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ABSTRACT

Through solving pretext tasks, self-supervised learning leverages unlabeled data
to extract useful latent representations replacing traditional input features in the
downstream task. In audio/speech signal processing, a wide range of features
where engineered through decades of research efforts. As it turns out, learning
to predict such features (a.k.a pseudo-labels) has proven to be a particularly rel-
evant pretext task, leading to useful self-supervised representations which prove
to be effective for downstream tasks. However, methods and common practices
for combining such pretext tasks for better performance on the downstream task
have not been explored and understood properly. In fact, the process relies almost
exclusively on a computationally heavy experimental procedure, which becomes
intractable with the increase of the number of pretext tasks. This paper introduces
a method to select a group of pretext tasks among a set of candidates. The method
we propose estimates calibrated weights for the partial losses corresponding to the
considered pretext tasks during the self-supervised training process. The experi-
ments conducted on automatic speech recognition, speaker and emotion recogni-
tion validate our approach, as the groups selected and weighted with our method
perform better than classic baselines, thus facilitating the selection and combina-
tion of relevant pseudo-labels for self-supervised representation learning.

1 INTRODUCTION

Self-supervised learning (SSL) methods usually rely on a supervision obtained from the data itself
through solving specific pretext tasks leveraging the underlying structure of the considered data
(Doersch et al., 2016; Arandjelovic & Zisserman, 2018). This technique is used in various domains
including image processing (Misra & Maaten, 2020; Jing & Tian, 2020; Grill et al., 2020), natural
language understanding (Chen et al., 2020b; Du et al., 2020; Lan et al., 2019) or speech and audio
processing (Baevski et al., 2020; Liu et al., 2020; Jiang et al., 2020). It offers numerous advantages,
such as the independence from labeled data, stronger performance on downstream tasks, more robust
models and an easier transfer to low-resource setups (e.g., low-resource languages) (Baevski et al.,
2020; Jing & Tian, 2020).

The numerous existing SSL approaches are characterized by the nature of the pretext tasks they
solve. For instance, common techniques include predictive coding (Baevski et al., 2020; Liu et al.,
2020; Song et al., 2020; Zhang et al., 2020; Hsu et al., 2021), pseudo-label learning (Pascual et al.,
2019; Ravanelli et al., 2020), auto-encoding (Renshaw et al., 2015; Algayres et al., 2020), generative
modelling (Khurana et al., 2020) or contrastive learning (Saeed et al., 2020; Jiang et al., 2020).
More precisely, these pretext tasks may be defined through the choice of pretext labels, hereafter
referred to as pseudo-labels. The automatic extraction of pseudo-labels for SSL (i.e. from the data
itself) is common in many application domains, such as computer vision (Noroozi & Favaro, 2017;
Gidaris et al., 2018), music processing (Hung et al., 2019; Wu et al., 2021) and speech processing
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(Pascual et al., 2019; Shukla et al., 2020), and is commonly referred to as multitask self supervised
learning. In the specific context of speech processing, the process of designing pseudo-labels may
benefit from decades of research in signal processing. For instance, potential candidates are pitch
estimators, energy-based features, voicing state and many more.

As demonstrated by Pascual et al. (2019), multitask speech representation learning is a powerful tool
to build representations that are beneficial for a wide range of distinct downstream tasks, by com-
bining different pseudo-labels which “intuitively” correspond to these tasks. Unfortunately, there is
no clear understanding of how these pseudo-labels may interact when optimised together, and there-
fore, no common practice of how to select groups of pseudo-labels to obtain better performance
on a known downstream task. As a matter of fact, this design process has been essentially driven
by empirical validation and there is therefore no evidence that the obtained model is even the best
one. This empirical approach can rapidly become intractable with modern SSL architectures which
may contain hundreds of millions or billions of parameters trained on thousands of hours of speech,
not to mention the carbon footprint of such pseudo-label searches. For instance, the self-supervised
training of a single state-of-the-art large wav2vec 2.0 model (Baevski et al., 2020) on 53.2k hours
of speech requires 128 GPUs for 5.2 days.

This work aims at providing a clear, efficient and theoretically motivated procedure for pseudo-
label group selection and weighting based on conditional independence (CI). The method presented
allows one to design ahead of training the most adapted multitask self-supervised speech representa-
tion learning model which perfectly suits the considered downstream tasks. Such an approach may
also enable researchers to save a substantial amount of time and computation usually devoted to
pseudo-label search. Hence, the contributions of this work are fourfold:

1. Introduce a theoretically motivated and computationally efficient method for the selection
of pseudo-label groups among a set of candidates and with respect to the considered down-
stream tasks (Sections 3 and 4).

2. Validate empirically the proposed approach with a first model SSL model relying on dif-
ferent sets of pseudo-labels corresponding to the ones obtained for three considered speech
tasks. (Sections 5).

3. Extend our method to the SOTA wav2vec 2.0 to enhance its performance (Section 6).
4. Release the code base developed with SpeechBrain (Ravanelli et al., 2021) for replication

and to encourage further investigations.1

The conducted experiments demonstrate that the proposed method allows for a more intelligent, i.e.
better informed, pseudo-label group selection for multitask SSL settings. Indeed, we find that the
models built with the proposed method obtain a word error rate and an equal error rate, respectively,
31.6% and 27.4% lower than the baseline, without the need for any empirical search.

2 RELATED WORKS AND MOTIVATIONS

SSL recently became a key component to achieve good performance on downstream tasks especially
with low-resource setups, either in speech (Baevski et al., 2020; Conneau et al., 2020), natural
language processing (Lan et al., 2019; Chen et al., 2020b) or computer vision (Gidaris et al., 2019;
Misra & Maaten, 2020; Jing & Tian, 2020). Due to its very nature, SSL relies on large amounts of
unlabeled data used to train large deep neural networks over long periods of time. It it thus crucial
to understand properly what makes a good SSL model to lower the amount of computation and time
needed to obtain the best downstream performance.

