function, Liyan Jia et al. [START_REF] Jia | Retail pricing for stochastic demand with unknown parameters: An online machine learning approach[END_REF] an online learning algorithm (called piecewise linear stochastic approximation) to solve the task of day-ahead dynamic pricing for an electricity retailer, and Shoji et al. [81] adapt a Bayesian network to an energy management system (EMS), with the purpose of learning the residents' behaviour and controlling the appliances -under varying electricity prices. Moreover, Albert and Rajagopal [START_REF] Albert | Smart Meter Driven Segmentation: What Your Consumption Says About You[END_REF] employ AdaBoost [START_REF] Freund | A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[END_REF] to ensemble learn (binary) classifiers using features generated using spectral clustering. These classifiers are used to predict certain DR user characteristics.

Unsupervised Learning

In this case of unsupervised learning methods only the inputs are given D = {x i } K i=1 , where K is the number of datapoints, and the system attempts to detect patterns in the data that could be of interest. Compared to supervised learning, this is not such a well-defined problem due to the fact that the patterns needed to be detected are not known beforehand, and because there is a lack of obvious error metrics to be used. On the other hand, it can be applied to a wider spectrum of cases as it does not require labelled data, which can be difficult or expensive to acquire. In DR this is advantageous due to the lack of labelled data. The usual examples of unsupervised learning are clustering the data into groups, dimensionality reduction by discovering latent factors, learning graph structure, and matrix completion.

In DR the dominant use of unsupervised algorithms has been for clustering purposes; where you create groups of objects (e.g. load profiles) in a way that objects within the same cluster are similar to one another, and dissimilar to the objects in other clusters. The various clustering algorithms have been applied to segment the consumers and find typical shapes of load profiles. In turn, this grouping can be used (among others) to identify potential households for DR schemes, select consumers for DR events, and compensate consumers for participation in DR programmes.

Clustering algorithms can be classified in hard and soft; in hard clustering each item can belong only in one cluster, whereas in soft clustering each item can belong to multiple clusters. The K-means algorithm has been employed in the majority of cases and with various distance metrics [START_REF] Zhou | Residential demand response targeting using machine learning with observational data[END_REF][START_REF] Grabner | Statistical Load Time Series Analysis for the Demand Side Management[END_REF][84][85][START_REF] Spinola | Clustering optimization of distributed energy resources in support of an aggregator[END_REF][87][START_REF] Spinola | Energy resource aggregator managing active consumer demand programs[END_REF][START_REF] Park | Data-Driven Baseline Estimation of Residential Buildings for Demand Response[END_REF]. K-means clustering is a distance-based method with the purpose of predicting K centroids (points which are the centre of a cluster) and a label c (i) for each data point in the dataset. A data point is considered to belong in the k th cluster if the distance between the vector and the k th centroid is the smallest among all centroids. K-means finds the best centroids by iteratively alternating between (1) assigning data points to clusters based on the current estimate of centroids, and (2) choosing centroids based on the current assignment of data points to clusters, until the assignments do not change [START_REF] Murphy | Machine Learning : A Probabilistic Perspective[END_REF]. In DR, K-means is mainly used to group individual households based on monitored load data, which are usually grouped by weekdays and averaged over a period of several weeks. The features used for clustering can include the important components from a Principal Component Analysis (PCA) [84,87,[START_REF] Chen | Classification of electricity customer groups towards individualized price scheme design[END_REF] (or Self-Organising Maps (SOM) [START_REF] Park | Data-Driven Baseline Estimation of Residential Buildings for Demand Response[END_REF]), the daily load shapes directly -in which case the dimension of the considered space will be the size of the load profiles (e.g. 24 for hourly intervals monitoring) - [START_REF] Zhou | Residential demand response targeting using machine learning with observational data[END_REF][START_REF] Kwac | Household Energy Consumption Segmentation Using Hourly Data[END_REF], and/or particular characteristics from the households, such as the average and peak daily consumption [85], and pricing information [START_REF] Spinola | Clustering optimization of distributed energy resources in support of an aggregator[END_REF][START_REF] Spinola | Energy resource aggregator managing active consumer demand programs[END_REF]. [84] compares the clustering of 4000 households over 18 months from the Irish CER dataset, using K-means, SOM+K-means and hierarchical clustering methods with different distance computations based on the 17 most significant PCA components. [87] aims to cluster households into two groups (k = 2), one more suited for Time of Use tariffs, and one more suited for Real Time Pricing. It uses spectral relaxation clustering with PCA to find 9 eigenvectors that define the space for the k-mean clustering. Finally, [START_REF] Grabner | Statistical Load Time Series Analysis for the Demand Side Management[END_REF] uses k-means for substations load profile clustering, with dynamic time warping algorithm to measure the distance between time series (instead of Euclidean distance).

Further clustering algorithms used for grouping households' load profiles include soft clustering algorithms based on fuzzy clustering techniques [START_REF] Panapakidis | An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures[END_REF][START_REF] Pereira | Computational Models Development and Demand Response Application for Smart Grids[END_REF], a density based spatial clustering algorithm [START_REF] Luo | A data mining-driven incentive-based demand response scheme for a virtual power plant[END_REF], GMM [85,[START_REF] Haben | Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data[END_REF], hierarchical clustering [84,[START_REF] Kwac | Household Energy Consumption Segmentation Using Hourly Data[END_REF][START_REF] Ikeda | Sparse-coding-based household clustering for demand response services[END_REF], sparse coding [START_REF] Ikeda | Sparse-coding-based household clustering for demand response services[END_REF], and spectral clustering with a multi-scale similarity metric [START_REF] Lin | Clustering Load Profiles for Demand Response Applications[END_REF].

Two major challenges in unsupervised clustering cluster analysis are the estimation of the optimal number of clusters [START_REF] Tibshirani | Estimating the number of clusters in a data set via the gap statistic[END_REF], and the validation of clustering structures [START_REF] Murphy | Machine Learning : A Probabilistic Perspective[END_REF]. In the DR literature the selected number of clusters is between 2 and 16, and the selection approaches include indices (e.g. Bayesian information criterion (BIC) [85], Dunn index (DI) [START_REF] Park | Data-Driven Baseline Estimation of Residential Buildings for Demand Response[END_REF], Davies-Bouldin index (DBI) [START_REF] Park | Data-Driven Baseline Estimation of Residential Buildings for Demand Response[END_REF][START_REF] Lin | Clustering Load Profiles for Demand Response Applications[END_REF], and mean silhouette index (MSI) [START_REF] Park | Data-Driven Baseline Estimation of Residential Buildings for Demand Response[END_REF]), exploratory techniques [87,[START_REF] Panapakidis | An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures[END_REF][START_REF] Luo | A data mining-driven incentive-based demand response scheme for a virtual power plant[END_REF], methods based on matrix perturbation theory [START_REF] Lin | Clustering Load Profiles for Demand Response Applications[END_REF], and iterative methods which increase the number of clusters K and perform a criteria-based comparison (depending on the application) for each K, while making sure to avoid over-fitting [START_REF] Tang | Adaptive segmentation and machine learning based potential DR capacity analysis[END_REF]84,[START_REF] Spinola | Clustering optimization of distributed energy resources in support of an aggregator[END_REF]87,[START_REF] Kwac | Household Energy Consumption Segmentation Using Hourly Data[END_REF]. Indeed, [START_REF] Tang | Adaptive segmentation and machine learning based potential DR capacity analysis[END_REF][START_REF] Kwac | Household Energy Consumption Segmentation Using Hourly Data[END_REF] use an adaptive k-means approach to find the best number of clusters of households, and [84] limits the number of clusters to 14 in order to avoid over-fitting. Moreover, bootstrapping techniques have been used to check the reliability of the clusters and test the results' robustness [START_REF] Haben | Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data[END_REF]. Waczowicz et al. [START_REF] Waczowicz | Demand response clustering: Automatically finding optimal cluster hyper-parameter values[END_REF] propose an automatic framework, based on a ranking method, to compare and select the hyperparameter values for DR clustering purposes.

Besides consumers' segmentation, unsupervised techniques have also been utilised to detect the presence of heating appliances in a household [START_REF] Huang | Designing customized energy services based on disaggregation of heating usage[END_REF], infer the dynamic elasticities curves [START_REF] Panapakidis | An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures[END_REF], and detect the occupancy of a household [START_REF] Zhou | A Bayesian perspective on Residential Demand Response using smart meter data[END_REF][START_REF] Albert | Smart Meter Driven Segmentation: What Your Consumption Says About You[END_REF] -where Albert and Rajagopal [START_REF] Albert | Smart Meter Driven Segmentation: What Your Consumption Says About You[END_REF] use spectral clustering to cluster a collection of HMMs into classes of similar statistical properties. This information can be very valuable to aggregators, so that they can assess the flexibility of their assets.

Reinforcement Learning

Learning from interaction is a fundamental idea in almost every learning paradigm. One of the most interesting computational approaches to learning from interaction is Reinforcement Learning (RL). RL is an approach which explicitly considers the whole problem of an agent focused on goal-oriented learning while interacting with an uncertain environment [START_REF] Sutton | Reinforcement learning : An introduction[END_REF]. It is a distinct paradigm from supervised and unsupervised learning which considers the trade-off between exploration and exploitation. Trial-and-error type of search as well as delayed reward are the two most characteristic aspects of RL. The problem of RL is formalised using the concept of Markov Decision Processes (MDPs). In MDPs at each sequential, discrete time step t the agent receives a representation of the environment's state (S t ∈ S), selects an action (A t ∈ A(s)) based on the state, and finds itself in the state of the subsequent time step S t+1 where it receives a numerical reward (R t ∈ R ⊂ R) -because of its action A t [START_REF] Sutton | Reinforcement learning : An introduction[END_REF].

The RL framework has been applied to a number of domains with the most important being robotics [START_REF] Arulkumaran | Deep Reinforcement Learning: A Brief Survey[END_REF][START_REF] Li | Deep Reinforcement Learning: An Overview[END_REF], resource management in computer clusters [START_REF] Mao | Resource Management with Deep Reinforcement Learning[END_REF], playing video games from pixel input [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF], automated ML frameworks [START_REF] Zoph | Neural Architecture Search with Reinforcement Learning[END_REF]. In the DR field, RL has been widely applied to the tasks of scheduling and control of the various units (e.g. domestic appliances, EVs), while taking into account consumers' preferences (via interaction with them). RL has been presented as a data-driven alternative to model-based controllers for DR, both at the consumer level (as part of an EMS), and at the service provider level. There is also research where RL framework has been used to learn the DR pricing mechanism for service providers [START_REF] Lu | A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid[END_REF][START_REF] Lu | A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach[END_REF][START_REF] Lu | Incentive-based demand response for smart grid with reinforcement learning and deep neural network[END_REF] and develop a demand elasticity model for an aggregation of consumers [START_REF] Babar | The development of demand elasticity model for demand response in the retail market environment[END_REF].

The online nature 4 of various RL methods makes it appealing for DR due to the low volume of many existing DRrelated data sets. Accordingly, it has been heavily applied and various solution methods of the RL framework have been used. The solution methods to RL can be arranged in two different classes; tabular methods where the spaces of possible states and actions are limited enough to allow value functions to be represented as tables, and approximate methods which can be applied to problems with arbitrarily large state spaces [START_REF] Sutton | Reinforcement learning : An introduction[END_REF].

In DR, the most common tabular method applied is Q-learning [START_REF] Dehghanpour | Agent-Based Modeling of Retail Electrical Energy Markets With Demand Response[END_REF][START_REF] Lu | A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid[END_REF][START_REF] Lu | A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach[END_REF][START_REF] Lu | Incentive-based demand response for smart grid with reinforcement learning and deep neural network[END_REF][START_REF] Babar | The development of demand elasticity model for demand response in the retail market environment[END_REF][START_REF] Wen | Optimal Demand Response Using Device-Based Reinforcement Learning[END_REF][START_REF] O'neill | Residential Demand Response Using Reinforcement Learning[END_REF]. Q-learning [START_REF] Watkins | Q-learning[END_REF] is a temporaldifference, model-free 5 RL technique which directly approximates the optimal action-value function, independently of the policy6 being followed [START_REF] Sutton | Reinforcement learning : An introduction[END_REF]. In this case the learned expected discounted reward Q(S t , A t ) that the agent receives for executing action A t at state S t and following policy π thereafter (action-value function) is defined as follows:

Q(S t , A t ) ←-Q(S t , A t ) + α R t+1 + γ max a Q(S t+1 , a) -Q(S t , A t ) (4) 
Where α ∈ [0, 1] is the learning rate, γ is the discount factor, a ∈ A, R t the actual reward obtained for getting from state S t to S t+1 , and max a Q(s t+1 , a) is the maximum reward the agent can expect from being in state S t+1 .

Using Equation (4), the agent updates his table of expected rewards (for state-action pairs), which will then allow him to find the optimal action at future times. In DR applications, Q-learning has been used to help the service provider company (aggregator) provide the optimal sequence of retail electricity prices to consumers [START_REF] Lu | A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid[END_REF][START_REF] Lu | A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach[END_REF][START_REF] Lu | Incentive-based demand response for smart grid with reinforcement learning and deep neural network[END_REF]. In this case, the agent is the aggregator, the action is the price incentives sequence that is proposed to the customers, while the state corresponds to the energy demand from the customers, and the reward is a function of the aggregator's profit and the cost incurred to the customers. Q-learning is also frequently used at the HEMS level to optimise the scheduling of appliances by considering the cost and comfort for the users as a reward function [START_REF] Wen | Optimal Demand Response Using Device-Based Reinforcement Learning[END_REF][START_REF] O'neill | Residential Demand Response Using Reinforcement Learning[END_REF]. In [START_REF] O'neill | Residential Demand Response Using Reinforcement Learning[END_REF], the authors consider pre-specified disutility functions for the customers' dissatisfaction on job scheduling, but [START_REF] Wen | Optimal Demand Response Using Device-Based Reinforcement Learning[END_REF] addresses this limitation. Under this context, a state is composed of a price sequence from the retailer or aggregator, a vector that reflects the user's consumption of specific appliances over time, and sometimes the priority of the considered device. The action from the HEMS is to switch on or turn off the considered devices at time t, and the reward is computed based on the satisfaction (or dissatisfaction) of the customers -quantified usually by the time delay in the actual switching of an appliance, or by directly modelling the end-user's discomfort function [START_REF] Dehghanpour | Agent-Based Modeling of Retail Electrical Energy Markets With Demand Response[END_REF][START_REF] Hurtado | Enabling Cooperative Behavior for Building Demand Response Based on Extended Joint Action Learning[END_REF]. Further, tabular methods are employed in Jain et al. [START_REF] Jain | A multiarmed bandit incentive mechanism for crowdsourcing demand response in smart grids[END_REF] as a multi-armed bandit mechanism which involves learning to act in only one situation (single state), as well as in Ahmed and Bouffard [START_REF] Ahmed | Building load management clusters using reinforcement learning[END_REF] where the problem is formulated as a bandit problem and apply Monte Carlo methods to learn the value of actions for a given policy.

In contrast to tabular methods, the approximate RL methods used for DR are not online algorithms, but batch or mini-batch methods. In online algorithms the input data are obtained sequentially while the learning algorithm executes, whereas in batch algorithms the entire dataset used for learning is readily available [START_REF] Sutton | Reinforcement learning : An introduction[END_REF]. Ruelens et al. [START_REF] Ruelens | Demand response of a heterogeneous cluster of electric water heaters using batch reinforcement learning[END_REF][START_REF] Ruelens | Residential Demand Response of Thermostatically Controlled Loads Using Batch Reinforcement Learning[END_REF], Claessens et al. [START_REF] Claessens | Convolutional Neural Networks for Automatic State-Time Feature Extraction in Reinforcement Learning Applied to Residential Load Control[END_REF], Patyn et al. [START_REF] Patyn | Comparing neural architectures for demand response through model-free reinforcement learning for heat pump control[END_REF] use Fitted Q-iteration (FQI) at the end-user level (HEMS) to allow the HEMS to determine an optimal control sequence (policy) of thermal appliances for each time step of the day based on day-ahead pricing signals. The aim for the HEMS is to minimize the daily cost of electricity demand. FQI algorithm estimates the state-action value function (expected reward Q(S t , A t ) ) offline, using a batch of historical data, and approximates it using either linear regression or ANNs. A further use case of FQI at the HEMS level is the construction of an optimal day-ahead load profile, which is subsequently sold in the market. The objective in this use case is to increase consumers' profit and minimise the deviation between the day-ahead load profile proposed in the market and the actual load profile. Medved et al. [START_REF] Medved | The use of intelligent aggregator agents for advanced control of demand response[END_REF] propose another variant of the Q-learning algorithm, where action-value functions are parametrised using an ANN, called deep Q-learning [START_REF] Mnih | Playing Atari with Deep Reinforcement Learning[END_REF], whereas Bahrami et al. [START_REF] Bahrami | An Online Learning Algorithm for Demand Response in Smart Grid[END_REF] use an actor-critic online learning method [START_REF] Sutton | Reinforcement learning : An introduction[END_REF].

