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Abstract—The increasing complexity of modern microproces-
sors created new attack areas. Attackers exploit these areas using
Software Attacks Targeting Hardware Vulnerabilities (SATHV)
such as Cache Side-Channel, Spectre, and Rowhammer attacks.
These attacks target the microarchitecture to extract privileged
information. As their target is the hardware, antivirus programs
cannot detect them. But, they modify the normal behavior
of the microarchitecture. Modern systems are equipped with
hardware performance counters (HPCs), which measure events
related to hardware components. Designers can take advantage
of these counters to monitor and protect the system. In the
literature, there exist many solutions that use HPCs to detect
SATHV. But, due to the limited number of counters, proposed
solutions only protect the microprocessor against a limited set of
SATHV. In contrast, we propose MaDMAN, a Malware Detector,
which gathers information from HPCs to detect a large set of
SATHV. MaDMAN uses a Logistic Regression classifier. In our
threat model, we include Cache Side-Channel, Rowhammer, and
Spectre SATHV. Our detection mechanism succeeds to detect
these attacks with 98.96% accuracy, 96.3% F-score, and 0% false
positive rate. In addition, MaDMAN works in noisy environments
and can detect successfully evasive malware.

Index Terms—security, hardware performance counters, at-
tacks, malware, microarchitecture, detection

I. INTRODUCTION

In the past, attackers exploited software attacks targeting
software vulnerabilities or hardware attacks targeting hardware
vulnerabilities. Software attacks exploit flaws or defects in the
software code. They allow attackers to exploit the Operating
System (OS) or applications in the system, to obtain some
privileges. On the other hand, hardware attacks target flaws
present in the hardware components of the system. Hardware
attacks allow attackers to directly exploit the interaction
with the system electronic components, without relying on
a software vulnerability and independently of the OS. Apart
from traditional hardware attacks such as fault attacks or side-
channel attacks, attackers also found ways to exploit hardware
vulnerabilities using software code. We refer to this new class of
attacks as Software Attacks Targeting Hardware Vulnerabilities
(SATHV).

SATHV exploit various mechanisms in the system. Some
examples are the Branch prediction, Out of Order (OoO)
execution, Dynamic Voltage and Frequency Scaling (DVFS),
Direct Memory Access (DMA), and cache memories. Attackers

exploit these hardware mechanisms to extract information from
the system. As SATHV target hardware vulnerabilities, they
are difficult to patch. Fixing these vulnerabilities often require
redesign of the microarchitecture or of some hardware macro-
components.

To defend against software attacks targeting software vul-
nerabilities, classical tools such as antivirus tools secure the
system. However, antivirus tools can not detect and secure the
system against attacks targeting hardware vulnerabilities. This
is because SATHV behave as normal software applications and
do not leave traces in system log files. In contrary, SATHV
target hardware vulnerabilities not observable by a software
application. As SATHV can be performed remotely and being
undetected, we need to find ways to address them.

To address SATHV researchers proposed online detection
mechanisms [1]–[3] that utilize Hardware Performance Coun-
ters (HPCs). HPCs are special-purpose registers integrated in
most modern architectures. They store the counts of hardware
specific events, such as branch mispredictions, cache misses,
memory accesses, load, and store operations. They are primary
used for performance analysis, tuning, and debugging. The
number of available counters and events is platform specific.

But all proposed detection mechanisms are specific to some
SATHV and cannot detect all the possible SATHV applicable in
the system. As the number of available attack vectors increases,
attackers can bypass detection mechanisms by using attack
variants not considered by the detection model. Such examples
are SATHV using eviction strategies or evasive SATHV. Evasive
SATHV try to avoid detection inserting nop instructions or
sleep() during the attack. It is critical to consider attackers that
will try to hide their malicious activity. If detection mechanisms
take into account only a small set of SATHV, the system is
unsafe against the remaining attacks. It is necessary to develop
a mechanism that will be able to detect with high accuracy
most of the SATHV in the targeted platform and not only a
limited subset. This is a complex task, as the number of HPCs
is limited and the available events are different from platform
to platform. Moreover, finding HPC events that correlate for
all the attacks is difficult.