SSL for Speech. Self-supervised learning for speech has recently enabled researchers to reach state-
of-the-art results on various speech processing tasks (Fan et al., 2021). The most successful models
rely on predictive and contrastive objectives (Baevski et al., 2020; Chung et al., 2019; Saeed et al.,
2020) performing well across the different tasks even in low-resource settings. This led to the design
of different benchmarks evaluating the self-supervised representations in different languages (Yang
et al., 2021; Evain et al., 2021). However, in contrast to this proposition, these works have not tried
to motivate beforehand the different choices made in the self-supervision pipeline.

1https://github.com/salah-zaiem/Multitask-pretext-task-selection
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Figure 1: Illustration of the training pipeline. The three steps are depicted: 1. Selecting the group
of pseudo-labels and their corresponding weights; 2. SSL training with the selected pretext task; 3.
Training on the downstream task with the pretrained SSL model.

Understanding SSL. A few works have tried to shed some theoretical light on the mainly empiri-
cal field of self-supervised learning. Following the different paradigms in SSL, various tracks have
been followed to understand what makes for a good self-supervised representation, exploring differ-
ent approaches (Lee et al., 2020; Arora et al., 2019; Wei et al., 2020). On the one hand, contrastive
learning (Oord et al., 2018; Chen et al., 2020a) has been advocated both theoretically and empiri-
cally to achieve a balance in the mutual information between alternative representations of the data,
keeping just enough shared information to keep the class-related content (Tschannen et al., 2020;
Tian et al., 2020; Bachman et al., 2019). In a recent work from Li et al. (2021), independence testing
has been used to produce better transformations in contrastive learning settings for image represen-
tations. Predictive learning, on the other hand, requires the model to predict masked elements in
sequential data. This technique is powerful on downstream tasks that can be reduced to a mask-
ing problem, as suggested by research on language modeling (Saunshi et al., 2020). However, all
these works have been focusing on computer vision or text-related applications, and none of them
addressed the multi-tasked self supervision problem.

Multi-task self-supervised learning. While the literature on multi-tasking in self-supervised learn-
ing remains scarce, it has been shown in classic supervised learning settings, that through estimates
of similarity between tasks or thorough empirical testing, several tasks can take advantage of being
solved with a common encoder (Zamir et al., 2018; Dwivedi & Roig, 2019; Shafey et al., 2019;
Chen et al., 2015). More specifically, combining pretext tasks with SSL has been mainly explored
in computer vision and speech (Pascual et al., 2019; Ravanelli et al., 2020). Pretext tasks such as
Jigsaw (Doersch et al., 2016), colourisation and rotation (Gidaris et al., 2018) have been combined
successfully to improve downstream performance (Kim et al., 2018; Shin’ya Yamaguchi et al.). The
two closest works to our line of research are from Lee et al. (2020) and Doersch et al. (2017). The
former shows that a theoretical link can be established between conditional independence and an
improvement of the performance on the downstream task, while the latter proposes to select layers
from a multitask self-supervised encoder according to the pretext task to be solved. However, in both
cases, the studies do not offer practical and theoretical solutions to select groups of pseudo-labels to
build an adapted SSL model that will perform well on the considered downstream tasks.

Group feature selection. Finally, feature selection, and especially group feature selection is another
close and inspiring field given the problem we consider. The relationship and interactions between
features have been largely investigated in the supervised learning literature (Guyon & Elisseeff,
2003). This led to multiple solutions to the feature group selection problem, including LASSO-
based techniques (Yuan & Lin, 2006), or multiple kernel formulations (Sonnenburg et al., 2006;
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Rakotomamonjy et al., 2007). However, these works do not involve any self-supervision, and links
between feature selection and self-supervision design and pretext-task selection are yet to be proved.
We will further consider these lines of works for concurrent baselines.

With this work, we aim at shortening the process of designing SSL models while giving insights
on the pseudo-label importance and the underlying mechanisms between pretext and downstream
tasks at the same time. We decided to experiment with speech due to the lack of literature on this
domain for multitask SSL, and for the various pseudo-labels available, which are based on decades
of signal processing research. The whole pipeline starting from the acoustic feature extraction to
the downstream task scoring follows three major steps summarized in Figure 1. First, for every
downstream task, our method produces a pretext task selection and weighting. Then, a SSL model
is trained, before being used as a feature extractor front-end to one or many downstream tasks.

3 CONDITIONAL INDEPENDENCE FOR UTILITY ESTIMATION

As a first step, we require a function that estimates the utility of learning to solve a pretext-task to
improve the performance on the downstream task. We use an estimation of the conditional inde-
pendence between the pseudo-label values and the downstream data points given the downstream
labels. Hereafter, we explain the theoretical motivations and describe the computation steps.

3.1 PROBLEM DEFINITION AND INTUITION

Let X , Y and Z be, respectively, the downstream data points, their downstream labels and their
pseudo-labels. Let also C be the set of possible downstream classes. As an example, if one considers
speaker recognition as a downstream task, X would be the speech samples, Y the speaker IDs, C
the set of unique speaker IDs, and Z a computed signal feature, such as the fundamental frequency.

As stated in Section 2, Lee et al. (2020) linked the utility of a pseudo-label (Z) to the conditional
independence (CI) between Z and X given Y . The approach prescribes that, given the labels Y ,
one may seek to quantify how much it is possible to predict the pseudo-labels Z without knowing
much about X . The authors bounded, under certain assumptions, the downstream classifier error
with a function of the downstream training set size, and a measure of the CI. More precisely, the
main theorem shows that the bounding function decreases linearly with the downstream-task dataset
size (M ) and quadratically with the CI, thus making it a potential estimator for pseudo-label utility.

The proposed function depends on the final downstream task to be solved. This is motivated by two
main reasons. First, it can be seen through the large literature on feature selection for various speech
or computer vision tasks (Liu et al., 2020; Serizel et al., 2017; Schuller et al., 2007; Wang et al.,
2019), that different tasks require the description of different aspects of the data. This suggests that
different downstream tasks may perform better after different pre-trainings. A second argument is
the difficulty to evaluate representations quality intrinsically, i.e. independently from the choice of a
particular downstream task. A few metrics and tests (Schatz et al., 2013; Carlin et al., 2011; Lakhotia
et al., 2021) have been proposed for speech, but the correlation between these and downstream-task
performance has not been clearly identified (Algayres et al., 2020; Gump et al., 2020).