In addition to the aforementioned centralised, single-agent methods, other multi-agent extensions of these have been reported in the literature. These alternative learning methods are mainly employed to address the limitations of centralised approaches in terms of computational power needed -by distributing the workload among the participating agents -, scalability, reliability of the system, as well as the data privacy of consumers. Hurtado et al. [START_REF] Hurtado | Enabling Cooperative Behavior for Building Demand Response Based on Extended Joint Action Learning[END_REF] propose a decentralised and cooperative RL method which extends the Q-learning algorithm to the multi-agent setting by incorporating the optimal policies and the actions of the other agents. Cooperation between agents has been considered in Golpayegani et al. [START_REF] Golpayegani | Multi-agent Collaboration for Conflict Management in Residential Demand Response[END_REF] too, through the use of a collaborative and parallel MCTS, where it is used to enable EVs to actively influence the planning process and resolve their conflicts via negotiation in a DR scenario; MCTS can be considered as a form of RL algorithm [START_REF] Browne | A Survey of Monte Carlo Tree Search Methods[END_REF]. On the other hand, there are papers that address the problem without collaboration among the agents, and a decentralised Q-learning is used [START_REF] Babar | The Evaluation of Agile Demand Response: An Applied Methodology[END_REF], as well as W-learning [START_REF] Dusparic | Multi-agent residential demand response based on load forecasting[END_REF]. Multi-agent approaches diminish the need for complex, computationally intensive algorithms compared to centralised methods, in exchange for increased collaboration and communication overhead among the agents. For a more detailed search of RL methods in DR the reader can refer to the work of Vázquez-Canteli and Nagy [START_REF] Vázquez-Canteli | Reinforcement learning for demand response: A review of algorithms and modeling techniques[END_REF].

Nature-Inspired Algorithmics

Natural and biological systems have always been a key source where scientists draw inspiration from, to design novel computational approaches. In the context of AI, nature-inspired algorithms have been utilised for searching and planning purposes, i.e. to find the sequences of actions needed to reach an agent's goals [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. The natureinspired algorithms found in the DR literature are often meta-heuristics motivated from evolution, biological swarms, or physical processes. The term meta-heuristics refers to the class of stochastic algorithms with randomization and local search, and is used to denote the set of iterative processes which augment heuristic procedures, via intelligent learning strategies for the exploration and exploitation of the search space, with the goal to efficiently discover nearoptimal solutions [START_REF] Beheshti | A review of population-based meta-heuristic algorithm[END_REF].

In DR, nature-inspired algorithms have been primarily used to schedule loads or appliances at the consumer level (algorithm embedded in HEMS) or help aggregators and retailers to optimise the pricing of their customers who offer DR services. Since meta-heuristics are able to find solutions in a reasonable timeframe they have been heavily utilised under the DR context, where the scheduling task can be computationally expensive.

Evolutionary Algorithms

Evolutionary algorithms, or Evolutionary Computation (EC), is a heuristic-based approach which uses methods inspired by biological evolution, by mirroring computationally some of its core principles, such as reproduction, mutation, recombination, and selection. The architecture of an EC algorithm includes three main steps. The first step is the initialisation step, where a set of possible solutions is chosen -most of the time randomly. The second step is the evolutionary iterations with two operational steps, namely, fitness evaluation and selection and population reproduction and variation. The fitness evaluation consists in evaluating the objective functions obtained for all the individuals of the initialisation population, while the selection criteria allow to select the individuals that performed best in order to determine a new population using reproduction (crossover, replacement) and variation (mutation) methods. Then, this new population is re-evaluated and a new iteration is realised until the evaluation of the optimisation function on an individual meets a termination criteria. Evolutionary learning algorithms are a family of algorithms which include genetic algorithms (GA), evolutionary programming (EP), evolutionary strategies (ES), genetic programming (GP), learning classifier systems (LCS), differential evolution (DE), and estimation of distribution algorithm (EDA) [START_REF] Zhang | Evolutionary Computation Meets Machine Learning: A Survey[END_REF]. Strengths of evolutionary algorithms are the fact that no gradient information is needed, they can be implemented in a parallel manner, and are highly exploratory. Compared to traditional optimisation/search approaches, this enables evolutionary computation to be used for optimisation and search in problem domains where the structure cannot be well characterised in advance (e.g. optimising an unknown function that describes a user's utility for energy consumption, or predicting future power market prices). On the other hand, evolutionary methods have inherent drawbacks in convergence, interpretability, can have unpredictable results, and there is no guarantee of finding the optimal solutions [START_REF] Yang | Nature-Inspired Optimization Algorithms[END_REF]. Because of their advantages, EC algorithms been used in a variety of fields [START_REF] Stanley | Evolving Neural Networks through Augmenting Topologies[END_REF][START_REF] Lehman | Safe mutations for deep and recurrent neural networks through output gradients[END_REF][START_REF] Mitchell | An introduction to genetic algorithms[END_REF].

In the literature on energy DR the prevailing method from the evolutionary computation is genetic algorithms [130]- [START_REF] Carrasqueira | Bi-level particle swarm optimization and evolutionary algorithm approaches for residential demand response with different user profiles[END_REF]; GA is a model which abstracts the biological evolution process as described in Charles Darwin's theory of natural selection [START_REF] Holland | Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence[END_REF]. At the HEMS level, GAs are used to find the optimal switching time of each appliances. In this case, a population's individual x i is constituted by a set of binary values (x i = {x i1 , x i2 , ..., x iJ }) stating if the corresponding appliance is on or off at the considered time j [START_REF] Rehman | Heuristic Algorithm Based Energy Management System in Smart Grid[END_REF][START_REF] Kazemi | A home energy management system using Gray Wolf Optimizer in smart grids[END_REF], as explained below. For retailers' or aggregators' price scheme optimisation, GA usually consider individuals that consist in a set of prices p i = {p i1 , p i2 , ..., p iJ }, with p i j the price for the j th period of the day [START_REF] Yang | Nature-Inspired Optimization Algorithms[END_REF][START_REF] Carrasqueira | Bi-level particle swarm optimization and evolutionary algorithm approaches for residential demand response with different user profiles[END_REF][START_REF] Alves | A Hybrid Genetic Algorithm for the Interaction of Electricity Retailers with Demand Response[END_REF][START_REF] Meng | An integrated optimization + learning approach to optimal dynamic pricing for the retailer with multi-type customers in smart grids[END_REF][START_REF] Salami | A cooperative demand response program for smart grids[END_REF]. These prices are the first generated randomly within the constraints, and the sets that produce the best outputs will then generate a next generation of prices. The objective function used to compute the output is usually a cost or benefit function, which aims at maximizing the aggregator's profit. Then, each approach has its own replacement, crossover and mutation methods between the different prices' sets of one population. Finally, GA have also been used to train a neural network [START_REF] Xie | Interruptible Load Management Strategy Based on Chamberlain Model[END_REF], and find the optimal parameters of an SVR model [START_REF] Pal | Price prediction techniques for residential demand response using support vector regression[END_REF].

Furthermore, variations of the GA have been used in the multi-objective setting by primarily utilising the Nondominated Sorting Genetic Algorithm II (NSGA II) [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF]. The NSGA-II is an evolutionary algorithm that employs an elitist strategy to discover Pareto-optimal solutions for multi-objective problems, while being efficient in handling various constraints [START_REF] Ishibuchi | Evolutionary many-objective optimization: A short review[END_REF]. In DR it has been widely applied in the multi-objective scheduling of loads [START_REF] Da Silva | A preference-based demand response mechanism for energy management in a microgrid[END_REF][START_REF] Cortés-Arcos | Multi-objective demand response to real-time prices (rtp) using a task scheduling methodology[END_REF][START_REF] Zhang | Two-stage load-scheduling model for the incentive-based demand response of industrial users considering load aggregators[END_REF][START_REF] Fotouhi Ghazvini | A multi-objective model for scheduling of short-term incentivebased demand response programs offered by electricity retailers[END_REF][START_REF] Hu | Multi-objective optimization of time-of-use price for tertiary industry based on generalized seasonal multi-model structure[END_REF].

Other evolutionary algorithms which have used in the DR setting are the population-based differential evolution algorithm [START_REF] Salami | A cooperative demand response program for smart grids[END_REF], which can be though as an further extension to GA with explicit updating equations [START_REF] Yang | Nature-Inspired Optimization Algorithms[END_REF], a differential Evolutionary Algorithm (EA) for the multi-objective management of lithium-ion battery storage in a datacenter for DR [START_REF] Mamun | Multi-objective optimization of demand response in a datacenter with lithium-ion battery storage[END_REF], and a bi-level evolutionary algorithm (EA) to determine a retailer's optimal power pricing in the face of DR strategies of consumers trying to minimise their electricity expenses [START_REF] Carrasqueira | Bi-level particle swarm optimization and evolutionary algorithm approaches for residential demand response with different user profiles[END_REF].

Swarm Artificial Intelligence

The term swarm intelligence refers to a subdomain of AI related to the intelligent behaviour of biological swarms and how simulating these biological behaviours can be used to solve various tasks [START_REF] Darwish | Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications[END_REF]. Swarm Intelligence algorithms commonly found in the literature are Particle Swarm Optimisation (PSO) algorithm [START_REF] Kennedy | Particle swarm optimization[END_REF], Ant Colony Optimisation (ACO) [START_REF] Dorigo | Ant colony optimization: a new meta-heuristic[END_REF]. Kar [START_REF] Kar | Bio inspired computing -A review of algorithms and scope of applications[END_REF], Chakraborty and Kar [START_REF] Chakraborty | Swarm Intelligence: A Review of Algorithms[END_REF], Lakshmaiah et al. [START_REF] Lakshmaiah | An Overview of Bio-Inspired Computing[END_REF] are reviews that provide extended information about these algorithms. Similarly to evolutionary methods, swarm AI methods suffer from slow convergence speed and the risk of getting stuck in local optima [START_REF] Beheshti | A review of population-based meta-heuristic algorithm[END_REF]. On the other hand, in swarm AI algorithms, all particles' histories contribute to the search, unlike in GA where "poor" particles are discarded [START_REF] Mirjalili | Grey Wolf Optimizer[END_REF]. Additionally, swarm AI methods have less parameters requiring prior tuning and adjustment and are usually subject to easier implementation.

In energy DR, swarm AI algorithms are mostly used at the aggregator or retailer level in order to find the optimal scheduling or pricing scheme to minimize a cost function. Indeed, in DR, the optimisation problems often consider a large number of variables, with quadratic optimisation functions and constraints from AC power flow computation that make the problem non-convex. In this context, heuristic optimisation can easily find a near-optimal solution in less time than other mathematical techniques. Among these heuristic optimisation techniques, PSO is the most widely used in DR. PSO is based on the natural social behaviour of animals associated with swarms (e.g. flock of birds, fish shoal), where each of the individuals constituting the swarm (called particles) searches for an objective (e.g. food) but also considers the findings of the other individuals in the swarm [START_REF] Darwish | Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications[END_REF].

When PSO is used for scheduling the customers' consumption [START_REF] Spinola | Clustering optimization of distributed energy resources in support of an aggregator[END_REF][START_REF] Cavalca | Comparative Analysis Between Particle Swarm Optimization Algorithms Applied to Price-Based Demand Response[END_REF][START_REF] Herath | Multi-objective PSO for scheduling electricity consumption in a smart neighborhood[END_REF][START_REF] Herath | A service provider model for demand response management[END_REF] or VPP assets scheduling (including loads) [START_REF] Faria | Particle swarm optimization applied to integrated demand response resources scheduling[END_REF][START_REF] Soares | Demand Response in Electric Vehicles Management Optimal Use of End-User Contracts[END_REF][START_REF] Pedrasa | Scheduling of Demand Side Resources Using Binary Particle Swarm Optimization[END_REF][START_REF] Pereira | Quantum Particle Swarm Optimization Applied to Distinct Remuneration Approaches in Demand Response Programs[END_REF][START_REF] Faria | Quantum-based particle swarm optimization application to studies of aggregated consumption shifting and generation scheduling in smart grids[END_REF], a particle p is defined as a matrix X p = x i j p N×J

, where N is the number of loads (customers, appliances, or VPP's assets) and J is the number of time periods in the considered DR scenario. Each of the x i j p correspond to the state of the considered load i at time j. x i j p can be a binary variable to indicate if the load is on [START_REF] Eid | Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design[END_REF] or off (0) [START_REF] Herath | Multi-objective PSO for scheduling electricity consumption in a smart neighborhood[END_REF][START_REF] Herath | A service provider model for demand response management[END_REF][START_REF] Pedrasa | Scheduling of Demand Side Resources Using Binary Particle Swarm Optimization[END_REF], or it can be the power of the load [START_REF] Faria | Particle swarm optimization applied to integrated demand response resources scheduling[END_REF][START_REF] Soares | Demand Response in Electric Vehicles Management Optimal Use of End-User Contracts[END_REF][START_REF] Pedrasa | Scheduling of Demand Side Resources Using Binary Particle Swarm Optimization[END_REF][START_REF] Pereira | Quantum Particle Swarm Optimization Applied to Distinct Remuneration Approaches in Demand Response Programs[END_REF][START_REF] Faria | Quantum-based particle swarm optimization application to studies of aggregated consumption shifting and generation scheduling in smart grids[END_REF].

PSO is an iterative process, where a population (swarm) of particles is randomly determined during the first step of the iteration by choosing the x 0 i j p values randomly for each particle p (or x 0 i j p can be initialised using the result of the optimisation of a simplified problem using Mixed Integer Linear Programming [START_REF] Soares | Demand Response in Electric Vehicles Management Optimal Use of End-User Contracts[END_REF]). In parallel with the choice of the swarm's particles initial position (x 0 i j p ), the aggregator determines the utility function he wants to minimize, which is often given by the cost : c = time j assets i p j • P i • x i j in the case where x i j is a binary variable, but it could also be a multi-objective function that also integrates the Peak to Average Ratio [START_REF] Rehman | Heuristic Algorithm Based Energy Management System in Smart Grid[END_REF][START_REF] Cavalca | Comparative Analysis Between Particle Swarm Optimization Algorithms Applied to Price-Based Demand Response[END_REF][START_REF] Herath | Multi-objective PSO for scheduling electricity consumption in a smart neighborhood[END_REF][START_REF] Herath | A service provider model for demand response management[END_REF].

For the use case of loads scheduling in VPP, Pereira et al. [START_REF] Pereira | Quantum Particle Swarm Optimization Applied to Distinct Remuneration Approaches in Demand Response Programs[END_REF] provides an optimal scheduling based on a multiobjective function that includes the cost for customers and the operational costs of the aggregator. Similarly, Pereira et al. [START_REF] Pereira | Quantum Particle Swarm Optimization Applied to Distinct Remuneration Approaches in Demand Response Programs[END_REF], Faria et al. [START_REF] Faria | Quantum-based particle swarm optimization application to studies of aggregated consumption shifting and generation scheduling in smart grids[END_REF] optimize the assets' schedule based on four demand response remuneration programs (that belong to incentive and price based categories). In Faria et al. [START_REF] Faria | Quantum-based particle swarm optimization application to studies of aggregated consumption shifting and generation scheduling in smart grids[END_REF], PSO is used to minimize the operational costs of the VPP, while ensuring load balancing, meeting resources capacities and DR shifting constraints. In Pedrasa et al. [START_REF] Pedrasa | Scheduling of Demand Side Resources Using Binary Particle Swarm Optimization[END_REF], the authors include constraints on curtailment duration and aim at minimizing the cost for the consumption of the group of interruptible loads. Finally, electric vehicles and Vehicle-to-Grid charging can also be addressed by PSO algorithms [START_REF] Soares | Demand Response in Electric Vehicles Management Optimal Use of End-User Contracts[END_REF].

