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Abstract—Recent years have seen a surge of interest in
distributed residential batteries for households with renewable
generation. Yet, assuring these asset investments are profitable
for their owners requires additional revenue sources, such as
novel ways to access wholesale energy markets. In this paper, we
propose a framework in which wholesale market bids are placed
on forward energy markets by an aggregator of distributed
residential batteries that are controlled in real time to meet
the market commitments. The framework can apply either to
a single prosumer-owned battery, or to a fleet of distributed
residential batteries coordinated by an aggregator. It consists
of 3 main stages. In the first stage, an optimal day-ahead or
intra-day scheduling of the aggregated storage assets is computed
centrally. In the second stage, a bidding strategy is proposed for
wholesale energy markets. Finally, in the third stage, a real-time
control algorithm based on a smart contract allows coordination
of residential batteries to meet the market commitments and
maximise self-consumption of local production. Using a case
study provided by a large UK-based energy demonstrator, we
apply the framework to an aggregator with 70 residential bat-
teries. Experimental analysis is done using real per minute data
for demand and production. Results indicate that the proposed
algorithm increases the aggregator’s revenues by 35% compared
to a case without residential flexibility, and increases the self-
consumption rate of the households by a factor of two. The
robustness of the results to forecast errors and to communication
latency is also demonstrated.

Index Terms—Battery management system, distributed gener-
ation, smart contract, smart grids

I. INTRODUCTION

NET zero carbon emission schemes usually involve a shift
of carbon based energy consumption toward electricity,

and an increasing share of electricity generation coming from
distributed renewable resources [1]. Economic incentives
for renewable energy export to the grid such as Feed in
Tariffs (FIT) are gradually removed. This encourages self-
consumption of renewable energy at the residential level,
which is considerably increased by residential batteries. Yet,
residential batteries used solely for self-consumption have a
simple payback period above 10 years [2], [3], providing
insufficient financial incentives for homeowners. Hence, there
has been increasing interest in finding additional revenue
streams for residential batteries [4], [5], such as revenues from
ancillary services or wholesale energy markets participation
[6]. A number of prior works [7]–[11] have considered the
participation of batteries in providing ancillary services such
as frequency regulation. In our work, motivated by a case
study from a large UK smart energy demonstrator based on
the Orkney Islands [12], we propose a framework that allows

residential batteries to participate in wholesale energy markets,
such as day-ahead or intra-day markets. In practice, however,
participation in European wholesale markets is generally not
open to small assets of power capacity below 1 MW [13].
Hence, there is a need for novel mechanisms to aggregate
and control residential batteries to enable wholesale market
participation through an aggregator service. In this paper, we
propose a control framework that allows an aggregator to
coordinate distributed storage assets installed at prosumers
premises that are either owned by the aggregator or by the
prosumers themselves. Prosumers give their consent to the
aggregator to control batteries and participate to the wholesale
markets. Therefore, this control must deal with conflicting
objectives: at the prosumer level, residential battery control
aims to reduce the bill of the household by maximizing
self-consumption, whereas at an aggregate or fleet level, the
objective is to assure a profitable market participation.

Battery control consists of real-time (RT) decisions to
charge or discharge a battery at every time step of the Battery
Management System (BMS) controller (from µs to ms). This
decision can be performed with a recommendation from an
optimised schedule based on forecasts of future production
and demand (optimisation-based control), or without any
recommendation (heuristic control). In prior research, the role
of the battery has been either to provide grid services such
as frequency [8], [9] or local voltage regulation [11], or to
optimise the revenues of the battery owner such as a prosumer
[14], [15] or an aggregator bidding in the wholesale energy
market [6], [7], [15], [16]. Although the topic of batteries
for market bidding has been covered in a number of prior
works, these mostly consider ancillary services markets or
single stand-alone batteries, but not the use of residential
batteries for wholesale energy market bidding. Several works,
e.g [15], [16], propose solutions for energy market bidding
with residential batteries, but they do not address wholesale
markets applications.