Our contributions in this paper are the following: we study
HPC events proposed in the literature for the detection of
SATHV and we present how well they detect a large set



of SATHV. We show that using eviction instead of cache
maintenance instructions modifies the expected behavior of
proposed HPC events. In addition, we propose MaDMAN,
(Malware Detector - Monitor, Act, Notify). As far as we know,
MaDMAN is the first ARMv7 detection mechanism detecting
Spectre, Rowhammer, and CacheCSA attacks. MaDMAN is
a software based detection mechanism based on Logistic
Regression classification algorithm [4]. MaDMAN utilizes data
from the HPCs to decide on the presence of malicious behaviors.
Our detection mechanism detects SATHV, including evasive
SATHV.

The rest of the paper is organized as follows: In section
II we provide background information on SATHV. After
section III presents related work. Then section IV, we present
our methodology regarding our data collection approach,
detection methodology, and evaluation. Section V exposes
the applicability of state of the art side effects for the detection
of SATHV in our experiments. Also, we expose some new
features we use for our SATHV detection and our mechanism
detection capabilities. Finally, section VI summarizes our work
and concludes.

II. BACKGROUND

Cache side-channel, Spectre, and Rowhammer attacks are
well studied SATHV. In this section, we will briefly describe
the attacks and targeted vulnerabilities.

Cache side-channel attacks target the latency of accessing
the main memory or the cache memory. If the requested data
are inside the cache memory, the access time is quicker than
accessing data stored in the main memory. Most of the cache
side-channel attacks target this feature to extract confidential
information [5], [6]. But another cache attack presented in [7]
targets the latency of the flush instruction. If the requested
address to flush is in the cache memory, flush instruction takes
more time to execute than when the requested address is not
present.

Rowhammer attacks target the main memory [8]. By repeat-
edly accessing the same DRAM row, inside a time interval less
than the refresh interval of the DRAM, there is the possibility
of inducing bit flips in the neighboring rows. If we repeatedly
access the two neighbors of our victim row, there is a higher
probability of inducing bit flips than one sided hammering
[9]. Using a flush instruction to bypass the cache, enables us
to execute the attack loop faster, increasing the probability
of inducing faults. Gruss et al. [10] showed eviction based
rowhammering is possible.

Spectre [11] targets the branch predictor. When the branch
predictor predicts the outcome of a branch, if finally, the
outcome is correct the Central Processing Unit (CPU) continues
its operation. If the prediction was wrong, the CPU flushes
the pipeline, restores the context before the prediction, and
continues with the correct data. But the residual data stay in
the cache. Spectre involves inducing a victim to speculatively
perform operations that would not occur during correct program
execution. Then, victim confidential information leaks via a
side channel to the adversary.

III. RELATED WORK

In the literature, we find different methods related to SATHV
detection. Li et al. [1] proposed a detection mechanism, which
uses HPCs to detect Rowhammer and Spectre attacks. Their
monitor uses the HPCs to gather the necessary information
to train the machine learning classifier. Chiappetta et al. [2]
and Cho et al. [3] use the HPCs and machine learning to
detect Cache Side-Channel attacks (CacheCSA). Chiappetta
et al. implement a detection mechanism that could be run in
user space, read the HPCs and feed the data in a classifier
to decide for the existence of CacheCSA. Two of the three
methods they proposed are based on machine learning. Cho
et al. use multi-label classification to detect three variants of
CacheCSA. Collecting data from the HPCs induces relative low
performance overhead, is easier and less complex compared to
higher level features of the OS and applications. The proposed
mechanisms show the potentials of using HPCs and online
analysis to detect with good accuracy a set of SATHV. But,
all the related work consider the detection of a limited set of
SATHV.

IV. METHODOLOGY

From previous works, we can see it is possible to detect
SATHV using HPCs. We benefit from HPCs to measure
the stress that malicious applications induce in the hardware
components of the microprocessor. We developed a testbench
[12] that allows experimenting and evaluating different side
effects. In this case, the side effects represent the differences
in the behavior of HPCs in the presence or not of a malicious
vector. In [12], we presented the testbench which allows
us to measure the efficiency of State Of The Art (SOTA)
solutions in different architectures. We studied simple threshold-
based implementations targeting to detect only CacheSCA
and Rowhammer. In contrast, in this paper we use Machine
Learning implementations. Also, we chose SATHV that are
most suitable, representative, and feasible in our platform. To
compare the different HPCs behaviors between normal and
malicious applications, we chose normal applications that best
illustrate applications running in our target.

