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Abstract

This paper introduces Timers and Such, a new open source dataset of spoken
English commands for common voice control use cases involving numbers. We
describe the gap in existing spoken language understanding datasets that Timers
and Such fills, the design and creation of the dataset, and experiments with a
number of ASR-based and end-to-end baseline models, the code for which has
been made available as part of the SpeechBrain toolkit.

1 Introduction

Spoken language understanding (SLU) research has begun to emphasize the importance of both
testing and training SLU systems end-to-end on audio. Testing on audio is important because an
independently trained automatic speech recognition (ASR) system and natural language understanding
(NLU) system will not necessarily work well when combined [1, 2]. Training SLU systems end-to-
end on audio is likewise worthwhile because it can make the NLU model more robust to transcription
errors, and because it enables training a single neural network to perform the entire SLU pipeline
without an intermediate search step, a technique with many practical and theoretical advantages over
ASR-based approaches [3].

Experiments involving end-to-end training and testing of SLU models require audio data. Over the
last few years, a number of open source audio datasets have been released to enable high-quality,
reproducible end-to-end SLU research. The Snips SLU Dataset [2] is a small dataset of English and
French commands for a smart home setting, such as controlling smart lights, speaker volume, and
music selection. Fluent Speech Commands [4] is a somewhat larger, though simpler, dataset of
similar English smart home commands. The most recently released SLURP dataset [5] is an even
larger and much more semantically complex multi-domain SLU dataset.

An important feature missing from these datasets is a thorough coverage of numbers. Numbers are
necessary for many SLU domains, especially for very common use cases like setting timers and
converting units of measurement while cooking. While there do exist datasets of digits spoken in
isolation [6, 7, 8], and the Snips SLU Dataset and SLURP do have a small number of commands
involving simple numbers, there does not to our knowledge exist any open source SLU dataset that
covers more general multi-digit numbers (e.g. “13.57”, “-21.4”) spoken in context. The dataset
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1 ("what’s 37.67 minus 75.7",
2 {
3 ’intent ’: ’SimpleMath ’,
4 ’slots’: {
5 ’number1 ’: 37.67,
6 ’number2 ’: 75.7,
7 ’op’: ’ minus ’
8 }
9 })

Listing 1: A SimpleMath command and its label dictionary.

introduced here—Timers and Such—fills this gap, with each command containing one or two
numbers with one or more digits.

One of the original motivations for the development of end-to-end SLU models was the need for
more compact models that can easily fit on resource-limited devices and operate without an Internet
connection [3]. Whereas existing SLU datasets focus mostly on Internet-connected smart home
commands or queries that require an Internet search, Timers and Such is composed only of commands
that can be executed without the need for the Internet. This makes the dataset ideal for training
or testing a simple offline voice assistant. While the baselines described in this paper all use
rather comfortably large neural networks (>100 million parameters), we hope that researchers and
developers working on machine learning for edge devices will improve upon our models in terms of
storage requirements and computational complexity; we believe they will find Timers and Such to be
a challenging and interesting test case for their models.

The dataset should also be useful for researchers working on representation learning for audio and
language to use as a downstream test task, as Fluent Speech Commands has been [9, 10]. While in
the past we have found supervised ASR-based pre-training to be essential for getting good results
with end-to-end SLU models, we believe unsupervised feature extractors may ultimately prove to be
a better general-purpose solution for SLU and other audio tasks [11, 12].

A final, more mundane motivation for Timers and Such was the need for an SLU dataset that
could easily be downloaded programmatically using tools like wget or curl, similar to MNIST or
LibriSpeech.1 Fluent Speech Commands requires users to sign up on a web page, and the Snips SLU
dataset requires filling in an online form and waiting to be approved. In contrast to these, Timers
and Such is hosted on Zenodo2 under the very permissive CC0 license, and the experiment code3 we
provide downloads the dataset if it is not already present in the location specified by the user. These
features should lower the barrier to entry for anyone interested in training or testing their first SLU
model.

In what follows, we outline the design and creation of Timers and Such, describe some baseline
models for the dataset, discuss their experimental performance, and end by listing some ideas for
future research.

2 Dataset design

The dataset has four intents, corresponding to four common offline voice assistant uses: SetTimer,
SetAlarm, SimpleMath, and UnitConversion. The semantic label for each utterance is a dictionary
with the intent and a number of slots. An example of a command and its corresponding semantics is
shown in Listing 1.