Some research work take into account uncertainty from
changing environments and propose RT operations to ensure
that batteries will honour commitments on the wholesale
market. However, most of the Real Time Control (RTC)
algorithms proposed in the literature apply to the case of grid
services optimisation, for which the strategy mostly consists
in following either the frequency, or a specific signal from
the grid operator [8]–[11]. Hence, only a few works are
addressing the problem of real-time control (RTC) for energy
markets applications. RTC has been implemented through
Model Predictive Control (MPC) [7], [17], [18], or through
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heuristic rules [14], [15]. However, except for [7] and [15]
that use per second and per minute data for experiments,
most of the current research works rely on 15 or 30-minutes
resolution data, and do not capture the required granularity
for real-time implementations. Moreover, although distributed
batteries coordination has been successfully implemented for
grid services in [16] and [19], these works assume perfect con-
tinuous communication between assets, which does not reflect
real-life implementations with residential batteries. Therefore,
in this work, we consider per minute data with communication
latency above 5 minutes to address realistic scenarios.

Finally, another emerging trend is the use of blockchain
technology and smart contracts to enable a decentralised
management of energy system assets that does not rely on a
single authority or point of failure [20]. For batteries, prior
work in [21], [22] implemented a smart contract to store
characteristics of batteries such as the state of charge, and
to automatically send control recommendations to prioritize
the charge of distributed batteries in microgrid applications.
They did not consider, however, the aggregation of batteries
for market export commitments.

To our knowledge, there is no prior work that addresses
the full range of technical challenges of market bidding,
coordination and real-time control of a fleet of distributed
residential batteries participating in wholesale energy markets.
Hence, we design and implement a framework that allows an
aggregator of distributed batteries to determine the optimal
energy quantities to bid in the wholesale energy market and
that ensures these quantities will be honoured by the fleet of
batteries. The key novel features of our framework include:
• A wholesale market bidding strategy for an aggregator of

residential batteries
• A real-time control (RTC) algorithm based on Model

Predictive Control (MPC) embedded in each Battery
Management System (BMS)

• A blockchain-enabled smart contracting platform to co-
ordinate the individual batteries exports.

The framework is validated using a real case study from
the ReFLEX project [12], one of the largest smart energy
demonstrators in the UK, based on the Orkney islands.

The paper is structured as follows. Section II presents a de-
tailed overview of the proposed framework, while Section III
describes the RTC algorithm for distributed batteries. Section
IV presents the implementation and benefits in the case of
70 residential batteries participating in the day-ahead energy
market, while Section V concludes with a discussion.

II. FRAMEWORK FOR DISTRIBUTED RESIDENTIAL
BATTERIES CONTROL

In this section, we present an overview of the framework
designed to control a fleet of distributed residential batteries
that makes a joint energy export commitment on the wholesale
energy market. These distributed batteries operated by an
aggregator can either be owned by the aggregator or by the
households. Hence, the use case of this study corresponds to
the ”Energy as a Service” concept where an energy supplier or
aggregator would manage distributed storage assets installed

at end-user premises (residential households or commercial
buildings for example) to provide cheaper and cleaner energy.
The economic objective for the prosumers is to reduce their
bill, whereas the supplier or aggregator aims to maximise his
revenues that come partly from a share of end-user energy
bill reduction and from the wholesale energy market revenues.
A secondary objective is to increase the share of renewable
generation in end-users’ energy consumption mix.

A visual representation of the use case is shown in Fig.
1, corresponding to the real-life case study from the ReFLEX
project [12]. Assets consist in residential or commercial build-
ings’ loads, generation from rooftop solar PV (Photovoltaic)
or wind turbines, but also include residential batteries installed
at the end-user premises. The aggregator can also integrate his
own assets in the assets’ portfolio (such as large PV or wind
generation). He can then take advantage of these assets to bid
energy quantities on the wholesale energy market, from which
he generates revenue. Coordination of the batteries to meet
the commitment made on the markets is achieved through a
dedicated smart contract presented in section III.