The principal issue with CI is the difficulty of computing good estimates of how much two variables
are independent given a third one on realistic data (Shah & Peters, 2018). In a previous work (Zaiem
et al., 2021), we proposed a simple way to get an estimation of the conditional independence. This
method has proven effective for individual pretext task selection, as the utility estimator correlated
highly with the final downstream performances. In our case, the considered pseudo-labels are not
independent of the speech samples, as they are signal features. The approach resorts to perform-
ing classic independence testing on data sliced by the downstream classes, to check whether this
dependence remains given the downstream labels information.

3.2 CONDITIONAL INDEPENDENCE ESTIMATOR COMPUTATION

This section details the computation of the conditional independence estimate that is used as a mea-
sure of pseudo-label utility. Let X = {xi}i∈{0,...,M} with M being the cardinal of X and xi data
samples (e.g. Mel-band spectrogram for audio and speech). Every sample xi has a corresponding
downstream label yi and an automatically generated pseudo-label zi. We assume that yi is discrete
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reducing the task to a classification problem such as with speaker ID for speaker recognition. We
also assume that for every pretext-task Z, a single zi value corresponds to each xi. In our case, zi
values are the mean of the frame-wise pseudo-label values.

For independence testing, we decided to rely on the kernel-based Hilbert Schmidt Independence
Criterion (HSIC) (Gretton et al., 2007) for two reasons. First, HSIC has already proven successful
for textual data in testing statistical dependence between translated sentences (Gretton et al., 2007).
Second, kernel-based techniques facilitate the handling of multivariate and varying-length data such
as speech, as the estimation then boils down to the computation of a similarity measure between the
considered variables.

Computation steps. The estimation of the CI of a pseudo-label Z for a downstream task (X,Y )
consists of three steps. We start by splitting the data samples X according to the downstream
(discrete) classes. Then, we compute for every downstream class c ∈ C, the kernel matrices Kc and
Lc representing the similarity measures for the data samples, and the pseudo-labels, respectively.
Finally, we perform the independence test for every split group using Kc and Lc and aggregate the
estimates with a weighted mean taking into account the number of samples per downstream class.
Thus, for two speech samples xi and xj , holding two pseudo-label values zi and zj , the coefficients
of the similarity matrices Kc and Lc are computed as follows:

Kij = K(xi, xj) = cos(GD(xi), GD(xj)), Lij = RBF (zi, zj), (1)

with GD(.) the Gaussian Downsampling function (more details in the appendix A.6) , cos(., .) the
cosine similarity, and RBF (., .) the Radial Basis Function kernel, defined as:

cos(x, x′) =
trace(xTx′)

||x||.||x′||
, RBF (z, z′) = exp(−||z − z

′||2

2σ2
), (2)

where σ is the width of the RBF kernel and trace(.) the sum of elements of the main diagonal. Note
that we compute the matrices Kc and Lc, for each group of samples sharing the same downstream
class c ∈ C. Hence, Kc and Lc correspond to the definitions above, but restricted to the points with
c as a downstream label. For each downstream class c, and as in Gretton et al. (2007), the HSIC
value is given by:

HSICc(X,Z) =
1

n2c
trace(KcHcLcHc), (3)

with Hc = Inc
− 1

nc
1nc

1Tnc
, nc being the number of points with downstream label c, and 1nc

a
vector of ones of size nc × 1.

The HSIC value is non-negative and corresponds to the Hilbert norm of their cross-covariance ma-
trix. It is used to characterize the independence of the two considered quantities. Intuitively, the
HSIC value is high if samples similar in Kc are similar in Lc. Therefore, the lower this value is,
the more independent the two arguments of HSIC are and the better the pseudo-label should be for
self-supervision before fine-tuning on the downstream class. The final value for a given pseudo-label
and a downstream task is expressed as:

HSIC(X,Z|Y ) =
1

M

∑
c∈C

HSICc(X,Z)× nc. (4)

4 PRETEXT TASK GROUP SELECTION AND WEIGHTING

While we now are able to predict the utility of every considered pretext task independently, the next
step remains to define a clever way to combine them optimally within the same pre-training process.
Hence, we introduce a method to select a group of pseudo-labels and weight their respective losses
to increase or decrease their importance in the self-supervised representation. Such an optimisation
of the latent representation is expected to provide better downstream performance. Our method min-
imises the conditional dependence between the resulting group pretext task, entailing the prediction
of a selected pseudo-label group and the downstream samples given the downstream labels.

Given a set of k possible pseudo-labels (Zi)i∈[0,k], we seek to estimate a set of parameters (λi)i∈[0,k]
weighting the loss of every pseudo-label k during the pre-training phase. Hence, we define a group-
ing pseudo-label Zλ as an orthogonal concatenation of (Zi)i∈[0,k] weighted with (λi)i∈[0,k] :

Zλ = (λ1Z1, ..., λkZk).

5
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The custom conditional HSIC computation pipeline described above is fully differentiable with re-
spect to (λi)i∈[0,k] as proved in appendix A.1. In the HSIC computation, the data similarity matri-
ces {Kc}c∈C are independent of Z and therefore of λ. Only the pseudo-label similarity matrices
{Lc}c∈C are changed. For every downstream class c, Lc is defined as:

[Lc]i,j = RBF ((Zλ)i, (Zλ)j) = exp(
−1
2σ2

k∑
h=1

λh||zh,i − zh,j ||22), (5)

with zh,i denotes the mean value of the h-th pseudo-label for the i-th data point in the dataset.

4.1 CONSTRAINTS ON THE WEIGHTS

The conditional-independence based utility estimator must be optimized with respect to the weight-
ing parameters (λi)i∈[0,k] and three constraints.

First, the parameters (λi)i∈[0,k] must be positive, as they are used as weights for the correspond-
ing losses. A negative weighting loss would lack interpretability as it could imply that the self-
supervised model should “unlearn” the corresponding pretext task. This may be the case for adver-
sarial learning methods, but we are not considering this case in the present work.

