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Abstract
Fault detection and isolation on hydraulic systems are
very important to ensure safety and avoid disasters.
In this paper, a fault detection and isolation method,
based on the flatness property of nonlinear systems,
is experimentally applied on the three-tank system,
which is considered as a popular prototype of hydraulic
systems. Specifically, fault indicators, called residues,
are generated using flat output measurements, and for
the purpose of fault isolation, a definition of the isola-
bility is introduced. This definition allows the charac-
terization of flat outputs that are useful for fault iso-
lation. Multiplicative faults are considered on sensors
and actuators.
Keywords— Hydraulic system, Flat system, Fault

detection and isolation, Three-tank system

1 Introduction
The three-tank system is considered as a representa-
tive process of the aircraft fuel tank system, used by
researchers to test various fault detection and isolation
(FDI) methods. The fuel storage in the tanks and fuel
consumption have a significant impact on the CG posi-
tion of the aircraft [7]. In particular, the position of the
center of gravity (CG) of an aircraft is very important
for its stability and safety. Therefore, controlling fuel
levels in each tank is essential to providing the desired
CG position and guarantee the safety of the aircraft.
To do this, it is important to have correct information
about the fuel level in each tank and to have fuel flow
supervision. Accordingly, any fault on the aircraft fuel
system sensors or actuators may affect the aircraft’s
CG control and cause disasters. For this purpose, the
application of a FDI technique on the aircraft fuel tank
system is important to detect and isolate faults on sen-
sors and actuators.

The three-tank system has been considered previ-
ously for validation of FDI methodologies. The authors
in [6] tested a robust fault detection filter in order to
detect and isolate faults on the three-tank sensors and
actuators, and in [15], a nonlinear observer has been

designed, based on the nonlinear model of the three-
tank system, in order to detect a leakage from a pipe.

FDI methods are classically based on the notion of
redundant measurements which can be obtained either
by multiple sensors or analytical components generat-
ing fault indicators, called residues. They represent
the gap between each measurement (physical or ana-
lytical). For survey papers on FDI see [22, 17]. In the
ideal case of noise free observations, if all the residues
are equal to zero, then there is no fault on the system.
However, if at least one residue is different from zero,
then a fault is detected. In practice, due to the pres-
ence of noise on the system, the residues are compared
next to fixed thresholds. If at least one residue exceeds
its threshold, then a fault is detected, otherwise, there
is no fault on the system. Studies on tuning thresholds
can be found in [1, 5].

Recently, FDI methods based on the flatness prop-
erty of nonlinear systems have also been shown to be
effective in detecting and isolating faults on sensors and
actuators (see [9, 16, 10]). Roughly speaking, we recall
that a nonlinear system is said to be flat if there exists
a variable z, called flat output, such that all the system
states, inputs and outputs can be expressed in function
of z and a finite number of its successive time deriva-
tives. In [9], the flatness-based FDI method is used to
estimate actuator faults only. The developed method
in [16] is applied to linear systems and takes into ac-
count only sensor faults. In [10], the proposed flatness-
based FDI method can be applied on both linear and
nonlinear systems and takes into account sensor and
actuator faults. In this method, the measurement of
the flat output is used to calculate the redundant vari-
ables. However, due to the presence of noise, the flat
output derivatives may not be defined, then they are
estimated using a high-gain observer coupled with a
low-pass filter to improve its performance. The fault
detection is common with the other FDI methods: if a
residue exceeds its threshold, then a fault is detected.
However, the isolability is more complex and depends
on the chosen flat output, and sometimes multiple flat
outputs are needed to isolate all faults [18]. Neverthe-
less, the choice of these flat outputs is not arbitrary,
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i.e. there are flat outputs that, when used together, in-
crease the isolability of faults and others that do not.

Recently, in [13], an open-loop characterization of
the flat outputs is briefly presented. It allows the choice
of flat outputs that are independent, which is useful for
the isolability. In the present work, a full presentation
of this flat output characterization to the case of open
or closed-loop systems is presented. This approach is
applied experimentally on the three-tank benchmark.
In this context, this paper is organized as follows: Sec-
tion 2 describes the benchmark. The flatness-based
fault detection and isolation is presented in Section 3.
Section 4 presents the extension of the characterization
of the flat outputs in closed-loop system. The experi-
mental results are given in Section 5. Finally, Section 6
concludes the paper.