A. Data collection

To collect the information from the HPCs, our monitoring
module is executed parallelly to the applications. The monitor-
ing Algorithm in Listing 1 is a loop that resets the HPCs, sleeps
for the specified monitoring interval, reads the information from
the HPCs, and writes the results in a .csv file. We extract and
use the obtained results to analyze how the attack vectors
modify the behavior of the different available hardware events.
Besides, we use this dataset to train and test our detection
mechanism. During the reading of the HPCs and the writing
of the .csv files we disable the counters to eliminate the effects
of our monitoring algorithm.

B. Event selection

Because the available HPCs are limited, one must choose
carefully which events to monitor. Further, we must determine



Algorithm 1 Monitoring algorithm to extract information from
the HPCs

1: configure HPCs
2: while running application dataset do
3: reset HPCs
4: nanosleep(monitoring interval)
5: disable HPCs
6: read HPCs and write to csv file
7: re-enable HPCs
8: end while
9: disable HPCs

the monitoring interval between consecutive measurements,
and the detection technique applied to decide if the sample
is malicious or not. All together must provide a detection
mechanism with a low performance overhead, high accuracy,
and a very low false positive rate.

C. Machine Learning Classifiers

We use machine learning algorithms to predict the class of
the set of HPCs information. In our case, we have two classes
or labels i.e., malicious or normal. The classification predictive
modeling is a task that approximates a function f that maps an
input dataset x input to an output dataset y output. This is a
category of supervised learning as we provide the targets with
the input data [13]. Our detection mechanism uses pre-labeled
data for training. Except for the training, there is the testing
phase, to evaluate the detection capability of our classifier. For
our mechanism, we chose a Multi-linear Logistic Regression
[4] classifier because of its simplicity. We can visualize logistic
regression as an one-layer neural network [14] as we can see
from Fig. 1. Logistic regression tends to limit the cost function
between 0 and 1. The inputs xi are the HPC values and the
wi are the weights associated with each input. The normalized
output y is between 0 and 1. Then, a threshold is chosen
with normalized outputs greater than the threshold labeled as
malicious. The final output is a binary decision, ’0’ for normal
and ’1’ for malicious applications.

Fig. 1: Visualization of a Logistic Regression classifier.

D. Exponentially Weighted Moving Average

For our online detection mechanism, we employ a similar
method such as in [1], [15]. The Exponentially Weighted
Moving Average (EWMA) technique helps to distinguish
between normal and malicious behaviors and reduces false
positives. EWMA is an algorithm that continuously computes

a type of average for a series of measurements, as the
measurements arrive. After a value in the series is added to
the average, its weight in the average decreases exponentially
over time. This biases the average towards more recent data.
EWMAs are useful for several reasons, chiefly their inexpensive
computational and memory cost. As well, they represent the
recent central tendency of the series of values [16]. The EWMA
algorithm requires a decay factor, α. The larger the α, the more
the average is biased towards recent history and discounts
older observations faster. The α must be between 0 and 1. We
calculate EWMA as follows:

St =

{
Y1, t = 1
αYt + (1− α) · St−1, t >1

(1)

where Yt is the value at a time period t and St is the value of
the EWMA at any time period t. As so, EWMA behaves as
the sliding window of size N in Fig. 2 for α = 2/(N + 1). In
[15] they showed that classification over windows of execution
can also separate malicious from normal programs. With the
segmented data of the sliding window, we calculate the average
of consecutive decisions in the current window. If the average is
above a certain threshold, we can conclude a malicious process
is in progress. We use binary decisions which consist of 0’s for a
normal and 1’s for a malicious application. The sliding window
size is crucial for the detection accuracy of our online detection
mechanism. A small window could result in high false positives,
and a big window could result in high false negatives because
in a bigger window it is more likely to miss the malicious
behavior. To further reduce noise from our measurements, we
also apply EWMA in the HPCs measurements.