The prompts to be recorded by speakers were generated using a script written by the first author with
a simple “grammar” that produced a few variations of set phrases for each of the four intents (“set a
timer for. . . ”, “set timer for. . . ”, “start timer for. . . ”). Random numbers were inserted from a range

1SLURP, released after the start of this work, can also be downloaded programmatically.
2The dataset can be found at https://zenodo.org/record/4623772.
3The code can be found at https://github.com/speechbrain/speechbrain/tree/develop/recipes/

timers-and-such.
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Figure 1: The recording interface used by speakers.

that made sense for the given intent (for instance, when converting temperatures, temperatures less
than 0 Kelvin were not used).4

A better way to collect different ways of phrasing commands than introspection is to place speakers in
a voice control scenario (or have them imagine themselves in one) and ask them what they would say
to have the system complete a certain task. This method was used to create part of the closed source
Facebook dataset in [3] and the open source SLURP [5]. However, this approach is complicated
to set up and much more taxing on speakers. Given that our speakers were volunteers, we decided
instead to simply prompt them with randomly generated phrases for each of the intents, similar to the
approach used in Mozilla’s Common Voice project [13].

3 Preliminary small-scale study

A preliminary version of Timers and Such was made between November 2019 and October 2020. 11
colleagues recorded themselves reading a list of prompts, some using the first author’s laptop, and
others using their own computers. The first author then segmented these audio files into the individual
commands and split the resulting 271 audios into a training set with 144 audios (4 speakers), a dev set
with 72 audios (2 speakers), and a test set with 55 audios (5 speakers). Models trained on this small
dataset were found to have high variability in performance for the test set, which was hypothesized
to be because of the small test set size. (This actually seems not to have been the real reason; see
Sec. 5.4.) To make a dataset that could be used more reliably to train and compare SLU models, we
decided to reach out to a larger pool of speakers by asking volunteers online to donate their voices.

4 Data collection

4.1 Recording website

The second author built a website to allow speakers to record themselves reading prompts. Speakers
using the website were first asked for their age, gender, and spoken English proficiency. For each
demographic field, users also had the option to respond “Prefer not to say”. After giving their
consent to have their demographic information and recordings released in a publicly available dataset,
speakers used the interface shown in Fig. 1 to record a set of 24 randomly generated prompts.

4The script for generating prompts can be found at https://gist.github.com/lorenlugosch/
5df9e30227aa5c67ff51cd28271414f0.

3

https://gist.github.com/lorenlugosch/5df9e30227aa5c67ff51cd28271414f0
https://gist.github.com/lorenlugosch/5df9e30227aa5c67ff51cd28271414f0


4.2 Speaker recruitment

Starting on February 18, 2021, we advertised the project and recording website on various social media
platforms (Twitter, LinkedIn, Reddit, Hacker News, Facebook). In response to this advertisement, 89
sessions were recorded from the first day until March 12, 2021.

Whether the 89 recorded sessions correspond to exactly 89 different speakers is unknown. We
neglected to ask speakers in the recording instructions not to record more than one session. Because
speakers were (deliberately) not asked to provide any information that would uniquely identify them,
such as their name or email address, there is no way to ascertain whether two sessions correspond to
the same speaker (as is the case for recording platforms like Common Voice’s, which allow a speaker
to record without entering any personally identifiable information). To avoid an overlap between
speakers in the training set and the test set, we examined the demographic information provided by
speakers (age, gender, fluency) and selected only sessions with a unique demographic triple to be in
the test set. Assuming speakers provided their demographic information truthfully, this means there
are no speakers from the test set in the training set.

4.3 Data preprocessing and cleaning

All recordings were converted from their original formats to single-channel 16,000 Hz .wav files for
compatibility with the ASR model used in our baseline experiments.

Data cleaning for the smaller set of audios collected during the preliminary small-scale study was
done manually by the first author. The 271 audios collected in the preliminary study were assigned
to the dev-real subset. Those speakers were not asked for their demographic information, so that
information is not provided for this split.

For the larger set of audios recorded using the recording website, we used a more automated form
of cleaning: the audios were transcribed using an ASR model (described in Sec. 5.1), and the word
error rate (WER) between each prompt and transcript was computed. Audios for which the ASR
transcript was empty or looked significantly different from the prompt were listened to and kept
or deleted as appropriate. (A simple automatic decision rule that was found to yield nearly the
same subset was to select all audios with WER less than 100%.) After this cleaning procedure, the
remaining 1,880 audios were split into train-real and test-real subsets. A .csv file for each
subset ({train-real, dev-real, test-real}.csv) lists, for each utterance, the .wav filename,
the semantic label dictionary, the session ID (⇡ speaker ID), and the transcript.

