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Abstract

The problem of fault detection and isolation has been introduced into
automatic control as a paradigm for the design of algorithms capa-
ble of detecting the occurrence of faults and isolating their causes.
Many methods have been developed for the class of integer systems.
In contrast, few methods have been developed for the class of frac-
tional order systems. In this paper, a new fault detection and isolation
method, based on the flatness property, is introduced for the class
of fractional order linear systems to detect and isolate faults on sen-
sors and actuators. In this method, the measurement of the so-called
fractional flat output vector is used to construct the redundant com-
ponents of the system and to generate fault indicators called residual
signals. In addition, new definitions of fault detection and isolation are
introduced. The effectiveness of this method is validated by simula-
tions on a fractional order system, the thermal bi-dimensional system.

Keywords: fault detection and isolation, fractional system, flat system, flat
output, thermal system.

1



Springer Nature 2021 LATEX template

2 Fault Detection and Isolation for fractional order Systems

1 Introduction

Over the past three decades, fault detection and isolation (FDI) has attracted
increasing interest among researchers in the field of automatic control. It con-
sists in designing algorithms capable of detecting the occurrence of faults on
a system and identifying their causes. Examples of survey papers on FDI may
be found in [37] and [33]. The FDI process consists of two steps:

• Fault detection: consists in detecting the abrupt change in the system
behavior;

• Fault isolation: consists in determining the exact location of the fault.

The first proposed FDI technique is called the hardware redundancy in
which multiple redundant components are used in parallel to the process com-
ponents [10]. In this technique, a fault is detected and isolated if the behavior
of a process component is different from those of the redundant components.
However, this method incurs additional equipment and maintenance costs, and
additional space is required to accommodate the equipments. Later on, this
approach was replaced by the analytical redundancy where the redundant com-
ponents are calculated using algorithms and then avoiding extra costs [37].
Examples of analytical redundancy methods are the observer-based methods
[11, 13], parity-space methods [12, 17] and artificial neural network (ANN)
approaches [16].

The analytical redundancy methods are in general based on the notion
of generating residual signals, usually denoted by r(t), which are the differ-
ence between the measured output and the estimated process output. In the
ideal case where there is no uncertainties and disturbances on the system, the
residual signal takes two values:

r(t) = 0 in the fault-free case;

r(t) ̸= 0 in the faulty case.

However, in practice it will always involve model uncertainties and device noise.
Then, the residue will be compared next to a threshold. If the residue exceeds
its threshold then a fault is detected, otherwise there is no fault on the system.
There exist several research studies on fixing thresholds and can be found in
[13, 18].

Among the analytical redundancy techniques there is the method, intro-
duced in [23] and further developed in [29], based on the flatness property
of nonlinear systems. Roughly speaking, a nonlinear system is said to be flat
if, and only if, all the system states, inputs and outputs can be expressed in
function of a vector, called flat output, and its successive time derivatives [19].
Therefore, in this method, the measurement of the flat output vector is used to
compute the redundant sensors and actuators and then generate the residual
signals. Definitions of detectability and isolability of this method are presented
in [29].
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Despite the advanced research in the field of FDI for nonlinear systems,
few works have been done for fractional order systems, which are systems
modeled by fractional order differential equations, such as thermal systems [8],
nuclear magnetic resonance systems [22] and viscoelastic systems [25]. A first
development of fractional models in the FDI field was initiated in [3]. This
method is an extension of the dynamic parity space FDI method. See also
[4, 5]. Later on in [6], a scheme of FDI, based on a bank of fractional unknown
input observers, is extended to diagnose fractional order systems.

Recently, the flatness property of nonlinear systems has been extended
to include the class of linear fractional order systems, see [35]. Methods of
computation of flat output vectors were developed in [36], based on the Smith
decomposition, and in [30], based on the unimodular completion algorithm.
In this paper, a new method of FDI for fractional order linear systems is
introduced, based on the extension of the flatness-based method developed in
[23] and [29] for the class of nonlinear systems.