2 Description of the Three-Tank
System

In this paper, all the experiments were performed on
the three-tank system represented in Figure 1.

Figure 1: Three-tank system.

The three-tank system is about three cylindrical
tanks of cross-sectional area S, connected to each other
by means of pipes of section Sn. Each tank is also con-
nected to the central reservoir through a pipe. Three
piezo-resistive pressure transducer are installed on the
top of each tank to measure the corresponding water
level. The water is pumped from the central reser-
voir into tanks T1 and T2 with the help of two pumps
P1 and P2. The incoming flows, by unit of surface S,
into tanks T1 and T2 are denoted by u1(t) and u2(t),
respectively and correspond to the voltage command
sent by the computer multiplied by a constant gain.
The actuator’s dynamics are negligible with respect to
the system’s dynamics. The water level in tank Ti is
denoted by xi(t) ≥ 0, i = 1, 2, 3. The maximum water

level in any tank is denoted by hmax and the maximum
incoming flow rate is denoted by umax. A descriptive
scheme of the system is presented in Figure 2.

Figure 2: Scheme of the three-tank System, Source: [12]

The explicit system of equations that describes the
dynamic of the three-tank model is given by:

ẋ1 = −Q10(x1)−Q13(x1, x3) + u1 (1)
ẋ2 = −Q20(x2) +Q32(x2, x3) + u2 (2)
ẋ3 = Q13(x1, x3)−Q32(x2, x3)−Q30(x3) (3)

where Qi0, i = 1, 2, 3 represents the outflow by unit of
surface S between each tank and the central reservoir,
Q13 is the outflow between tank T1 and tank T3 and
Q32 the outflow between tank T3 and tank T2. In this
study, the valves that linking tanks T1 and T3 to the
central reservoir are considered closed, i.e. Q10 ≡ 0 and
Q30 ≡ 0. The outflows by unit of surface S are given
by:

Q13(x1, x3) = µ13 sgn(x1 − x3)
√
|x1 − x3| (4)

Q20(x2) = µ20 sgn(x2)
√
|x2| (5)

Q32(x2, x3) = µ32 sgn(x2 − x3)
√
|x3 − x2| (6)

where µ13, µ20 and µ32 are the flow coefficients and sgn
is the sign function given by:

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

. (7)

The parameters’ values of the three-tank system are
given in Table 1.

The experimental setup is composed of a DTS200
three-tank benchmark connected to a Windows7 PC
using a MF624 plug-in card. Matlab/Simulink version
R2008b is available on the development PC.
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Parameters Symbol Value
Tank sectional area S 0.0154 m2

Pipes sectional area Sn 5× 10−5 m2

Outflow coefficient µ13 8.5273× 10−5

Outflow coefficient µ32 8.5563× 10−5

Outflow coefficient µ20 1.5901× 10−4

Maximum water level hmax 0.62 m
Maximum flow rate umax 10−4 m3/s

Table 1: Parameters’ values of the three-tank benchmark.

For the FDI purpose, the three-tank model provides
the application of any type of fault on both sensors and
actuators:

(i) Multiplicative faults: sensor and actuator gains
may be reduced from 100% (total measurement)
to 0% (complete measurement failure);

(i) Additive faults: sensors and actuators may present
biases on their measurements.

Therefore, the sum of sensor and actuator faults can
be expressed mathematically by [14]:

Sfi (t) = αiSi(t) + Si0

Afj (t) = βjAj(t) + Aj0

where Sfi (t) and Si(t) (resp. Afj (t) and Aj(t)) denote
faulty and unfaulty ith sensor (resp. jth actuator) re-
spectively, Si0 and Aj0 are the biases of ith sensor
and jth actuator respectively, and 0 ≤ αi ≤ 1 and
0 ≤ βj ≤ 1 are gain loss factors.
Hypothesis: In the sequel, we assume that there is

only one fault at a time affecting sensors or actuators.
In the next section, we recall the flatness-based FDI

method developed in [10] and we fully define the char-
acterization of flat outputs to the case of a closed-loop
system, in order to isolate faults.