4.4 Synthetic data

Following [14], we used VoiceLoop [15] to synthesize a large set of audios from 22 synthetic
speakers. (The VoiceLoop model is trained on the VCTK dataset [16].) That set was split by speaker
into the train-synth (192,000 audios), dev-synth (24,000 audios), and test-synth (36,000
audios) subsets. As for the data from the real speakers, we include a .csv file ({train-synth,
dev-synth, test-synth}.csv) listing the filename, semantics, speaker ID (a number 1 to 22
indicating which VoiceLoop synthetic speaker was used), and transcript. The VoiceLoop speech
synthesizer is deterministic: running it on the same prompt twice produces the same audio signal. As
a result, some of the rows in the .csv file describing the synthetic subset are redundant: they point
to the same audio file with the same labels. We have not removed the redundant rows because we
found that doing so led to an unbalanced training set: for example, there were many more instances
of “set alarm for <hour> <minute> AM” than of “set alarm for <hour> AM”, so models trained
on this unbalanced dataset tended to hallucinate an erroneous value for the <minute> slot for the
latter type of utterance. (Alternately, users can rebalance the data in a different way, if they choose,
using e.g. pandas.DataFrame.drop_duplicates() on the filename column of the .csv file.) We
encourage users of Timers and Such not to think of the synthetic subset as fixed (except to avoid
unfair comparisons between two models differing in some other respects), but rather to try adding
more synthetic speakers and using improved speech synthesis techniques.

4.5 Dataset statistics

The overall statistics for both the real and synthetic subsets of Timers and Such after data cleaning
are listed in Table 1. At 2,151 non-synthetic utterances, Timers and Such is a fairly small dataset,
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but like TIMIT (6,300 utterances [17]) and the Snips “smart lights” dataset (1,660 utterances [2]),
we have found the dataset nonetheless very useful for experimentation. It is more challenging than
Fluent Speech Commands (which can be treated as a simple classification problem and for which
accuracy as high as 99.7% has been achieved [18]), but it is smaller and simpler than SLURP. By
training only on text or synthetic speech, and testing on all available real audio, it is possible to obtain
a relatively large test set (cf. the LibriSpeech test-clean subset with 2,620 audios).

Table 1: Timers and Such speaker counts and recording statistics. (⇤Speaker counts are approximate;
see Section 4.2.)

Split # of speakers⇤ # of audios # hours

train-synth 16 192,000 132.2
dev-synth 2 24,000 15.8
test-synth 3 36,000 23.5

train-real 74 1,640 1.9
dev-real 11 271 0.3
test-real 10 240 0.3

all-real 95 2,151 2.5

Table 2: Speaker gender statistics. (dev-real demographics not included; see Section 4.3.)
Split Man Woman Non-

Binary
(Prefer not
to say)

train-real 54 17 0 3
test-real 5 4 1 0

Table 3: Speaker English proficiency statistics.
Split Native

speaker
Fluent Somewhat

fluent
(Prefer not
to say)

train-real 20 42 9 3
test-real 4 2 4 0

5 Baseline models

Here we describe extensive experiments with a set of baseline neural network models for Timers and
Such. All experiments are conducted using the open source SpeechBrain [19] toolkit.

5.1 ASR model and language models

The baseline models use an ASR model trained on the 960-hour LibriSpeech English ASR dataset
[20]. The ASR model is an autoregressive attention-based sequence-to-sequence model [21, 22]
that achieves 3.08% WER on the test-clean subset of LibriSpeech. The encoder of the ASR
model extracts 40-dimensional FBANK features from the input signal and has two 2-D convolutional
layers that downsample the input sequence by a factor of 4 in the time dimension, followed by four
bidirectional LSTM layers and two fully-connected layers. The decoder is a GRU network that uses
the location-aware attention mechanism of [23] to process the encoder outputs. The encoder outputs
are additionally passed through a linear CTC [24] head; during training, the output of the CTC head is
used to compute an auxiliary CTC loss term [25]. Both the CTC head and the autoregressive decoder
have 1000 outputs for a 1000-token SentencePiece [26] BPE vocabulary.5 (This ASR model was

5More detailed hyperparameters for the ASR model can be found at https://github.com/speechbrain/
speechbrain/blob/develop/recipes/LibriSpeech/ASR/seq2seq/hparams/train_BPE_1000.yaml.
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Table 4: Speaker age ranges. (See train-demographics.csv and test-demographics.csv for
more granularity.)