Fig. 2: Sliding window example for decision making

E. Evaluation of the detection performance
The primary criterion to compare the detection mechanisms

or to identify if a mechanism is effective or not should be
detection accuracy. To calculate detection accuracy, we must
initially identify if our measurements are labeled correctly.
True Positives (TP ) are the observations corresponding to
actual attacks predicted as attacks. True Negatives (TN ) are
the observations corresponding to normal operations predicted
as normal operations. False Positives (FP ) or False alarms
are the observations corresponding to normal operations
predicted as attacks. False Negatives (FN ) are the observations
corresponding to actual attacks predicted as normal operations.
Finally, accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FN + FP
(2)



Another metric is the F-score, which measures the global trade-
off between precision and sensitivity, and is defined as:

Fscore =
2 ∗ (precision ∗ sensitivity)
precision+ sensitivity

(3)

where precision is the proportion of positive observations that
truly are positive and sensitivity (or true positive rate) is a
metric that measures how well we identify True positives:

precision =
TP

TP + FP
(4) sensitivity =

TP
TP + FN

(5)

This metric is used as some mechanisms are very good at
detecting an attack, but they are too much sensitive, adding a
high number of False alarms. Additional metrics which will
assist us are the Specificity (or true negative rate) and GMEAN

and are defined as:

specificity =
TN

TN + FP
(6)

GMEAN =
√
specificity ∗ sensitivity (7)

Specificity is a metric that measures the proportion of normal
operations identified correctly. GMEAN is a metric that
searches for a balance between sensitivity and specificity.

Another feature we can use to evaluate the performance
of our mechanism is the Receiver Operating Characteristics
(ROC) curve. We use ROC curves to visualize the comparison
of different classification models. We plot the true positive
rate and the false positive rate for different thresholds, and
we create the curve plotting the scores in a line of increasing
thresholds. ROC shows the trade-off between the true positive
rate and the false positive rate. The area under the ROC curve
(AUC) is a measure of the accuracy of the model. A model
closer to the diagonal line is less accurate and a model with
100% accuracy has an AUC of 1 [13]. In other words, the
optimum result would be the point (0, 1) indicating 0% false
positives and 100% true positives. Besides, the ROC curve can
help in deciding the optimum threshold. From the ROC curve,
we seek the threshold with the highest GMEAN .

V. RESULTS

In the following section, we will present our experimental
platform, the HPC event selection, and MaDMAN. Finally, we
evaluate the detection performance of MaDMAN.

A. Experimental platform

Our experimental platform is based on the evaluation board
Zybo Z7-20. Zybo Z7-20 is an embedded software and digital
circuit development board based on the Xilinx Zynq-7000
family. It integrates a dual-core ARM Cortex-A9 processor
running at 667MHz. It is equipped with 1GB of DDR3L
memory and a Debian GNU/Linux 10. The ARM Cortex-A9
processor is a 32-bit processor core implementing the ARMv7-
A architecture. In ARMv7 cache maintenance operations can
only be executed in privileged modes. From userspace we need
to use eviction techniques [17] to flush a targeted address from
the cache memories.

Our attack libraries include CacheCSA, Spectre, and
Rowhammer attacks. The CacheCSA include Evict+Time,
Prime+Probe, and Evict+Reload targeting the AES T-Table
implementation. Our attack library includes both one and
double sided Rowhammer attacks.

For our normal applications library we include MiBench
[18] and PARSEC [19] suites. MiBench suite illustrates
applications used in embedded systems, targeting different areas
of the embedded market. Some of these are industrial control,
networking, security, and telecommunications applications.
On the other hand, PARSEC suite illustrates applications on
emerging workloads, such as financial, deduplication, computer
vision applications. These two suites combined represent a
diverse range of applications.

B. Event selection

We use HPCs to extract information. HPCs act in our case
as sensors in the microprocessor. The ARM Cortex-A9 core
implements 55 events, but only allows counting 6 events
simultaneously. As we cannot monitor more than 6 side effects
concurrently, we have limited information to try to detect
multiple SATHV. This is our major limitation and drives us to
carefully choose which hardware events to monitor.

Before the selection of the hardware events to monitor, we
needed to answer what is the optimum time interval between our
measurements. Too slow and the malicious application could
hide its behavior, too quick, and the performance overhead of
our detection mechanism would be unacceptable. We tested
monitoring intervals less than 50ms. We did not experiment
with greater monitoring intervals, as we need to react quicker
than the attack can succeed. The attack that needs the least
time to succeed in harming the system is the Rowhammer
attack, which can induce bitflips in less than 64ms. We adopted
the monitoring interval of 1ms for the following reasons:
first, decreasing the monitoring interval to less than 1ms, we
observe no supplementary information. The side effects tend
to decrease proportionally. Second, the least amount of time
a process can run is defined by sysctl sched min granularity
and is by default 750µs. Timing intervals less than 750µs
give us more information than we need. Third, we use the
nanosleep() to create the monitoring interval. We observed
monitoring intervals less than 1ms were noisy. The time
between consecutive measurements was different from the one
we defined. To eliminate the extra noise, we prefer monitoring
intervals greater than 1ms. Finally, to cover the worst-case
scenario, we must use a monitoring interval closer to the
minimum granularity. In this way, the attackers cannot hide their
activity executing with the minimum granularity. If multiple
processes execute concurrently with the minimum granularity,
and we monitor with a too large monitoring interval of 5ms,
then our measurements could be a mix of multiple processes.
The aforementioned reasons let us choose the monitoring
interval of 1ms.