3 Flatness-Based FDI

3.1 Flatness-based residual generation
Consider the following nonlinear system{

ẋ = f(x, u)

y = h(x, u)
(8)

where x = (x1, . . . , xn)T is the state vector, belongs
to an n-dimensional manifold X, u = (u1, . . . , um)T ∈
Rm is the input vector, y = (y1, . . . , yp)

T ∈ Rp is the
measured output, m ≤ n, p ≥ m and rank

(
∂f
∂u

)
=

m. In the sequel, we denote by ξ = (ξ, ξ̇, . . .) ∈ Rm∞
the sequence of infinite order jets of a vector ξ and

ξ
(α)

, (ξ, ξ̇, . . . , ξ(α)) the truncation at the finite order
α ∈ N. Let (x, u) , (x, u, u̇, ü, . . .) be a prolongation of
the coordinates (x, u) to the manifold of jets of infinite
order X , X × Rm∞ [8, Chapter 5].

Definition 1 ([2]). The system (8) is said to be flat
at a point (x0, u0) ∈ X if, and only if, there exist a
vector z = (z1, . . . , zm)T ∈ Rm and two applications
ψ, defined on a neighbourhood V of (x0, u0) ∈ X, and
ϕ = (ϕ0, ϕ1, . . .), defined on a neighbourhood W of
ψ(V) of z = (z, ż, . . .) , ψ(x0, u0) such that:

1. z is a function of x, u and successive derivatives
of u up to a finite order ν:

z = ψ(x, u, u̇, . . . , u(ν)); (9)

2. In turn, x and u are functions of z and its succes-
sive derivatives up to a finite order ρ:

(x, u) = (ϕ0(z, ż, . . . , z(ρ)), ϕ1(z, ż, . . . , z(ρ+1))),
(10)

hence, the expression of the output y is given by:

y = h(ϕ0(z, ż, . . . , z(ρ)), ϕ1(z, ż, . . . , z(ρ+1)));
(11)

3. The differential equation dϕ0

dt = f(ϕ0, ϕ1) is iden-
tically satisfied.

The vector z is called flat output of the system and its
components z1, . . . , zm and their successive derivatives
are linearly independent. The mappings ψ and ϕ are
called isomorphisms of Lie-Bäcklund and are inverse of
one another.

Remark 1 ([4]). The property of flatness is not de-
fined globally on the state space X. It means that there
may exist points on X where the system is not flat,
or, in other words, where the isomorphisms of Lie-
Bäcklund ψ and ϕ are not defined. The set of such
points is called the set of intrinsic singularities. In [4]
it is shown that the set of equilibrium points that are
not first order controllable, is included in the set of
intrinsic singularities.

Let us assume the system (8) is flat with z =
(z1, . . . , zm)T as flat output. We also suppose that the
full output y is measured by sensors S1, . . . ,Sp and we
denote its measurement by

ys = (ys1, . . . , y
s
p)
T . (12)

Moreover, we assume that the values u1, . . . , um of
the input vector u, corresponding to the actuators
A1, . . . ,Am, are available at any moment.

In order to detect and isolate faults on physical sen-
sors and actuators, their analytical measurements must
first be computed. Equations (10) and (11) provide
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an efficient way to construct these analytical measure-
ments, as long as the measurement of the flat output is
available during the system process. In the following,
we suppose that the measurement of the flat output is
available and we denote it by:

zs = (zs1, . . . , z
s
m)T . (13)

According to (10), the analytical state xz and input
uz, constructed via the flat output (13), read:

xz = ϕ0(zs
(ρ)

) and uz = ϕ1(zs
(ρ+1)

), (14)

and the analytical output yzk, is given, according to
(11), by:

yzk , hk(ϕ0(zs
(ρ)

), ϕ1(zs
(ρ+1)

)). (15)

The following definition of residues is borrowed from
[13]:

Definition 2. The kth-sensor residue RSk , for k =
1, . . . , p, and the lth-input residue RAl , for l = 1, . . . ,m,
are given by:

RSk = ysk − yzk, RAl = ul − uzl , (16)

respectively.