Split 18-
25

26-
35

36-
45

46+ (Prefer not
to say)

train-real 11 41 6 1 15
test-real 3 5 2 0 0

chosen because it was the best performing English ASR model in SpeechBrain at the time when these
experiments were conducted.)

The ASR model transcribes the input signal x using a beam search for

argmax
y

log pASR(y|x)
+ ↵ log pCTC(y|x)
+ � log pLM(y)

+ �c(x,y),

where pCTC(y|x) is the likelihood of transcript y according to the CTC head [25], pLM(y) is the
likelihood according to an external language model (LM), c(x,y) is a coverage penalty term [27],
and ↵,�, � were set to minimize WER on the LibriSpeech dev sets.

The default LM is an LSTM trained on the LibriSpeech language modeling resources.6 In addition to
the default LibriSpeech LM (LS LM), we also trained an LSTM LM on the Timers and Such training
set transcripts (TAS LM). For ASR-based baseline models, we present results both using the LS LM
and TAS LM.

5.2 SLU models

We provide code, pre-trained models, and results for a traditional decoupled SLU model and (using
the terminology suggested by Haghani et al. in [28]) two types of “end-to-end” models: a multistage
model and a direct model.

The decoupled model uses a sequence-to-sequence model to map the transcript to the semantics.
During training (and when decoding the validation set), the ground-truth transcripts are used as the
input, and during testing, the transcripts produced by the LibriSpeech ASR model are used. For all
models, the semantic dictionaries are treated as raw sequences of characters and split using a 51-token
SentencePiece tokenizer.

The multistage model likewise uses a sequence-to-sequence model to map the transcript to the
semantics, but instead of training on the ground-truth transcripts, it is trained on the ASR transcripts.
The transcripts are not precomputed: rather, each minibatch of audio signals is transcribed on the
fly during training, which simplifies the implementation of our experiments. In theory, transcribing
training examples on the fly should also make the NLU model more robust, as it is exposed to
more types of transcription errors resulting from different noise samples (e.g. from dropout, batch
normalization, data augmentation) across minibatches—though we have not compared the results
with simply training on a single set of precomputed ASR transcripts, and leave this as an avenue for
other researchers to explore. The downside of on-the-fly transcription is that the inherently sequential
ASR beam search becomes a bottleneck on training step time. Using the default ASR beam width of
80, the time for one epoch on train-synth was about 12 hours (compared with about 0.5 hours for
the decoupled model). Reducing the ASR beam width to 1 reduced the time for one epoch to about
2.5 hours. The results presented below use an ASR beam width of 1 for the multistage model.

The direct model uses a single sequence-to-sequence model to map audio directly to semantics,
without an intermediate ASR search step. Compared to the multistage model, the direct model is
significantly faster both in training and decoding, at about 1.5 hours per epoch with train-synth
instead of 2.5 hours. Pre-training using related ASR or NLU tasks has consistently been found to
improve the performance of direct models [4, 29, 30, 31, 32], so we pre-train the encoder here as well.

6https://www.openslr.org/11/
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In our experiments described in previous papers, the encoder of the direct model was pre-trained
using force-aligned phoneme and word labels [4, 14]. The pre-training strategy used in this paper is
somewhat simpler: we extract the encoder from the LibriSpeech ASR model and use it as a feature
extractor in the direct SLU model. Another difference is that we do not backpropagate into the
pre-trained encoder and leave its weights frozen, which greatly reduces training time and memory
consumption. A more thorough ablation study and comparison of pre-training strategies would be
worthwhile to conduct, but we leave that for the future, since the point here is just to establish some
reasonable baseline models for this dataset.