In this context, this paper is organized as follows: Section 2 presents recalls
on fractional calculus and fractional order linear flat systems. The Flatness-
based FDI method is presented in Section 3 and the application of this method
on a thermal bi-dimensional system is presented in Section 4. Finally, Section 5
concludes the paper.

2 fractional order Linear Flat System

The fractional derivative has been introduced by [20] and [31] in the 19th cen-
tury as a generalization of the traditionally used derivative. For more recent
references, see [24, 32, 14]. However, it was considered only as a theoreti-
cal notion until the discovery of physical systems that could be modeled by
fractional differential equations [34], such as thermal systems. This notion of
fractional calculation has also shown its usefulness in robust control [27] and
system identification [1, 21].

2.1 Fractional Calculus

Fractional integral:

Let n ∈ N∗ be a non zero integer,
a ∈ R and f(t) ∈ C∞([a,+∞[) the set of infinitely continuously differentiable
functions. The integration of order n of the function f(t) is defined, according
to Cauchy’s formula, by:

Inaf(t) =
1

(n− 1)!

∫ t

a

f(τ)

(t− τ)1−n
dτ. (1)
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The generalization of the Cauchy formula to the fractional integration of order
γ ∈ R+, introduced by Riemann and Liouville, is given by [24]:

Iγaf(t) =
1

Γ(γ)

∫ t

a

f(τ)

(t− τ)1−γ
dτ, (2)

where

Γ(x) =

∫ ∞

0

e−ttx−1dt, ∀x ∈ R∗ \ N− (3)

is the Euler’s function or the generalized factorial. Note that for all n ∈ N

Γ(n+ 1) = n!, (4)

and for all γ ∈ R+

γΓ(γ) = Γ(γ + 1). (5)

Fractional derivative:

Let γ ∈ R+ be a positive real number, n = min{k ∈ N | k > γ} the smallest
integer greater than γ and ν = n−γ ∈ [0, 1[. The fractional derivative of order
γ = n − ν of a function f ∈ C∞([a,+∞[) at time t, denoted by Dγ

af(t), is
defined by the nth order derivative of the fractional integral of order ν:

Dγ
af(t) = Dn

(
Iνaf(t)

)
≜

( d

dt

)n( 1

Γ(ν)

∫ t

a

f(τ)

(t− τ)1−ν
dτ

)
. (6)

If γ = n ∈ N, the fractional derivative coincides with the ordinary derivative:

Dγ
af(t) = Dn

af(t).

If γ < 0, the fractional derivative is in fact the fractional integral:

Dγ
af(t) = I−γ

a f(t).

Properties of differentiability, integrability and commutativity of the fractional
operator can be found in [28].

In systems theory, the signal space is defined as the space of causal functions
Ha given by:

Ha ≜ {f : R 7→ R | f ∈ C∞([a,+∞[),

f(t) = 0,∀t ≤ a}. (7)

The operator Dγ
a is an endomorphism from Ha to Ha [28].
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Let R[Dγ
a] be the set of Dγ

a-polynomials with real coefficients of the form
K∑

k=0

ckD
kγ
a . One can easily verify that such set, endowed with the usual addition

and multiplication of polynomials (R[Dγ
a],+,×), is a commutative principal

ideal domain.
Let p and q ∈ N, we denote by R[Dγ

a]
p×q the set of Dγ

a-polynomial matrices
of size p × q. An invertible square matrix of R[Dγ

a]
p×p whose inverse is also

in R[Dγ
a]

p×p is called unimodular matrix. The set of unimodular matrices is
denoted byGLp(R[Dγ

a]).D
γ
a-polynomial matrices admit the following property

([2]):

Theorem 1 A matrix M ∈ R[Dγ
a ]

p×q with p ≤ q (resp. p ≥ q) is said to be
hyper-regular if, and only if, there exists a matrix U ∈ GLp(R[Dγ

a ]) (resp. V ∈
GLq(R[Dγ

a ])) such that:

MU =
(
Ip 0p×(q−p)

) (
resp. VM =

(
Iq

0(p−q)×q

))
. (8)

The decomposition (8) of the matrix M is called Smith diagonal decompo-
sition.

