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Abstract

Background Linking several datasets is becoming in-
creasingly important for epidemiological research. How-
ever, assessing linkage quality can be challenging. This
paper introduces a deterministic record linkage strategy
that focuses on assessing linkage quality using new qual-
ity metrics.
Methods We developed a deterministic linkage strategy
that systematically considers all combinations of individ-
ual identifiers. An exhaustive exploration of all variable
combinations makes it possible to compute a new met-
ric, referred to as robustness, and to generate a linkage
cartography that precisely summarizes the linked pair
characteristics. This cartography is central to our ap-
proach and makes it possible for the expert to easily
accept/reject groups of linked pairs. The approach was
tested on synthetic datasets staging a variety of possible
linkage scenarios, and on two real-world studies (a reg-
istry database and a clinical trial).
Results Dataset simulations demonstrated very good
accuracy with a limited impact of different factors
(datasets size/ratio, overlap, and errors), scalability, and
encouraging runtimes. Minima were greater than 0.95
for recall and greater than 0.99 for precision, whatever
the scenario. Feasibility on real datasets was verified
with good results: among 3985 patients from the reg-
istry, the algorithm found 3850 single linked pairs and
135 proposals with multiple candidates out of 504,795
candidates. After reviewing the linkage cartography, the
expert validated 3783 linked pairs and a manual review
of multiple candidates added 20 pairs, reaching a linkage
rate of 95.4%. For the trial, only 2 records out of 129
were not linked among 22,426 candidates, as a result of
early withdrawal (no information in the trial database),
giving a linkage rate of 98.4%.
Conclusions The novelty of our approach is twofold:
first, the linkage cartography provides a new way of clas-
sifying and comparing deterministic rules from the set of
all possible rules and second, the approach is by design
resilient to data corruption and can reach better recall
than standard deterministic linkage strategies. Finally,
good performance and scalability open the door to the
linkage of very large datasets.

∗correspondence: erwan.drezen@cubr.fr

1 Background

Linkage among healthcare databases, claims, and exter-
nal data collections such as registries, cohorts or clinical
trials is becoming increasingly important for conducting
epidemiological research [1]. Access to complementary
sources of information provides a comprehensive picture,
as each dataset has some missing or insufficiently detailed
data [2]. For example, the French National Health Insur-
ance Information System (SNDS) contains claims-based
data on dispensed drugs, on out-of-hospital laboratory
tests, but without results, and on outpatient medical
consultations, but without diagnosis or even the symp-
toms motivating the patient’s consultation [3]; smoking
and alcohol-use histories can only be deduced from hos-
pital diagnoses or from specific drug deliveries, which is
far from the required accuracy. Registries, cohorts or
clinical trials collect medically validated data, but long-
term information on patients’ conditions and treatments
over time is time-consuming and costly, and prone to
attrition bias. Healthcare databases and claims are an
neat way to extract data at low cost and without attri-
tion. The linkage of the two sources could overcome lack
of information and limit confounding biases.

Linkage algorithm accuracy is a key issue, with the
implications of a trade-off between missing true matches
and identifying false matches [4]. Classic linkage meth-
ods fall into two main classes:

• deterministic methods using a set of rules to binary
classify matching pairs of records as related to the
same individual or not.

• probabilistic linkage methods using a weight or score
to estimate the likelihood that two records belong to
the same individual [5].

Defining a set of rules is a key point in deterministic
record linkage strategies and, when no gold standard is
available, assessing linkage quality according to the cho-
sen rules can be difficult. Strategies using a small set
of combinations of specific personal identifiers have been
assessed using a gold standard; a classification of the set
of combinations is provided according to linkage rate and
correct linkage rate [6] or sensitivity, specificity and posi-
tive predictive value [7, 8]. Deterministic strategies using
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combinations ofN−1 identifiers have also been compared
to full deterministic linkage and probabilistic linkage us-
ing simulated datasets [9]. Similarly, match-keys are cre-
ated by putting together pieces of identifiers to create
unique keys, each match-key being designed to resolve
a particular type of data inconsistency [10]. Reducing
the number of match-keys can be achieved by skipping
redundant match-keys in the hope of reducing computa-
tional load [11]. Actually, a strategy using all possible
combinations of identifiers in order to classify and com-
pare them does not seem to have been tested so far. It
is worth noting that some probalistic linkage methods
consider the full set of possible combinations but with
different intent (e.g. calculating a suitable threshold set-
ting) [12]. A series of several progressively less restric-
tive steps generated from combinations of identifiers is
often used in deterministic linkage strategies and a link
is assigned the step of the algorithm that made the link,
known as the match rank [13, 14]. Usually, only links
with low match rank are kept since they are expected to
be trustworthy. This is however not fully satisfactory be-
cause match rank does not tell us if another link was close
enough to be acceptable as well; a deterministic linkage
strategy assessing all link/rank couples could determine
”how far” a linked pair is from the other potential links
and thus provide to the expert a new quality metric in
addition to the match rank.