Fig. 1: Use case representation: an aggregator manages dis-
tributed assets at households and building premises, but also
a wind farm and a solar PV farm.

The control framework can be divided into three main
phases as detailed in Fig. 2. In the first phase, based on
the forecasts of prices, aggregated demand and production,
the aggregator computes the optimal schedule and expected
revenue if all assets were not distributed but aggregated into
one large load, one large PV and wind generation site, and one
large battery. The reason for the aggregation of all the assets
is to increase the accuracy of the forecasts.

Computation of the optimal battery schedule and energy
quantities’ bidding strategy for the wholesale energy market
is found by the Mixed Integer Linear Programming (MILP)
optimisation problem described in (1), for which each time
interval t corresponds to the wholesale market intervals (30
minutes in Europe). A detailed presentation of the optimisation
problem can be found in [2].

minimize
Et

BA
D

,Et

BA
C

, ∀t

T∑
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t
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e
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(1)

where Et
BA

D
, Et

BA
C

are the discharged and charged energies of
the aggregated battery capacity in time interval t respectively,
Et

iA and Et
eA are the net import and export of the aggregated

fleet of assets (residential loads, production and batteries) in
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Fig. 2: Framework for the control of distributed residential
batteries contributing to the wholesale market.

time interval t. Superscript A refers to aggregated quantities.
πt
i is the price of electricity import from the grid and πt

e

is the forecasted wholesale market price for time interval t.
Constraint equation (2) corresponds to the energy balance:

Et
iA + ηdE

t
BA

D
−
Et

BA
C

ηc
= Et

DA − Et
PA

Et
eA − ηdE

t
BA

D
+
Et

BA
C

ηc
= Et

PA − Et
DA

(2)

where ηd and ηc are the discharging and charging efficien-
cies of the battery respectively, and Et

DA and Et
PA are

the forecasted energy demand and production respectively of
the whole portfolio of the aggregator (end-users’ loads and
generation assets such as PV and wind). Then, (3) expresses
the state of charge (SoC) limits for the aggregated battery
capacity and also applies to every time interval t.

SoCA
min ≤

t∑
l=1

(
El

BA
C
− El

BA
D

)
+ SoC0,A ≤ SoCA

max, (3)

where superscript 0 corresponds to the quantities at the start
of the considered period, for t = 0. The forecasts are inputs
of the model that are not in the scope of this paper, but
can be generated using statistical or AI methods such as
artificial neural networks [23], [24] or K-Nearest Neighbour
regressions.

In the second phase, the aggregator uses the optimal re-
sulting schedule Et

eA to determine the forecasted net exports
of the aggregated fleet of assets for the next considered
periods (next day in the case of day-ahead markets). The
aggregator then places these quantities as bids in the wholesale

market. Once the market is cleared, the aggregator receives a
preagreed energy schedule. If the contracts differ from the
submitted bids, the aggregator will re-run the optimisation of
the schedule of the virtual aggregated battery capacity given
in (1) based on an updated price time-series such that πt

e = 0
for all the time intervals t without export contract. Similarly,
constraints for the net exported energy Et

eA must be updated
such that Et

eA = Et
c when an export contract was awarded,

with Et
c the agreed contractual export in MWh for time

interval t. The second phase is completed once the aggregator
circulates the following time series to the distributed fleet: (i)
the optimised SoC profile for the virtual aggregated battery
capacity SoCt,A in %, (ii) the required aggregated net export
quantities Et

c for the next market periods, and (iii) a state
indicator, S, that represents the mode of operation of the
aggregated battery capacity for every time interval:

S =

{
0 if Battery power matches residual demand
1 otherwise.

(4)

where the residual demand consists of the difference between
the demand and production of the considered system.

The third phase of the framework corresponds to the RT
operation of the distributed batteries as detailed in section III.
Coordination among all the residential batteries is achieved
through a smart contract that ensures that the whole fleet will
export the required energy quantities agreed on the wholesale
market.