2.2 Flatness of fractional order Linear System

The state representation of a fractional order linear system, called pseudo-state
representation1 where x ∈ (Ha)

n represents the n-dimensional pseudo-state
vector, u ∈ (Ha)

m is the m-dimensional control vector, A ∈ Rn×n and B ∈
Rn×m are real matrices. The matrix B is supposed to be of rank m and m ≤ n.
The controllability and observability properties of such systems can be found
in ([15]).

The system (9) can be written into the form:

Ax = Bu (10)

where A ∈ R[Dγ
a]

n×n and B ∈ R[Dγ
a]

n×m are Dγ
a-polynomial matrices and B

is supposed to be of rank m. In turn, the system (10) can be transformed into
the form:

F

(
x
u

)
= 0 (11)

where F ≜
(
A −B

)
∈ R[Dγ

a]
n×(n+m) is assumed to be of full row rank.

Inspired by the work of [2] on the flatness of integer order linear systems,
the definition of fractional order linear flatness is then introduced by [36] as
follows:

1This notation is specified for the class of fractional order system and it refers to [27], is given
by:

x
(ν)

= Ax + Bu (9)
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Definition 1 The fractional order linear system (11) is said to be fractionally flat if,

and only if, there exist two matrices P ∈ R[Dγ
a ]

m×(n+m) and Q ∈ R[Dγ
a ]

(n+m)×m

and a vector z ∈ (Ha)
m such that

1. PQ = Im;

2. For all (x, u)T satisfying (11), we have z = P

(
x
u

)
and conversely

(
x
u

)
=

Qz.

The vector z is called fractional flat output vector and the matrices P and Q are
called defining matrices.

The main property of fractional order linear flatness is given by the
following theorem [36]:

Theorem 2 The system (11) is fractionally flat if, and only if, the matrix F is
hyper-regular over R[Dγ

a ].

The flatness-based FDI method, introduced in [23] for the class of nonlinear
systems, uses the measurement of the flat output to construct the redundant
sensors and actuators and then to generate residual signals. In the next section,
the flatness-based FDI for the class of fractional order systems is introduced.

3 Flatness-based FDI

3.1 Residual Generation

Consider the following linear system of fractional order ν:{
x(ν)(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(12)

where x ∈ (Ha)
n is the pseudo-state vector, u ∈ (Ha)

m the input vector,
y ∈ (Ha)

p the output vector of dimension p ≥ m, and A, B, C and D are real
matrices with proper dimensions.

We suppose that the system (12) is flat with z = (z1, . . . , zm) ∈ (Ha)
m as a

fractional flat output. Then, according to Definition 1, the expressions of the
state, input and output vectors are linear combinations of the fractional flat
output z and its successive fractional derivatives:

xi =

m∑
j=1

αj∑
k=1

ai,j,kz
(kν)
j i = 1, . . . , n (13)

ul =

m∑
j=1

αj+1∑
k=1

bl,j,kz
(kν)
j l = 1, . . . ,m (14)
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yq =

m∑
j=1

βj∑
k=1

cq,j,kz
(kν)
j q = 1, . . . , p. (15)

In turn, the fractional flat output z is a linear combination of x, u and
successive fractional derivatives of u:

z = h(x, u, u(ν), . . . , u(κν)). (16)

In the following, we suppose that the components y1, . . . , yp of the out-
put y are measured by sensors S1, . . . ,Sp, respectively, and we denote their
measurements by:

ys = (ys1, . . . , y
s
p). (17)

Moreover, the values of the input components u1, . . . , um, corresponding to the
actuators A1, . . . ,Am, are assumed to be available at every time. Therefore,
we denote by

ζ = (ys1, . . . , y
s
p, u1, . . . , um) (18)

the vector of dimension p+m of the available measurements.
The redundant input vector, denoted by uz, and the redundant output

vector, denoted by yz, are calculated by flatness using expressions (14) and
(15), respectively. For this reason, a necessary condition for this method to
be applicable is that the measurement of the components zi, for i = 1, . . . ,m,
of the fractional flat output must be available at every time. Then, residual
signals are defined by the difference between the available measurements and
their redundancies:

Definition 2 The kth-sensor residue RSk
and lth-input residue RAl

, for k = 1, . . . , p
and l = 1, . . . ,m, are given by:

RSk
= ysk − yzk, and RAl

= ul − uzl . (19)

respectively.