A known issue concerns the scalability of the record
linkage process in the face of ever-growing datasets. Fast
matching, in the meantime, is also a concern, since
new applications (for example deduplication in identity
management systems) require real-time answers rather
than batch processing [15]. While scalability to large
datasets has been generally addressed by blocking or fil-
tering methods in order to mitigate the calculation bur-
den, these adaptations expose to a reduction in true
positive matches. This problem is exacerbated when
the two datasets differ greatly in size, since the search
space expands quadratically while the number of poten-
tial matches only evolves linearly.

Lastly, clear and transparent reporting of data linkage
is mandatory. While data linkage evaluation generally
rests on traditional measures such as sensitivity, speci-
ficity and false positive rates, further aspects such as the
completeness and the quality of the data sources and the
precise description of the linkage process should also be
taken into consideration [16]. In addition, one should be
able to verify whether the resulting linked dataset fits
the researcher’s needs and its intended uses, and also to
determine whether the characteristics of the linked pop-
ulation differ or not from the group composed by the
unmatched individuals [17].

In light of these challenges, we developed a determin-
istic linkage strategy which systematically considers all
combinations of individual identifiers, while attempting
to overcome the complexity inherent in an exhaustive
search space of this type. This strategy could fit var-
ious situations of dataset size and data quality, while
also addressing the two above-mentioned major issues

[18]: accuracy and scalability. We evaluated the recall,
precision, and computation time of this new algorithm
across a variety of record linkage scenarios using simu-
lated datasets and two real-world datasets.

2 Methods

2.1 Rationale

Let us consider a set S of individuals such that x belongs
to S which will be called the source database and a set
T of individuals such that y belongs to T which will be
called the target database. Each individual in the two
databases presents characteristics called variables such as
{V1, V2, ...Vp} for x and {V ′

1 , V
′
2 , ...V

′
p} for y. The linkage

process consists in finding for each x in the source a single
candidate y in the target, x and y sharing some common
characteristics. In this case, we say that the process has
found a linked pair (x, y).

Since a single common key may be not available be-
tween the source and the target databases, the record
linkage process often relies on a combination of several
variables used as a proxy for a single key, so-called quasi-
identifiers (QIDs, see [19]). Intuitively, the more vari-
ables are available for linkage, the more likely is their
association to provide a specific combination. So when
a linked pair (x, y) is found with x and y sharing a large
number of linkage variables, we can be more confident
in the linkage result than when only very few variables
are common to x and y. Moreover, if a linked pair
(x, y) shares a set of variables such as (V1, V2, ..., Vn) =
(V ′

1 , V
′
2 , ..., V

′
n), removing one variable without losing the

uniqueness of (x, y) is a good indicator of the strength of
the link between the two individuals.

This observation gives a scheme that is at the heart
of our proposal, relying on a twofold mechanism. First,
for a given x in the source database and for its given set
of linkage variables (V1, V2, ..., Vn), we look for a possi-
ble single y in the target database that could share the
same combination of variables (i.e. perfect match) or
any proper subset of it. If a y of this nature is found,
the second mechanism can quantify ”how far” the (x, y)
pair is unique by finding how many of the variables used
can be removed without losing its uniqueness. This sec-
ond operation provides a quality metric to estimate the
robustness of the linked pair at the most granular level,
which completes the overall linking rate. Ultimately, the
algorithm explores all possible pairs (x, y) of the Carte-
sian product SxT and most notably all possible combi-
nations of K variables among the N available linkage
variables.