The customers' discomfort for reducing consumption during a DR event can also be included in this utility function, as proposed in [START_REF] Herath | A service provider model for demand response management[END_REF][START_REF] Pedrasa | Scheduling of Demand Side Resources Using Binary Particle Swarm Optimization[END_REF][START_REF] Herath | Computational Intelligence-Based Demand Response Management in a Microgrid[END_REF]. The aggregator also takes into account the constraints of all the loads, as the maximum and minimum power, but also the minimum and maximum time for the use. Then, the utility function is evaluated for each of the particles, in order to prepare the update of the position of each particle in the next iteration. Indeed, each particle will be brought closer to the particle that reached the best cost c k best reached by the particle p best k at iteration k, while also taking into account its best position. Unlike in GA, all the particles are kept and updated. At iteration k, the position of each particle p will be updated from x k i j p to x k+1 i j p using the following equation:

x k+1 i j p = x k i j p + v k+1 i j p (5) 
Where v k+1 i j p is defined as the velocity of particle p at iteration k + 1 in the direction i, j, and is given by [START_REF]Office of Gas and Electricity Markets (Ofgem)[END_REF].

v k+1 i j p = ω p • v k i j p + c 1 r 1 x best i j p -x k i j p + c 1 r 1 x k i j p best k -x k i j p (6) 
Where c 1 and c 2 are the cognitive and the social acceleration constants respectively, r 1 and r 2 are random numbers between 0 and 1, ω p is the inertia of the particle p, that can evolve through time [START_REF] Cavalca | Comparative Analysis Between Particle Swarm Optimization Algorithms Applied to Price-Based Demand Response[END_REF], x best i j p is the position of particle p that gave the best (lowest) cost c in the previous positions it was in, and x k i j p best k is the position of the particle p best k that achieved the best cost in the swarm at iteration k. The initial velocity is usually defined as 0, and should stay within boundaries, which can be defined using price information, as proposed in Faria et al. [START_REF] Faria | Modified Particle Swarm Optimization Applied to Integrated Demand Response and DG Resources Scheduling[END_REF]. Once all the particles have been updated and constrained, within the boundaries defined by the aggregator and the consumers preferences (limits of time of use for each load for example), the current best position of each particle x best i j p is updated iteratively until the termination criteria of the cost function c are met. In this case, the optimal scheduling of loads through the day is given by X p best = x i j p best . PSO can also be used to determine an optimal price scheme, in which case the particles' position can be defined by P p = {p 1 , ..., p J } where p j is the price at time j. Some researchers also implement a Gaussian mutation in the parameters c 1 , c 2 and ω p in order to improve the exploration of the space [START_REF] Soares | Demand Response in Electric Vehicles Management Optimal Use of End-User Contracts[END_REF][START_REF] Faria | Modified Particle Swarm Optimization Applied to Integrated Demand Response and DG Resources Scheduling[END_REF].

Finally, for optimal scheduling of loads at the aggregator level, Margaret and Uma Rao [START_REF] Margaret | Demand response for residential loads using artificial bee colony algorithm to minimize energy cost[END_REF] also use the Artificial Bee Colony (ABC) algorithm which imitates the food searching behaviour of honey bees. Similarly, at the HEMS's level, Kazemi et al. [START_REF] Kazemi | A home energy management system using Gray Wolf Optimizer in smart grids[END_REF] propose a Gray Wolf Optimiser (GWO) to schedule the appliances based on the price from the retailer and on each appliances' needs. GWO algorithm draws inspiration from the social hierarchy and hunting behaviour of grey wolf packs [START_REF] Mirjalili | Grey Wolf Optimizer[END_REF].

Other Nature-Inspired Meta-Heuristics

In addition to the aforementioned algorithms, there have been found various nature-inspired meta-heuristics which cannot be classified in the existing groups. In Herath et al. [START_REF] Herath | Computational Intelligence-Based Demand Response Management in a Microgrid[END_REF] the CLONALG [START_REF] Castro | An artificial immune network for multimodal function optimization[END_REF]-based Artificial Immune System (AIS) algorithm, derived from the processes found in biological immune systems [START_REF] Bernardino | Artificial Immune Systems for Optimization[END_REF], is used to determine the aggregators' pricing scheme. Developed on the annealing concept 7 , the simulated annealing method is employed for DR in Spinola et al. [START_REF] Spinola | Clustering optimization of distributed energy resources in support of an aggregator[END_REF], and the Wind Driven Optimisation (WDO) algorithm [START_REF] Rehman | Heuristic Algorithm Based Energy Management System in Smart Grid[END_REF], which is based on atmospheric motion, is used to determine an optimal scheduling of appliances at the household level.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by, albeit not identical to, biological nervous systems. ANNs have been developed since the early years of AI as connectionist models; models which are large networks of simple processing units, massively interconnected and running in parallel [START_REF] Smolensky | Connectionist AI, symbolic AI, and the brain[END_REF]. Although ANNs could fall under both categories of machine learning and nature-inspired AI approaches, we present them in this review as a distinct category since they are heavily utilised in DR applications.

The basic component of an ANN are the units (or nodes) which are connected by directed links; the strength of each link is determined by a numeric weight. Nodes can either be input nodes (get data inside the network), output nodes, or hidden nodes (modify the data en route from input to output). Each unit calculates linear combinations of its inputs, which is then passed to an activation/transfer function (e.g. sigmoid functions, ReLU) to derive the unit's output [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF].

The properties of ANN are conditional to the network's topology (the way units are connected) and the attributes of units. The two main architectures of ANNs are the feedforward and the recurrent architecture [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. In feedforward ANNs (FF-ANNs) the connections between units form a directed acyclic graph, whereas recurrent neural networks (RNNs) allow for feedback connections and thus form a directed cyclic graph. In FF-ANNs the nodes are usually structured in hierarchical groups of units called layers; in which case the units' inputs come only from units in the immediately preceding layer. There is no upper bound to the number of hidden layers an ANN can have.

ANNs have been utilised for classification, clustering, pattern recognition and prediction across a number of disciplines [START_REF] Abiodun | State-of-the-art in artificial neural network applications: A survey[END_REF]. In DR, ANNs of various architectures and depth (number of layers) have been used primarily for forecasting applications. Most of DR applications use ANNs to forecast the future consumption of an asset (building, appliance, group of consumers), or the flexibility of a load, or the electricity price in a short term (from several minutes to one day ahead). Indeed, ANNs can successfully replace nonlinear regression tools for those applications.

The inputs to be included depend on the variable that is forecasted. For instance, in load forecasting most of the implementations use inputs as previous consumptions (at a short time before, and sometimes at the same time but for previous days), weather (mostly temperature), type of day (value between 1 and 7, or 0 for week days, 1 for weekends), hour for the prediction, and sometimes the price. For a price forecast, inputs are mostly previous prices (for the same day and for previous days at the same time). Flexibility forecast on the other hand is a function of previous consumption, weather, and set points from the DR aggregator (current and previous set points). The output of these forecasts is generally the variable value at a future time (power consumption or price), but it can also be the main wavelet transform's coefficients of the considered variable [START_REF] Chen | Optimal power utilizing strategy for PV-based EV charging stations considering Real-time price[END_REF][START_REF] Paterakis | Assessment of Demand-Response-Driven Load Pattern Elasticity Using a Combined Approach for Smart Households[END_REF].

Based on the extensive literature on the topic, two main classes have been identified: single hidden layer ANN and Deep Learning, as shown below.

Single hidden layer ANN

The most widely used class of ANNs in the DR domain is the single hidden layer, feedforward ANN. There are also cases where autoregressive feed-forward are built [START_REF] Singh | A preliminary study towards conceptualization and implementation of a load learning model for smart automated demand response[END_REF][START_REF] Lee | Simulation and optimization of energy efficient operation of HVAC system as demand response with distributed energy resources[END_REF]. The only two papers found to be using RNNs is in Liu et al. [START_REF] Liu | Elman neural network model for short term load forecasting based on improved demand response factor[END_REF], where employ an Elman neural network is employed, and in Lee and Moon [START_REF] Lee | Forecasting and Modeling of Electricity Demand Using NARX Neural Network in Smart Grid Environment[END_REF] (non-linear Autoregressive with external inputs RNN). In the DR context, the vast majority of the literature has employed single hidden layer ANNs for load and price forecasting. Besides these tasks, single hidden layer ANNs have been used to classify customers based on their potential participation in a DR event [START_REF] Kamruzzaman | An Artificial Neural Network based Approach to Electric Demand Response Implementation[END_REF], and as simple black-boxes to model complex functions, such as consumers' thermal discomfort [START_REF] Kim | Optimal Price Based Demand Response of HVAC Systems in Multizone Office Buildings Considering Thermal Preferences of Individual Occupants Buildings[END_REF] or consumers' ability to shift their consumption [START_REF] Holtschneider | Optimization of electricity pricing considering neural network based model of consumers' demand response[END_REF], that mostly depend on temperature, time, type of day and price. All the ANNs that fall under this group are using sigmoidal activation functions. Most of the papers use the logistic sigmoid function [65,[START_REF] Kamruzzaman | An Artificial Neural Network based Approach to Electric Demand Response Implementation[END_REF][START_REF] Macdougall | Performance Assessment of Black Box Capacity Forecasting for Multi-Market Trade Application[END_REF][START_REF] Macdougall | Value assessment of aggregated energy flexibility when traded on multiple markets[END_REF][START_REF] Macdougall | Predictive control for multi-market trade of aggregated demand response using a black box approach[END_REF][START_REF] Jazaeri | Baseline methodologies for small scale residential demand response[END_REF][START_REF] Li | Dynamic Demand Response Using Customer Coupons Considering Multiple Load Aggregators to Simultaneously Achieve Efficiency and Fairness[END_REF][START_REF] Jiang | Load Forecasting in Demand Response[END_REF][START_REF] Ninagawa | Prediction of aggregated power curtailment of smart grid demand response of a large number of building air-conditioners[END_REF][START_REF] Ninagawa | Modulation training method of prediction model for smart grid FastADR power limitation of building air-conditioners[END_REF],

although there are papers using other variants; hyperbolic tangent [67,[START_REF] Holtschneider | Optimization of electricity pricing considering neural network based model of consumers' demand response[END_REF][START_REF] Hafez | Integrating EV Charging Stations as Smart Loads for Demand Response Provisions in Distribution Systems[END_REF][START_REF] Akhavan-Rezai | New EMS to Incorporate Smart Parking Lots Into Demand Response[END_REF][START_REF] Ponocko | Forecasting Demand Flexibility of Aggregated Residential Load Using Smart Meter Data[END_REF][START_REF] Pal | Effective load scheduling of residential consumers based on dynamic pricing with price prediction capabilities[END_REF], bipolar sigmoid [START_REF] Kim | Optimal Price Based Demand Response of HVAC Systems in Multizone Office Buildings Considering Thermal Preferences of Individual Occupants Buildings[END_REF], and log-sigmoid [START_REF] Ponocko | Forecasting Demand Flexibility of Aggregated Residential Load Using Smart Meter Data[END_REF].

The prevalent methods for training ANNs8 have been found to be gradient-based algorithms. The plain backpropagation with gradient descent [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] has been used in some cases [START_REF] Paterakis | Assessment of Demand-Response-Driven Load Pattern Elasticity Using a Combined Approach for Smart Households[END_REF][START_REF] Kamruzzaman | An Artificial Neural Network based Approach to Electric Demand Response Implementation[END_REF][START_REF] Ninagawa | Prediction of aggregated power curtailment of smart grid demand response of a large number of building air-conditioners[END_REF][START_REF] Ninagawa | Modulation training method of prediction model for smart grid FastADR power limitation of building air-conditioners[END_REF][START_REF] Pal | Effective load scheduling of residential consumers based on dynamic pricing with price prediction capabilities[END_REF][START_REF] Escrivá-Escrivá | New artificial neural network prediction method for electrical consumption forecasting based on building end-uses[END_REF], but the majority of the literature trains ANNs using variations of this algorithm to deal with its limitations. There is work where they try to avoid overfitting by using Bayesian regularisation [START_REF] Dehghanpour | Agent-Based Modeling of Retail Electrical Energy Markets With Demand Response[END_REF][START_REF] Pereira | Computational Models Development and Demand Response Application for Smart Grids[END_REF][START_REF] Singh | A preliminary study towards conceptualization and implementation of a load learning model for smart automated demand response[END_REF][START_REF] Ponocko | Forecasting Demand Flexibility of Aggregated Residential Load Using Smart Meter Data[END_REF][START_REF] Mackay | A Practical Bayesian Framework for Backpropagation Networks[END_REF], momentum [START_REF] Grant | Short-Term Electrical Peak Demand Forecasting in a Large Government Building Using Artificial Neural Networks[END_REF], early stopping [START_REF] Xu | Agent-Based Modeling and Neural Network for Residential Customer Demand Response[END_REF], and cross-validation [START_REF] Lee | Simulation and optimization of energy efficient operation of HVAC system as demand response with distributed energy resources[END_REF][START_REF] Gamage | Neural Network Based Real-Time Pricing in Demand Side Management for Future Smart Grid[END_REF]. The Levenberg-Marquardt Algorithm is used for training in numerous papers [START_REF] Arunaun | Baseline Calculation of Industrial Factories for Demand Response Application[END_REF]67,[START_REF] Pereira | Computational Models Development and Demand Response Application for Smart Grids[END_REF][START_REF] Kim | Optimal Price Based Demand Response of HVAC Systems in Multizone Office Buildings Considering Thermal Preferences of Individual Occupants Buildings[END_REF][START_REF] Holtschneider | Optimization of electricity pricing considering neural network based model of consumers' demand response[END_REF][START_REF] Hafez | Integrating EV Charging Stations as Smart Loads for Demand Response Provisions in Distribution Systems[END_REF][START_REF] Akhavan-Rezai | New EMS to Incorporate Smart Parking Lots Into Demand Response[END_REF][START_REF] Gamage | Neural Network Based Real-Time Pricing in Demand Side Management for Future Smart Grid[END_REF][START_REF] Paterakis | Demand response driven load pattern elasticity analysis for smart households[END_REF][START_REF] Schachter | A short-term load forecasting model for demand response applications[END_REF] to provide faster convergence than the plain backpropagation, in exchange for high memory usage. Further implementations include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [65,[START_REF] Macdougall | Performance Assessment of Black Box Capacity Forecasting for Multi-Market Trade Application[END_REF][START_REF] Macdougall | Performance Assessment of Black Box Capacity Forecasting for Multi-Market Trade Application[END_REF][START_REF] Macdougall | Value assessment of aggregated energy flexibility when traded on multiple markets[END_REF][START_REF] Macdougall | Predictive control for multi-market trade of aggregated demand response using a black box approach[END_REF], resilient backpropagation (RPROP) [START_REF] Aoyagi | Unit Commitment Considering Uncertainty of Price-Based Demand Response[END_REF], and kernel based extreme machine learning [START_REF] Severini | Energy management with the support of dynamic pricing strategies in real micro-grid scenarios[END_REF], used for higher convergence speed. Non gradient-based methods for training ANNs are PSO [START_REF] Takiyar | Grid reliability enhancement by peak load forecasting with a PSO hybridized ANN model[END_REF], and a combination of PSO and GA in Xie et al. [START_REF] Xie | Interruptible Load Management Strategy Based on Chamberlain Model[END_REF].

Even though the global approximation theorem [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF] states that a FF-ANN with a hidden layer is sufficient to learn any function, there is evidence that utilising models with more hidden layers (deep ANNs) can result in architectures with smaller number of units and lower generalisation error [START_REF] Lecun | Deep learning[END_REF].

Deep learning

Deep learning is a branch of machine learning methods which involve learning multiple levels of representation and abstraction, and has the ability to process data in their raw format, as well as discover the representations needed for detection or classification in an automated fashion [START_REF] Lecun | Deep learning[END_REF]. Even though, the modern term of deep learning can be applied in ML frameworks that are not necessarily neurally inspired [START_REF] Lecun | Deep learning[END_REF], the most common use of the term refers to ANNs which have two or more hidden layers.

Deep learning approaches have given really promising results and have achieved human or even superhuman performance [START_REF] Silver | Mastering the game of Go without human knowledge[END_REF] in certain types of problems. There are many different architectures of deep neural networks. The most commonly used for supervised learning are feedforward NNs [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], convolutional NNs [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], RNNs [START_REF] Lipton | A Critical Review of Recurrent Neural Networks for Sequence Learning[END_REF], while autoencoders [START_REF] Jonathan | Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction[END_REF] and Restricted Boltzmann Machines [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF] are used commonly in the unsupervised setting. There is also the combination of deep learning used in conjunction with RL leading to deep reinforcement learning [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. In our search, the primary use of deep architectures in DR has also been for load and price forecasting tasks -like in the case of single hidden layer ANNs. Additionally, deep architectures have been applied to predict the users' response behaviour [START_REF] Liu | Analysis and Accurate Prediction of User's Response Behavior in Incentive-Based Demand Response[END_REF], control residential appliances (considering DR events) [START_REF] Ahmed | Artificial neural network based controller for home energy management considering demand response events[END_REF], identify socio-demographic information about the consumers to help retailers provide more personalized services and make more reliable decisions on the targeting of DR [START_REF] Wang | Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data[END_REF], as well as for clustering customers based on the encoded load profile, by using deep autoencoders [START_REF] Ryu | Residential Load Profile Clustering via Deep Convolutional Autoencoder[END_REF].