In total, we have p + m residues and we denote by r the full vector of
residues:

r = (rS1 , . . . , rSp , rA1 , . . . , rAm). (20)

3.2 Fault Detection and Isolation

For the aim of detecting and isolating faults on sensors and actuators of a
fractional order linear system, the following definition of fractional signature
matrix is introduced:
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Definition 3 (Fractional signature matrix) Given the vector of residues r defined
in (20) and ζ the vector of available measurements, defined in (18), the fractional
signature matrix, denoted by S and associated to the fractional flat output z, is given
by:

S =


ζ1 ζ2 . . . ζp+m

r1 σ1,1 σ1,2 . . . σ1,p+m

...
...

... . . .
...

rp+m σp+m,1 σp+m,2 . . . σp+m,p+m

 (21)

with

σi,j ≜


0 if ∂ri

∂ζ
(ϱν)
j

= 0 ∀ϱ ∈ {0, 1, . . .}

1 if ∃ ϱ ∈ {0, 1, . . .} s.t. ∂ri
∂ζ

(ϱν)
j

̸= 0
. (22)

A column Σj , for j = 1, . . . , p + m, of the signature matrix S indicates
whether a residue ri is or is not functionally affected by a fault on the measure-
ment ζj . Therefore, in (22), σi,j = 0 means that the residue ri is not affected
by a fault on the measurement ζj and σi,j = 1 otherwise.

Definition 4 (Fault alarm signature) A column Σj of the signature matrix S is
called fault alarm signature, associated to the sensor/actuator ζj .

In the following, definitions of the detectability and the isolability in the
fractional flatness context, are introduced:

Definition 5 (Detectability) A fault on a sensor/actuator ζj is detectable if, and
only if there exists at least one i ∈ {1, . . . , p} such that σi,j = 1.

Definition 6 (Isolability) A fault on a sensor Sk, k = 1, . . . , p, is said isolable if,
and only if, its corresponding fault alarm signature Σk in the signature matrix S is
distinct from the others, i.e.

Σk ̸= Σj , ∀j = 1, . . . , p+m, j ̸= k. (23)

An isolable fault on the actuator Al, for l = 1, . . . ,m, is defined analogously:

Σp+l ̸= Σj , ∀j = 1, . . . , p+m, j ̸= p+ l. (24)

In the next section, the proposed fractional flatness-based FDI method is
applied on the thermal bi-dimensional system. Moreover, the effectiveness of
this method is proved by simulations.
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4 Application to a Thermal Bi-dimensional
System

Thermal systems are those that involve the storage and transfer of heat. Exam-
ples of thermal systems are solar thermal systems, radiators, electric stove,
among many others. The thermal system paradigm is a popular example in
automatic control. It has been used as a benchmark for designing controllers,
trajectory planning and system diagnostic. In this section, the fractional
flatness-based FDI method is applied to the thermal bi-dimensional system.

4.1 System description

The proposed FDI method will be evaluated on a thermal bi-dimensional sys-
tem which is constituted by a two-dimensional isolated (without heat losses)
metallic sheet (see Figure 1). The variable T (x, y, t) represents the tempera-
ture at a point (x, y) at time t. The temperature is controlled by the heat flux
φ(t), applied at the point (0, 0).

Fig. 1 Thermal bi-dimensional system

The heated metallic model is represented by the following heat equation:( ∂2

∂x2
+

∂2

∂y2
− 1

α

∂

∂t

)
(T (x, y, t) + Tamb) = 0 (25)

where Tamb represents the ambient temperature. Then, this equation can be
written as follows: ( ∂2

∂x2
+

∂2

∂y2
− 1

α

∂

∂t

)
T (x, y, t) = 0 (26)

where α is the coefficient of diffusivity. In polar coordinates:

x = ρ cos(θ), y = ρ sin(θ), (27)
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equation (26) becomes:

1

α

∂T (ρ, θ, t)