This approach clearly belongs to the deterministic
record linkage category and we will see how it overcomes
the flaws that a standard deterministic approach can
have.

2.2 Notations and definitions

We use the following notations :
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• |E| for the cardinality of the set E, i.e. the number
of items in E

• A ⊂ B for A as a subset of B.

• A ∩B for the intersection of the sets A and B

•
⋂
i∈IAi for the intersection of Ai for i belonging to

a set of integers I.

• PI for the powerset of set I (minus the empty set
as a convention), the set of all subsets of I. For
instance, the set I = {1, 2, 3} has the powerset
PI = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Note that |PI | = 2|I| − 1.

A set of N available variables V = {V1, V2, ...VN} for
the source database S and V ′ = {V ′

1 , V
′
2 , ...V

′
N} for the

target database T are used for the linkage process; they
are called linkage variables. In this paper, linkage vari-
ables entailing only structured data (e.g. ICD-10 dis-
eases codes, ATC drug classes,..) are preferred to any
free text entries (e.g. names, drugs labels,..). Indeed,
since medico-economic databases like SNDS in France
are natively pseudonymized before being granted to re-
searchers, free text directly identifying variables (like
names or addresses) cannot be used as linkage variables.
In addition, care trajectories abound with temporal in-
formation acting as temporal fingerprints characterizing
each patient [20]. An individual p in the source or target
databases can be characterized by several variables such
as V1=”I21 (ICD-10 code for acute myocardial infarc-
tion) diagnosed in November 2018” or V2 =”C09CA03
(ATC code for valsartan) delivered in May 2019”. Thus
variables here enumerate all possible properties held by
this particular individual, including timestamps, and
each variable has an associated set of patients (e.g. all
the patients diagnosed with acute myocardial infarction
in November 2018 for variable V1). It means that p be-
longs to the sets represented by the variables the given
individual matches. Hereafter, a variable and its associ-
ated set of patients will be used interchangeably.

We will note x a patient in the source database S and
y a patient in the target database T .

For one patient x or y, we define the signature as the
set σ that carries the indexes of the variables the patient
belongs to. By convention, the signature will be defined
by:

• the variables Vi in the source for a patient x

σ(x) = {i ∈ [1..N ];x ∈ Vi}

• the variables V ′
i in the target for a patient y

σ(y) = {i ∈ [1..N ]; y ∈ V ′
i }

The signature σ therefore represents the combination
of variables matched by one patient. For better readabil-
ity, it is possible to assign a letter to each variable and
thus a signature can be read as a piece of text. For in-
stance, for three variables, the letter ”S” can be assigned

for a sex code, the letter ”B” for a birth date and the
letter ”H” for a hospital stay; in this context, it is thus
possible to write σ(x) = {1, 2, 3} or σ(x) = {S,B,H}, or
simply σ(x) = SBH. Finally, we define σ(y) as the differ-
ence between σ(x) and σ(y), i.e. σ(y) provides the vari-
ables available for x but not available for y. For instance,
if σ(x) = BDHUG and σ(y) = B.H.G, then σ(y) =.D.U.

(note: the dot means the absence of a variable).
Pσ(x) is the powerset of σ(x) and carries all the com-

binations of variables given their indexes in σ(x). The
cardinality of Pσ(x) is 2|σ(x)| − 1. For instance, if a pa-
tient x from the source belongs to the three variables
B,H,G among the linkage variables {B,D,H,U,G}, then
the patient’s signature is σ(x) = B.H.G and Pσ(x) =
{B...., ..H.., ....G, B.H.., B...G, ..H.G, B.H.G}.