Then, the full vector of residues, denoted by r, is of
dimension p+m and given by:

r = (RS1
, . . . , RSm , RSm+1

, . . . , RSp , RA1
, . . . , RAm)T

= (r1, . . . , rm, rm+1, . . . , rp, rp+1, . . . , rp+m)T . (17)

Remark 2. We can consider, without loss of general-
ity, that:

zs = (ys1, . . . , y
s
m)T . (18)

In this case, the first m components of yz are equal to
the corresponding components of zs, then

yz = (zs, h̃(ϕ0(zs
(ρ)

), ϕ1(zs
(ρ+1)

)))T (19)

with

h̃ = hm+1(ϕ0(zs
(ρ)

),ϕ1(zs
(ρ+1)

), . . . ,

hp(ϕ0(zs
(ρ)

), ϕ1(zs
(ρ+1)

).

Hence, the first m residues are identically zero, and the
vector (17) becomes:

r = (0, . . . , 0, rm+1, . . . , rp, rp+1, . . . , rp+m)T . (20)

A zero residue means that even if a fault occurs on
one sensor or actuator, this residue cannot be affected.
Then, it is not useful either for detection or isolation
of the fault and we eliminate it from (20), which will
be truncated to the last p components:

rτ = (RSm+1
, . . . , RSp , RA1

, . . . , RAm)T

= (rτ1 , rτ2 , . . . , rτp)T . (21)

Remark 3. The components zs1, . . . , zsm of the flat out-
put (13), must be derivated in order to calculate the
values of yz and uz. However, these derivatives may
not exist because of the presence of noise on system’s
sensors and actuators. So these derivatives have to
be estimated. Many methods have been developed in
the literature and can be used here, we cite among
them the algebraic derivative estimation [11, 21] and
high-gain observers [20]. In the three-tank model, the
noise on the measurements are the water bubbles due
to the water falling from the top of tanks T1 and T2
through pumps P1 and P2. In our experiments on the
real three-tank system, we use a Butterworth low-pass
filter of order N = 4 and cutoff frequency fc = 0.35 HZ
to filter noise, together with discrete filtered derivative
represented by the following transfer function [3]:(K

T

) z − 1

z + Ts/T − 1
(22)

where K = 1 is the gain, T = 20 s is the time constant
and Ts = 1 s is the sample time.

3.2 Fault Detection and Isolation
In order to detect and isolate faults using the flatness-
based approach, we use the notions of signature matrix
and fault alarm signature introduced in [13]:

Definition 3 (Signature matrix). Given the vec-
tor of residue r defined in (17) and ζ =
(ys1, . . . , y

s
p, u1, . . . , um)T ∈ Rp+m the vector of avail-

able measurements, we define the signature matrix as-
sociated to zs, the matrix S given by:

S =

 σ1,1 σ1,2 . . . σ1,p+m
...

... . . .
...

σp+m,1 σp+m,2 . . . σp+m,p+m

 (23)

with

σi,j ,

 0 if
∂rτi
∂ζ

(%)
j

= 0 ∀% ∈ {0, 1, . . .},

1 if ∃ % ∈ {0, 1, . . .} s.t.
∂rτi
∂ζ

(%)
j

6= 0.
(24)

Let Σj , for j = 1, . . . , p + m, be the jth-column of
the matrix S. Σj indicates if a residue ri is or is not
functionally affected by a fault on the measurement ζj :
σi,j = 0 means that ri is not affected by a fault on ζj
and σi,j = 1 if it is affected.

Definition 4 (Fault alarm signature). Each column
Σj of the signature matrix S is called fault alarm
signature or simply signature, associated to the sen-
sor/actuator ζj .

Remark 4. Given that the flat outputs are measured
by sensors (see Remark 2), the dimension of the signa-
ture matrix S will be reduced to p× (p+m).
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The following definitions of detectability and isola-
bility in the flatness context are borrowed from [13]:

Definition 5 (Detectability). A fault on a sen-
sor/actuator ζj is detectable if, and only if, there exists
at least one i ∈ {1, . . . , p+m} such that σi,j = 1.

Definition 6 (Isolability). A fault on a sensor Sk,
k = 1, . . . , p, is said isolable if, and only if, its cor-
responding fault alarm signature Σk in the signature
matrix S is distinct from the others, i.e.