Similar to "shallow" ANNs, the prevalent topology of deep networks used for DR is the feedforward architecture [START_REF] Lu | Incentive-based demand response for smart grid with reinforcement learning and deep neural network[END_REF][START_REF] Ahmed | Artificial neural network based controller for home energy management considering demand response events[END_REF][START_REF] Giovanelli | Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices[END_REF][START_REF] Basnet | An artificial neural network-based peak demand and system loss forecasting system and its effect on demand response programs[END_REF][START_REF] Huang | Hour-Ahead Price Based Energy Management Scheme for Industrial Facilities[END_REF][START_REF] Mohi Ud Din | Appliance-level Short-Term Load Forecasting using Deep Neural Networks[END_REF][START_REF] Basnet | Effect of demand response on residential energy efficiency with direct load control and dynamic price control[END_REF]. Other types of deep ANNs found in the literature are long short-term memory (LSTM) [START_REF] Liu | Analysis and Accurate Prediction of User's Response Behavior in Incentive-Based Demand Response[END_REF], convolutional neural network (CNN) [START_REF] Wang | Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data[END_REF], and a deep RNN [START_REF] Mohi Ud Din | Appliance-level Short-Term Load Forecasting using Deep Neural Networks[END_REF]. LSTM is a type of RNN which can handle better long-term dependencies -in exchange for higher computational cost -and CNNs are well suited for processing data with a grid-like topology. Most of these models have been used for regression, with the exception of Ahmed et al. [START_REF] Ahmed | Artificial neural network based controller for home energy management considering demand response events[END_REF], Wang et al. [START_REF] Wang | Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data[END_REF], and have been trained with the Levenberg-Marquardt backpropagation algorithm [START_REF] Lu | Incentive-based demand response for smart grid with reinforcement learning and deep neural network[END_REF][START_REF] Ahmed | Artificial neural network based controller for home energy management considering demand response events[END_REF][START_REF] Mohi Ud Din | Appliance-level Short-Term Load Forecasting using Deep Neural Networks[END_REF]. To avoid overfitting the surveyed literature has used data augmentation [START_REF] Wang | Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data[END_REF], dropout [START_REF] Wang | Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data[END_REF][START_REF] Giovanelli | Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices[END_REF], and training with momentum [START_REF] Basnet | An artificial neural network-based peak demand and system loss forecasting system and its effect on demand response programs[END_REF].

In comparison with traditional "shallow" techniques, deep learning has the ability to learn highly non-linear, complex relationships and correlations between the input and output data. For that reason, in the DR literature it is shown that deep learning methods usually outperform in prediction accuracy traditional techniques like SVR [START_REF] Liu | Analysis and Accurate Prediction of User's Response Behavior in Incentive-Based Demand Response[END_REF][START_REF] Giovanelli | Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices[END_REF][START_REF] Mohi Ud Din | Appliance-level Short-Term Load Forecasting using Deep Neural Networks[END_REF], shallow ANNs [START_REF] Liu | Analysis and Accurate Prediction of User's Response Behavior in Incentive-Based Demand Response[END_REF] and Random Forest [START_REF] Liu | Analysis and Accurate Prediction of User's Response Behavior in Incentive-Based Demand Response[END_REF]. However, this flexibility comes with a cost. Specifically, deep learning architectures require a large amount of data to outperform other approaches, are computationally expensive to train, and are not easily interpretable. Further, it is not fully understood why they work so well in certain types of problems [START_REF] Lin | Why Does Deep and Cheap Learning Work So Well?[END_REF], and it should be noted that arbitrarily increasing the depth of an ANN might not always yield the best results [START_REF] Sun | On the depth of deep neural networks: A theoretical view[END_REF].

Multi-agent Systems

Due to the distributed nature of the demand-side in power systems there is the need for approaches that can learn, plan and make decisions in an environment that involves multiple interacting intelligent agents. The tools to study these problems are provided by a sub-area of distributed AI called multi-agent systems (MAS). The subfields of MAS studied in this review are automated negotiations for the negotiation between the various participants in a scheme, cooperative/coalitional game theory for the study of coalitions among these participants, as well as mechanism design.

Coalitional game theory

Game Theory is a branch of economics that is largely involved with the domain of decision making by self-interest entities [START_REF] Binmore | Fun and Games: A Text on Game Theory[END_REF][START_REF] Myerson | Game Theory: Analysis of Conflict[END_REF]. The main concept in Game Theory is the game which is a mathematical model that describes and captures the main features of the interaction between these self-interest entities [START_REF] Chalkiadakis | Computational Aspects of Cooperative Game Theory[END_REF]. One of the key objectives of game theory is to try to understand what constitutes as a rational outcome of a game, and numerous solution concepts have been developed to find a subset from the set of possible outcomes in a game (e.g. Nash Equilibrium).

Coalitional (or cooperative) game theory is one of the basic classes of game theory. In cooperative game theory, there is an abstraction from individual players' strategies and instead focus on the coalitions players may form. There is the assumption that each coalition may attain some payoffs and then the goal is to try and predict which coalitions will form (and hence the payoffs the agents obtain). Cooperative game theory concentrates on division of the payoff, and not so much on what players do to achieve those payoffs [START_REF] Chalkiadakis | Computational Aspects of Cooperative Game Theory[END_REF].

In the DR context, cooperative game theory has been highly used; especially in the cases where there are binding agreements in place (i.e. incentive-based DR). The main applications of cooperative game theory in DR is the selection of the optimal set of electricity consumers to participate in DR schemes, and have to allocate the payoff of the coalition between DR participants (known as solution concept). The solution concept corresponds to the way the total revenue is split among the DR flexibility participants, which depends on the criteria that the aggregator wants to meet. Some of the main solution concepts are the Shapley Value (fairness criterion), the Banzhaf Index (fairness criterion), the core (coalitional stability), Nucleolus (based on the notion of deficit), Kernel and Stable set. In DR, the most commonly used solution concept is the Shapley Value (SV), which defines a fair way of distributing the payoff of each participant after a DR event [START_REF] Nishiyama | Analysis of cooperative structure of demand response and market strategy of aggregator based on payoff allocation[END_REF][START_REF] Robu | Efficient Buyer Groups With Prediction-of-Use Electricity Tariffs[END_REF][START_REF] O'brien | Shapley Value Estimation for Compensation of Participants in Demand Response Programs[END_REF]. Indeed, the SV proposes a unique, fair and symmetrical distribution of the effort, reward or penalty between participants of a DR program, as it proposes a reward to each participant that is proportional to their contribution.

For example, in a coalition game, we can consider the total expected payoff for the set of participants to a DR event S ⊆ χ (with χ = {1, 2, ...N} the set of all N loads associated with the considered aggregator) defined as a characteristic function v : S ∈ 2 N → R. This characteristic function can be determined by an aggregator. In the case of a load reduction DR event, v(S) = c k∈S Q k where Q k is the quantity of energy reduction from participant k and c the amount of money determined for the reduction of 1 kWh. The Shapley Value is determined for each participant as the mean marginal contribution of this participant to all possible coalitions' permutations of other participants. Mathematically, this can be expressed with Equation [START_REF] Howell | Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources[END_REF], where v(S ∪ {k})v(S) is the marginal contribution of participant k belonging in a coalition S:

ϕ k (χ, v) = S⊆χ \{k} |S| ! (|χ| -|S| -1)! |χ| ! [v(S ∪ {k}) -v(S)] (7) 
Where χ \{k} is the set of all participants except participant k.

Although the concept of the Shapley value provides a fair and unique solution to coalitional games, its downside is its computational hardness and for that reason a number of papers have proposed approximations. Bakr and Cranefield [START_REF] Bakr | Using the Shapley Value for Fair Consumer Compensation in Energy Demand Response Programs: Comparing Algorithms[END_REF] compare three methods for calculating the exact or approximate Shapley value, which include a linear-time approximation proposed in Fatima et al. [START_REF] Fatima | A linear approximation method for the Shapley value[END_REF], and a stratified random sampling proposed in Maleki et al. [START_REF] Maleki | Bounding the Estimation Error of Sampling-based Shapley Value Approximation[END_REF]. O'Brien et al. [START_REF] O'brien | Shapley Value Estimation for Compensation of Participants in Demand Response Programs[END_REF] propose a a stratified sampling technique in conjunction with a RL heuristic to approximate the Shapley value.

Mechanism Design

Mechanism design is a strategic variant of social choice theory. Under this theory agents are assumed to behave in a way that maximises their individual payoffs. In mechanism design, the goal is to design a game (e.g. DR pricing scheme, scheduling of appliances) in a way that the equilibrium of the game is guaranteed to have a specific set of properties, independent of the unknown individual preferences (e.g. unknown preferences of DR participants) [START_REF] Shoham | Multiagent systems : algorithmic, game-theoretic, and logical foundations[END_REF]. As stated in the book of Shoham and Leyton-Brown [START_REF] Shoham | Multiagent systems : algorithmic, game-theoretic, and logical foundations[END_REF] mechanism design can be thought as an exercise in "incentive engineering".

In the DR literature mechanism design has been widely applied, because it is of high importance to the success of DR schemes to guarantee certain properties. In DR, mechanism design is primarily utilised to design incentivebased mechanisms where consumers are incentivised to provide truthful bids. Several papers propose DR mechanisms that make sure that the consumers will maximize their utility function by reporting their preferences truthfully [START_REF] Jain | A multiarmed bandit incentive mechanism for crowdsourcing demand response in smart grids[END_REF][START_REF] Hayakawa | Online mechanisms for charging electric vehicles in settings with varying marginal electricity costs[END_REF][START_REF] Ma | Generalizing Demand Response Through Reward Bidding[END_REF][START_REF] Ma | Incentivizing reliability in demand-side response[END_REF]. Such mechanisms are called Incentive Compatible (IC) mechanisms. Hayakawa et al. [START_REF] Hayakawa | Online mechanisms for charging electric vehicles in settings with varying marginal electricity costs[END_REF] propose a scheduling and payment function based on future prices, and end-users' preferences to the different time periods within the day. Two dominant-strategy equilibrium,"penalty-bidding" mechanisms are proposed in Ma et al. [START_REF] Ma | Incentivizing reliability in demand-side response[END_REF], and Ma et al. [START_REF] Ma | Generalizing Demand Response Through Reward Bidding[END_REF] propose a mechanism that uses a "reward-bidding" approach rather than the approach of Ma et al. [START_REF] Ma | Incentivizing reliability in demand-side response[END_REF] to stimulate truthful behaviours. Meir et al. [START_REF] Meir | Contract design for energy demand response[END_REF] use the Vickrey-Clarke-Groves (VCG) mechanism to design DR contracts, ensuring that the participating agents will reveal their true costs for participating in DR. Finally, Kota et al. [START_REF] Kota | Cooperatives for demand side management[END_REF] propose a cooperative mechanism that is efficient and incentive compatible, in the sense that participants do not gain by augmenting their baseline consumption to show an artificial demand reduction. In this mechanism, the aggregator selects a subset of agents, place bids for this subset in the electricity flexibility market and distributes the revenue among agents according to their consumption reduction's commitment, while penalising those who increased their consumption.

Automated negotiation

Broadly defined, negotiation is an allocation mechanism that can be used to allocate goods (e.g. [START_REF] Bajari | Auctions Versus Negotiations in Procurement: An Empirical Analysis[END_REF]), resources (e.g. [START_REF] Sun | Wireless Channel Allocation Using an Auction Algorithm[END_REF]), or tasks (e.g. [START_REF] Edalat | An auction-based strategy for distributed task allocation in wireless sensor networks[END_REF]), among a set of agents. Existing literature identifies two main classes of allocation mechanisms [START_REF] La Poutré | Agent-Mediated Electronic Negotiation (Bargaining)[END_REF]:

• Auctions are mechanisms where one side automates the process during which participants from the other side compete among them. In this case there is a fixed protocol as well as rules. The aim of auction theory is to create an optimal auction design so that certain desirable properties are guaranteed, using mechanism design principles discussed in Section 3.4.2.

• Negotiations are a rich and not so well-defined group of processes used for allocating goods, resources, services or tasks, and they include an exchange of information comprised of offers, counter-offers and arguments with the purpose of reaching a consensus [START_REF] Kersten | Negotiation and Auction Mechanisms: Two Systems and Two Experiments[END_REF]. Automated negotiation approaches give the ability for more decentralised, flexible protocols and for customised and complex agreements. The agents can use incomplete information about their opponent (and their own) preferences and the primary focus is on the design of the agents' strategies, not on the allocation mechanism itself. In this section, the focus is on negotiation (bargaining) mechanisms, as mechanism design approaches have been discussed in Section 3.4.2.

There is a number of definitions of automated negotiation in the existing literature. In this work we use the broad definition of Lomuscio et al. [START_REF] Lomuscio | A Classification Scheme for Negotiation in Electronic Commerce[END_REF]:

Negotiation is the procedure by which a set of agents communicate with one another to try to reach agreement on some matter of common interest.

In more detail, in automated negotiation research the interest lies in the creation of software programs which will be able to negotiate on behalf of their users or owners [START_REF] Fatima | Principles of Automated Negotiation[END_REF]. These programs are called software agents, or more simply agents. In the most general way automated negotiation is mainly the design of high-level protocols for the interaction among agents and is one of the key research topics in multi-agent systems.

In automated negotiations related to energy DR, a buyer agent (consumer or aggregator) will negotiate with a seller agent (producer or retailer) on several issues, for all the periods of the day. Issues are the objects of the negotiation, e.g. the price, or the quantity of energy. For example, in the context of forward bilateral contracts, Lopes et al. [START_REF] Lopes | Bilateral negotiation in energy markets: Strategies for promoting demand response[END_REF] present a negotiation framework where buyers and sellers negotiate the amount of energy E = {E 1 , ...E 6 } and the prices p = {p 1 , ..., p 6 } for the 6 periods that constitute one day. Negotiations take place in several stages. First, a prenegotiation phase, where the number and type of issues are defined by the market operator, and each agent determines its preferences for each issue. Each agent also sets its own (private) utility function. For the buyer, Lopes et al. [START_REF] Lopes | Bilateral negotiation in energy markets: Strategies for promoting demand response[END_REF] propose a cost function (c = 6 i=1 p i • E i ) to be minimised, with some constraints, i.e. the minimum energy quantity for each time period and for the whole day. For the seller, a benefit function is proposed (b = 6 i=1 (p ic i ) • E i , where c i is the cost for the production of one unit of energy). Finally, based on this utility function, each agent also defines the threshold utility value (highest acceptable cost for the buyer, lowest acceptable benefit for the seller), under/over which it will not agree to accept a deal. After this pre-negotiation phase comes the actual negotiation phase, where each agent applies its strategy to obtain the best deal. The negotiation consists in an iterative process, where for each iteration, an agent makes an offer (consisting of a specific value for each issue under negotiation). The other agent may accept the offer, send a counter-offer, or end the negotiation if the offer results in a value for its utility function under/above the threshold it has determined before. In the case of a counter-offer, the process is repeated until one of the agents accepts the other agent's offer, or abandons the negotiation.

As automated negotiations are performed by software agents, it is natural to use AI techniques to improve the negotiation strategy of the agents. In applications in the energy sector, Rodriguez-Fernandez et al. [START_REF] Rodriguez-Fernandez | Context aware Q-Learning-based model for decision support in the negotiation of energy contracts[END_REF][START_REF] Rodriguez-Fernandez | Bilateral contract prices estimation using a Q-leaming based approach[END_REF] propose a Q-learning approach (RL algorithm based on previous negotiations with all the other agents) to predict the expected prices for all possible scenarios, and then choose the best negotiation counter-offers and reach the deal with the highest/lowest utility. Moreover, Golpayegani et al. [START_REF] Golpayegani | Multi-agent Collaboration for Conflict Management in Residential Demand Response[END_REF] utilise an argumentation-based negotiation, where the proposing agent justifies its proposal and the negotiating software agents can exchange arguments (encoded in formal logic) when they do not accept the opponent's proposal. The core idea is that these arguments will help agents to search for and propose offers that are more likely to be accepted by their opponent. 

Application Areas of AI in Demand Response

For the effective implementation of DR programmes, there are numerous issues that need to be considered; from load and electricity price forecasting to identifying the right consumers to participate in DR schemes and creating automated systems that manage demand-side resources. AI methods have been applied across the spectrum of DR by providing the tools for prediction, real-time efficient control of distributed systems, decision-making, while adapting to an ever-changing environment and learning from human behaviour [START_REF] Ramchurn | Putting the 'smarts' into the smart grid[END_REF]. In this section, we identify the areas of DR where AI has been employed in the literature and classify them accordingly. The proportion of the reviewed literature where AI has been used for each particular DR application area is shown in Figure 7.