Now, given x and its signature σ(x), the linkage al-
gorithm tries to find a single patient y in the target
database that ”looks similar to” x in a specific way re-
maining to be defined. We therefore define the linkage
function L that associates a non empty combination of
variables J (i.e. their indexes) to a set of patients in the
target database:

L(J) =
⋂
j∈J

V ′
j

For J as a signature of a patient y, we have:

L[σ(y)] =
⋂

j∈σ(y)

V ′
j =

⋂
{j∈[1..N ];y∈V ′

j }

V ′
j

so we always have y ∈ L[σ(y)] and L[σ(y)] is never empty
but can contain more than one patient. We also define
Tσ(x) as the subset of Pσ(x) that contains signatures of
patients in T :

Tσ(x) = {J ∈ Pσ(x);∃y ∈ T ; J = σ(y)}

In the linkage context, we are interested in finding the
combinations of variables that lead to a single patient y.
We therefore define a linked pair as follows:

(x, y) is a linked pair ⇐⇒


σ(y) ∈ Tσ(x)
L[σ(y)] = {y}
|σ(y)| = max

J∈Tσ(x)
(|J |)

A linked pair is defined by a signature σ(y) that is a
subset of σ(x) maximizing the number of linkage vari-
ables used. A linked pair (x, y) will be unique if y is the
only patient in T whose signature reaches the maximum
cardinality in Tσ(x).

In a conventional deterministic linkage algorithm, one
first tries to see if L(σ(x)) produces a single patient y
(i.e. a perfect match). If this is the case, then a linked
pair has been found. However in practice, the following
can occur:

• |L(σ(x))| > 1 which means that there is no single
candidate because there is not enough available in-
formation to reach a single patient.
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• not all the available variables given by σ(x) will be
actually used by the candidate y because there may
exist i ∈ σ(x) such that y /∈ V ′

i although y ∈ V ′
j for

all j ∈ σ(x) with j 6= i. This could happen in case
of missing information in the target database (i.e. y
has not the property V ′

i ) or because there is a dif-
ference in value for the property between the source
and the target databases (a date of 12/06/2013 in
the source and 13/06/2013 in the target). Conse-
quently the cardinality of L(σ(x)) will be zero and
no patient y is found. In this case, the user of a
classic deterministic algorithm can choose to drop
one or more variables and relaunch the algorithm
in the hope of obtaining a single patient with less
information (namely |σ(x)| − d variables where d is
the number of dropped variables), which amounts
to trying combinations of variables in Pσ(x). This
multi-step approach is not satisfactory because (i)
the list of rules for dropping one or more specific
variables among others will be rather empirical and
(ii) the user is unlikely to try manually more than
a few combinations other than σ(x) because of the
potential huge number 2|σ(x)| − 1 of combinations.

Our approach proposes to automatically try all combi-
nations of variables of Pσ(x) without any a priori choice.
This process guarantees a linked pair will be found if
there is one to be found with the available information,
which means that the algorithm is likely to produce good
recall.

Obviously, this approach implies computing 2|σ(x)|−1
intersections L(J) of potentially huge datasets for each
candidate pair (x, y) of the Cartesian product SxT . So
the algorithm complexity is O(|S|.|T |.2N ), N being the
number of linkage variables. This major computational
pitfall will be addressed later on.

2.3 Quality metrics

For a linked pair (x, y), we define two sets:{
Y = {J ∈ Pσ(y);L(J) = {y}}
Z = {J ∈ Pσ(y);L(J) 6= {y}}

Thus, Y is the set of combinations J ⊂ σ(y) that leads
to the one patient y, so |Y | gives the number of ways
to obtain y; Y cannot be empty because σ(y) ∈ Y by
construction. Z includes combinations that tend to lose
the uniqueness of y. One can note that |Y | + |Z| =
|Pσ(y)|.

Our approach will ”reduce” the signature σ(y) by re-
moving one or more variables from it and see whether or
not the uniqueness of y still stands. We thus define the
notion of robustness for a linked pair:

robustness(x, y) = max
J∈Y

(|J |)−max
J∈Z

(|J |)− 1

maxJ∈Y (|J |) represents the longest combination of
variables that gives the single patient y, which is in fact

|σ(y)| and maxJ∈Z(|J |) represents the longest combina-
tion of variables that does not give the one patient y.
Note that robustness(x, y) ≥ 0. We can also write:

robustness(x, y) = |σ(y)| −max
J∈Z

(|J |)− 1

Thus the robustness provides a quality trust indicator
at the granular level of each linked pair (x, y) showing
how many variables can be removed from the signature
σ(y) without losing the uniqueness of y; the higher is
the value the more trustworthy is the linked pair. For
instance, with a robustness equal to one, we can remove
any variable from σ(y) without losing the uniqueness
of y; a robustness equal to two make it possible to re-
move any combination of two variables without losing the
uniqueness of y, etc. . . On the other hand, a robustness
equal to zero means that we cannot remove an arbitrary
variable from σ(y) without losing the uniqueness of y.
We also defined a global metric as the linkage robustness
for the whole linkage process:

linkage robustness =

∑
pair(x,y) robustness(x, y)

number of pair(x, y)