Second, the value of the weights must be high enough. Indeed, the presented method for estimating
the conditional independence assumes that the considered pseudo-label Z is not independent of X .
It is fortunately true for speech features, as Z is a function of X , but not always valid. For instance,
with (λi)i∈[0,k] = 0, the utility estimator would be null and thus the lowest (i.e. the best), but it
would break the assumption of non independence between Z and X . Furthermore, theHSIC value
decreases with positive decreasing values of (λi)i∈[0,k] and we thus need to ensure that the sum of
the weights is significantly higher than zero, or it would mean that we are not really doing multi-task
learning as the losses of the pseudo-labels would be barely considered.

Finally, for a fair comparison between the weighting choices during the optimization, the sum of the
weights should remain constant. In the following, the sum of the (λi)i∈[0,k] is fixed to one and the
problem is summarized as follows:

min
λ∈Rk

HSIC(Zλ, X, Y ), s.t. Zλ = (λ1Z1, ..., λkZk), λi ≥ 0, ∀ i ∈ [0, k],
∑
i

λi = 1. (6)

To minimize the estimator quantity while respecting the constraints, the weights used in the com-
putation of the CI value are the softmax output of free learnable parameters (Wi)i∈[0,k]. Softmax
enforces the conditions while being differentiable and the problem becomes:

min
W∈Rk

HSIC(Zλ, X, Y ), s.t. λ = Softmax(W ), Zλ = (λ1Z1, ..., λkZk). (7)

4.2 WEIGHTS SPARSITY

Another trait that is desirable for the weighting vector is sparsity. If a few pseudo-labels are not
needed for the given downstream task, they would rather be discarded than given a low weight. First,
this would save computation time including the extraction of the pseudo-labels, and their extraction
and prediction during the self-supervised training process. Second, it would help with transparency
to understand what features are included or not in the latent space. This sparsity property is also
related to feature selection such as with LASSO (Yuan & Lin, 2006). To ensure the sparsity of the
output weighting vector, while maintaining the desired property of differentiability, we choose the
sparsemax function (Martins & Astudillo, 2016) to replace the softmax in eq. 7.

5 EXPERIMENTAL STUDY

This section details the experiments validating the introduced estimator. It describes the selection
and weighting processes (Section 5.1), the SSL models (Section 5.2), the downstream tasks (Section
5.3), and the obtained results (Section 5.4).
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5.1 GROUP SELECTION AND WEIGHTING

Individual pseudo-labels of interest are obtained with the OpenSmile library (Eyben et al., 2010).
We decided to focus on markers mostly related to prosody and spectral descriptors as the signal pro-
cessing literature commonly associates them to the three considered downstream tasks (i.e. speech,
speaker and emotion recognition). Selected pseudo-labels include: Loudness, F0, Voicing, α Ra-
tio (Sundberg & Nordenberg, 2006), Zero Crossing Rate, L1 Norm of Rasta Spectrum (Hermansky
et al., 1992), log of Harmonicity to Noise Ratio (Murphy & Akande, 2005). Then, and according to
Figure 1 (step 1), we group these pseudo-labels based on their weights, i.e. by optimising equation 7
to obtain the different λ values associated to each one of them.

Comparative baselines follow common feature group selection strategies or natural intuitions. The
first one simply bundles all the pseudo-labels together without any weighting (i.e. λ = 1 for all
pseudo-labels) as proposed for PASE (Pascual et al., 2019). As SSL group pretext-task selection is
yet to be fully explored, the two other baselines come from the feature selection literature as it repre-
sents the closest field with well established techniques. The CI-based pseudo-label selection is thus
compared to Recursive Feature Elimination (RFE, Guyon et al. (2002)) and Maximum Relevance
Minimum Redundancy (MRMR, Peng et al. (2005)). More details about these baseline algorithms
are given in Appendix A.7, while Appendix A.9 shows the workers selected and their corresponding
weights for every experiment. Noise (HNR) seems to be the most important information to learn to
predict for speaker recognition while fundamental frequency is privileged for ASR.

5.2 SELF-SUPERVISED TRAINING

In the second step of Figure 1, the SSL model learns to predict the selected pseudo-labels. For every
one of those, the loss is multiplied by the corresponding assigned weight. Based on previous work
conclusions (Ravanelli et al., 2020; Jiang et al., 2020) and apart from the considered pretext task,
the network learns to reconstruct the input Mel spectrograms, and to compute 40-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) feature vectors. These targets are usually kept to avoid
information loss harming heavily downstream performance and are used in all our experiments. For
a given weighting vector (λi)i∈[0,k], the self-supervised loss is defined as:

LSSL =MSEmel +MSEmfcc +
∑k

i=1
λi`1(Zi), (8)

with MSE the classic mean squared error computed for Mel spectra (MSEmel) and MFCC
(MSEmfcc), and `1(Z) the `1-loss of the pretext task related to pseudo-label Z.

Prior to extending our method to state-of-the-art architectures such as wav2vec 2.0 that are par-
ticularly costly to train, we propose to first employ a PASE-like model to empirically validate the
approach. Hence, the encoder is composed of three distinct parts: a VGG-like feature extractor (Si-
monyan & Zisserman, 2015), a bidirectional LSTM, and a two-layered dense neural network. All
the details of the architecture are given in the appendix A.4. Then, and inspired by Ravanelli et al.
(2020), the encoder is followed by simple one-layered predictors voluntarily limited in capacity.

SSL dataset. The SSL model is optimised on the training set of the English Common Voice dataset
(version 5.1, 700 hours of training, Ardila et al. (2020)). Common Voice is a collection of speech
utterances from worldwide users recording themselves from their own devices. Hence, the closeness
to natural settings makes it a suitable choice for self-supervised learning. 700 hours of speech
is a relatively small amount compared to what is generally used for state-of-the-art SSL models.
However, we believe it is a sound choice as this is generally greater than what is typically available
in SSL use-cases like low-resource languages. We decided to not use the LibriSpeech dataset for
pre-training as it is part of our downstream evaluation protocol hence alleviating a strong bias.