Forecasting in DR

One of the major purposes, for which AI techniques have been employed, is forecasting. It has been identified, that in the DR context AI methods have been used for the prediction of electricity prices and various load types. Forecasting can inform real-time electricity scheduling, as well as longer-term system and service providers' planning [START_REF] Rolnick | Tackling Climate Change with Machine Learning[END_REF]. Short-term forecasts can improve electricity scheduling, enabling aggregators to provide better services, and consumers to respond closer to optimal in DR signals. Better long-term forecasts can enhance the planning process, helping service providers and operators to have a better understanding of the available flexibility, which consumers to target for DR, and setting DR signals (compensation/prices).

Load forecasting

Prediction and estimation of loads is an integral part of a reliable and efficient power system operation. Effective demand forecasting is an important tool for tackling various issues in DR, including properly planning, rewarding DR participants, and estimating capacity potential of DR resources [START_REF] Raza | A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings[END_REF]. A widely used distinction of demand forecasting -based on prediction horizon -is long-term load forecasting (> 24h), and STLF (< 24h). In this review, the papers included are those which explicitly look the load forecasting problem in the DR domain. The reader interested in the wider spectrum of load forecasting in the smart grid context can refer to the review of Raza and Khosravi [START_REF] Raza | A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings[END_REF].

Another basic distinction is whether load is predicted while taking into account, or not, the DR factor. In the literature there is a variety of papers which estimate demand including reduction or shifting due to DR. The bulk of the papers predict demand for the short-term or day-ahead [START_REF] Zhou | Residential demand response targeting using machine learning with observational data[END_REF][START_REF] Zhou | A Bayesian perspective on Residential Demand Response using smart meter data[END_REF][START_REF] Cheung | Temporal ensemble learning of univariate methods for short term load forecasting[END_REF][START_REF] Pereira | Computational Models Development and Demand Response Application for Smart Grids[END_REF][START_REF] Liu | Elman neural network model for short term load forecasting based on improved demand response factor[END_REF][START_REF] Grant | Short-Term Electrical Peak Demand Forecasting in a Large Government Building Using Artificial Neural Networks[END_REF][START_REF] Schachter | A short-term load forecasting model for demand response applications[END_REF][START_REF] Takiyar | Grid reliability enhancement by peak load forecasting with a PSO hybridized ANN model[END_REF][START_REF] Basnet | An artificial neural network-based peak demand and system loss forecasting system and its effect on demand response programs[END_REF][START_REF] Mohi Ud Din | Appliance-level Short-Term Load Forecasting using Deep Neural Networks[END_REF], but there are also papers forecasting the week ahead load [START_REF] Lee | Forecasting and Modeling of Electricity Demand Using NARX Neural Network in Smart Grid Environment[END_REF]. Moreover, load forecasting has been performed in various aggregation levels; residential [START_REF] Zhou | A Bayesian perspective on Residential Demand Response using smart meter data[END_REF][START_REF] Paterakis | Assessment of Demand-Response-Driven Load Pattern Elasticity Using a Combined Approach for Smart Households[END_REF][START_REF] Singh | A preliminary study towards conceptualization and implementation of a load learning model for smart automated demand response[END_REF][START_REF] Paterakis | Demand response driven load pattern elasticity analysis for smart households[END_REF], large buildings [START_REF] Pereira | Computational Models Development and Demand Response Application for Smart Grids[END_REF][START_REF] Ninagawa | Prediction of aggregated power curtailment of smart grid demand response of a large number of building air-conditioners[END_REF][START_REF] Grant | Short-Term Electrical Peak Demand Forecasting in a Large Government Building Using Artificial Neural Networks[END_REF], and appliance-level (e.g. chiller, ice bank, lighting) [START_REF] Yang | Data-Driven Modeling for Energy Consumption Estimation[END_REF][START_REF] Mohi Ud Din | Appliance-level Short-Term Load Forecasting using Deep Neural Networks[END_REF].

For aggregated residential loads forecasting, Zhou et al. [START_REF] Zhou | A Bayesian perspective on Residential Demand Response using smart meter data[END_REF] and Zhou et al. [START_REF] Zhou | Residential demand response targeting using machine learning with observational data[END_REF] compare different forecasting techniques, including least squares, lasso and ridge regressions, kNN regression, SVR and decision tree regression. Similarly, Cheung et al. [START_REF] Cheung | Temporal ensemble learning of univariate methods for short term load forecasting[END_REF] provides a 1-hour ahead aggregated load forecasting using SVR and ANN to a dataset already partitioned based on temporal features. Aggregated loads forecasting can also focus on determining day-ahead peak demand, either at a building level [START_REF] Pereira | Computational Models Development and Demand Response Application for Smart Grids[END_REF], or at a feeder or community level [START_REF] Takiyar | Grid reliability enhancement by peak load forecasting with a PSO hybridized ANN model[END_REF][START_REF] Basnet | An artificial neural network-based peak demand and system loss forecasting system and its effect on demand response programs[END_REF].

For domestic load forecasting, Pereira et al. [START_REF] Pereira | Computational Models Development and Demand Response Application for Smart Grids[END_REF] uses an ANN based algorithm for single prosumer consumption and production forecast for day ahead, based on historic demand and temperature. Load forecasting at the appliance level can also be done with ANNs. Schachter and Mancarella [START_REF] Schachter | A short-term load forecasting model for demand response applications[END_REF] utilises ANNs for HVAC systems load forecasting, and Mohi Ud Din et al. [START_REF] Mohi Ud Din | Appliance-level Short-Term Load Forecasting using Deep Neural Networks[END_REF] focus on the prediction of loads of domestic appliances by using deep neural networks with a PCA-based feature selection scheme.

The case of load forecasting without factoring for DR is referred as baseline load estimation. The baseline load is the counterfactual power consumption in the absence of a DR scheme and is important in the context of DR [START_REF] Jazaeri | Baseline methodologies for small scale residential demand response[END_REF]. The baseline consumption estimation of consumers plays a key role in the implementation of the various DR programs, and it is utilised to reliably estimate the consumers' normal power consumption, which is subsequently used to reward the DR participants [START_REF] Jazaeri | Baseline methodologies for small scale residential demand response[END_REF]. In the reviewed literature, there is work regarding baseline load estimation for a residential environment [START_REF] Park | Data-Driven Baseline Estimation of Residential Buildings for Demand Response[END_REF][START_REF] Jazaeri | Baseline methodologies for small scale residential demand response[END_REF], industrial factories [START_REF] Arunaun | Baseline Calculation of Industrial Factories for Demand Response Application[END_REF], and office buildings [START_REF] Behl | DR-Advisor: A data-driven demand response recommender system[END_REF][START_REF] Escrivá-Escrivá | New artificial neural network prediction method for electrical consumption forecasting based on building end-uses[END_REF][START_REF] Chen | Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings[END_REF]. There are also instances of forecasting baseline using aggregated loads over time [START_REF] Weng | Probabilistic baseline estimation via Gaussian process[END_REF][START_REF] Weng | Probabilistic baseline estimation based on load patterns for better residential customer rewards[END_REF], over consumers [START_REF] Weng | Probabilistic baseline estimation via Gaussian process[END_REF], and over independent energy processes [START_REF] Escrivá-Escrivá | New artificial neural network prediction method for electrical consumption forecasting based on building end-uses[END_REF]. Aggregating loads can lead to smaller prediction variance, and allocation of DR rewards with much higher confidence. Complementary to the above, flexibility forecasting is frequently studied in the research literature. Flexibility is defined as the effect of the smart-grid control signal on the load -which is considered as a function of time, weather circumstances and the control signal - [67]. Knowledge of the available capacity for DR is considered crucial and is beneficial for developing and optimising DR-strategies, as well as for assessing their economic value [67]. In the context of VPPs, there is work that estimates the flexibility of a cluster of heating devices for DR, which are assumed either homogeneous [65,[START_REF] Macdougall | Performance Assessment of Black Box Capacity Forecasting for Multi-Market Trade Application[END_REF][START_REF] Macdougall | Value assessment of aggregated energy flexibility when traded on multiple markets[END_REF], or heterogeneous [START_REF] Macdougall | Predictive control for multi-market trade of aggregated demand response using a black box approach[END_REF]. The estimated flexibility can be traded either in a single market (DA) [65,[START_REF] Macdougall | Predictive control for multi-market trade of aggregated demand response using a black box approach[END_REF], or in multiple energy markets (intraday, DA market, imbalance) [START_REF] Macdougall | Performance Assessment of Black Box Capacity Forecasting for Multi-Market Trade Application[END_REF][START_REF] Macdougall | Value assessment of aggregated energy flexibility when traded on multiple markets[END_REF]. Further studies include flexibility forecasting of residential heating systems [67], aggregated flexibility prediction [START_REF] Ponocko | Forecasting Demand Flexibility of Aggregated Residential Load Using Smart Meter Data[END_REF], and estimation of the potential capacity for peak time DR.

Other literature related to load forecasting is the work of Liu et al. [START_REF] Liu | Analysis and Accurate Prediction of User's Response Behavior in Incentive-Based Demand Response[END_REF] where they predict the consumption's reduction of users under different incentives in DR, and the paper of Akhavan-Rezai et al. [START_REF] Akhavan-Rezai | New EMS to Incorporate Smart Parking Lots Into Demand Response[END_REF] where a prediction model of the future car arrivals is employed as part of a wider EMS for incorporating aggregated plug-in EVs in future smart parking lots. Future car arrivals translate to potential load which is going to be available for providing real-time pricing DR services.

Price forecasting

Prediction of the electricity prices has been done both at the aggregator and the consumer level. Li et al. [START_REF] Li | Dynamic Demand Response Using Customer Coupons Considering Multiple Load Aggregators to Simultaneously Achieve Efficiency and Fairness[END_REF] present a multi-aggregator setting, where only one aggregator is implementing a DR scheme, and they predict the regional, wholesale electricity price based on the demand bids of the various aggregators to the SO. Additionally, Lu and Hong [START_REF] Lu | Incentive-based demand response for smart grid with reinforcement learning and deep neural network[END_REF] apply a model to predict the wholesale electricity market price, and that forecast (among others) is used to obtain the optimal incentive rates for different consumers. At the consumer level the majority of the papers are concerned with forecasting the day-ahead prices of residential, dynamic pricing schemes [START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF][START_REF] Pal | Price prediction techniques for residential demand response using support vector regression[END_REF][START_REF] Chen | Optimal power utilizing strategy for PV-based EV charging stations considering Real-time price[END_REF][START_REF] Jiang | Load Forecasting in Demand Response[END_REF][START_REF] Pal | Effective load scheduling of residential consumers based on dynamic pricing with price prediction capabilities[END_REF][START_REF] Aoyagi | Unit Commitment Considering Uncertainty of Price-Based Demand Response[END_REF][START_REF] Severini | Energy management with the support of dynamic pricing strategies in real micro-grid scenarios[END_REF][START_REF] Giovanelli | Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices[END_REF]. A different example is the work of Huang et al. [START_REF] Huang | Hour-Ahead Price Based Energy Management Scheme for Industrial Facilities[END_REF], where the dynamic electricity price of the next hour, only for industrial facilities, is forecasted.

Scheduling and control of loads for DR

The large number and range of devices which can be used for DR pose an important challenge, both for the companies offering services and the end-use consumers. In the case of service providers, it is technically infeasible to manage their portfolio of DR units without automating the process of units' scheduling and control. Additionally, for widening participation of consumers in DR schemes, it is imperative to schedule and control the multitude of demandside appliances in an automated fashion; otherwise consumers will suffer from the phenomenon known as response fatigue [START_REF] Kim | Common failures of demand response[END_REF], and drop out of the DR programme eventually. The scheduling and control of the various units for DR can be done either in the service provider (aggregator) level, or the consumer level. The main difference between the two levels is the scale and scope of units. Algorithms used to schedule and control devices at the aggregator level need to be more scalable and able to work in a more diverse environment, than in the consumer level.

Load scheduling and control at the aggregator level

While control of units for DR is self-explanatory, in a scheduling problem the time schedule of a sequence of events needs to be planned to improve the time efficiency of the solution. The scheduling can actually be considered as a constrained multi-objective optimisation problem.

Regarding load scheduling, Pedrasa et al. [START_REF] Pedrasa | Scheduling of Demand Side Resources Using Binary Particle Swarm Optimization[END_REF] schedule the loads of DR participants for the day ahead (DA), and there is research on scheduling the DR resources in a VPP, assuming no constraints [START_REF] Faria | Particle swarm optimization applied to integrated demand response resources scheduling[END_REF], as well as network constraints [START_REF] Faria | Modified Particle Swarm Optimization Applied to Integrated Demand Response and DG Resources Scheduling[END_REF] and the system balance [START_REF] Pereira | Quantum Particle Swarm Optimization Applied to Distinct Remuneration Approaches in Demand Response Programs[END_REF]. Furthermore, Medved et al. [START_REF] Medved | The use of intelligent aggregator agents for advanced control of demand response[END_REF] propose a scheduling of the DR units in the portfolio of the aggregator for DA with the objective to maximize the aggregator's profit, and the aim to minimise the impact of variable resources on the grid. It is noted that in this case there is no initial knowledge of the networks constraints, but the constraints are learned through the interaction with the DSO. Herath and Venayagamoorthy [START_REF] Herath | Multi-objective PSO for scheduling electricity consumption in a smart neighborhood[END_REF], Zhu et al. [START_REF] Zhu | Scheduling optimization of smart homes based on demand response[END_REF] employ a multi-objective and cooperative model, respectively for scheduling appliances in a smart neighbourhood; the inconvenience is factored into the model as the delay of each appliance, and the deviation from an acceptable temperature range. A multi-objective decision-making framework is also proposed by Fotouhi Ghazvini et al. [START_REF] Fotouhi Ghazvini | A multi-objective model for scheduling of short-term incentivebased demand response programs offered by electricity retailers[END_REF] to assist retailers, with a small number of assets, by scheduling their resources for DR, while trying to minimise the retailer's short-term financial losses and avoid future capacity charges. Furthermore, Hurtado et al. [START_REF] Hurtado | Enabling Cooperative Behavior for Building Demand Response Based on Extended Joint Action Learning[END_REF] developed a cooperative and decentralized agent-based platform to exploit and manage the demand flexibility potential of non-residential buildings (part of an aggregator's portfolio), while taking into account the individual building dynamics. Moreover, there is also research on the setting of an aggregator controlling directly a cluster of homogeneous [START_REF] Ruelens | Demand response of a heterogeneous cluster of electric water heaters using batch reinforcement learning[END_REF], and heterogeneous [START_REF] Claessens | Convolutional Neural Networks for Automatic State-Time Feature Extraction in Reinforcement Learning Applied to Residential Load Control[END_REF] residential thermostatically controlled loads (TCLs); the control of TCLs is for providing DR services. There is also research focused on scheduling the charging of EVs' fleets, for providing DR services [START_REF] Soares | Demand Response in Electric Vehicles Management Optimal Use of End-User Contracts[END_REF][START_REF] Hayakawa | Online mechanisms for charging electric vehicles in settings with varying marginal electricity costs[END_REF].

Load scheduling and control at the consumer level

The automated scheduling and control of the various units at the level of power consumers, is provided by individual systems which are called energy management systems [81,[START_REF] O'neill | Residential Demand Response Using Reinforcement Learning[END_REF][START_REF] Rehman | Heuristic Algorithm Based Energy Management System in Smart Grid[END_REF]. EMS act as an agent for energy users, by making automated decisions in response to DR signals while taking into account electricity expenses, the customers' comfort preferences and lifestyles trade-offs, as well as optimal utilisation of appliances/equipment. Automated EMSs are the key for a higher adoption of DR schemes by residential, and small commercial/industrial entities. Scheduling of loads for DR under an EMS have also been considered by Lin and Tsai [START_REF] Lin | An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling[END_REF] and Veras et al. [START_REF] Veras | A multi-objective demand response optimization model for scheduling loads in a home energy management system[END_REF] where they propose an in-home power scheduler for domestic appliances without user intervention, while taking into consideration constraints for the various household appliance groups.

Such trends of understanding consumer behaviour and appliance usage, coupled with non-intrusive load monitoring (i.e. monitoring which is 'invisible" to the individual energy user [START_REF] Huang | Designing customized energy services based on disaggregation of heating usage[END_REF][START_REF] Zoha | Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey[END_REF][START_REF] Thokala | On load disaggregation using discrete events[END_REF]), are key for assuring user-friendly friendly demand-side response, especially in residential settings -potentially enabling faster consumer adoption of demand response programmes.