Finally, we introduced a metric concerning the use of
the available information. If σ(y) = σ(x) (which implies
|σ(y)| = 0), then all the available information has been
used to find y for a patient x, i.e. a perfect match. On the
other hand, we may find a signature σ(y) that is a proper
subset of σ(x), meaning that one or more variables V ′

i

have not been used to find y (i.e. |σ(y)| > 0) because
of data discrepancies between the source and the target
databases. In order to measure how well the available
information from the two databases has been used, we
define the following metric:

information usage =

∑
pair(x,y) |σ(y)|∑
pair(x,y) |σ(x)|

Obviously, the value lies between 0 and 1 and the
higher is the value the better is the use of the avail-
able information. The value would be 1 with ”perfect”
data. Poor values however evidence potential issues in
the data. We also define the information missing data
as (1− information usage).

We can easily extend the definition in order to have
the information use for a subset I of variables:

information usage (I) =

∑
pair(x,y)

∀i∈I; i∈σ(y)
|I|∑

pair(x,y)
∀i∈I; i∈σ(x)

|I|

For instance, for I = {k}, we can obtain the informa-
tion use for the kth linkage variable.

2.4 Linkage cartography

Our approach provides a convenient way to assess the
result of a linkage run by grouping linked pairs (x, y) on
certain criteria. For instance, a table giving the number
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of linked pairs grouped by [robustness(x, y), σ(x), σ(y)]
provides a cartography of the linked pairs, and is very in-
formative for the expert to accept/reject the linked pairs
of one group just by evaluating the characteristics of the
group. Table 1 displays an example of a linkage cartog-
raphy with five linkage variables.

The linkage cartography provides a classification of de-
terministic rules from the set of all possible rules and
makes it possible to compare rules with the help of the
robustness metric. To our knowledge, such a rigorous ap-
proach to selecting matching rules and comparing them
represents an improvement upon using standard deter-
ministic linkage.

For a given linkage cartography, here are some possible
decisions:

• if the robustness value is high enough (≥ 1), the cor-
responding groups should be confidently accepted

• with zero robustness and σ(x) = σ(y) (or equiva-
lently |σ(y)| = 0), no information is missed and the
groups can also be accepted.

• when |σ(y)| < |σ(x)| (or equivalently |σ(y)| > 0)
with robustness equal to zero, the knowledge of the
data by the expert should be used to accept/reject
the corresponding groups; indeed, if σ(y) does not
hold crucial information in the expert’s eyes, the
underlying linked pairs should be rejected.

robustness
σ(x) σ(y) 0 1 2 total

1 BDHUL ..... 31 1440 50 1521
2 BDHUL .D... 182 11 193
3 BDHUL ...U. 76 6 82
4 BDHUL ....L 28 4 32
5 BDHUL B.... 12 12
6 BDHUL BD... 5 5
7 BDHUL ..H.L 5 5
8 BDHUL .D.U. 2 2
9 BDH.L ..... 7 128 1 136
10 BDH.L .D... 17 17
11 BDH.L ....L 9 9
12 BDH.L B.... 5 5
13 B.HUL ..... 1395 63 1458
14 B.HUL B.... 3 3
15 BDHU. ..... 2 10 12
16 BDHU. B.... 1 1
17 BDHU. .D... 1 1
18 BD... ..... 60 60
19 B.HU. ..... 7 7

total 1848 1662 51 3561

Table 1: Example of a linkage cartography with 5 linkage vari-
ables (B birth date, D death date, H hospital stay, U emergency
unit, L location). The table describes each group of linked pairs
defined by the signature σ(x), the missed variables σ(y) and a
robustness value. For instance, there are 11 linked pairs with ro-
bustness equal to 1 with BDHUL available in the source database
and with no match for the D variable in the target database. For
instance, the expert could choose to reject lines 6 and 14 because of
the little information contained in σ(y) = HUL; on the other hand,
line 18 could be accepted despite the low number of variables be-
cause birth and death dates can reasonably be considered sufficient
to identify a single patient.