Σk 6= Σj , ∀j = 1, . . . , p+m, j 6= k. (25)

An isolable fault on the actuator Al, for l = 1, . . . ,m,
is defined analogously:

Σp+l 6= Σj , ∀j = 1, . . . , p+m, j 6= p+ l. (26)

This definition of isolability reflects the fact that if
the signature matrix S has two identical signatures
Σi = Σj with i 6= j, then a fault that affects the sen-
sor/actuator ζi or ζj cannot be isolated. Therefore, in
order to be able to isolate as many faults as possible,
we need to increase the number of the residues by us-
ing several flat outputs. These flat outputs must be
independent, in the sense that if a fault affects one flat
output, not all the residues will be affected [19]. In the
next section, a characterization of the relation between
flat outputs is discussed.

4 Flat Output Characterization
We suppose that the flat system (8) admits different
flat outputs whose measurements are available. We
also define by µ the number of distinct signatures of
the matrix S, associated to a flat output, then µ is
the number of isolated faults. So, in order to get more
isolability of faults, we need to increase the number of
distinct signatures µ.

In the following, we denote the ith element of the set
of q flat output vectors Zi by

Zi = (zi1, . . . , zim)T . (27)

In order to characterize the flat outputs, the notion of
augmented signature matrix is defined:

Definition 7 (Augmented signature matrix). Let
Z1, . . . , Zq be q different measured flat outputs of the
flat system (8). The augmented signature matrix S̃
associated to Z1, . . . , Zq is defined by:

S̃ =


S1

S2

...
Sq

 (28)

where Si is the signature matrix associated to the flat
output vector Zi.

Definition 8 (Independence). Let S̃ be the augmented
signature matrix associated to Z1 and Z2:

S̃ =

(
S1

S2

)
,

µi, i = 1, 2, the number of distinct signatures of the
matrix Si and µ̃ the number of distinct signatures of
the augmented matrix S̃. We say that Z1 and Z2 are
independent if, and only if,

µ̃ > µ1 and µ̃ > µ2. (29)

According to Definition 8, the condition of full isola-
bility is achieved if the augmented matrix

S̃ =


S1

S2

...
Sq

 (30)

has p+m distinct signatures, i.e. µ̃ = p+m.
In [13], this characterization of the flat outputs is ap-

plied on the three-tank system in the open loop case,
and two flat outputs are needed to achieve full isolabil-
ity. In the open loop case, a fault that affects a sensor
has no impact on the actuators.

In this paper, we focus on the closed-loop case. As
such, the control action depends on the measured out-
puts. Therefore, a fault in a closed-loop system is prop-
agated with the feedback loop, increasing the difficulty
of fault isolation. For the system (8), this implies that
at least one input component ul is related to an output
measurement ysk. Then, the expression of the control
input ul is given by:

ul = urefl + Cl,k(yrefk − ysk) (31)

where, urefl and yrefk are the reference input and output
trajectories, respectively, and Cl,k denotes the discrete-
time feedback controller between the lth control input
and the kth measured output. In this case, the lth input
residue RAl is given by:

RAl = ul − uzl (32)

where ul is replaced by (31). So a fault that appears
on the sensor Sk and affects originally only the residue
RSk , in the closed-loop case, affects both residues RSk

and RAl .

5 Experimental Results
In this section, experiments on the three-tank system
are presented in order to show the effectiveness of the
flatness-based FDI method and the characterization of
the flat outputs. First, subsection 5.1 represents the
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flatness analysis of the three-tank model. Then, sub-
section 5.2 represents the path tracking, using the flat-
ness property, and the the controller applied on the
system. Finally, subsection 5.3 represents theoretical
and experimental results of FDI.

5.1 Flatness analysis of the three-tank
system

In the three-tank system, the only equilibrium point
which is not first order controllable, or that represents
an intrinsic singularity (see Remark 1) is where the
water level is equal in all three tanks, i.e. x1 = x2 =
x3. To avoid this singularity, we consider the following
configuration:

(C) : x1 > x3 > x2 > 0.

According to Definition 1, we can show that the three-
tank system (1)-(2)-(3) is flat with

z = (x1, x3)T = (z1, z2)T (33)

a flat output. In fact, from (3) and using (4) and (6),
it is easy to express x2 in function of z:

x2 = z2 −
1

µ2
32

(
− ż2 + µ13

√
z1 − z2

)2
. (34)

In addition, from (1) and (4), u1 is given by:

u1 = ż1 + µ13

√
z1 − z2 , (35)

and from (2) and (34), u2 is expressed by

u2 = ẋ2 + µ20
√
x2 − µ32

√
z2 − x2 (36)

and clearly x1 = z1 and x3 = z2, which proves that
z = (x1, x3)T is a flat output of the three-tank system.