∂t
=

∂2T (ρ, θ, t)

∂ρ2

+
1

ρ

∂T (ρ, θ, t)

∂ρ
+

1

ρ2
∂2T (ρ, θ, t)

∂2θ
. (28)

On the thermal bi-dimensional system, we consider the following conditions:

– the boundary conditions:

−λ lim
ρ→0

π

2
ρ
∂T (ρ, θ, t)

∂ρ
= φ(t) ∀t > 0 (29)

and

∂T (ρ, 0, t)

∂ρ
= 0 and

∂T (ρ, π
2 , t)

∂ρ
= 0, ∀ρ > 0 (30)

where λ is the coefficient of conductivity
– the limit condition:

lim
ρ→∞

T (ρ, θ, t) = 0 ∀ θ ∈
[
0,

π

2

]
, ∀t > 0 (31)

– the initial condition known as Cauchy condition:

T (ρ, θ, 0) = 0 ∀ρ > 0, ∀θ ∈
[
0,

π

2

]
. (32)

A method for resolving the bi-dimensional thermal system has been devel-
oped in [9]. In this method, a Fourier transformation is applied to a space
variable, which transforms the bi-dimensional system into a mono-dimensional
one. Then, the problem of mono-dimensional control has been solved using
the Laplace transformation of the variable t and the differential flatness. In
this paper, a solution for the system is determined using the Laplace transfor-
mation of the equation (28) and the method of separation of variables. The
solution is a modified Bessel function of second kind of order 0. This method
leads to polynomials in sν , where s ∈ C is the Laplace variable, in explicit
form, which are well adapted for the pseudo-state representation (12).

The Laplace transformation of the equation (28) is given by:

s

α
T̂ (ρ, θ, s) =

∂2T̂ (ρ, θ, s)

∂ρ2

+
1

ρ

∂T̂ (ρ, θ, s)

∂ρ
+

1

ρ2
∂2T̂ (ρ, θ, s)

∂2θ
(33)



Springer Nature 2021 LATEX template

Fault Detection and Isolation for fractional order Systems 11

where

T̂ (ρ, θ, s) =

∫ +∞

0

T (ρ, θ, t)e−stdt (34)

is the Laplace transformation of T (ρ, θ, t). Using the separation of variables

method, the temperature T̂ (ρ, θ, s) can be written into the form

T̂ (ρ, θ, s) = T̂ρ(ρ, s)T̂θ(θ, s) (35)

where T̂ρ(ρ, s) is function of ρ and s and T̂θ(θ, s) is function of θ and s. By
injecting (35) in (33), we get

ρ2

T̂ρ(ρ, s)

∂2T̂ρ(ρ, s)

∂ρ2
+

ρ

T̂ρ(ρ, s)

∂T̂ρ(ρ, s)

∂ρ

− sρ2

α
+

1

T̂θ(θ, s)

∂2T̂θ(θ, s)

∂θ2
= 0. (36)

Because of the symmetry of the metallic sheet, the temperature T̂θ(θ, s) is

constant with respect to θ, i.e. T̂θ(θ, s) = A1(s), then equation (36) becomes:

ρ2
∂2T̂ρ(ρ, s)

∂ρ2
+ ρ

∂T̂ρ(ρ, s)

∂ρ
− sρ2

α
T̂ρ(ρ, s) = 0 (37)

Equation (37) is a modified Bessel equation. Its solution is a modified Bessel
function of the form:

T̂ρ(ρ, s) = B1(s)I0

(
ρ

√
s

α

)
+B2(s)K0

(
ρ

√
s

α

)
. (38)

The modified Bessel function of the first kind I0 is an exponentially growing
function, then, according to the limit condition (31), B1(s) = 0, and hence:

T̂ρ(ρ, s) = B2(s)K0

(
ρ

√
s

α

)
. (39)

Finally, the solution of the thermal bi-dimensional system is given by:

T̂ (ρ, θ, s) = A1(s)B2(s)K0

(
ρ

√
s

α

)
. (40)

According to the boundary condition, the heat flux is given by:

φ̂(s) = λ lim
ρ→0

π

2
A1(s)B2(s) ρ

√
s

α
K1

(
ρ

√
s

α

)
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= lim
ρ→0

λ
π

2
A1(s)B2(s) ρ

√
s

α

1

ρ
√

s
α

(41)

= λ
π

2
A1(s)B2(s)

since

∂K0

(
ρ

√
s

α

)
∂ρ

= −
√

s

α
K1

(
ρ

√
s

α

)
and K1

(
ρ
√

s
α

)
∼ 1

ρ
√

s
α

in the

neighbourhood of 0.
The transfer function of the system, called the thermal impedance, is

defined by

Ĥ(ρ, θ, s) =
T̂ (ρ, θ, s)

φ̂(s)
=

A1(s)B2(s)K0

(
ρ

√
s

α

)
λπ

2A1(s)B2(s)
(42)

which, for ρ sufficiently large, is equivalent to:

Ĥ(ρ, θ, s) =
2
√
2π

λπ

1√
ρ

√
s

α

e
−ρ

√
s

α . (43)

Applying the Padé approximation at the order K of the pure delay [7] at
a point (x0, y0), which corresponds to (ρ0, θ0) with ρ0 =

√
x2
0 + y20 , gives:

ĤK(ρ0, θ0, s) ≈
√

2π
√
α

λπ
√
ρ0

K∑
k=0

(−1)kC ′
ks

k
2

K∑
k=0

C ′
ks

2k+1
4

(44)

with C ′
k = Ck

|CK| and Ck =
(2K− k)!K!

(2K!)k!(K− k)!

( ρ0√
α

)k

.

4.2 Pseudo-state Representation

The transfer function HK of the thermal bi-dimensional system is of fractional
order multiple of ν = 1

4 and can be written in the form of a pseudo-state
representation: {

X(ν) = AX +BU,

TK(x0, y0, t) = CX
(45)
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with

A =

(
0 −C ′

K−1 0 −C ′
K−2 · · · 0 −C ′

0 0
I2K 02K×1

)
(46)

is a real square matrix of dimension (2K+ 1),

B =

(
1

02K×1

)
∈ R(2K+1)×1, (47)

and

C =

√
2π

√
α

λπ
√
ρ0

(
(−1)KC ′

K 0 · · · 0 −C ′
1 0 C ′

0

)
∈ R1×(2K+1). (48)

The pseudo-state vector X is of size n = 2K+ 1 and denoted by

X =

 X0

...
X2K

 (49)

and the input U is the heat flux, i.e. U = φ(t). The dimension of the input
U and the output TK are respectively m = 1 and p = 1. The system (45) can
also be written into the form{

AX = BU

TK(x0, y0, t) = CX
(50)

where A is a R[D 1
4 ]-polynomial matrix of size (2K+1)×(2K+1) and given by

A =



D
1
4 C ′

K−1 0 · · · 0 C ′
0 0

−1 D
1
4 0 · · · · · · · · · 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 −1 D
1
4


. (51)

Using the Smith decomposition or the unimodular completion algorithm
for the computation of fractional flat outputs, we can prove that the system
(50) is a flat system and a fractional flat output of the thermal system (50) is
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given by:

Z = X2K. (52)

Therefore, the state X can be expressed using Z and its successive fractional
derivatives:

X =


D

K
2

D
K
2 − 1

4

...

D
1
4

1

Z. (53)

Moreover, the input U is computed by

U =

K∑
k=0

C ′
kD

2k+1
4 Z (54)

and the output TK is given by

TK = CX =

√
2π

√
α

λπ
√
ρ0

K∑
k=0

(−1)kC ′
kD

k
2 Z. (55)

4.3 Fault detection and isolation

In the thermal bi-dimensional system, the temperature at the point (x0, y0)
of the metallic sheet is measured. Thus, there is only one sensor at this point,
and the measured temperature is denoted by T s

K(x0, y0, t). Moreover, there is
a single actuator that produces the heat flux φ(t).