III. REAL-TIME CONTROL OF DISTRIBUTED BATTERIES

In this section, we detail the RTC algorithm that runs in
every battery’s BMS and the smart contract operations.

A. Model-Predictive Control Algorithm

In this Model Predictive Control (MPC) implementation for
distributed batteries, each BMS solves a local optimisation
problem at regular time intervals tj (e.g. tj+1− tj = 2 min in
our simulations) specified in (6) for the rest of the considered
market time interval. Because this time horizon can be up to
30 minutes (t−tj), the MPC optimisation problem aims to de-
termine an optimal battery schedule (Etj+1

Bk
C,D

, E
tj+2

Bk
C,D

, ...Et
Bk

C,D
)

with large time steps equal to tj+1 − tj . Hence, it does not
correspond to a RT schedule with RT time steps ts that
are in the order of the µs or ms. Between two consec-
utive optimisations that would occur at times tj and tj+1

respectively, the BMS will take Ns operational decisions
(charging/discharging) that correspond to the recommendation
from the first step of the optimal schedule (Etj+1

Bk
C,D

), where Ns

is the number of RT operations/cycles between tj and tj+1

(tj+1 − tj = Nsts), and depends on the clock frequency of
the BMS. The recommendation can either be to compensate
or follow the local residual demand, such that there is no
energy export nor import in the period, or to apply a specific
charge/discharge power given by Etj+1

Bk
C,D

, which is the first step
of the optimal schedule.

Fig. 3 details the chronology of the MPC algorithm. There
are 4 time indicators to be considered. t, the current market
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minimize
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D
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Bk
C
, Eik

l , E
l
ek ≥ 0, ∀l.

(6)

time interval, corresponds to the time horizon for the MPC
optimisation. tsc is the time at which each BMS sends and
receives the last information to/from the smart contract (for
example tsc − tsc−1 = 5 min). tj is the time at which MPC
optimisations are executed (every 2 minutes for example).
Finally, the smallest time step ts (displayed in grey in Fig.
3) corresponds to the cycle time for BMS RT operations (for
example, ts − ts−1 = 200µs).

At the beginning of each market time interval t, the BMS
initializes REt,A (the remaining net export required from the
whole fleet) with the value that was communicated originally
by the aggregator. For intervals where no contract was agreed,
REt,A is set equal to 0. At every communication time with
the smart contract tsc, each BMS receives an updated value
of REt,A that can be negative if the fleet produced more
than what was needed. Along with REt,A, the smart contract
communicates 2 weights values wk

e and wk
i to each battery k,

that represent the percentage of REt,A that should be exported
(wk

e if REt,A > 0) or imported (wk
i if REt,A < 0) by the

battery k for the rest of time interval t. The details of the
weights computation are provided in the next subsection. With
these information, each BMS updates REt,k, the remaining
net export required from the battery k before the end of the
market interval:

REt,k =


REt,A · wk

e −
tj∑

l=tsc

(
El

ek − E
l
ik

)
, if REt,A ≥ 0

REt,A · wk
i −

tj∑
l=tsc

(
El

ek − E
l
ik

)
, otherwise,

(5)

where
∑tj

l=tsc

(
El

ek − E
l
ik

)
corresponds to the effort (export

or import) that was already realized by the household k since
tsc, the time of the last communication with the smart contract.

The BMS also computes a forecast of the household’s future
consumption and production for the remainder of the current
market interval. In our simulations, the BMS generates a fore-
cast with 15 minutes time steps. Although forecast algorithms
are beyond the scope of this paper, our experiments showed
that Linear Regression demonstrated the best compromise
between speed and accuracy for forecasts of up to 1 hour
ahead.