The objectives in the scheduling and control problem of consumers' appliances, usually are the minimisation of electricity cost [START_REF] O'neill | Residential Demand Response Using Reinforcement Learning[END_REF][START_REF] Patyn | Comparing neural architectures for demand response through model-free reinforcement learning for heat pump control[END_REF][START_REF] Bahrami | An Online Learning Algorithm for Demand Response in Smart Grid[END_REF][START_REF] Carrasqueira | Bi-level particle swarm optimization and evolutionary algorithm approaches for residential demand response with different user profiles[END_REF][START_REF] Rehman | Heuristic Algorithm Based Energy Management System in Smart Grid[END_REF][START_REF] Kazemi | A home energy management system using Gray Wolf Optimizer in smart grids[END_REF][START_REF] Cavalca | Comparative Analysis Between Particle Swarm Optimization Algorithms Applied to Price-Based Demand Response[END_REF][START_REF] Margaret | Demand response for residential loads using artificial bee colony algorithm to minimize energy cost[END_REF], energy consumption [START_REF] Rehman | Heuristic Algorithm Based Energy Management System in Smart Grid[END_REF][START_REF] Ahmed | Artificial neural network based controller for home energy management considering demand response events[END_REF], Peak to average ratio (PAR) [START_REF] Rehman | Heuristic Algorithm Based Energy Management System in Smart Grid[END_REF][START_REF] Kazemi | A home energy management system using Gray Wolf Optimizer in smart grids[END_REF], as well as the maximisation of social welfare [START_REF] Sen | Demand response governed swarm intelligent grid scheduling framework for social welfare[END_REF], and environmental pollution [START_REF] Da Silva | A preference-based demand response mechanism for energy management in a microgrid[END_REF]. These objectives need to be met, while considering the users' preferences at the same time. There are two basic approaches to formulating users' preferences. One way is to represent the user preferences over home appliance use with a utility function, which can be pre-specified [81,[START_REF] O'neill | Residential Demand Response Using Reinforcement Learning[END_REF] or learned [START_REF] Goubko | Bayesian Learning of Consumer Preferences for Residential Demand Response[END_REF][START_REF] Wen | Optimal Demand Response Using Device-Based Reinforcement Learning[END_REF]. The second approach is by imposing constraints on feasible schedules [START_REF] Bahrami | An Online Learning Algorithm for Demand Response in Smart Grid[END_REF][START_REF] Carrasqueira | Bi-level particle swarm optimization and evolutionary algorithm approaches for residential demand response with different user profiles[END_REF][START_REF] Kazemi | A home energy management system using Gray Wolf Optimizer in smart grids[END_REF][START_REF] Cavalca | Comparative Analysis Between Particle Swarm Optimization Algorithms Applied to Price-Based Demand Response[END_REF]. Typical appliances used for control in the DR context are TCLs, such as heat pump [81,[START_REF] Ruelens | Residential Demand Response of Thermostatically Controlled Loads Using Batch Reinforcement Learning[END_REF][START_REF] Patyn | Comparing neural architectures for demand response through model-free reinforcement learning for heat pump control[END_REF] and water heater [81,[START_REF] Ruelens | Residential Demand Response of Thermostatically Controlled Loads Using Batch Reinforcement Learning[END_REF][START_REF] Ahmed | Artificial neural network based controller for home energy management considering demand response events[END_REF], air conditioners (ACs) [START_REF] Dehghanpour | Agent-Based Modeling of Retail Electrical Energy Markets With Demand Response[END_REF]81,[START_REF] Lee | Simulation and optimization of energy efficient operation of HVAC system as demand response with distributed energy resources[END_REF][START_REF] Ahmed | Artificial neural network based controller for home energy management considering demand response events[END_REF], battery storage systems (BESS) [81,[START_REF] Jiang | Multi-objective optimal scheduling method for regional photovoltaic-storage-charging integrated system participating in demand response[END_REF], and EVs [81,[START_REF] Dusparic | Multi-agent residential demand response based on load forecasting[END_REF][START_REF] Hafez | Integrating EV Charging Stations as Smart Loads for Demand Response Provisions in Distribution Systems[END_REF][START_REF] Jiang | Multi-objective optimal scheduling method for regional photovoltaic-storage-charging integrated system participating in demand response[END_REF]. There has also been work where, along with the household appliances, they schedule the self-consumption of PV generation in order to minimise the produced PV power fed back in the grid under a dynamic electricity pricing scheme [START_REF] Lu | Residential demand response considering distributed pv consumption: A model based on china's pv policy[END_REF], and work where they schedule the battery assets for DR in a datacenter while trying to minimise the batteries' degradation [START_REF] Mamun | Multi-objective optimization of demand response in a datacenter with lithium-ion battery storage[END_REF].

Regarding the type of consumers, even though the majority of the papers are focused on residential buildings, [START_REF] Goubko | Bayesian Learning of Consumer Preferences for Residential Demand Response[END_REF][START_REF] Patyn | Comparing neural architectures for demand response through model-free reinforcement learning for heat pump control[END_REF][START_REF] Kazemi | A home energy management system using Gray Wolf Optimizer in smart grids[END_REF][START_REF] Cavalca | Comparative Analysis Between Particle Swarm Optimization Algorithms Applied to Price-Based Demand Response[END_REF], there is also research for small commercial buildings [START_REF] Wen | Optimal Demand Response Using Device-Based Reinforcement Learning[END_REF], and smart EV charging stations which can receive peak demand signals and accordingly adjust their charging schedules to provide a DR service [START_REF] Hafez | Integrating EV Charging Stations as Smart Loads for Demand Response Provisions in Distribution Systems[END_REF], and in the industrial setting where a multi-objective optimisation model has been employed to coordinate the load interruption strategies of complex industrial processes [START_REF] Zhang | Two-stage load-scheduling model for the incentive-based demand response of industrial users considering load aggregators[END_REF].

Design of pricing/incentive schemes (compensation mechanisms)

The way a pricing or incentive mechanism is designed affects not only the profitability of the aggregator, or the retailer company, but also the success of the DR scheme. How successful a DR programme is in appealing to new participants, and ensuring that consumers remain enrolled in it, relies in part on a fair and attractive compensation mechanism.

Regarding pricing mechanisms, the majority of the papers use AI techniques to find the optimal dynamic scheme for day-ahead in a hierarchical electricity market [START_REF] Dehghanpour | Agent-Based Modeling of Retail Electrical Energy Markets With Demand Response[END_REF][START_REF] Jia | Retail pricing for stochastic demand with unknown parameters: An online machine learning approach[END_REF][START_REF] Lu | A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid[END_REF][START_REF] Lu | A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach[END_REF][START_REF] Alves | A Hybrid Genetic Algorithm for the Interaction of Electricity Retailers with Demand Response[END_REF][START_REF] Meng | An integrated optimization + learning approach to optimal dynamic pricing for the retailer with multi-type customers in smart grids[END_REF], while maximising the service provider's profit subject to realistic market constraints and consumers' discomfort for load reduction/shifting. Moreover, Babar et al. [START_REF] Babar | The development of demand elasticity model for demand response in the retail market environment[END_REF], Herath et al. [START_REF] Herath | Computational Intelligence-Based Demand Response Management in a Microgrid[END_REF] have built a model based on price elasticity matrix which is proposed for dynamic pricing, and Gamage and Gelazanskas [START_REF] Gamage | Neural Network Based Real-Time Pricing in Demand Side Management for Future Smart Grid[END_REF] are using the modelled relationship between real-time price and electricity consumption in a DR scenario for real-time pricing. Robu et al. [START_REF] Robu | Efficient Buyer Groups With Prediction-of-Use Electricity Tariffs[END_REF] propose a new tariff structure called the prediction-of-use (POU) that calculates the tariff based on the difference between the predicted and the realised power consumption of the end-use consumers. Carrasqueira et al. [START_REF] Carrasqueira | Bi-level particle swarm optimization and evolutionary algorithm approaches for residential demand response with different user profiles[END_REF] are simultaneously exploring different electricity prices -with upper and lower bounds for the prices -to charge the consumers in a bi-level model.

As far as the incentive mechanisms are concerned, there are quite a few papers involved with fairly compensating a coalition of consumers, who are collectively reducing or shifting their consumption during a load curtailment event [START_REF] Nishiyama | Analysis of cooperative structure of demand response and market strategy of aggregator based on payoff allocation[END_REF][START_REF] O'brien | Shapley Value Estimation for Compensation of Participants in Demand Response Programs[END_REF][START_REF] Bakr | Using the Shapley Value for Fair Consumer Compensation in Energy Demand Response Programs: Comparing Algorithms[END_REF]. Additionally, Lu and Hong [START_REF] Lu | Incentive-based demand response for smart grid with reinforcement learning and deep neural network[END_REF] focus on learning the optimal incentive rates for different electricity consumers considering the profitability of both consumers and the service providers (aggregators) in a hierarchical electricity market. Kota et al. [START_REF] Kota | Cooperatives for demand side management[END_REF] develop an incentive-based DR mechanism, where DR participants are rewarded based on their contribution towards a reduction target, and the reward function has two components. A positive component which is its payment for participation in reduction, and a negative component denoting any penalties imposed on the agent. Jain et al. [START_REF] Jain | A multiarmed bandit incentive mechanism for crowdsourcing demand response in smart grids[END_REF] develop a model where monetary rewards (offers) are made to the consumers in exchange for reducing the consumption, and at the same time it is learning the probabilities of consumers accepting the offer. Xie et al. [START_REF] Xie | Interruptible Load Management Strategy Based on Chamberlain Model[END_REF] learn the interruption load compensation price, which in turn is used as an initial assumption for a multi-round bidding model.

Furthermore, Meir et al. [START_REF] Meir | Contract design for energy demand response[END_REF] propose a new DR mechanism that offers a flexible set of contracts for DR using Vickrey-Clarke-Groves pricing. In this new mechanism, a subset of consumers is selected in order to reduce consumption, while taking into account the probability that the reduction target is met (reliability). Ma et al. [START_REF] Ma | Generalizing Demand Response Through Reward Bidding[END_REF] generalise previous work [START_REF] Ma | Incentivizing reliability in demand-side response[END_REF] by incorporating uncertain costs for preparing, multiple levels of effort, and multi-unit consumption reduction. To achieve efficient incentives, this work proposes a reward-bidding approach instead of a penalty-bidding mechanism. There is also work concerned with the design of contracts in incentive-based DR. Lopes et al. [START_REF] Lopes | Bilateral negotiation in energy markets: Strategies for promoting demand response[END_REF] study bilateral contracts (involving a retailer agent and a commercial customer) in a multi-issue negotiation setting. Similarly, Haring et al. [START_REF] Haring | Decentralized contract design for demand response[END_REF] design reward contracts for ancillary services, where service providers take part in the wholesale ancillary service market and coordinate consumer interaction at the retail level. Their work also takes into consideration the interaction among consumers, except from the communication between the service provider and the consumers.

Load/Customer segmentation

Categorising electricity consumers in groups is an important application area for DR. It can support service providers in designing DR programmes, aggregating resources, evaluate the load potentiality of participation in different DR program, etc. [START_REF] Lin | Clustering Load Profiles for Demand Response Applications[END_REF].

In the researched literature, the generated groups of consumers are created to accomplish various tasks in the DR setting. A large part of the reviewed work, classify consumers to discover potential consumers for DR programmes [START_REF] Zhou | Residential demand response targeting using machine learning with observational data[END_REF]84,87,[START_REF] Kwac | Household Energy Consumption Segmentation Using Hourly Data[END_REF][START_REF] Haben | Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data[END_REF], and identify the optimal set of consumers -participating in DR schemes -to be called for demand curtailment during DR events [85,[START_REF] Ahmed | Building load management clusters using reinforcement learning[END_REF]. Wang et al. [START_REF] Wang | Deep Learning-Based Socio-demographic Information Identification from Smart Meter Data[END_REF] identify socio-demographic information from load profiles, and these consumers' characteristics can be used to select potential DR participants, and Zeifman [START_REF] Zeifman | Smart meter data analytics: Prediction of enrollment in residential energy efficiency programs[END_REF] classify households based on their probability of enrolling in DR schemes. An additional part of the literature, groups electricity consumers to support the DR compensation mechanism. Chen et al. [START_REF] Chen | Classification of electricity customer groups towards individualized price scheme design[END_REF] use the resulting typical daily load profiles in every group to design individualised electricity price schemes for price-based DR programmes, whereas Panapakidis et al. [START_REF] Panapakidis | An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures[END_REF] utilise these typical load profiles to create the dynamic price elasticities curves. Spinola et al. [START_REF] Spinola | Energy resource aggregator managing active consumer demand programs[END_REF] cluster DR resources to obtain compensation prices. This way the most efficient resources are well compensated, and that gives them the incentive to participate in the aggregator's scheduling. Other uses of the classifying customers are the design of DR programmes and load control schemes [START_REF] Lin | Clustering Load Profiles for Demand Response Applications[END_REF], aggregation of DR resources [START_REF] Spinola | Clustering optimization of distributed energy resources in support of an aggregator[END_REF][START_REF] Spinola | Aggregation validation approach for the management of resources in a smart grid[END_REF], the analysis of a DR project's potential benefit [START_REF] Grabner | Statistical Load Time Series Analysis for the Demand Side Management[END_REF], and the identification of hourly loads for implementing DR programmes [START_REF] Kamruzzaman | An Artificial Neural Network based Approach to Electric Demand Response Implementation[END_REF].

The most widespread categorisation of consumers for DR purposes is based on their load profiles [START_REF] Grabner | Statistical Load Time Series Analysis for the Demand Side Management[END_REF][START_REF] Albert | Smart Meter Driven Segmentation: What Your Consumption Says About You[END_REF]84,85,[START_REF] Chen | Classification of electricity customer groups towards individualized price scheme design[END_REF][START_REF] Kwac | Household Energy Consumption Segmentation Using Hourly Data[END_REF][START_REF] Haben | Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data[END_REF][START_REF] Lin | Clustering Load Profiles for Demand Response Applications[END_REF]. The load features used for clustering could be peak load [84], average load of 5 consecutive weekdays [START_REF] Zhou | Residential demand response targeting using machine learning with observational data[END_REF], and various chosen attributes (e.g. mean relative standard deviation, seasonal score) [85,[START_REF] Haben | Analysis and Clustering of Residential Customers Energy Behavioral Demand Using Smart Meter Data[END_REF]. On the other hand, there are methods for allocating consumers to groups without the use of load data. A number of works categorise consumers considering their bid-offer data -in an incentive-based DR scheme - [START_REF] Luo | A data mining-driven incentive-based demand response scheme for a virtual power plant[END_REF], their behaviour (for EVs participating in DR) [START_REF] Xiong | Vehicle grid integration for demand response with mixture user model and decentralized optimization[END_REF], their expected effect of the DR program [START_REF] Ikeda | Sparse-coding-based household clustering for demand response services[END_REF], number of household occupants, building size, building type and terrain type [87].

Moreover, other works utilise clustering techniques to define flexibility envelopes for DR applications. In this vein, Spinola et al. [START_REF] Spinola | Energy resource scheduling with multiple iterations for the validation of demand response aggregation[END_REF], Spínola et al. [START_REF] Spínola | Model for the integration of distributed energy resources in energy markets by an aggregator[END_REF] have grouped the flexibility of DR resources, in support of an aggregator, while Kouzelis et al. [START_REF] Kouzelis | Probabilistic quantification of potentially flexible residential demand[END_REF] have grouped flexible loads for DR services. Trovato et al. [START_REF] Trovato | Leaky storage model for optimal multi-service allocation of thermostatic loads[END_REF] have created flexibility envelopes of TCLs for DR, whereas Develder et al. [START_REF] Develder | Quantifying flexibility in ev charging as dr potential: Analysis of two real-world data sets[END_REF] have partitioned the flexibility of EVs for DR services by clustering EV charging sessions. Alizadeh et al. [START_REF] Alizadeh | Capturing aggregate flexibility in demand response[END_REF] have utilised a custom clustering algorithm to aggregate the flexibility of batteries and small deferrable loads for DR. In the more general case of electricity markets, clustering methods have been applied to compute the aggregated flexibility of an aggregator's portfolio of assets, such as the work of Iria and Soares [START_REF] Iria | A cluster-based optimization approach to support the participation of an aggregator of a larger number of prosumers in the day-ahead energy market[END_REF]. 

Customer

AI industrial/commercial initiatives in Demand Response

In addition to being a highly active area of research, the energy industry, including stakeholders, DR companies, policy makers and utility companies have shown a growing interest in AI-based technologies and especially their use for tackling the complex challenge of balancing the power system. This section of the review discusses the potential of AI in DR services and presents a general overview of its current application in the industry. In addition, it reviews the changes and developments in the business models due to the use of AI approaches. A catalogue of the companies that use AI technologies to provide demand-side ancillary services can be found in Table 2 of the Appendix A.

The value in DR is constantly shifting as the needs of the power grid changes. Originally, the simplest example of DR assets that were targeted by DR companies were the back-up generators and cold/heat storages of large businesses. This was because conventionally larger commercial assets were preferred as they would be easier to schedule, control, commission, etc. However, the emergence of new technical solutions (e.g. IoT, big data solutions), and the diminished revenue in simple DR markets -due to the increased number of offers -, has shifted the need for DR to real-time and fast response services. Consequently, certain regulatory changes are driving slower assets out of the market [START_REF] Centrica | Take supply optimisation to a new level | Centrica Business Solutions[END_REF].