While the SLU models do use a beam search to produce the output sequence, there are a number
of differences between the SLU decoder and the ASR decoder. The SLU beam search does not use
a coverage penalty (which was found to hurt performance both for Timers and Such and for the
SLURP dataset) or an external “language model” over the space of output dictionaries. Instead of
location-aware attention (which assumes a monotonic alignment between input and output sequences),
the SLU decoder uses a simple one-headed key-value attention mechanism. The SLU models also do
not use an auxiliary CTC head: whereas CTC’s assumptions (monotonic alignments; output length
< input length) make sense for ASR, they generally do not hold for SLU, unless the dataset has
word-aligned slot labels (Timers and Such does not). Other hyperparameters for these models were
not optimized and chosen simply by copying the decoder hyperparameters from the LibriSpeech
recipe, which were optimized for the validation set of that dataset.

5.3 Experiments

For all baseline models, we provide results for three composite training sets: train-real only
(trained for 50 epochs), train-real plus train-synth (trained for 2 epochs), and train-synth
only (trained for 2 epochs). For all three training sets, we measure performance on test-real and
test-synth. When training on train-synth only, we additionally report performance for all-real,
a subset obtained by combining all the real data in train-real, dev-real, and test-real. (We do
not test models trained on train-real on all-real because all-real contains train-real. For
the same reason, we use dev-synth, not dev-real, to select the model checkpoint from the epoch
with the best validation performance when testing on all-real.)

As in previous work, we report performance in terms of accuracy, where an output is deemed “correct”
if all predicted slots and slot values are correct. Bastianelli et al. in [5] have argued for the use
of metrics more informative than simple accuracy when evaluating end-to-end SLU models. They
propose SLU-F1, a metric based on word-level and character-level edit distance between the model’s
output and the true labels. The SLU-F1 metric sensibly penalizes errors like “pizzas” ! “pizza”
less than errors like “pizzas” ! “fries”. It is unclear, though, whether character-level edit distance
is suitable for the numeric commands of Timers and Such: should “11” ! “111” (character error
rate of 50%) be regarded as less of an error than “11” ! “22” (character error rate of 100%) when
setting a cooking timer in minutes? For this reason, we do not recommend using character-level
error to evaluate systems for this task. As a compromise, we also suggest reporting “SLU WER”, an
easy-to-compute metric that treats the space-delimited output of the SLU model and the true output
dictionary as regular sequences of words and simply computes the usual WER metric. Note that no
“normalization” of the outputs (e.g., "twelve and a half", "twelve point five" ! “12.5”) is necessary
before evaluating, since the labels are always written in the correct numeric format.

5.4 Results

A few trends in the results shown in Table 5 are worth noting.

• The direct model and multistage TAS LM work best. This is perhaps unsurprising, since
these two models effectively have the most opportunity to train on the downstream SLU
task.

• The direct model “overfits” to synthetic speech. It seems that because the direct model
has access to the raw speech features instead of a transcript, it can learn the idiosyncratic
pronunciations of the speech synthesizer and achieve much better performance than the
ASR-based models (96.7% vs. 85.4%). This model still performs well on the real test
data—we mention this simply to explain why this model suddenly performs so much better
for the synthetic test data.
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Table 5: Results (mean and stdev. over 5 random seeds) for all baseline models. See Sec. 5.3 for the
definition of “SLU WER”.

test-real test-synth

Model Training set Accuracy SLU WER Accuracy SLU WER

Decoupled
(LS LM)

train-real 24.1%±1.1% 34.4%±3.3% 16.1%±1.4% 33.2%±8.7%
(both) 31.4%±4.3% 26.5%±5.0% 22.5%±2.1% 25.2%±2.5%

train-synth 32.3%±3.9% 26.5%±2.5% 23.7%±1.6% 24.2%±0.7%

Decoupled
(TAS LM)

train-real 43.5%±2.0% 20.3%±3.5% 34.6%±1.2% 18.5%±3.8%
(both) 46.8%±2.1% 16.5%±2.2% 38.4%±1.3% 15.2%±0.9%

train-synth 49.1%±2.3% 16.3%±1.1% 39.9%±0.7% 13.9%±0.8%

Multistage
(LS LM)

train-real 55.5%±3.4% 10.1%±0.6% 43.1%±2.9% 10.8%±0.8%
(both) 67.8%±1.4% 7.4%±0.4% 79.4%±0.4% 3.2%±0.1%

train-synth 66.6%±0.8% 7.7%±0.8% 79.1%±0.2% 3.2%±0.0%

Multistage
(TAS LM)

train-real 64.0%±3.3% 7.4%±0.9% 51.5%±2.9% 8.7%±0.7%
(both) 72.6%±1.6% 5.9%±0.1% 85.4%±0.2% 2.4%±0.0%

train-synth 72.2%±1.4% 6.2%±0.4% 85.4%±0.3% 2.4%±0.1%

Direct
train-real 81.6%±5.4% 2.6%±1.1% 70.0%±5.7% 15.2%±19.1%

(both) 77.5%±1.6% 3.3%±0.4% 96.7%±0.3% 1.1%±0.0%
train-synth 68.0%±5.5% 8.9%±3.4% 96.4%±0.2% 1.1%±0.0%