The MPC optimisation problem formulation is shown in (6),
where the objective function includes the cost of electricity
imports at the prosumer level, but also a penalty for energy
exports when there is no export contract with the wholesale
market. It also includes the SoC recommendation SoCt,A

and net export requirements REt,k. It is good practice to
make sure that the SoC target SoCt,A and net export target

REt,k are feasible by coercing them into achievable values.
As mentioned above, t is the current market time interval,
tj ∈ [0, t] is the time at which the optimisation is run, εRE

is a state variable such that εRE = sgn(REt,k), and St is the
battery state indicator for time interval t sent by the aggregator
(4). SoCt,k is the state of charge of battery k at the end
of the time interval t. REt,k is updated before each MPC
optimisation using (5). Finally,

(
El

ek − E
l
ik

)
corresponds to

the net export from household k at time l, and is determined
by (2).

Fig. 3: MPC process with smart contract communication.

This MPC formulation also corresponds to a
MILP formulation where the absolute value in (6) is
achieved by introducing a positive auxiliary variable

x ≥

∣∣∣∣∣REt,k −
t∑

l=tj+1

(
El

ek − E
l
ik

)∣∣∣∣∣.
The solution of the optimisation consists in an optimal

battery schedule given by E
l=tj+1,...,t

Bk
C,D

. As shown in Fig.
3, the BMS uses the first charging and discharging energy
quantities E

l=tj+1

Bk
C,D

from the optimal schedule to provide a
recommendation for the battery power P s

Bk at every time step
ts of the BMS operation between tj and tj+1. P s

Bk is the
power of the battery cells, and is positive (negative) when the
battery is charging (discharging):

(7)P s
Bk

=


η
[
P ts
Pk − P ts

Dk

]
, if Etj+1

Bk
C

− Etj+1

Bk
D

= η
[
E

tj+1

Pk − E
tj+1

Dk

]
E

tj+1

Bk
C

−E
tj+1

Bk
D

s·Ns
, otherwise,

where s is the time between two consecutive RT actions (s =
ts − ts−1), and η is given by:

η =

ηc, if P ts
Pk − P ts

Dk ≥ 0
1

ηd
, otherwise.

(8)
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B. Smart Contract Platform
A blockchain-enabled smart contract between the aggregator

and all the fleet of distributed batteries coordinates their
operation and ensures that contractual export commitments
Et

c to the wholesale market are met. It also coordinates the
sharing of energy surpluses within the fleet. The smart contract
represents a distributed and tamper-proof way that increases
the reliability and security of the coordination by removing a
single point of failure, and by improving resilience to cyber-
attacks, as opposed to a centralized operation realised by
a single server. Furthermore, it allows for automatic self-
verification of commitments and exports of the fleet of bat-
teries that does not rely on a single aggregator authority.

The smart contract was implemented in an Ethereum-based
private blockchain using the Ganache environment. It was
developed using Solidity, and compiled and deployed using
Python’s library web3.py. Each battery is associated with an
account, similar to the aggregator, who deploys and manages
the smart contract and associated operating fees, as shown in
Fig. 4. The functions implemented in the smart contract are

Fig. 4: Local smart contract implementation for distributed
batteries coordination. The deployment and management of
the smart contract is detailed for the aggregator node.

listed below:
• Constructor, to initialize the contract.
• Register a new household.
• Update the time series sent by the aggregator

(SoCt,A, Et
c,St).

• Update a household information: SoCtsc,k the bat-
tery SoC at the current time, Etsc,k

e the energy ex-
ported/imported by household k since the last commu-
nication between the battery k and the smart contract,
and Et,k

e a new variable equal to the net exported energy
of household k since the beginning of time interval t. It
is computed as the sum of all previous quantities Etsc,k

e .
• Compute the batteries weights wk

i and wk
e for all the

batteries k. The weights are computed as follows:

wk
e =

W k
e∑

k∈households
W k

e

, wk
i =

W k
i∑

k∈households
W k

i

(9)

where W k
i = 100%− SoCtsc,k and W k

e is given by:

W k
e =

{
SoCtsc,k if Etsc,k

e ≥ 0 , SoCtsc,k ≥ SoCt,A

0 Otherwise.
(10)

• Compute REt,A the remaining aggregated energy to be
exported:

REt,A = Et
c −

∑
k∈households

Et,k
e . (11)

• Provide the required information to all registered house-
holds using the emit method: REt,A, wk

e , w
k
i .