In order to compute the redundant output and redundant input using the
fractional flatness-based method, the measurement of the flat output Z must
be available at every time. For the thermal bi-dimensional system, the only
available measurements are the output T s

K(x0, y0, t) and the input φ(t). How-
ever, the measurement of the flat output Z, denoted by Zs, can be computed
from the measurement of the temperature T s

K(x0, y0, t). In fact, from (55) we
have

TK(x0, y0, t) = W (D
1
4 )Z(t) (56)

where W (D
1
4 ) is given by

W (D
1
4 ) =

√
2π

√
α

λπ
√
ρ0

K∑
k=0

(−1)kC ′
kD

k
2 . (57)
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W (D
1
4 ) is a (D

1
4 )-polynomial, its inverse is given by

Winv(D
1
4 ) =

λπ
√
ρ0√

2π
√
α

K∑
k=0

(−1)kC ′
kD

k
2

. (58)

Then, the measurement of the fractional flat output at every time is computed
by

Zs(t) = Winv(D
1
4 )T s

K(x0, y0, t). (59)

The redundant output, denoted by T z
K(x0, y0, t), is computed using (15),

and the redundant input, denoted by φz(t), is computed using (14). The
fractional derivatives of the flat output measurements are computed using
the function dn of the toolbox CRONE [26]. Then, the vector of residues,
associated to Zs, is given by

r =

(
RS

RA

)
=

(
T s
K(x0, y0, t)− T z

K(x0, y0, t)
φ(t)− φz(t)

)
. (60)

It is important to note that we work with an open-loop system. Then, only the
residue that depends on the measurement of the temperature T s

K is affected if
a fault occurs on the sensor S. Similarly, only the residue that depends on the
measurement of the heat flux φ is affected, if a fault occurs on the actuator
A. Then, the signature matrix S, associated to the fractional flat output Zs,
is given by:

S =

(
1 0
0 1

)
. (61)

According to Definition 5, all faults on the system sensor and actuator are
detectable, and according to Definition 6, all faults are isolable.

4.4 Simulation Results

The fractional flatness-based FDI method, applied on the thermal bi-
dimensional system, is proved by simulations.

4.4.1 Trajectory planning

In these simulations, the temperature goes from a resting state of temperature
T0 = 0◦C to a resting state of temperature Tf = 30◦C in a period of 2500s, at
the point x0 = 0.005m and y0 = 0.002m. Then, the initial and final conditions
of the temperature are the following:

T (x0, y0, 0) ≜ T0 = 0,
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T (x0, y0, tf ) ≜ Tf = 30, tf = 2500s,

T (l)(x0, y0, 0) = 0, l = 1, 2, (62)

T (l)(x0, y0, tf ) = 0, l = 1, 2.

Then, the desired reference trajectory is calculated by polynomial interpolation
of order 5:

Tref (t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5. (63)

The reference trajectory of the temperature Tref (t) and its derivatives are
illustrated in Figure 2. The reference trajectory of the fractional flat output
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0 500 1000 1500 2000 2500
0

0.01

0.02

0 500 1000 1500 2000 2500

Time [sec]

-2

0

2

10
-5

Fig. 2 Reference trajectory of the temperature T (x0, y0, t) and its derivatives

Zref (t) is deduced using (59) with K = 202, and it is illustrated in Figure 3.
Finally, a reference trajectory of the heat flux φref (t) is deduced by flatness

using (54). See Figure 4.
Figure 5 shows that, by applying the heat flux φref (t) on the system (45),

in the absence of perturbations, the output of the system follows its reference
trajectory.

In order to make the simulations close to the reality, white Gaussian noise
is added to the sensor and the actuator with a level corresponding to the actual
process level, see Table 1.

Mean Variance Power
Sensor 0 0.13 1× 10−2

Actuator 0 0.13 1× 10−2

Table 1 Parameter values of the added white Gaussian noise

2K = 20 is sufficient for the convergence of ĤK(ρ0, θ0, s) to Ĥ(ρ0, θ0, s) [36].
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Fig. 3 Reference trajectory of the flat output Zref (t)
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Fig. 4 Reference trajectory of the heat flux φ(t)

Since there is noise on the system sensor and actuator, a threshold is
fixed for each residue. For this purpose, several nominal simulations were
realized with different initial and final conditions. The amplitude of the detec-
tion threshold is calculated by selecting the worst case among all simulations
results, plus a 5% safety margin to avoid false alarms. The values of the max-
imum and minimum threshold for each residue are given in Table 2. In the
figures below, the thresholds are normalized between −1 and 1.