Table 6: Baseline results for the all-real set.

all-real

Model Training set Accuracy SLU WER

Decoupled (LS LM) train-synth 26.8%±3.3% 29.0%±2.2%

Decoupled (TAS LM) train-synth 44.6%±2.4% 17.3%±1.1%

Multistage (LS LM) train-synth 64.6%±0.7% 7.2%±0.2%

Multistage (TAS LM) train-synth 69.9%±0.9% 6.0%±0.2%

Direct train-synth 68.9%±5.4% 8.2%±3.4%

• Test accuracies and SLU WERs
7

have high variability. Some test accuracies have a
standard deviation as high as 5.7%. We observed this phenomenon with the preliminary
version of Timers and Such and suspected that the variance was because of the smaller test
set size (55 audios). However, this does not seem to be the explanation here, since all-real
(Table 6) has 2,151 audios and still has highly variable test accuracy (stdev. of 3.3%, 2.4%,
0.7%, 0.9%, 5.4%). We will not venture further here to diagnose this problem; instead, we
leave it as a problem for future research on this dataset to solve.

5.5 Computing resource usage

Training and testing all the SLU models across all random seeds, models, and training set compositions
required about 233 GPU-hours on an Nvidia Quadro RTX 8000 GPU. Additionally, the LibriSpeech
ASR model was trained using one Nvidia Tesla V100 GPU for 194 hours, and the LibriSpeech LM
was trained using 4 V100s for about 84 hours.

However, we hasten to note for those with limited computing resources interested in experimenting
with Timers and Such that i) the pre-trained LibriSpeech models are available online and are down-
loaded automatically by the recipes, and ii) training a single model on Timers and Such can be done

7The 19.1% stdev. in SLU WER for the direct model on test-synth is due to a single outlier random seed
for which the decoder produced many infinitely looping outputs (“unit1 unit1 unit1 unit1. . . ”).
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relatively quickly, at around a minute per epoch for the direct recipe when training on train-real.
The decoupled recipe can also be sped up significantly by using a larger batch size during training,
since the input is text instead of speech and requires less memory. Note also that all the recipes have
also been successfully tested on an older 12 GB Nvidia Tesla K80 GPU without any hyperparameter
modifications.

6 Potential social impact

A risk of recording speech data is that a malicious actor could use the data to imitate the speaker and
use the speaker’s voice for purposes the speaker did not intend [33]. Similar to Common Voice, it is
unlikely that this could happen to the speakers of Timers and Such, since they did not provide any
information that could uniquely identify them.

On the whole, we think Timers and Such will be a great benefit to the research community and
(indirectly) to users of voice interfaces. Speech datasets are often recorded by professional speakers
in clean conditions unlike the conditions in which voice interfaces are typically used. This leads to
brittle, overfitted models that break when applied to real-world speech [34]. Timers and Such will
contribute to research and development of more robust models that can understand speech in a variety
of accents and conditions.

7 Conclusion

Timers and Such is a new dataset of numeric commands that should be useful for SLU researchers,
hackers aiming to train their own offline voice assistant, and researchers developing new representation
learning methods for audio and language [9, 10, 11, 12] looking for another downstream task to test
on. Some directions for the future of Timers and Such we hope to see worked on include: diagnosing
and fixing the high variability of test performance; exploring the ASR model architecture (e.g., using
a CTC model or transducer model [35]); speeding up the multistage approach, e.g. by using transfer
learning to initialize a multistage model using a decoupled model; improving the performance of the
direct model on all-real; using an ASR dataset with a more diverse set of accents and recording
conditions, like Common Voice [13]; using different tokenizers or other hand-crafted output labels;
improving the speech synthesis (using systems such as the RTVC multispeaker TTS [36, 37] to add
even more synthetic speakers) and balance between real and synthetic training data; and enabling
streaming inference [38, 39], which cannot be performed with the baseline models as-is, due to their
global attention mechanism.
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