The cost of this smart contract for a battery is around 105957
gas units, which corresponds to 0.002 ether or 0.7$ if the
contract runs on an Ethereum Blockchain. However, this cost
can be reduced to only the nodes operation costs if the smart
contract is realised on a real-world private and permissioned
blockchain.

IV. EXPERIMENTAL VALIDATION

A. Experimental set-up and case study

The proposed framework was implemented for the use case
described in section II, that reflects the settings of our large-
scale demonstrator [12]. An aggregator invests in distributed
residential batteries and generation assets (rooftop PV or wind
turbines), when households do not have any already, and
installs those at customers’ premises. 70 households were
considered in this study, each of them with a micro-generation
asset (solar PV or micro wind) and a residential battery
[25]. To have a more general case, we also consider that the
aggregator already owns large generating assets that include
one PV power plant of 105 kW and one wind farm of 130
kW. The data used for the demand and production profiles are
minutely data from real measurements gathered in real house-
holds participating in the ReFLEX project [12]. The pricing
data for the wholesale market price have been extracted from
Nordpool’s day-ahead market [26]. Retail import prices follow
dynamic Time of Use (ToU) pricing scheme from [27]. Market
time interval is 30 minutes. Hence, the day-ahead optimisation
uses time steps of 30 minutes. We do not consider export
tariff for households (such as FiT), as these incentives have
been removed in the UK. In real-life applications, forecasts
errors and communication latency can lead RT operations to
achieve different export energy quantities than the contractual
agreement. In this case a penalty applies to the aggregator, that
is equal to the product of the energy quantity difference and an
imbalance price. Imbalance prices are computed by the system
operator and depend on the system’s frequency. In this work,
we use imbalance prices from European markets [28]. Also,
we consider that the fleet is linked by a virtual private wire
contract [29]. In this virtual private wire configuration, when
a household consumes electricity that is produced by another
asset of the fleet, the electricity price paid by the consumer
is equal to 48% of the retail import price. This corresponds
to the network costs with environmental and social taxes
and neglects the production costs and supplier fees [30]. The
experimentation was conducted for one calendar month.

B. Experimental Results

The results presented in this section were obtained with
a communication time interval of 5 minutes between the
assets and the smart contract. Day-ahead forecasts for the
aggregated demand and production were generated using the
real data multiplied by a random variable uniformly distributed
to simulate an uncertainty of 25% around the real value. The
time interval between two forecast values was 2 hours.
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Fig. 5.a shows the wholesale market price. Fig. 5.b displays
the aggregated demand and production forecasts, along with
the fleet net energy export contracted in the wholesale market.
Finally, Fig. 5.c compares this contractual energy export
quantities with the realised export of the aggregated fleet. The
achieved export match the market commitments with an aver-
age error below 10%. Fig. 6 shows the real consumption and
production data for three different households, along with their
battery SoC that results from the RTC operations. It shows that
the SoC is following the local demand and production. Indeed,
the SoC of the household with wind generation is different
than the SoC of batteries in households owning solar PV
generation. We also assess the economic benefits that an ag-
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Fig. 5: Experimental results with 30 minutes time intervals
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(c) Household with micro-wind generation.

Fig. 6: Production, demand and resulting SoC for different
households with time intervals of 1 minute.

gregator can expect from the proposed framework. The source
of revenues for the fleet are the revenues from energy exports
agreed on the wholesale energy market and the total bill

reduction of the households. The bill reduction is computed as
the total bill difference between the baseline scenario (Scenario
0 defined below) without distributed generation (battery and
rooftop PV or wind) and the total bill after the framework is
implemented. Based on the ReFLEX demonstrator project, a
number of scenarios have been considered for comparison:

Scenario 0 (baseline) considers the 70 households’ demand
only, and assumes they do not have any distributed generation
asset (no rooftop PV nor batteries).