5.3 DOWNSTREAM TASKS

Our proposed pseudo-label selection strategy is compared with the two baselines on two differ-
ent downstream tasks leading to different groups of pseudo-labels: automatic speech recognition
(ASR, with LibriSpeech 100 hours) and speaker recognition (SR, with VoxCeleb 1). Datasets and
downstream architectures are inspired from the SUPERB benchmark (Yang et al., 2021) for self-
supervised learning representations and carefully described in Appendix A.4.3. Prior to downstream
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Table 1: Results observed with the proposed selection strategies on the two considered downstream
tasks. Word Error Rate (WER) and Equal Error Rate (EER) are expressed in percentage and used
for LibriSpeech 100 hours and VoxCeleb1 respectively (i.e. lower is better). ASR results are given
with and without Language Modeling (LM). All SSL models contain 16.3M neural parameters.

Selections LibriSpeech (WER % ↓) VoxCeleb1 (EER % ↓)
No LM LM

All 21.98 11.70 11.90

MRMR 18.94 10.36 10.56
RFE 20.02 11.42 11.91
Softmax 13.17 8.00 9.24
Sparsemax 17.18 10.41 8.63

training, the SSL model are frozen to be used as a feature extractor with the new pipeline that is task-
dependent. We do not use any data augmentation for a pristine comparison of the learned models.

5.4 RESULTS

Baselines detailed in Section 4 are respectively referred to as “All”, “RFE” and “MRMR”. All the
details about the selection and weights are available in Appendix A.9. First, it is clear from the
results reported in Table 1 that, for the considered downstream tasks, the two introduced strategies
(Sparsemax and Softmax) perform better than the group selection baselines with a gain of 3.28
of EER for Sparsemax against the RFE approach on VoxCeleb, and 8.81 of WER with Softmax
compared to the All baseline. Interestingly, simply bundling all the pseudo-labels together may lead
to poor performance as observed on LibriSpeech with a very high 21.98% of WER obtained. Hence,
intuitively building sets of labels could be harmful for the final representation. This motivates the
need for a better pseudo-label selection strategy such as the one introduced in this work, as the WER
dropped to 13.17%. As a comparison, the exact same architecture trained with Mel spectra only
(i.e. no SSL) obtains a WER of 17.3% without LM. Hence, our method even further decreases the
WER while being only pretrained with a reasonable amount of data (i.e. only 700 hours compared
to a few thousands for common SSL techniques (Baevski et al., 2020)). As expected, introducing
the joint decoding with a language model strongly decreases the WER but also introduces a bias in
our comparison as probabilities are smoothed with a third-party neural model. Nevertheless, and
even in this scenario, our weighting strategy outperforms all the baselines. In the context of speaker
recognition, Sparsemax beats Softmax with an EER 0.61 lower.

6 EXTENDING WAV2VEC 2.0 TO MULTITASK SSL

To the best of our knowledge, multi-task speech representation learning has not been scaled to a point
where it could represent a state-of-the-art alternative. Contrastive predictive coding (Oord et al.,
2018) based techniques like wav2vec 2.0 (Baevski et al., 2020), on the other hand, currently trust
most of the leader-boards for speech-related tasks. Recently, Sadhu et al. (2021) showed that com-
bining a consistency loss and contrastive predictive coding improves the results of the wav2vec 2.0
architectures in noisy conditions. Following this idea, we propose to further validate our selection
method with an extension of wav2vec 2.0 to multitask SSL to demonstrate its scaling capabilities.
Hence, the training loss is extended to:

LSSL = LW2V +
∑k

i=1
λi`1(Zi). (9)

We use the standard BASE wav2vec 2.0 first described in (Baevski et al., 2020) as a SSL model
and train it with the same Common Voice dataset. The pre-training pipeline is implemented within
SpeechBrain. The trained BASE model has been compared to one obtained with the official Fairseq
implementation from Baevski et al. (2020), and results are strictly equivalent. The entire recipe
alongside with the large set of hyperparameters needed to properly train a wav2vec 2.0 model are
released under our anonymous repository and will be made available with SpeechBrain afterwards.
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Table 2: Results observed retraining the Wav2vec2 model with and without weighted pretext tasks
using the sparsemax method. “Fr.” and “Fine.” also respectively refer to Frozen and Finetuned set-
tings. Adding selected pretext tasks improves the donwstream performance on all three considered
tasks. All models contain 100M neural parameters.

Selections LibriSpeech (WER % ↓) VoxCeleb1 (EER % ↓) IEMOCAP (Acc % ↑)

Fr. Fine. Fr. Fine. Fr. Fine.

wav2vec 2.0 BASE 17.93 10.21 7.20 5.35 56.6 74.0
wav2vec 2.0 BASE + multitask SSL 16.70 9.18 6.57 5.30 59.5 74.0

To further investigate our methodology, we extend this analysis to emotion recognition (ER) with the
IEMOCAP (Busso et al., 2008) dataset, as prosody has shown important in ER literature (Luengo
et al., 2005). We follow the SUPERB benchmark conventions (Yang et al., 2021) both at the data and
downstream architecture levels. Hence, and conversely to the previous experiments, the ASR system
solely optimises the CTC criterion over characters. For each of the three tasks (i.e. ASR, SV, ER) we
compare the standard BASE wav2vec 2.0 model with one trained following the sparsemax selection
of multitask SSL. Sparsemax is chosen over softmax because it enforces the sparsity criterion and
removes completely a few pseudo-labels from the training, which is one of the objectives of this
work. As for the other experiments, the exact weights of each pseudo-label are reported in Appendix
A.9. Each wav2vec 2.0 model required 24 NVIDIA Tesla V100 GPUs to train for 150 epochs (40
hours). Finally, we also propose to compare frozen and unfrozen (i.e. where the wav2vec 2.0
encoder is fine-tuned with the downstream task) SSL models.

It is clear from the results reported in Table 2 that our approach improves the performance over the
standard wav2vec 2.0 framework for every considered downstream task. Here, it is worth noting that
the difference in performance compared to the literature mostly comes from the training conditions.
For instance, wav2vec 2.0 is commonly pre-trained with larger models on LibriSpeech to achieve
lower WER on this dataset. We decided to avoid this comparison since including the downstream
dataset in the pre-training phase would have introduced biases in the evaluation of our method.