To find the optimum set of hardware events to monitor, we
examined the different behaviors of each event to malicious
and normal applications. To visualize the interquartile range



(a) (b)

Fig. 3: (a) L2 accesses, (b) L2 misses

(IQR)(Fig. 3a the boxes) and median (Fig. 3a the horizontal
line inside the boxes) of the measured HPC values for each
individual SATHV, we use boxplots [20]. From the boxplots,
we can get a first indication for the feasibility of detection
using the targeted HPC events.

The starting point was hardware events proposed in the
literature. First, we used hardware events proposed in [1], [3].
The two mechanisms propose side effects for CacheCSA, Spec-
tre, and Rowhammer attacks. They are both implementations
in Intel x86 platforms and both use attack vectors based on
flush instruction. We analyze if the proposed set of hardware
events perform as well in our platform using eviction based
attacks. Cho et al. [3] proposed the use of the Instructions
Per Cycle (IPC), Level 1 Cache (L1) misses, and Level 2
Cache (L2) misses. From Fig. 4a the median of the IPC is
slightly increased during the attacks but we see no observable
difference. From Fig. 3b, the median of L2 misses is increased
for Spectre compared to normal applications. On the other
hand, the median decreases for CacheCSA and Rowhammer
compared to normal applications. We observe a lot of false
positives, as applications such as the automotive applications
in MiBench increase the IPC and L2 misses. Another point is
that L2 misses and L2 miss ratios increase during the context
switch or when an application runs for the first time. Relying
only on cache statistics increases the false positives. Li et al.
[1] proposed the branch miss rate and Last Level Cache (LLC)
miss rate for the detection of Spectre and Rowhammer. As we
observe from Fig. 4b, the median branch miss rate of Spectre
and Rowhammer attacks is indeed decreasing compared to
normal applications. As well, the median of the L2 miss rate
is also increased during Spectre and Rowhammer compared
to normal applications. With a first look, we can say that the
L2 and branch miss ratio seem to be good indicators for the
detection of Spectre and Rowhammer. But again, we observe
that some MiBench applications exhibit a low branch miss rate
and a high L2 miss ratio, which increases the False positives.
In addition, we need 4 hardware events to calculate these two
indicators. Furthermore, we can see in Fig. 3, 4b, and 5a that
they are not reliable indicators for CacheCSA detection, and
this limits our detection capability for CacheCSA to 2 hardware
events. Fig. 5b shows the obtained ROC curve for a logistic
regression classifier trained with this set of hardware features

(a) (b)

Fig. 4: (a) IPC, (b) Branch miss rate.

(a) (b)

Fig. 5: (a) L2 Cache miss rate, (b) The receiver operating
characteristic curve obtained for a logistic regression classifier
using the hardware events used in [1].

for the detection of Spectre, Rowhammer, and CacheCSA
attacks. We can observe the classifier using this set of events
has a true positive rate of less than 90%.

To detect CacheCSA, Rowhammer, and Spectre attacks we
observe that the instruction cache misses median decrease
compare to normal applications. We can observe in Fig. 6b
that the median of normal applications is higher than the attacks.
We added in the figure the median values because the median
line in the CacheCSA boxplot is not visible. Further, Spectre
and Rowhammer attacks have small variations as their boxplots
are very narrow. CacheCSA have a wider variation, but this is
because we label as malicious the final analysis. The analysis
part of the attack script performs normal operations, which
add instruction cache miss measurements closer to the median
of normal applications.