In response to these changes, the Department for Business, Energy and Industrial Strategy (BEIS) of the UK Government launched two different schemes to boost the use of innovative technologies in DR which are namely, Innovative Domestic [START_REF]Energy, & Industrial Strategy (BEIS), Innovative Domestic Demand-Side Response Competition (Phase 2), Summary Projects Details[END_REF], and Non-Domestic Demand-Side Response Competition [START_REF]& Industrial Strategy (BEIS), Innovative Non-Domestic Demand-Side Response Competition, Competition Guidance Notes[END_REF]. The attractive funding provided by these schemes created an environment for start-ups, spin-offs and other new companies to emerge. Hence, the new trend in industry is scalable DR and auto-DR. Through the use of AI and ML, companies can now integrate domestic and smaller assets into their portfolios. A good example is the Ubiquitous Storage Empowering Response (USER) project (Levelise) which aims to increase the number of prosumers in the domestic sector by using AI-led hot water tanks. This project claims that if 9 million tanks were managed using AI, they could have an aggregated capacity of 27 GW available for DR services [START_REF]Energy, & Industrial Strategy (BEIS), Innovative Domestic Demand-Side Response Competition (Phase 2), Summary Projects Details[END_REF]. Meanwhile in the small and non-domestic DR competition, Flexitricity received funding for the aggregation of smaller HVAC and cold storage loads, and gridIMP for delivering a fully automated, self-learning DR electricity control system. The control system would be designed to learn the specific behaviours of consumers in order to adjust DR participation [START_REF]& Industrial Strategy (BEIS), Innovative Non-Domestic Demand-Side Response Competition, Competition Guidance Notes[END_REF]. Thus, the available funding and industrial setting creates a favourable environment for the emergence of numerous projects and initiatives in DR.

Furthermore, the industry survey realised in this study has shown that a large proportion of new AI companies involved in DR, have either been start-ups (more than 40% of the total number), or recently bought by, or having teamed up with larger companies (i.e. global consultancies and big corporations). To give just one example, Vattenfall, a Swedish power company, acquired all shares of the Dutch start-up company Senfal. Therefore, it combined its diverse portfolio of clients with the innovative and flexible technology of Senfal that utilises optimisation, AI and ML [START_REF]Smart Energy International, Vattenfall acquires AI-based demand response startup[END_REF]. Orsted and Open Energi are another example of a similar group. Open Energi's AI technology product is presented by its electricity supplier partner, Orsted. It aims to make DR decisions in a smarter way as it is based on more granular asset and market data.

Regarding the application domain of AI for the reviewed DR companies, the survey has shown that the two most popular uses are forecasting and automating. These data-driven AI approaches have mainly used historical frequency data, along with pricing and weather data [START_REF] Gridbeyond | Delivering intelligent energy solutions | GridBeyond ®[END_REF]. Moreover, the most widely adopted architecture is based on a cloud platform that collates data from numerous sources and uses machine elarning to automate service participation, like in the case of Upside Energy [START_REF]Upside Energy, Home Upside[END_REF]. Thus, efficiency of DR solutions rests on various technologies like big data management (primarily cloud based), ML techniques to interpret these data, optimisation algorithms, and IoT devices to allow a bidirectional communication between the aggregator and the controllable end-users' appliances.

This growing interest of the industry for DR solutions is also well illustrated by the funded projects related to this topic. Table 3 presents several current projects which are funded by the European Union, through programmes like Horizon 2020. In each of these projects, DR is a solution proposed to the consumers for providing flexibility to the grid, while maintaining comfort or economic welfare to the end-users. AI tools are mostly used for forecasting (load, production-weather, price) tasks. These forecasts are in turn used by the service provider companies level to provide an optimal scheduling of the flexibility. The current trend in the industry is to take advantage of the new technologies (e.g. IoT, big data, AI) and automate DR, while providing interoperability across all platforms and devices [START_REF] Inesc Tec | INESC TEC leads EUR 36M European project for the digitalisation of the power system[END_REF].

Discussion

In the previous sections, we have performed detailed reviews of the fundamental AI techniques used in energy demand response, the key application areas of interest in this domain, as well as the areas attracting ongoing industrial interest and investment. Against this background, in this section we present and discuss some summary statistics covering all the works reviewed, as well as discussing the key challenges and opportunities of the various techniques identified by our study.

Challenges and Opportunities of using AI in DR

The research literature reviewed in this work show that various groups of AI techniques have been used for numerous DR applications. Figure 8 is a heatmap chart displaying the number of reviewed papers that have utilised a specific category of AI methods for a particular DR application area.

Forecasting

Looking at Figure 6 and Figure 8, it is apparent that one of the most heavily utilised family of methods is artificial neural networks, which have been mainly employed for forecasting applications. ANNs have been used both for load and price prediction, and the researchers have applied them using a single hidden layer, as well as "deeper", multi-layer architectures. The capability of ANNs to learn arbitrary, non-linear, complex functions has made them attractive for forecasting tasks in DR [START_REF] Zhang | Forecasting with artificial neural networks:: The state of the art[END_REF], where the predictions can potentially relate to numerous inputs in a highly non-linear fashion. On the other hand, their performance can vary greatly depending on the set of selected variables which will be used as inputs, the training algorithm, and the tuning of their hyperparameters; where there is no method that guarantees the optimal selection of these. Moreover, it needs to be taken into account that ANNs can be computationally expensive and usually require a large amount of data in order to outperform other less flexible methods. This can pose a problem for DR applications, especially due to the current limited adoption of DR programmes. Another set of methods which have been primarily used for forecasting purposes are supervised machine learning techniques. These methods in general are less flexible, higher bias techniques than ANNs, and rely heavily on feature selection and feature engineering 9 to produce good results, contrary to ANNs and especially deep learning. On the other hand, supervised methods such as regression trees [START_REF] Simmhan | Cloud-Based Software Platform for Big Data Analytics in Smart Grids[END_REF][START_REF] Behl | DR-Advisor: A data-driven demand response recommender system[END_REF] and gradient boosting [START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF] can handle missing data better than ANNs, and require fewer examples to train, which has merits in the DR setting. Another important aspect of some supervised learning methods used in the DR literature, is the use of probabilistic models for load forecasting, i.e. GPs [START_REF] Weng | Probabilistic baseline estimation via Gaussian process[END_REF][START_REF] Weng | Probabilistic baseline estimation based on load patterns for better residential customer rewards[END_REF][START_REF] Tang | Adaptive segmentation and machine learning based potential DR capacity analysis[END_REF]. Using a prediction model which does not output only a point estimate, but a distribution, can lead to more informed decision making in DR, as well as better rewarding of the participants through a more accurate baseline estimation.

The future of demand response in smart grids is steering towards a highly granular control of the end-user loads. This calls for a more highly accurate load and price forecasting. Traditional approaches to load and price forecasting in DR include time-series models such as autoregressive (AR), auto-regressive integrated moving average (ARIMA), and exponential smoothing [START_REF] Javed | Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting[END_REF]. This type of models is generally linear in nature, and have been shown to provide less accurate results in load forecasting [START_REF] Khan | Load forecasting, dynamic pricing and dsm in smart grid: A review[END_REF]. The lower prediction performance of classical methods can be attributed to their linearity assumptions, and that is the reason why ANNs, with their ability to approximate highly non-linear relationships, have been primarily employed for load and price forecasting in DR. Additionally, due to the fact that demand is increasingly becoming more non-linear and variable, AI methods are bound to show even more promising results in load and price forecasting. Also, another advantage of AI forecasting techniques is the ability to output forecasts that span multiple horizons in time and space, and the ability to incorporate uncertainty in the forecasts, leading to more informative predictions. On the other hand, AI approaches for forecasting are more computationally intensive and their performance can vary depending on their hyper-parameter tuning and feature engineering.

Consumer/load clustering

In the current DR setting, there are limited labelled data on which to classify customers [START_REF] Mocanu | Unsupervised energy prediction in a Smart Grid context using reinforcement crossbuilding transfer learning[END_REF]. As a result, using clustering (unsupervised) models is the only viable approach to address the task of segmenting electricity customers. This is also supported by the research, as the vast majority of the papers reviewed use clustering techniques for creating customers groups. While clustering techniques are beneficial in this application, they present a number of challenges. Among others, these techniques require data pre-processing (i.e. normalisation) to work, suffer from the "curse of dimensionality", and is really challenging to evaluate their results -due to the lack of labelled data [START_REF] Murphy | Machine Learning : A Probabilistic Perspective[END_REF].

Dynamic control

Continuing with ML approaches, reinforcement learning methods have been mainly employed for control tasks. At the consumer level scheduling and control of the various DR units needs to be automated (especially in the residential sector) -that is why home EMS are needed. Additionally, at the service provider level, especially in direct load control DR programmes where the multitude and variety of devices and appliances across the aggregator's portfolio, the process of control and scheduling is rendered infeasible without automating a big part, or the whole process. Learning from interaction and acting accordingly to the consumers preferences is important for DR control systems. As already stated in Section 3.1.3, the most widely used RL algorithm in DR is Q-learning. While it is an online method and offer convergence guarantees, using tabular methods such as Q-learning can be challenging when the space of actions and environment states becomes large [START_REF] Sutton | Reinforcement learning : An introduction[END_REF]. This can be a problem especially in the service provider level; where the quantity and variety of DR units and different environments, is levels higher compared to a household or an office building. There is work where researchers try to alleviate this issue by approximating the action-value function using an ANN [START_REF] Medved | The use of intelligent aggregator agents for advanced control of demand response[END_REF] or using FQI [START_REF] Ruelens | Demand response of a heterogeneous cluster of electric water heaters using batch reinforcement learning[END_REF][START_REF] Ruelens | Residential Demand Response of Thermostatically Controlled Loads Using Batch Reinforcement Learning[END_REF][START_REF] Claessens | Convolutional Neural Networks for Automatic State-Time Feature Extraction in Reinforcement Learning Applied to Residential Load Control[END_REF][START_REF] Patyn | Comparing neural architectures for demand response through model-free reinforcement learning for heat pump control[END_REF]. The literature has also employed multi-agent RL methods to tackle the problem of the large state space [START_REF] Hurtado | Enabling Cooperative Behavior for Building Demand Response Based on Extended Joint Action Learning[END_REF][START_REF] Babar | The Evaluation of Agile Demand Response: An Applied Methodology[END_REF][START_REF] Dusparic | Multi-agent residential demand response based on load forecasting[END_REF].

Compared to traditional control mechanisms for DR, such as Model predictive control (MPC), RL approaches do not require a model of the environment to be applied (although there are model-based RL algorithms) [START_REF] Sutton | Reinforcement learning : An introduction[END_REF]. This provides an advantage in designing DR control systems that take into account consumers' preferences, while deep RL has been shown to work better in high-dimensional tasks [START_REF] Sutton | Reinforcement learning : An introduction[END_REF]. In contrast, model-based control needs a model of the consumer and the participating agents. That problem in general is intractable and there is no feasible way to model all the involved agents beforehand, whereas with methods like reinforcement learning the preferences of the DR agents can be learned through interaction with them. Furthermore, RL's adaptive online nature makes them more suitable for applications in dynamic environments, like the control of appliances and equipment for DR, whereas MPC methods successful application depends heavily on the quality of the prior knowledge regarding the system dynamics [START_REF] Ernst | Reinforcement learning versus model predictive control: A comparison on a power system problem[END_REF]. In an era, where DR-related data becomes more abundant AI approaches for control are able to provide more personalised DR services. On the other hand, MPC methods are a more mature technology with inherent constraint handling, and a mature feasibility and robustness theory [START_REF] Görges | Relations between model predictive control and reinforcement learning[END_REF]. Another big issue of RL in general, with implications to its correct application in DR, is the design of reward signals [START_REF] Sutton | Reinforcement learning : An introduction[END_REF]. There have been quite a few cases where RL agents have found unexpected ways to make their environments deliver reward, but with undesirable policies [START_REF] Sutton | Reinforcement learning : An introduction[END_REF]. In the energy DR literature, to the best of our knowledge, this is a heavily under-researched topic.

Scheduling

In the majority of the cases, nature-inspired algorithms have been utilised for scheduling tasks. In general, the scheduling problem can be highly complex, non-linear, and non-convex. This group of algorithms is able to find promising solutions in reasonable time, due to their exploration and exploitation ability [START_REF] Beheshti | A review of population-based meta-heuristic algorithm[END_REF]. Other key advantages include their robustness and adaptability with changing conditions and environment, are parallel algorithms, and can incorporate mechanisms to avoid getting trapped in local optima [START_REF] Beheshti | A review of population-based meta-heuristic algorithm[END_REF]. Moreover, this group of algorithms often have good "anytime" properties, in the sense they return promising solutions even if the computation is stopped earlier. This is an important property in real applications, where there are often physical limitations in the hardware and processing time available. On the other hand, nature-inspired methods do not offer the guarantee of finding an optimal solution (or even some guaranteed bound of the optimal), and specific algorithms have their own drawbacks. For example GAs, if not properly tuned, can suffer from premature convergence and unpredictable results, and sometimes use complex, not always intuitive functions in selection and crossover operators, while PSO can suffer from getting stuck into local optima and slow convergence speed [START_REF] Beheshti | A review of population-based meta-heuristic algorithm[END_REF]. Nature-inspired AI has also been employed for the design of pricing schemes, where the service provider tries to find the prices for DR, which will optimise their profit while taking into account consumers' preferences and network constraints. The NSGA algorithm, and its variations, have been applied in the multi-objective, Pareto efficient scheduling of loads for DR [START_REF] Da Silva | A preference-based demand response mechanism for energy management in a microgrid[END_REF][START_REF] Cortés-Arcos | Multi-objective demand response to real-time prices (rtp) using a task scheduling methodology[END_REF][START_REF] Zhang | Two-stage load-scheduling model for the incentive-based demand response of industrial users considering load aggregators[END_REF][START_REF] Fotouhi Ghazvini | A multi-objective model for scheduling of short-term incentivebased demand response programs offered by electricity retailers[END_REF][START_REF] Hu | Multi-objective optimization of time-of-use price for tertiary industry based on generalized seasonal multi-model structure[END_REF].

Classical algorithms used for solving DR scheduling problems are linear programming (LP), nonlinear programming (NLP), mixed-integer linear programming (MILP), and mixed-integer nonlinear programming (MINLP), depending on the formulation of the scheduling problem [START_REF] Jordehi | Optimisation of demand response in electric power systems, a review[END_REF]. The primary advantageous properties of the populationbased, stochastic, nature-inspired AI methods are that they can handle tasks with a large number of decision variables and also adapt to changes in scheduling for DR [START_REF] Beheshti | A review of population-based meta-heuristic algorithm[END_REF], compared to the deterministic classical DR scheduling methods. These abilities are important because they can result in adaptive DR systems that are able to alter efficiently changes and interruption in the scheduling of appliances and relevant equipment. Mathematical optimisation/scheduling methods usually rely on some implicit assumption, such as the system being linear or the search space being convex. However, real-life DR systems are increasingly composed of many heterogeneous devices of different types (e.g. batteries, HVAC units, industrial devices, EVs etc), which means the control problem is often non-linear in nature. For such non-linear optimisation problems, AI methods (such as GAs, NSGA or PSO) often perform better than traditional approaches [START_REF] Jordehi | Optimisation of demand response in electric power systems, a review[END_REF].

Multi-agent systems and incentive design

While traditional approach to demand-side response assume there is direct control of the devices being managed, real-life DR systems are increasingly an aggregation of a large number of devices (building HVAC, EVs, water tanks etc) that are under the control of different entities/parties who may have their own interests and objectives, not always aligned with those of the DR system operator. For such systems, multi-agent methods or those from game-theoretic mechanism design are increasingly important. In the literature we reviewed, researchers have primarily applied multiagent systems for the design of pricing/incentive mechanisms. Mechanism design has been used to design DR schemes which will have certain advantageous properties and satisfy specific conditions. Even though these methods are really helpful, they are really dependent on the assumptions made. Where these assumptions do not hold in real life, the resulting schemes will not necessarily have the expected properties. Coalitional game theory has been applied in the design of incentive-based DR schemes and the distribution of the expected payoff to the participants. It is heavily used in incentive-based DR due to the contractual agreements between the service provider and the participants in a DR programme. On the other hand, computational complexity and intractability are issues that need to be addressed for these methods to be more widely applicable. Hybrid methods which could include function approximation (such as the work of O'Brien et al. [START_REF] O'brien | Shapley Value Estimation for Compensation of Participants in Demand Response Programs[END_REF], Bakr and Cranefield [START_REF] Bakr | Using the Shapley Value for Fair Consumer Compensation in Energy Demand Response Programs: Comparing Algorithms[END_REF]), and efficient search could be a potential path for addressing these challenges.