7 FURTHER DISCUSSIONS

Computational efficiency. Efficiency is one of the key motivations of this work, and the gain in
time observed with our approach is considerable. The K and L matrices used for the CI estimate
are only computed for the downstream datasets. But since these datasets may get bigger and bigger,
we can sample among the considered downstream classes to keep the computations tractable and
quick. For instance, the CI testing of a considered pretext task (i.e. pseudo-labels selection) takes
less than half an hour on 20 CPUs whether it be for LibriSpeech or VoxCeleb. This is to be compared
to 40 hours of GPU training (i.e. 24 Nvidia Tesla V100 for wav2vec 2.0 BASE) for a pre-training
experiment. The exhaustive search for proper pseudo-label weighting is even more dramatically
computationally and energy consuming, if we considered s values per pseudo-label in a grid search
involving k pseudo-labels, we would need sk experiments.

Pseudo-label interactions. A thorough analysis of the evolution of the CI estimate as a function of
the weights, as given in Appendix A.4.3, provides interesting insights on which pseudo-labels seem
to be interchangeable, complementary or even harmful with respect to a downstream task. This
suggests that the design of good pseudo-labels and sets of pseudo-labels is not a trivial task.

8 CONCLUSION

In this work, we introduce a method to quickly and simply combine pseudo-labels into a useful
pretext task for multitask self-supervised learning settings. Our approach allows for an optimal
selection of pseudo-labels following a cheap optimisation process drastically decreasing the time
and compute needed to design the best performing multitask SSL model. Our method is validated on
three speech-related downstream tasks and outperforms common pseudo-label selection strategies
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when combined with simple and state-of-the-art SSL models. This opens a range of possibilities for
finding and selecting new pretext tasks in self-supervised learning for speech or other types of data.
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A APPENDIX

A.1 DIFFERENTIABILITY PROOF

We want to show that the utility estimate is differentiable with respect to the weighting parameters
(λi)i∈[0,k]. Since the final estimate is a weighted mean of the in-class independent tests, the problem
boils down to showing that within a downstream class c, HSICc(X,Zλ) is differentiable. Let us
recall the definition of the considered quantities:

HSICc(X,Zλ) =
1

n2c
trace(KcHcLcHc) (10)

where Kc and Hc are independent of λ and Lc coefficients are defined as:

[Lc]i,j = RBF ((Zλ)i, (Zλ)j) = exp(
−1
2σ2

k∑
h=1

λh||zh,i − zh,j ||22) (11)

Therefore for p ∈ [0, k] :

∂HSICc(X,Zλ)

∂λp
=

1

n2c

∑
i,j

∂(trace(KcHcLcHc)

∂[Lc]i,j

∂[Lc]i,j
∂λp

=
1

n2c

∑
i,j

(HT
c K

T
c H

T
c )i,j

−||zp,i − zp,j ||2 [Lc]i,j
2σ2

(12)

This allowed us to minimize the conditional-independence based utility estimator according to the
weighting values.

A.2 CONSIDERED SIGNAL FEATURES AND DESCRIPTIONS

Table 3 contains the descriptions of the signal features used as pseudo-labels in this work.
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Table 3: Candidate speech pseudo-labels and descriptions.
Feature Description

Loudness Intensity & approx. loudness
F0 Fundamental Frequency
Voicing Voicing Decision
Alpha Ratio (Sundberg & Nordenberg, 2006) Ratio of spectrum intensity % 1000 Hz
Zero Crossing Rate Zero crossing number per frame
RastaSpec L1Norm L1 Norm of Rasta Spectrum (Hermansky et al., 1992)
log HNR (Murphy & Akande, 2005) log of Harmonicity to Noise Ratio

A.3 SPARSEMAX INITIALIZATION

When initialized with random parameters W , and if one parameter is high enough compared to the
other, leading with the Sparsemax function to a weighting value close to 1, we observed that the
minimization process falls into local minima selecting only one pseudo-label with weight 1. To
avoid this, we initialize all the free parametersW with the same unitary value to which we add some
Gaussian noise. Hence, Winit = (1) +N(0, ε) with ε = 0.05.

A.4 TRAINING AND ARCHITECTURES DETAILS

All the considered audio files are sampled at 16kHz. We feed the SSL models with 80-band Mel
spectrograms, with 25ms windows and 10ms stride. To every Mel band corresponds a learned vector
of size 256 obtained at the output of the SSL model. So if the input spectrogram is of size (N , 80)
with N the number of frames, the representation fed to the downstream pipeline is of size (N , 256).
All models including SSL and downstream ones are developed with SpeechBrain (Ravanelli et al.,
2021).

A.4.1 PRETRAINING OF THE SSL ENCODER.

The encoder is a succession of 2D CNN layers, LSTM layers and a final dense network. This
representation is then fed to one dense layer that predict the selected pretext task labels. There are 3
successive CNN blocks containing each 2 CNN layers with kernel size (3, 3) and 128, 200 and 256
channels for each block respectively. No time pooling is performed in order to preserve the input
sequence length. 5 bidirectional LSTM layers of size 256 are then stacked. Finally, a MLP with one
hidden layer with 256 neurons. The LeakyReLU activation is used across all the layers except for
the LSTM. We use a dropout rate of 0.15 during the training. The AdaDelta optimizer is used to
update the weights with an initial learning rate of 1.0, ρ = 0.8 and ε = 10−8. For every experiment,
the SSL model is trained for 10 epochs ( leading to the convergence of the validation loss).

A.4.2 DOWNSTREAM TRAININGS : FIRST EXPERIMENTS

Speaker recognition details. VoxCeleb1 (Nagrani et al., 2017) is used for the speaker recognition
task. The training set contains 148, 642 utterances from 1, 251 different speakers. To compute the
conditional independence estimates while limiting the computational load, we restricted ourselves
to the utterances of 50 different speakers (the detailed list is given in the released repository). A
standard xvector model (Snyder et al., 2018) is trained following the available VoxCeleb Speech-
Brain recipe. The extracted speaker embeddings are tested on the enrol and test splits using PLDA
(Ioffe, 2006) as a similarity metric. Performance is reported in terms of equal error rate (EER).
While architecture details are given in appendix A.4, it is worth noticing that the whole pipeline is
fully integrated to Speechbrain and can thus easily be extended.