In Fig. 7a, we can observe that the median of the percentage
of Translation Lookaside Buffer (TLB) allocation due to a data
TLB request by L2 misses is very low for all the attack vectors
compared to normal applications. Moreover, the boxplots of
normal and malicious applications do not overlap. This is
because attacks target specific address ranges and they do not
need to bring a new translation frequently in the TLB. When
the attack vectors miss in all levels of cache, they miss in data
addresses that the translations exist in the TLBs and they are
frequently used. On the other hand, normal applications are
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Fig. 6: (a) Translation Lookaside Buffer (TLB) allocation due
to a data TLB request, (b) L1 Instruction cache misses.

more versatile, and when missing in all levels of caches, it is
more probable to be for a data address not used before. The
TLB must then allocate the missing translation information.
We also observe, that for Rowhammer and CacheCSA attacks
the median of the percentage of TLB allocations due to
an instruction cache request by the instruction TLB misses
decreases. On the other hand increases for Spectre attack. For
Rowhammer and CacheCSA attacks, this is because the attacks
use a small code. For Spectre increases despite the small code,
as during Spectre, we evict all the data from the cache, which
evicts instructions as well. If the translation is evicted from
the TLB due to the replacement algorithm, when we need
to use the instructions of the loop, we will need to bring
again the translation information in the TLB. This indicator is
performing excellently, as the boxplots of malicious and normal
operations do not overlap. The two events can substitute the
branch miss rate and L2 miss rate, as the one shows how small
the instruction code is, and the other shows that malicious
code miss in all levels of cache accessing frequently used
data addresses. We also observed, during context switch, both
features increased reducing the false positive rate in this case.

After our analysis, the 6 hardware events we choose to
monitor are L2 misses, Instruction cache misses, Data cache
misses, Instruction micro TLB miss, Instruction TLB allocation,
and Data TLB allocation. We calculate also the two percentages
mentioned before i.e the percentage of TLB allocations due to
a Data TLB request divided by the number of L2 misses, and
the percentage of TLB allocations due to an Instruction TLB
request divided by the Instruction TLB misses. To eliminate
unnecessary noises in our measurements, we applied EWMA.

C. MaDMAN implementation

MaDMAN is a multivariable logistic regression classifier.
To train MaDMAN, we use 30% of our measurements set
and we keep 70% for testing it. In addition, from our normal
application pool, we randomly choose half of the applications
for our analysis, and the rest we used for online testing. We
do this as logistic regression is susceptible to overfitting.

We tested our classifier both in noiseless and noisy envi-
ronments. We refer to a noiseless environment when only
one application is running in the core, and another can only

(a) (b)

(c) (d)

Fig. 7: (a) percentage of TLB allocations due to a Data
TLB request (DTLB) by L2 misses, (b) percentage of TLB
allocations due to an Instruction TLB request (ITLB) by
Instruction TLB misses, (c) Instruction TLB misses, (d) TLB
allocations due to an Instruction TLB request.

execute after the previous finishes. This is more realistic in
IIoT devices. A noisy environment, on the other hand, is
an environment when multiple processes contest the core for
execution time. To demonstrate an environment like this, we
randomly execute normal applications, from our application
pool. We experimented with a maximum of 4 contesting
applications.

To choose the decision window, we experimented with
different sizes. When we use small decision windows, we
observe a high False Positives Rate (FPR) during execution in
a noisy environment. We can see in Fig. 8 the False positive
rate (blue line) is 7% for small window sizes. When we use
small decision windows, we assign more weight to current
decisions. If our classifier makes a wrong prediction, EWMA
assigns more weight to the wrong prediction increasing the
False positive rate. On the other hand, when we increase the
decision window, current measurements have less weight and
our final output depends on the past measurements as well.
Increasing the decision window, we observe that the False
positive rate decreases to less than 1%. Increasing the decision
window size impacts the False negative rate. When we increase
the decision window size, the false negative rates increase as
we can observe in Fig. 8 with the red and purple lines. This
is because it is likely we miss the malicious behavior when
multiple outputs from the classifier are used to calculate the



final decision. Our decision window will also include normal
decisions, shifting the average closer to a normal application
than malicious. Apart from this, a malicious code includes
normal operations apart from the malicious operations as well.
We chose the window size that balances the two ratios in the
noisy environment. Fig. 9 shows the F-score for the different
sizes of decision and measurements window. The red circles
highlight the two points that gave us a F-score of 100%. We
choose the decision window of 4 and the measurement window
of 9 for our detection mechanism. This set of window sizes
gives an F-score of 100%, as we see highlighted in red in Fig.
9.

Fig. 8: Accuracy, False Negative, and False Positive rates
regarding the decision window size in the noisy and noiseless
environments.