Scenario 1 considers the households individually, with a
PV or wind asset and a residential battery, but without any
aggregator and without any revenue from energy exports to
the grid. The batteries are individually controlled using a
RT heuristic based algorithm embedded in each BMS. This
algorithm charges the battery when the household produces
more energy than it consumes, and discharges the battery when
the household consumes more than it produces. It provides
similar revenues as an optimisation-based algorithm when
batteries do not export to the grid [2].

Scenario 2 considers an aggregator with all the generation
assets installed in the same location (PV, wind and a single
large battery co-located with the proposed RTC algorithm) and
not distributed in individual households. Households’ demands
are not included in the aggregator’s portfolio for this scenario.
Hence, the aggregator sells all the energy in the wholesale
market.

Scenario 3 corresponds to Scenario 2 (centralized gen-
eration assets) with the addition of distributed individual
households in the aggregator’s portfolio: the aggregator can bid
on the energy market, and proposes a specific retail contract to
the individual households, using a virtual private wire contract,
but no assets are installed at the end-users premises. Hence,
when households consume electricity, they pay either the ToU
tariff or a reduced tariff (48% of the ToU tariff [30]) when
centralised generation assets export.

Scenario 4 considers distributed residential assets with an
aggregator that bids on the energy market. It corresponds to
the main use case of this paper where each households has a
micro-generation asset and a residential battery controlled by
the RTC algorithm described in Section III.

Scenario 5 corresponds to the Scenario 1, but without any
battery. It is used only for comparison purpose in the next
section to assess the impact of Scenario 4 on the grid.

Table I displays the monthly bill reduction compared to
the baseline (scenario 0) in each scenario, along with the
monthly revenues from the market exports. The last column
displays the total revenue for the fleet, computed as the sum
of the bill reduction and market revenues. The installation
costs in each scenarios depend on the cost of storage assets
which is beyond the scope of this paper. Table I shows
that the proposed RTC algorithm for distributed batteries in
Scenario 4 provides the greatest revenues to the fleet. It
shows that bidding on the market while taking advantage of
distributed residential generation for self-consumption allows
an aggregator to increase its revenues by 7% compared to
Scenario 3 in which the aggregator invests in the same quantity
of assets, but installs all of them at the same location. This
is due to the fact that in the case of centralized generation



7

TABLE I: Comparison of economic benefits on a monthly
basis of the proposed RT control framework

.

Scenario Bills Market Total
Reduction (C) Revenue (C) Revenue (C)

0 0 0 0
1 2258 0 2258
2 0 3025 3025
3 2911 909 3820
4 3208 891 4099
5 1127 0 1127

assets (Scenario 3), electricity imports from households always
include a network cost (48 % of the import tariff) that does
not apply in Scenario 4 when households consume their own
production. Given the forecast uncertainty and communication
latency considered in Scenario 4, the performance of the
proposed RTC algorithm is demonstrated. Furthermore, using
distributed residential batteries with the proposed algorithm
provides a revenue increase of 35% compared to Scenario 2
in which an aggregator does not include households demand in
his portfolio and only owns generation assets (PV, wind gen-
eration and batteries) co-located in one central location. This
shows that it can be profitable for investors to support self-
consumption by investing in decentralized generation assets
with an aggregator for market bidding. Similarly, comparison
between Scenario 1 and 4 shows that it can be profitable
for prosumers to allow an aggregator to control their assets
to generate extra revenue. Finally, this study also shows that
the proposed RTC algorithm increases the self-consumption
rate of end-users: the average self-consumption of individual
households was increased from 28% in a scenario with only
micro-generation (Scenario 5) to 64% in scenario 4 with the
proposed framework.