5.2 Path tracking and control of the
system

In control theory, the concept of path tracking consists
in finding control input values allowing the system to
follow a predefined reference trajectory. The flatness
property ensures the calculation of the control variables
in a very simple way. One needs only to calculate a tra-
jectory t 7→ zref (t), sufficiently differentiable, for the
flat output z then, since the variables x and u are func-
tions of z and its successive derivatives, the reference
trajectory t 7→ (xref (t), uref (t)) of the system is de-
duced by differentiating t 7→ zref (t) a finite number of
times. Concerning our three-tank system experiments,
a reference trajectory of the system is generated using
the flat output z = (x1, x3)T . The initial and final
conditions for the flat output are given by:

x1i = 0.2 m, x1f = 0.35 m

x3i = 0.15 m, x3f = 0.25 m (37)

The initial and final times are respectively ti = 0 s and
tf = 400 s. The trajectory t 7→ zref (t), that does not
satisfy any differential equation, is calculated using a
fifth order polynomial interpolation [8].

In order to control the system against external faults
and disturbances, the following PI controllers, that are
already implemented on the system, are used to control
the water level in tanks T1 and T2 [10]:

C1(s) = −10−3
11.5s+ 1

11.5s
(38)

C2(s) = −10−3
12.5s+ 1

12.5s
(39)

where s is the Laplace variable. The output of the
system in the fault free case is represented in Figure 3.

Figure 3: Reference trajectories vs. measurements of
the water level in each tank, in the fault free case.

5.3 Results on FDI

Sensors on the three-tank system are S1, S2 and S3 and
they measure the water level in each tank, respectively
so the measured output is given by:

ys = (xs1, x
s
2, x

s
3)T , (ys1, y

s
2, y

s
3)T . (40)

Pumps P1 and P2 are the actuators of the system and
we denote them by A1 and A2 and their outgoing flows
are denoted by u1 and u2, respectively.

In this paper, we show that a single flat output vec-
tor is not sufficient to isolate all possible faults on the
three-tank system and that we need a second flat out-
put to ensure full isolability. So two cases are repre-
sented: using one flat output and using two flat out-
puts.
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Case A: using one flat output

As shown in section 5.1, the three-tank system is flat
with z = (x1, x3)T as flat output. Components of the
flat output are measured by sensors S1 and S3 and their
measurements are denoted by:

zs = (ys1, y
s
3)T , (zs1, z

s
2)T . (41)

In order to construct the vector of residues, the redun-
dant inputs and outputs are firstly computed using (14)
and (15):

yz1 = zs1

yz2 = zs2 −
1

µ2
32

(
− żs2 + µ13

√
zs1 − zs2

)2
yz3 = zs2 (42)

uz1 = żs1 + µ13

√
zs1 − zs2

uz2 = ẏz2 − µ32

√
zs2 − yz2 + µ20

√
yz2 .

Then, the vector of residues associated to zs is given
by:

r =


RS1

RS2

RS3

RA1

RA2

 =


ys1
ys2
ys3
u1
u2

−

yz1
yz2
yz3
uz1
uz2

 . (43)

Nevertheless, according to Remark 2, residues RS1
and

RS3 are identically zero, hence the vector r is truncated
to:

rτ = (RS2
, RA1

, RA2
)T , (rτ1 , rτ2 , rτ3)T . (44)

The vector ζ of measured variables, introduced in Def-
inition 3, is given by:

ζ = (xs1, x
s
2, x

s
3, u1, u2) ∈ R5. (45)

Therefore, the signature matrix S, associated to zs, is
of dimension 3× 5:

S =

σ1,1 σ1,2 σ1,3 σ1,4 σ1,5
σ2,1 σ2,2 σ2,3 σ2,4 σ2,5
σ3,1 σ3,2 σ3,3 σ3,4 σ3,5

 (46)

and constructed as follows:

– All the residues in (44) depend on the measure-
ment of sensors S1 and S3 (see (42)), then the first
and the third columns of the signature matrix con-
tain only ones:

σi,1 = σi,3 = 1, ∀i = 1, 2, 3.