Discussion of AI methods in DR schemes and consumer types

As it is displayed in Figure 9 the primary focus of the surveyed literature has been on price-based programmes, with price-based related papers constituting half of the reviewed literature. The most common type of programmes in the surveyed papers are RTP [START_REF] Da Silva | A preference-based demand response mechanism for energy management in a microgrid[END_REF][START_REF] Cortés-Arcos | Multi-objective demand response to real-time prices (rtp) using a task scheduling methodology[END_REF][START_REF] Chen | Optimal power utilizing strategy for PV-based EV charging stations considering Real-time price[END_REF][START_REF] Gamage | Neural Network Based Real-Time Pricing in Demand Side Management for Future Smart Grid[END_REF][START_REF] Lin | An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling[END_REF][START_REF] Hansen | A Partially Observable Markov Decision Process Approach to Residential Home Energy Management[END_REF], dynamic pricing [START_REF] Jia | Retail pricing for stochastic demand with unknown parameters: An online machine learning approach[END_REF][START_REF] Lu | A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid[END_REF][START_REF] Lu | A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach[END_REF][START_REF] Severini | Energy management with the support of dynamic pricing strategies in real micro-grid scenarios[END_REF][START_REF] Shahgoshtasbi | A New Intelligent Neuro-Fuzzy Paradigm for Energy-Efficient Homes[END_REF][START_REF] Arabzadeh | A novel cost-optimizing demand response control for a heat pump heated residential building[END_REF], ToU programmes [START_REF] Arunaun | Baseline Calculation of Industrial Factories for Demand Response Application[END_REF][START_REF] Bina | Stochastic modeling for the next day domestic demand response applications[END_REF][START_REF] Hu | Multi-objective optimization of time-of-use price for tertiary industry based on generalized seasonal multi-model structure[END_REF][START_REF] Herath | Computational Intelligence-Based Demand Response Management in a Microgrid[END_REF][START_REF] Hafez | Integrating EV Charging Stations as Smart Loads for Demand Response Provisions in Distribution Systems[END_REF], and inclining block rate programmes [START_REF] Bina | Stochastic modeling for scheduling the charging demand of ev in distribution systems using copulas[END_REF][START_REF] Bina | Stochastic modeling for the next day domestic demand response applications[END_REF], among others.In terms of AI methods for price-based DR schemes, machine learning, ANNs, and nature-inspired AI techniques are the most frequent approaches, in (almost) equal proportion. ANNs with 1 hidden layer are the most commonly applied AI subgroup for price-based programmes, and have been mainly utilised in load and price forecasting. Besides ANNs, supervised learning approaches have also been applied for forecasting applications in price-based DR. Natureinspired algorithms have also been heavily studied for price-based DR. The majority of the nature-inspired AI methods have been applied for the scheduling of DR resources under varying pricing tariffs. This could be attributed to their relatively low computational complexity and ability to find solutions in a reasonable amount of time, which is especially advantageous under real-time pricing schemes and with sudden changes in schedules.

On the other hand, incentive-based (or contract-based) DR, appears so far, to have attracted comparably less interest than price-based DR from the AI research community. The main type of incentive-based programmes found in the literature has been direct load control [START_REF] Bina | Aggregate domestic demand modelling for the next day direct load control applications[END_REF][START_REF] Claessens | Convolutional Neural Networks for Automatic State-Time Feature Extraction in Reinforcement Learning Applied to Residential Load Control[END_REF][START_REF] Patyn | Comparing neural architectures for demand response through model-free reinforcement learning for heat pump control[END_REF][START_REF] Basnet | Effect of demand response on residential energy efficiency with direct load control and dynamic price control[END_REF][START_REF] Alizadeh | Capturing aggregate flexibility in demand response[END_REF], mainly of thermostatically controlled loads and EVs. The most widely used AI approach is reinforcement learning, which is used to control and schedule devices, while exploring the environment and learning through interaction with the user. Moreover, cooperative game theory and mechanism design methods have been mainly studied for incentive-based programmes due to the contractual nature of these schemes and the need for designing fair and incentive aligned DR programmes, as well as for rewarding DR participants in a fair and stable manner [START_REF] Meir | Contract design for energy demand response[END_REF].

Finally, a high percentage of the unsupervised algorithms is agnostic to the DR scheme type. These unsupervised algorithms have been primarily employed for load clustering in the reviewed literature. Moreover, it is also worth noting that ANNs and supervised learning techniques have been applied irrespective of the DR scheme type, they can be used to obtain forecasts to both price and incentive-based DR schemes. Regarding research related to the consumer type, as displayed in Figure 10, the surveyed work has primarily applied AI approaches for residential applications or was agnostic to the type of end-users. This could be attributed to the current trend of including residential end-users in the flexibility offers to balance a supplier's portfolio, or to maintain the system's frequency and/or voltage. AI methods provide a great tool to help with addressing the challenges inherent to the provision of DR services while using a large number of different end-users. Moreover, for almost every category of AI approaches, besides cooperative game theory and mechanism design techniques, the largest part of the reviewed literature is focused on the residential setting. Next, there is a relatively high proportion of the total surveyed papers where the proposed frameworks have been agnostic to the type of end-users. The majority of the surveyed papers using cooperative game theory and mechanism design belong to this category. This could be because they use abstractions which can handle all types of agents (residential, commercial, and residential end-users). On the other hand, a relatively small part of the explored literature has applied AI methods considering only industrial [START_REF] Giovanelli | Towards an aggregator that exploits big data to bid on frequency containment reserve market[END_REF][START_REF] Arunaun | Baseline Calculation of Industrial Factories for Demand Response Application[END_REF][START_REF] Behl | DR-Advisor: A data-driven demand response recommender system[END_REF][START_REF] Hu | Multi-objective optimization of time-of-use price for tertiary industry based on generalized seasonal multi-model structure[END_REF][START_REF] Mamun | Multi-objective optimization of demand response in a datacenter with lithium-ion battery storage[END_REF][START_REF] Chen | Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings[END_REF] or commercial [START_REF] Hurtado | Enabling Cooperative Behavior for Building Demand Response Based on Extended Joint Action Learning[END_REF][START_REF] Kim | Optimal Price Based Demand Response of HVAC Systems in Multizone Office Buildings Considering Thermal Preferences of Individual Occupants Buildings[END_REF][START_REF] Ninagawa | Modulation training method of prediction model for smart grid FastADR power limitation of building air-conditioners[END_REF][START_REF] Escrivá-Escrivá | New artificial neural network prediction method for electrical consumption forecasting based on building end-uses[END_REF] consumers, as these are already wellknown application that require less coordination and data management. To conclude, Figure 10 could indicate that there is a trend towards researching AI solutions to effectively utilise all types of loads in a flexibility portfolio.

Research evolution and recommendations for the future

As shown in Figure 1 it can be observed that there is a sudden increase of research papers, which are using AI approaches -especially ML and ANNs -for DR applications, in 2013 and onwards. This growing trend can be attributed both to the rise in popularity of AI approaches and DR. In Figure 11 we clearly see that the usage of AI approaches has increased across all DR application areas; with the majority of the examined papers using AI techniques for forecasting and scheduling and control tasks. Additionally, we found that a big part of the literature, from 2013 onwards, has applied AI methods for residential DR and small scale industrial/commercial. This coincide with the need to increase the share of small-scale participants in DR schemes. Although at first, participants of DR programmes were large industrial entities [START_REF] Kim | Common failures of demand response[END_REF], which consumed considerable amount of electricity, going forward residential and small industrial/commercial entities will increasingly need to be brought into DR programs, to achieve higher adoption of DR. AI techniques have been used to address the complexities of residential entities by automating the decision making process and control of DR appliances, based on consumers' preferences and behaviour. AI approaches have also been used to create better forecasts for demand and electricity prices, developing more accurate control and scheduling frameworks, and better tools for decision making, compared to the traditional modelling approaches.

Despite the great progress achieved by using AI approaches for DR, we identify a number of challenges which need to be addressed by future research. First, DR agents need to function in a partially observable environment i.e. agents cannot have perfect knowledge of the units used for DR, the other agents, and the environment [START_REF] O'connell | Benefits and challenges of electrical demand response: A critical review[END_REF]. In the reviewed literature, there is some work which addresses the problem of partial observability -either directly with the use of partially observable MDPs [START_REF] Hurtado | Enabling Cooperative Behavior for Building Demand Response Based on Extended Joint Action Learning[END_REF][START_REF] Hansen | A Partially Observable Markov Decision Process Approach to Residential Home Energy Management[END_REF] or indirectly via function approximation [START_REF] Claessens | Convolutional Neural Networks for Automatic State-Time Feature Extraction in Reinforcement Learning Applied to Residential Load Control[END_REF][START_REF] Medved | The use of intelligent aggregator agents for advanced control of demand response[END_REF]. So far, to our knowledge, the largest share of existing research assumes fully observable tasks (e.g. formulation of the DR problem as fully observable MDP). The incorporation of partial observability and incomplete knowledge of the DR environment in AI models can pave the way for agents which operate under diverse environments and various constraints, both in the consumer and the service provider level. Furthermore, we recommend that future DR models need to be multi-agent, and consider the objectives and actions of the various parties participating in DR programmes. While there is work assuming a multi-agent environments (e.g. cooperative game theory, multi-agent RL), a big portion of the research work we examined models DR as a centralised, single-agent task, where other entities are not considered as agents with their own objectives, but as part of the environment.

Moreover, forecasting techniques can help with addressing the stochasticity in DR models, forecasts need to become increasingly accurate, span multiple horizons in time and space, and better quantify the inherent uncertainty [START_REF] Rolnick | Tackling Climate Change with Machine Learning[END_REF]. Additional considerations include the scalability of the proposed AI methods, especially when non-parametric methods are employed (e.g. [START_REF] Grabner | Statistical Load Time Series Analysis for the Demand Side Management[END_REF][START_REF] Lu | A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid[END_REF][START_REF] Lu | A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach[END_REF]) and the heterogeneity of consumers and appliances when modelling DR. There is also a need to develop models and results that are generalisable to wider settings, and a need to assure the reproducibility of results (lack of modelling details is a key problem across a wide part of the reviewed literature). Moreover, there is increasing interest in using AI and ML for integrated demand response from other energy vectors (gas, heating networks etc.) [START_REF] Wang | Review and prospect of integrated demand response in the multi-energy system[END_REF], interacting with the power system, and this is expected to play an increasing role in the future.

Summing up, we believe a potential way forward for the research could be to adopt more multi-agent frameworks, where agents are able to function under a partial observable, stochastic environment, while at the same time relaxing the assumptions about the preferences and behaviour of participating entities (e.g. price elasticity of electricity consumers, economic rationality, discomfort function).

Conclusions

Electrical grids are facing new challenges, such as the increasing share of DER and the growing adoption of new loads like EVs and heat pumps. To address these challenges, there has been a growing interest for DR solutions as it allows grid operators to maintain the electrical grid's balance at a low cost, while avoiding or delaying the need for costly reinforcements of the power networks, or investing in a lot of costly back-up generation. Although, DR programmes were originally targeting a small number of large industrial and tertiary consumers, currently there is a strong drive to include residential and small tertiary loads into the DR portfolio. This shift requires to correctly select the end-users contributing to a specific consumption shift, but also to schedule their consumption, control units for DR, and determine the reward/penalty schemes. To achieve these objectives, AI solutions have been extensively used by researchers in order to find solutions where traditional approaches could not provide results that are sufficiently efficient or reliable.

In this work, the authors have reviewed over 160 papers, published between 2009 and 2019, as well as 40 companies and commercial initiatives, and 21 large projects to identify and discuss the trends for AI approaches in the energy DR sector. The literature reviewed in this work display that AI approaches are a promising technology for DR applications. Going forward, adoption of AI is paramount for the wide success of DR schemes. Even though AI approaches offer tools to tackle many challenges of the DR schemes, they also pose a series of considerations and limitations. Better understanding of the methods and their limitations is vital for the proper application in the DR setting.

Our review highlighted that a large number of different AI techniques are being used, but it appears clearly that some techniques are more suitable than others for specific tasks. Indeed, it is showed that ANNs, which are commonly used for multi-variable function approximation and regression, are extensively used for short term load and price forecasting, using supervised learning to achieve accurate prediction. In contrast, algorithms using RL are often used to capture human feedback, which makes them suitable for control tasks in HEMSs that integrate a DR solution. On the other hand, unsupervised learning is mostly used for clustering when there is no prior knowledge of the categories, which is mostly the case for DR customers clustering tasks at aggregators level. Finally, once DR customers have been categorised and their consumption has been forecast, aggregators schedule the activation of DR participants and plan their rewards and penalties. Different approaches have been highlighted for these tasks, among which optimisation, that can require the use of nature inspired optimisation techniques (e.g. swarm intelligence), where traditional, deterministic optimisation methods are less accurate. Other approaches use multi-agent systems within game-theoretic environments to determine the optimal pricing and scheduling strategy.

Our work also showed that this growing interest of the research community for AI solutions in the DR sector is also felt in the industrial sector -where numerous start-ups have been created in the last few years have adopted the same trends highlighted above. Nevertheless, even if these trends for the use of AI in DR are well established, more research is clearly needed to identify the optimal solutions in many cases. Indeed, many of the proposed solutions lack testing and validation through real-life trials and experimentation conducted at large scale. Hence, additional research initiatives along with industrial projects and large-scale experimentation are still necessary to allow the emergence of more accurate models and AI solutions. This path will allow AI/ML techniques to become mainstream or become business-as-usual in the energy DR sector. [START_REF]northstarsolar, northstarsolar -Control your home efficiently with AI and IoT[END_REF] UK start-up self-learning algorithms HEMS with Battery, peak shaving & Grid Support Open Energi [START_REF]Open Energi, Power Responsive success stories: Aggregate Industries[END_REF] UK company ML co-ordination of DER and trade flexibility across evergy markets. Regalgrid [START_REF] Regalgrid | Regalgrid Platform ®[END_REF] Italy start-up patented hardware and cloud-based software, real-time aggregation, VPP DR, energy sharing, EV management, energy storage REstore [START_REF]Restore, Document Management Services Company[END_REF] France, UK, Benelux, Germany company cloud-based platform DR, frequency control, capacity markets Senfal [START_REF] Senfal | Smart Software for the best Energy Strategy[END_REF] Netherlands start-up AI, innovative software, trading technology algorithm auto-DR, energy storage, DR for industrial sites, energy trading Social Energy [START_REF]Social Energy, About -Social Energy[END_REF] UK company cloud-based AI and software platform, VPP DR, supplier, energy storage, dynamic FFR Solo Energy [START_REF]Home | SoloEnergy[END_REF] UK start-up VPP, blockchain, P2P energy storage, energy trading Tempus Energy [START_REF]About | Tempus Energy[END_REF] Australia start-up AI market forecasting, load control, grid services, smart charging There Corporation [START_REF]There Corporation, Platform for Home Energy Management (HEM) and residential demand response (DR)[END_REF] Finland start-up cloud-based software DR for domestic sites, load control ThermoVault [START_REF] Thermovault | ThermoVault -Operating the largest decentralized storage system[END_REF] Belgium start-up self-learning algorithms Grid balancing, peak shaving tiko [START_REF]Solutions | tiko Energy[END_REF] Switzerland start-up VPP, EMS, real-time aggregation, cloud-to-cloud integration sub-second frequency response, DR for small to medium businesses and residential assets Upside Energy [ 
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By contrast to Scopus, other well-known scientific databases such as ISI Web of Science cover mostly journals, and provide less coverage of conference proceedings and other dissemination venues popular in AI/ML area, while other databases such as IEEExplore and ACM Digital Library cover mostly publisher-specific sources.

Union for the Co-ordination of Transmission of Electricity.

Learning happens at each time step, as data becomes available in a sequential order.

There is no need for a model of the environment.

It is defined as the mapping from states to probabilities of selecting each possible action. It shows the learning agent's way of behaving at a given time.

The process undergone by misplaced atoms in a metal when it is heated, and then its temperature is decreased it in a controlled and gradual way.

Learning the weights of the network.

The process of creating features using domain knowledge.

Huang et al. [216] 2017 FF-DNN Prediction of electricity prices for RTP.

Liu et al. [176] 2017 Elman Neural Network STLF for DR.

MacDougall et al. [181] 2017 ANN (1 hidden layer) Estimation of VPP's available capacity.

MacDougall et al.[START_REF] Macdougall | Value assessment of aggregated energy flexibility when traded on multiple markets[END_REF] 2017 ANN (1 hidden layer) Capacity prediction of a homogeneous VPP.
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