Max Min
RS [◦C] 0.0089 −0.0078
RA[W/m2] 0.0404 −0.1122

Table 2 Values of the maximum and minimum threshold for each residue
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Fig. 5 Reference trajectory vs. exact solution

Moreover, because of the presence of noise, a low-pass filter of order 4 and
cutoff frequency fc = 0.2Hz is used in order to filter the noise.

In the following, multiplicative and additive faults are applied on the sensor
and the actuator, separately.

4.4.2 Multiplicative sensor fault

For multiplicative sensor fault, at time t = 1000s, the sensor measures only 80%
of the temperature, so the actual temperature is 20% above the measurement
indicated by the sensor. On the other hand, since there is no controller on the
system, the input φ(t) and therefore the system states including the fractional
flat output Z(t) are not affected by this fault. The redundant output and the
redundant input are then calculated analytically, using the flat output Z(t).
The residue vector associated to the flat output Z(t) is calculated by the
difference between the measurements and their redundancies. In the case of
multiplicative fault on the sensor, only the residue RS is affected by the fault
on the sensor, see Figure 6, which corresponds to the fault alarm signature

Σ1 =

(
1
0

)
(64)

of the signature matrix S given in (61).

4.4.3 Multiplicative actuator fault

At time t = 1000s, a multiplicative fault is applied to the actuator, that is
the actuator can provide only 80% of the reference trajectory of the heat
flux φref (t). Moreover, the fault on the actuator affects the system states,
including the flat output, and therefore affects the system output. In order to
construct the residue vector, first the value of the flat output Zs(t) is computed
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Fig. 6 Multiplicative fault on the sensor at time t = 1000s

using relation (59). Then, the redundant input φz(t) and the redundant output
T z(x0, y0, t) are computed using (14) and (15).

Finally, the vector of residues can be computed, see Figure 7. The fault
that affects the actuator, affects only the residue RA, which corresponds to the
fault alarm signature

Σ2 =

(
0
1

)
(65)

of the signature matrix S given in (61). Then, all multiplicative faults on
the thermal bi-dimensional system can be detected and isolated using the
fractional flatness-based FDI method.
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Fig. 7 Multiplicative fault on the actuator at time t = 1000s
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4.4.4 Additive sensor and actuator faults

Additive faults on the sensor and the actuator are represented by biases. For
the sensor fault, a +2◦C is added to the temperature at time t = 1000s, and
for the actuator fault an extra heat flux of 102 W/m2 is added to the heat
flux. The residue values are illustrated in Figures 8 and 9.
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Fig. 8 Additive fault on the sensor at time t = 1000s
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Fig. 9 Additive fault on the actuator at time t = 1000s

The same signature matrix obtained theoretically:

S =

(
1 0
0 1

)
. (66)

Then, additive faults are also detectable and isolable using the fractional
flatness-based FDI method.
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5 Conclusion

In this paper, the flatness-based FDI method, introduced in [23], and gener-
alized in [29], has been extended to the class of fractional order linear flat
systems, in order to detect and isolate faults on sensors and actuators. In
particular, definitions of residual generation, signature matrix, detectability
and isolability were extended. This new method of FDI has been applied
on the thermal bi-dimensional system and its efficiency has been proved by
simulations on an open-loop system.

This paper presents a first work for the generalization of the flatness-based
FDI method to the class of fractional order linear systems. Future work must
take into account the impact of a controller on the system, and apply it to a
real thermal system such as the thermal bar. Moreover, since the FDI process
is a stage of the FTC process, a study can be made to show the effectiveness
of the fractional flatness-based method on the control reconfiguration and the
fault tolerant control.
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International journal of thermal sciences, 39(3):374–389, 2000.

[9] Nader Belghith, Michel Fliess, François Ollivier, and Alexandre
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