– Only residues rτ1 and rτ3 depend on the measure-
ment of sensor S2, then the second column will be
such that:

σ1,2 = σ3,2 = 1 and σ2,2 = 0.

– Since rτ2 depends only on u1 and rτ3 depends only
on u2, column 4 and column 5 of S are such that:

σ2,4 = 1 and σi,4 = 0 ∀i = 1, . . . , 3, i 6= 2

and

σ3,5 = 1 and σi,5 = 0 ∀i = 1, . . . , 3, i 6= 3

respectively.

Hence, the signature matrix (46) becomes:

S =

1 1 1 0 0
1 0 1 1 0
1 1 1 0 1

 . (47)

Theoretically, according to Definition 5, all faults on
the system sensors and actuators are detectable. In
addition, since fault alarm signatures Σ2, Σ4 and Σ5

are distinct, faults on sensor S2 and actuators A1 and
A2 are isolable, according to Definition 6. This reflects
the fact that if, at some point during system operation,
a fault alarm is launched with the signature Σ2 then
we conclude that the sensor S2 is faulty. However, if
we obtain a signature like Σ1, the fault could be on
the sensor S1 or S3, since signatures Σ1 and Σ3 are
identical. Then, a fault on S1 or S3 cannot be isolated.

Experimentally, as mentioned in Section 2, both ad-
ditive and multiplicative faults can be applied on the
DTS200 three-tank system. In this paper, we add mul-
tiplicative faults on all the system sensors and actua-
tors. Moreover, due to the presence of noise on the
system, thresholds for each residue are fixed: several
nominal experiments were run, i.e. without introduc-
ing any fault on system sensors and actuators. For each
experiment, the initial and final values of the reference
trajectory are modified. The maximum and minimum
values of the residues are extracted in each experiment,
and the amplitude of the threshold is fixed by choosing
the worst case among all the calculated residues. A
safety margin of 5% is added to avoid false alarms.

For multiplicative faults we consider a 20% failure
for sensors and actuators. At time t = 200 s, sensors
measure 80% of the actual water level measurements
instead of 100%, and for actuators, a 20% failure is
considered:

– Consider a fault that affects sensor S2, then the as-
sociated residue rτ1 is triggered. In addition, when
the sensor loses 20% of its measurement, the sys-
tem reacts as there is a loss of water in tank T2,
and then pump P2 puts in more work to cover
this loss, so the residue rτ3 exceeds its threshold
temporarily (see Figure 4), which confirms the sig-
nature Σ2 of S.

– When a fault affects the actuator A1, only its cor-
responding residue rτ2 exceeds its threshold (see

7



Figure 4: Case A: residues responses to a fault on sen-
sor S2.

Figure 5) which confirms the signature Σ4 of S.
Similarly, only the residue rτ3 is triggered once a
fault affects the actuator A2 (see Figure 6) which
confirms the signature Σ5 of S.

Figure 5: Case A: residues responses to a fault on ac-
tuator A1.

– When a fault affects sensor S1 all the residues will
be affected (see Figure 7), which confirms the sig-
nature Σ1 of S

– Finally, when a fault affects sensor S3, all the
residues are expected to exceed their thresholds.
However, even if the residue RA1

changes its am-
plitude, it does not exceed its threshold only after
100 s (see Figure 8). Then, the signature Σ3 is

Figure 6: Case A: residues responses to a fault on ac-
tuator A2.

Figure 7: Case A: residues responses to a fault on the
sensor S1.

given, experimentally, by

Σ3 =
(
1 0 1

)T (48)

and the signature matrix S is given, experimen-
tally, by:

S =

1 1 1 0 0
1 0 0 1 0
1 1 1 0 1

 . (49)

It is clear that this unexpected behaviour in Figure 8 is
due to the presence of uncertainties on the experimen-
tal platform. These uncertainties on the system force
us to choose higher thresholds and therefore, these

8



Figure 8: Case A: residues responses to a fault on the
sensor S3.

thresholds may no longer be exceeded in the event of
a fault.

Experimentally, the full isolability of faults is not
achieved since signature Σ2 and Σ3 are identical. Then,
the number of distinct fault alarm signatures is µ =
3 < p+m.