We train an embedding model (XVector) until the validation loss converges, on top of the self su-
pervised representations using 5 successive layers of time-delay neural networks (TDNN) (Peddinti
et al., 2015). The number of channels is (512, 512, 512, 512, 1500), with kernel sizes of (5, 3, 3, 1, 1)
and dilations of (1, 2, 3, 1, 1). The architecture is inspired by successful works on embeddings for
speaker recognition (Snyder et al., 2015). The learned embeddings are therefore used on a list of
pairs of samples to predict whether they are from the same speaker or not. The details of the recipe
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can be found in the given GitHub repository. We train every embedding model on 10 epochs with
an Adam Optimizer starting with a learning rate of 0.001 decaying linearly to 0.0001.

Speech recognition details. ASR is conducted with the 100-hour clean subset of the LibriSpeech
dataset (Panayotov et al., 2015) to simulate the low-resource scenario commonly encountered with
SSL settings. CI estimations are obtained with word-level alignments from the Montreal Forced
Aligner (McAuliffe et al., 2017). The ASR pipeline follows the LibriSpeech recipe of SpeechBrain
(Ravanelli et al., 2021) and therefore contains a CRDNN encoder (i.e. CNN, RNN, DNN) trained
jointly with CTC (Graves, 2012) and attention (Lüscher et al., 2019) (details in appendix A.4).
The decoding process is based on beam-search with and without shallow fusion with a pretrained
recurrent language model that is publicly available and obtained from SpeechBrain.2 Performance
is expressed in word error rate (WER).

The CRDNN starts with three CNN blocks composed each with 2 2D CNN layers, layer-
normalisation and (2, 2) maxpooling along the frequency dimension. The filter dimensions for each
block are 64, 100, 100. Then, maxpooling of 4 is applied on the time dimension to reduce the se-
quence length before being fed to the RNN. The latter is made of 5 bidirectional LSTM layers of
1, 024 neurons. Finally two dense layers are connected (with batch-normalisation in between). The
LeakyReLU activation function is used across all the layers except for the LSTM. A dropout rate of
0.15 is employed with the encoder. The CTC decoder is a simple dense linear layer of size equal to
the vocabulary. The vocabulary is obtained with byte pair encoding or sub-words units (BPE) and is
of size 1, 000. The attentional decoder is a one-layered location-aware GRU (1, 024 neurons). Then,
a beam search of depth 60 is applied to obtain the output transcripts. The model is trained for 30
epochs. The learning rate (1.0) is multiplied with a factor of 0.8 every time the validation loss is not
decreasing to ensure an optimal convergence of all the models.

A.4.3 SUPERB SETTINGS

SUPERB (Yang et al., 2021) is a recent benchmark for self-supervised representations of speech
data. We use this benchmark for our experiments in combining wav2vec with our selected pretext
tasks. We detail here the downstream models as detailed in the benchmark paper :

Emotion Recognition. IEMOCAP (Busso et al., 2008) is used for the Emotion Recognition (ER)
task. 4 classes are considered (neutral, happy, sad, angry), and only the audio data is used. The
learned representations are mean-pooled then fed to a final linear classifier to compute a cross-
entropy loss. We cross-validate on five folds of the standard splits. The result shown is the average
of the five attempts. The evaluation metric is accuracy (ACC).

Automatic Speech Recognition For ASR, the decoder is a vanilla 2-layer 1024-unit BLSTM fed
with our self-supervised representations and optimized by CTC loss on characters. We use the same
language model for decoding as in the first experiments. LibriSpeech Clean-100 only is used for
downstream training.

Speaker Recognition The model and the dataset splits used in the first experiment correspond to
the SUPERB ones, so we kept the same settings. The results are therefore comparable.

A.5 INTUITION AROUND THE USE OF CONDITIONAL INDEPENDENCE

To get an intuitive understanding of the motivations of this choice, let us consider the example of
image classification as the downstream task, and image colourization as the pretext task. In this
case, this pretext task would be suited to the downstream one if the final classification label can
help implying the colours. For instance, if there are only two classes ”Blue skies” and ”Yellow
deserts”, then colourisation is an interesting pretext task, as knowing the final label helps a lot for
the pretext task, independently of the image. However, if all the classes share the same colour
palette, colourization may not be an interesting task. (In this simple example, we are ignoring the
edge detection aspect of colourization, and only focusing on the colour choice part. Obviously the
former aspect plays a big part on why the colourization pretext task has been successful.)

Concerning our estimation method, as the pseudo-labels considered in this work are data features,
they are indeed functions of the original data samples. This ensures that the data samples are not

2https://huggingface.co/speechbrain/asr-crdnn-rnnlm-librispeech
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independent of the pseudo-labels. The idea behind the estimator of conditional independence is that
it will test whether this remains true when the considered points share the same downstream class.

A.6 KERNELS USED FOR THE SIMILARITY MATRICES

The computation of the similarity matrices used in our kernel-based independence test, requires
fixed-size embeddings for the data speech samples. These embeddings allow the use of classic ker-
nels on top. However, in the case of sequential data, as it is the case with audio/speech signals, one
may want to avoid the additional burden of learning fixed-size embeddings (for possibly variable-
length audio sequences). One possible solution to this, which we conveniently exploited in our
application to speech data (see Section 5) is the Gaussian Downsampling method (Holzenberger
et al., 2018) detailed thereafter. In this instance, after the Mel spectrogram extraction, a speech sam-
ple is a sequence of varying length input feature vectors. Therefore, to obtain fixed size embeddings
aggregating the input frame-wise Mel spectrum vectors into a fixed number N of input vectors, N
being a fixed hyper-parameter, we first divide the sequence into N equal length segments. Then, in
each segment, a Gaussian average of the input spectra is computed around the center of the consid-
ered segment with the standard deviation σgd being another hyper-parameter. Denoting by D the
dimension of the input frame-wise Mel spectrum vectors, this leads, for any speech excerpt, to a
N × D tensor, without any training procedure. As in the work presenting the gaussian downsam-
pling method (Holzenberger et al., 2018), we set N = 20 and σgd = 0.07. For the RBF kernel on
the pseudo-labels mean value per file, we fixed he RBF kernel width to σ = 0.05.