The linkage cartography approach provides the ex-
pert with material (i) that makes sense in relation to
her/his knowledge of the data, for instance signatures,
and (ii) this makes it possible to accept/reject certain

linked pairs. The expert can keep control over the final
result and is not required to blindly accept all the linked
pairs generated.

In practice, this cartography of the linked pairs often
comprises a few dozens of groups only and requires little
time to be read and analyzed.

2.5 Implementation of the approach

As we have seen, our approach provides attractive prop-
erties but presents a major drawback: for each x in
the source, one has to compute the intersection set
L(J) =

⋂
j∈J V

′
j for each subset J ⊂ σ(x). Since there

are 2|σ(x)|−1 such subsets and some V ′
j can contain many

patients for large populations, the computational task
can be huge. A simple experiment of the approach writ-
ten in Python language produced high execution times.
For instance, finding a patient x in a 3, 000, 000-patient
target database with 6 linkage variables took 12.6 sec-
onds and a full record linkage between a 30, 000-patient
database and a 3, 000, 000-patient database would take
more than 4 days. Obviously, if we had used more than
|σ(x)| = 6 variables, execution times would have dramat-
ically increased as a result of the number of combinations
to be explored which grows like 2|σ(x)|.

The conclusion of this crude experiment is that a naive
implementation of the approach is a dead end in terms of
execution time, except for small populations or limited
sets of linkage variables (i.e. small |σ(x)|). However, to
go further, we can make the following observations:

1. the algorithm should not directly rely on clas-
sic database management systems (like SQL) for
database storage because these systems are not well
suited to efficiently computing the intersection of
several sets. The algorithm could be based on sta-
tistical systems (SAS, R, ...) but their inner storage
systems are finally not so different from database
management systems.

2. in order to reduce execution time for computing
L(J), one should try to reduce the size of the V ′

i

sets as much as possible. One way to achieve this
goal is to organize the linkage variable so they do
not include too many patients. For instance, one
could use the variable ”men born in 1937” instead of
two variables ”men” and ”born in 1937”; the former
is likely to contain fewer patients than the latter.
Moreover, it also reduces the number of variables
for σ(x); since the algorithm complexity contains a
2|σ(x)| term, it is not a bad thing to reduce |σ(x)|.

3. the algorithm should be implemented with an effi-
cient language like C++ which takes full advantage
of the available computer resources (like multicore
architecture, SIMD, etc...)

4. the algorithm should not try to compute L(J) for
each J ∈ Tσ(x) because this is too costly. After
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all, the important values for discovering a poten-
tial linked pair are |L(J)| so an algorithm that effi-
ciently computes |L(J)| without computing explic-
itly L(J) for all combinations J will provide signifi-
cant improvement compared to the naive implemen-
tation; L(J) can be computed explicitly only when
the maximum combination J has been found. In
other words, the algorithm should first prove the
existence of a linked pair and then find it.

Our current implementation of the approach proposes
an effective solution for these different points. In order to
achieve good performances, the two datasets need to be
first transferred from their initial storage (SQL, CSV, ...)
to an index. This step needs to be performed only once
and the associated runtime is linear to the dataset sizes.
After data preparation, the algorithm takes one patient
in the source and, given this patient’s identifiers, looks
for its counterpart in the target database; in other words,
it processes the Cartesian product of the source with the
target in a sequential manner (one x versus many y) and
does not require all potential pairs to be handled at the
same time. Our implementation makes it possible to ef-
ficiently use multicore architecture of modern computers
which can greatly reduce execution times.

3 Study design

The current implementation of the approach has been
tested on both synthetic and real datasets.