C. Sensitivity study of the RTC algorithm

In this subsection, we study the impact of forecast inaccu-
racy and communication latency on the total revenues.

1) Sensitivity to forecasts: Two forecasts parameters have
been considered: forecast accuracy and forecast time steps.
Several simulations were run over a range of these two pa-
rameters and resulting revenues were averaged and displayed
in Fig. 7. The forecast accuracy is the parameter that has
the greatest impact on the revenue. However, the proposed
RTC algorithm ensures that even with a minimum accuracy
of 20%, the monthly revenues for the fleet stay above 3300 C,
which makes the distribution of micro-generation assets more
profitable than Scenario 2.

2) Sensitivity to communication time interval: Simulations
were run with different communication time intervals between
the assets and the smart contract, ranging from 1 minute to 15
minutes. The total revenues resulting from the RTC algorithm
showed good robustness to communication latency as they
ranged from 4220 C for 1 min communication time interval
to 3750 C for 15 min. Although shorter communication
time intervals provide greater revenues, they also increase the
operation cost of the smart contract.

Fig. 7: Total monthly revenues of the fleet obtained for
different forecast accuracies and time steps.

D. Impacts for the grid

Finally, we study the impact of the proposed battery control
on the electricity grid. Fig. 8 shows the net power profiles
of the aggregated fleet for 30 minutes and 1 minute time
intervals for scenario 4 and in Scenario 5. The profile of
the aggregated fleet with batteries (Scenario 4) is relatively
flat when measured on a 30 minutes basis (Fig. 8.a), except
for periods when export is incentivized by the grid. However
Fig. 8.b shows that the actual profile on a per minute basis is
much more noisy with one important peak per market interval
to compensate for extra production or demand. Similarly, the
monthly Peak to Average Ratio (PAR) is 3 times higher for
Scenario 4 than for the case without batteries (Scenario 5),
which is due to an increase of the maximum power exported
and to a decrease of the average power consumption in
Scenario 4. This effect could be limited by considering grid
services in the MPC optimisation.
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(a) 30 min time interval measurements.
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(b) 1 min time interval measurements.

Fig. 8: Net power profile of the aggregated fleet of assets for
Scenario 4 and 5.

Finally, Fig. 9 compares the PAR before and after the
installation of the batteries. Although the average PAR for
scenario 4 is slightly greater than the PAR before batteries
were installed, they are comparable in both scenarios. Hence,
the impacts of the proposed RTC on the local grid are similar
to the current impacts of distributed solar PV.

V. DISCUSION AND CONCLUSIONS

In this paper, we develop a framework for real-time control
of distributed residential batteries. The framework proposes
a strategy to bid optimal energy quantities on the wholesale
energy market. It also includes a real-time control algorithm
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Fig. 9: Comparison of Peak to Average Ratio for scenario 4
and scenario 5 for all considered households.

based on MPC to ensure that optimal decisions are taken
locally by maximizing local self-consumption. A smart con-
tract is proposed to securely coordinate the fleet of distributed
batteries to meet the export commitments from the wholesale
energy market. Considering a use case of 70 households with
per-minute consumption and production data from one of the
largest-scale smart energy demonstrators in the UK, we show
that the proposed framework increases by 7% the potential
revenues for the owner of the residential batteries compared to
a case where all the batteries are installed in a central location.
It also demonstrates that it becomes more profitable to include
residential flexible assets in the portfolio of aggregators than
having a portfolio with only production power plants as in
our use case, it increased the revenues of the considered
community by 35%, and it ensured that more than 60%
of the electric consumption was produced from distributed
renewable sources owned by the aggregator. Therefore, this
framework showcases new economic incentives to invest in
decentralized renewable generation, which is necessary to
meet the objectives of UK government’s Net Zero Carbon
emission schemes. The robustness of the RTC algorithm to
forecast errors and communication latency is also studied and
validated. Finally, although the impacts of this algorithm on
the grid are not negligible at the system level, they could be
mitigated by including grid services in the batteries operations.
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