Case B: using two flat outputs

In order to get more isolability on the three-tank sys-
tem, a second flat output is needed. Therefore, we
consider another flat output z = (x2, x3)T . In the fol-
lowing, we denote by Z1 the first flat output Z1 =
(zs11, z

s
12)T = (xs1, x

s
3)T and by Z2 the second flat out-

put Z2 = (zs21, z
s
22)T = (xs2, x

s
3)T . The signature matrix

associated to Z1 is given by (47) and we denote it by S1.
The number of distinct signatures is µ1 = 3 < p+m.

In order to construct the signature matrix S2, as-
sociated to Z2, the redundant inputs and outputs are
first computed using (14) and (15):

yZ2
1 = zs22 +

1

µ2
13

(
żs22 + µ32

√
zs22 − zs21

)2
yZ2
2 = zs21

yZ2
3 = zs22 (50)

uZ2
1 = ẏZ2

1 + µ13

√
yZ2
1 − zs22

uZ2
2 = żs21 + µ20

√
zs21 − µ32

√
zs22 − zs21

According to Remark 2, residues associated to sensors
S2 and S3 are identically zero. Then, the vector of
residues is truncated to:

rZ2
τ =

RZ2

S1

RZ2

A1

RZ2

A2

 =

ys2u1
u2

−
yZ2

2

uZ2
1

uZ2
2

 . (51)

Theoretically, the signature matrix associated to Z2 is
given by:

S2 =

1 1 1 0 0
1 1 1 1 0
0 1 1 0 1

 (52)

and faults on sensors S2 and S3 are not isolable.
Experimentally, all signatures of the matrix S2 are

confirmed except signature Σ3 which is given by

Σ3 =
(
1 1 0

)T
, (53)

see Figure 9. Therefore, the signature matrix S2 is
given by:

S2 =

1 1 1 0 0
1 1 1 1 0
0 1 0 0 1

 (54)

and like case A, faults on sensors S1 and S3 are not
isolable. The number of distinct signature is µ2 = 3 <
p+m.

Figure 9: The response of the residues associated to Z2

to a fault on the sensor S3.

In order to prove the independence of the flat outputs
Z1 and Z2, the following augmented signature matrix
is constructed using the experimental results:

S̃ =

(
S1

S2

)
=


1 1 1 0 0
1 0 0 1 0
1 1 1 0 1
1 1 1 0 0
1 1 1 1 0
0 1 0 0 1

 . (55)

The number of distinct signature of S̃ is µ̃ = 5, thus,
even in the presence of uncertainties, the condition (29)
is satisfied, then the flat outputs Z1 and Z2 are inde-
pendent. In addition, µ̃ = p + m, then, according to
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Definition 8, the flat outputs Z1 and Z2 provide full
isolability of faults.

This result is demonstrated experimentally:

– Figure 10 shows that if a fault affects the sensor
S1, all the residues exceed their threshold except
RZ2

A2
which confirms the signature Σ1 of the matrix

S̃.

Figure 10: Case B: residues responses to a fault on
sensor S1.

– Figure 11 shows that if a fault affects sensor S2,
all the residues exceed their threshold except RZ1

A1

which confirms the signature Σ2 of the matrix S̃.

Figure 11: Case B: residues responses to a fault on
sensor S2.

– Finally, Figure 12 shows that if a fault affects the
sensor S3, then all the residues are affected, except

RZ1

A1
and RZ2

A2
which confirms the signature Σ3 of

the matrix S̃.

Figure 12: Case B: residues responses to a fault on
sensor S3.

6 Conclusion
In this paper, a FDI method based on the flatness prop-
erty of nonlinear systems is presented. The flat output
measurement is used to calculate the redundant vari-
ables and then generate the residues. Moreover, it has
been shown that sometimes, using a single flat output
is not sufficient to ensure full isolability and several
flat outputs may be needed. These flat outputs must
be independent in the sense that by using them to-
gether the number of isolable faults increases. There-
fore, a full presentation of this flat output characteri-
zation is provided. Finally, the validity of this method
has been shown experimentally on the DTS200 three-
tank benchmark. These experiments have shown that
this method can be sensitive to uncertainties and hence
requires further development in the future.
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