3.1 Synthetic datasets

In order to test our approach, we designed a variety of
possible linkage scenarios with varying dataset sizes. To
mimic administrative health system, registry and clinical
trial data encountered in research linkage, we created the
following basic datasets as combinations of size and type:

• two large datasets representing the French popu-
lation in general: 3.000.000 records (named H for
huge) based on the characteristics of French patients
with cancer (2018 yearly report from INCA, Institut
National Du Cancer), and 300.000 records (named
L for large) based on the frequency distributions of
sex, years of birth, and postcodes of the population
living in North-Western Brittany in 2015 extracted
from the French National Institute for Statistical
and Economic Studies.

• two medium datasets representing a specific popu-
lation group like a registry: 30.000 records (named I
for intermediate) and 10.000 records (named M for
medium) based on the Brest Stroke Registry statis-
tics

• two small datasets representing a more specific pop-
ulation such as individuals recruited in a trial: 1.000
records (named S for small) based on the descrip-
tion of an nationwide oncological study [21] and 100

records (named T for tiny) based on a blueprint of
Artome, a cancer trial enrolling 129 adults

The frequency distributions were used to create the
simulation datasets and basic sets containing a single
identifier, and the chosen linkage variables were gener-
ated (see supplementary material). These linkage vari-
ables are close to the typology of linkage variables used in
a conventional linkage project involving SNDS; they in-
clude socio-demographic variables (sex, birth and death
dates, postcodes) and care trajectory information (hos-
pital stays for instance). The synthetic datasets were
generated using a Python-based program.

From these dataset definitions, we created four scenar-
ios combining different sizes and ratios :

• scenario 1: Huge / Intermediate (ratio 100:1)

• scenario 2: Large / Medium (ratio 30:1)

• scenario 3: Intermediate / Small (ratio 30:1)

• scenario 4: Medium / Tiny (ratio 100:1)

In order to assess the effect of errors, the datasets were
created with different error rates: (i) datasets with clean
records and (ii) datasets with 5% of corrupted records,
with two types of error: missing values or errors defined
as adding two days to some dates; these kinds of error
were combined with two variable types (death date or
marker event date)

We also created datasets that simulated the absence
of entire records. For instance, we built target datasets
containing only 80% of a source dataset plus many other
records (see Figure 1). The underlying idea was to check
that the missing records in the target dataset were not
found and that the algorithm was not attracted to certain
false positive records. During our tests, we used both
an overlap of 100% (i.e. no missing records in the tar-
get database) and an overlap of 80% (80% of the source
database in the target database).

As the sampling of records for overlap and the appli-
cation of errors were random processes, we extended the
number of simulation datasets to 30 for each data source
combination. In the end, 2160 linkages have to be pro-
cessed corresponding to 2160 different configurations.

The code for creating synthetic datasets is available at
https://github.com/erwandrezen/datasimulation.

3.2 Real Datasets

We considered two real-world matching scenarios.

The first study used nine years 2009-2017 contained in
the Brest Stroke Registry (4264 stroke events for 3985 pa-
tients). The Brest Stroke Registry collects data mostly
from three neighboring hospitals, but also out-patient
data (from general practitioners, three neurologists in
private practice, private radiology centers, and nursing
homes) and data for death certificates providing data for
fatal stroke among non-hospitalized subjects [22]. Each
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Figure 1: Generation of target synthetic datasets

Characteristics
Brest Stroke

Registry
Artome

trial

Records number 4 264 129

Age 75, 6± 13, 9 60.4± 7.8

min-max 16− 104 38− 78

Female, n (%) 2266 (53.1%) 17 (13.2%)

Geographical unit 1517 (35.6%) 65 (50.4%)

Top 5 frequency, n (%) 192 (4.5%) 15 (11.6%)

190 (4.5%) 7 (5.4%)

158 (3.7%) 6 (4.6%)

128 (3.0%) 6 (4.6%)

Index event date

min 01/01/2009 26/06/2013

max 31/12/2013 25/10/2018

Death, n (%) 2440 (57.2%) 29 (22%)

Table 2: Descriptive statistics of real datasets.

hospital admission for stroke yielded a distinct entry.
We were provided access to a subset of French National
Health Insurance Information System data containing
504,795 adult subjects (> 18 years) living within the
Brest area, with at least one health-care reimbursement
in 2009-2017. We preprocessed the two datasets to har-
monize the variable names and values. Preprocessing
entailed dropping variables not used in the linkage runs,

and extracting year of birth (YOB), and month of birth
(MOB) from DOB. We checked for implausible values
and converted implausible values into missing values. We
created a new emergency entry date variable equivalent
to the hospital entry date with emergency entry mode
and we created a new entry date variable equal to the
hospital entry date for strokes. After data preprocessing,
we proceeded with duplicate checks.