A.7 LINKS WITH FEATURE SELECTION

We also studied the link between classic feature selection and pretext task selection through two ex-
periments. The first one was made to check how hard it was to estimate the utility of a pseudo-label,
we computed the mutual information between the pseudo-labels and the downstream labels, and
checked how much it would correlate with downstream performance. It led to very low correlation
values, with even changing signs between VoxCeleb and LibriSpeech. This seems to indicate that
Mutual Information is not related directly to self-supervision utility.

The maximum relevance minimum redundancy (MRMR) technique (Peng et al., 2005) used as a
baseline in this work relies on the Conditional Independence based estimator. It is a close to a naive
selection of the best pretext tasks according to the CI based criterion, but it furthermore penalizes
the mutual information between the selected pretext tasks. More precisely, we select the group of
pseudo-labels (Z)i ∈ [0, p] maximizing :

ScoreMRMR(Z) =
−1
p

∑
i∈[0,p]

HSIC(X,Zi|Y )− 1(
p
2

) ∑
i<j

I(Zi, Zj)

Recursive Feature Elimination (RFE) (Guyon et al., 2002) relies on a classifier that provides infor-
mation concerning the importance of a given feature in the decision. This classifier is first trained
with the whole set of pseudo-labels as features, and the least important feature is eliminated. The
process is repeated until only 4 pseudo-labels are kept. We use the scikit-learn implementation with
the C-Support Vector Classification as the the classifier providing the feature importance values. We
use the default scikit-learn hyperparameters.

These two baselines perform worse than the proposed techniques. This suggests that despite the
apparent similarity, feature selection and self-supervision pretext task design do not necessarily
involve the same mechanisms.

A.8 PSEUDO-LABELS’ INTERACTIONS.

To understand the interactions between pseudo-labels, studying the evolution of the CI estimate as a
function of the weights shows which pseudo-labels seem interchangeable, which ones are comple-
mentary and which ones seem only harmful to the considered downstream task. Figure 2 shows the
CI estimates for weighted combinations of groups of three pseudo-labels. As the weights sum up
to one, two pretext tasks’ values are shown on the x and y axes, while the value of the remaining
one, whose name is in the title, is equal to 1 − x − y. For instance, at the origin point (0, 0), only
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Figure 2: CI-Based utility estimator as a function of the weighting for groups of three pseudo-labels.
Top line is for Librispeech, while the bottom one is for VoxCeleb. Three pseudo-labels are presented
on every plot, one on the x-axis, one on the y-axis and one that is equal to 1 − x − y (hence being
called the remainder) and whose name is on the title. Every point in the triangle corresponds to a
pretext task that is the weighted combination of the three considered pseudo-labels. For instance,
in the top left corner, the point (0.5, 0.3) correspond to the CI value of a pretext task weighting
logHNR with 0.5, α-ratio with 0.3 and F0 with 0.2.

Table 4: Weights for every pretext-tasks in every considered experiment. With techniques only
leading to a selection of pretext tasks ( without weights ) a unitary weight is assigned for the selected
tasks and zero for the non selected. We can see in this table the zeros induced by the Sparsemax
function.

Selection α-zero F0 Loudness Audspec Rasta ZCR log HNR Voicing

All 1 1 1 1 1 1 1
VC RFE 1 1 0 0 1 0 1
VC MRMR 1 0 0 1 0 1 0
VC Sparsemax 0.28 0.26 0 0 0 0.4544 0
VC Softmax 0.27 0.11 0.18 0.04 0.06 0.31 0.03
Libri RFE 1 0 0 0 1 1 1
Libri MRMR 0 1 0 1 0 1 1
Libri Sparsemax 0.30 0.37 0 0.06 0 0.27 0
Libri Softmax 0.28 0.47 0.07 0.04 0.02 0.08 0.04
IEMOCAP Sparse. 0.16 0.22 0 0.14 0.12 0.17 0.19

the third pseudo-label is selected with a weight equal to one, while its weight is equal to zero on the
hypotenuse of the right triangle. Figure 2 illustrates that the relationship leading to a lower CI-based
utility estimator is not always straightforward. For instance, if we consider the second plot on the
second row (i.e. α-ratio, F0, logHNR), we can see that selecting only one element is always worse
than selecting a weighted concatenation, because the areas around the origin and the points (1, 0)
and (0, 1) are brighter than the central area.

A.9 FULL WEIGHTS FOR THE CONSIDERED EXPERIMENTS

Table 4 shows the weights computed using the proposed selection and weighting process for every
considered downstream task. It also shows the pretext tasks selected by the baseline methods.

19


	1 Introduction
	2 Related works and motivations
	3 Conditional independence for utility estimation
	3.1 Problem definition and intuition
	3.2 Conditional independence estimator computation

	4 Pretext task group selection and weighting
	4.1 Constraints on the weights
	4.2 Weights sparsity

	5 Experimental study
	5.1 Group selection and weighting
	5.2 Self-supervised training
	5.3 Downstream tasks
	5.4 Results

	6 Extending wav2vec 2.0 to multitask SSL
	7 Further discussions
	8 Conclusion
	A Appendix
	A.1 Differentiability proof
	A.2 Considered signal features and descriptions
	A.3 Sparsemax initialization
	A.4 Training and architectures details
	A.4.1 Pretraining of the SSL encoder.
	A.4.2 Downstream trainings : first experiments
	A.4.3 SUPERB settings

	A.5 Intuition around the use of Conditional Independence 
	A.6 Kernels Used for the similarity matrices
	A.7 Links with Feature Selection
	A.8 Pseudo-labels' interactions.
	A.9 Full weights for the considered experiments