Fig. 9: F-score depending on the measurement window and
decision window. The two red circles highlight the window
sizes (decision window= 4, measurement window = 9) and
(decision window = 16, measurement window = 9)

D. Evaluation of the detection performance of MaDMAN

Our classifier performs with high accuracy both in noiseless
and noisy environments. From Fig. 10, we can see the
ROC curve for our detection mechanism under a noiseless
environment. Our mechanism has an AUC of 0.983 and F-score
of 98.72%. Because we label as malicious all the SATHV code
execution, to calculate the evaluation metrics we use metrics at
an application level. For example, if an application is labeled as

malicious or normal and not the obtained measurements. The
accuracy and F-score for the noisy environment is 100% for the
decision window of 4. For the same decision window, in the
noiseless environment the detection mechanism has an accuracy
of 98.96% and F-score of 96.3%. This difference is because our
metrics are sensitive to context switching, performing better
in a noisy environment. Despite this, the false positive rate
remains at 0%.

Fig. 10: The receiver operating characteristic curve obtained
for our classifier.

To test our classifier against attack variants, we had the
following approaches as in [21]. To begin with, we trained
our classifier by using the quickest eviction strategy we found
for our platform. Next, we created some attack variants with
slower eviction strategies and some based on the insertion
of nop instructions and random sleep functions during code
execution. The insertion of nop instructions and sleep functions
was placed carefully during atomic tasks, so as the attacks still
succeed. By inserting this extra code, we modify the expected
behavior of the hardware event. The goal is to obtain a behavior
close to nominal. The detection mechanism of Li et al. [1],
[21], detect with 0.23% false negatives for Rowhammer and
3.83% false negatives for Spectre, using Logistic Regression.
When they tested their detection mechanism with an evasive
Spectre attack, their detection accuracy fell less than 90%. Our
classifier was capable to detect all the evasive SATHV, with
no false negatives. The difference between our mechanism and
the one in [1], except the hardware events, is the time interval
between consecutive measurements. Li et al. used perf tools
to extract the hardware features. Using perf we can monitor
with the minimum time of 100ms, as the researchers do. As
we monitor 100 times faster, we are more likely to detect
malicious activities, in the presence of evasive techniques.

The performance overhead of a proposed detection mech-
anism is a major concern since it affects all the applications
running on the system. We evaluated our detection mechanism
in noisy and noiseless environments. We run the same set
of applications with and without the detection mechanism,
measuring the execution time using the Linux time command.
The performance overhead of our detection mechanism is 1.3%.



VI. CONCLUSION

SATHV can be dangerous for our systems. They gain
popularity, as they can bypass current software protections
and as it can be very difficult to patch a system with hardware
vulnerabilities. This study presented MaDMAN, a detection
mechanism that implements multivariable logistic regression
to classify normal and malicious measurements. MaDMAN
extracts the measurements from hardware performance counters,
which provide information about the behavior of the system
under test. MaDMAN, an ARMv7 based security mechanism,
detects SATHV based on eviction techniques. Our threat model
includes CacheCSA, Spectre, and Rowhammer attacks. Prior
works did not consider eviction based approaches, as cache
maintenance instructions were available to userspace. Eviction
based techniques modify the expected behavior of proposed
hardware events in the state of the art. We presented some new
hardware events and indicators that help MaDMAN detect with
high accuracy SATHV, and reduce the false positive rate during
context switching. MaDMAN performs in both noiseless and
noisy environments. It can detect attack variants and evasive
malware with an accuracy of 98.3% and 1.3% performance
overhead. MaDMAN decides in regards to past observations
using EWMA. This sliding window technique further improved
the false positive rate.

As there exist many more SATHV, a detection mechanism
should be able to detect with high accuracy all of them
and preferably independently of the platform. Because the
information we can receive is limited to the available HPCs,
the detection of all the SATVH is challenging. Our platform
is currently limited to malicious codes that use eviction based
techniques and is specific to ARMv7 architecture. Our goal is
to mitigate in a platform that supports more SATHV variants,
such as Flush+Flush attack. Flush based attack vectors are well
studied in the literature. Adding eviction based attack vectors on
top of flush based approaches will cover a greater attack surface
than the proposed mechanisms. Further, we plan to experiment
on different platforms. The goal is the implementation of a
mechanism that can migrate to different platforms and stay
effective.
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