The second study used a cancer trial on oropharyngeal
tumours named Artome and run by the Cancer Treat-
ment Centre Eugène Marquis in Rennes. The project was
to link this trial (129 patients, mostly men) to a dataset
extracted from the French National Health Insurance In-
formation System comprising 22,426 adults selected on
the basis of having cancer cared for in one of the 11 par-
ticipating clinical centers. The same preprocessing as
for the Brest Stroke Registry was performed on both the
Artome data and the SNDS extracted data.

Table 2 provides descriptive statistics for the two stud-
ies and linkage variables are given in the supplementary
material.

3.3 Statistical analysis

For the synthetic datasets, we measured for each algo-
rithm run: recall (i.e. sensitivity, the proportion of true
matches identified by the algorithm) and precision (i.e.
positive predictive value, the proportion of algorithm
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matches that were true matches). We also measured ex-
ecution times in order to assess the scalability of the
algorithm. It can be noted that each matching scenario
was simulated 30 times, and we calculated the mean and
standard deviation of recall and precision across these
replicates.

To estimate the impact of the pre-specified factors
(size/ratio, overlap, error, ...), we considered regression
models for classification probabilities. We used a gen-
eralized linear model for binary outcomes (binomial dis-
tance and log link), and performed separate models for
recall and precision. In addition, we measured the com-
putational performance in terms of their average runtime
across the replicates. We used a linear regression model
with a log-transformation of runtimes.

For linkage verification between real-world datasets,
we compared the characteristics of linked and unlinked
records. We used this method of quality appraisal be-
cause all of the records in the registry (or oncology trial)
were expected to link. We used standardized differences,
calculated as the mean difference divided by the standard
deviation.

4 Results

4.1 Synthetic datasets

Figure 2 displays recall (true positive rate) across the
four linkage scenarios according to event date corrup-
tion. A larger dataset size and/or a larger ratio between
datasets (100:1 vs. 30:1) and marker event date cor-
ruption (error or missing value) were associated with a
statistically significant reduction of recall. On the other
hand, a reduced overlap (80% vs. 100%) or death date
corruption (error or missing value) did not significantly
affect recall. Association estimates between pre-specified
factors and recall (parameter αi) or precision (parameter
βi) through generalized linear models (binomial distance
and log link) can be found in the supplementary mate-
rial.

Figure 3 displays precision (positive predictive value)
across the four linkage scenarios according to overlap and
event date missing data. A larger dataset size, a reduced
overlap (80% vs. 100%), and marker event date missing
were associated with a statistically significant reduction
in precision. On the other hand, a larger ratio between
datasets, and death date corruption (error or missing
value) did not significantly affect precision.

It can be noted that minima for recall were greater
than 0.95 and minima for precision were greater than
0.99 whatever the scenario.

For each scenario, the linkage robustness was stable
whatever the overlap or data corruption. Min/Max val-
ues are (0.72, 0.73) for scenario 1, (0.91, 0.95) for scenario
2, (1.73, 1.77) for scenario 3 and (1.00, 1.01) for scenario
4. The better value for scenario 3 can be explained by
a better discriminant power of the C postcode variable
due to an even distribution of geographical units in both
source and target datasets.

We measured runtimes for each scenario on an Intel
Core i7-4790 with 4 physical CPU cores and 16 GBytes
of memory. The measure takes into account only the al-
gorithm runtime and not the time required to prepare the
two datasets in a suitable format for the current imple-
mentation. The measure takes into account the overall
algorithm complexity in O(|S|.|T |.2N ). A larger dataset
size and/or a larger ratio between datasets (100:1 vs.
30:1), a reduced overlap (80% vs. 100%), and event date
corruption (error or missing value) statistically increased
runtimes (see the supplementary material). Association
estimates between pre-specified factors and computa-
tional performance (log-transformation of runtime) us-
ing a multivariate linear regression model can be found
in the supplementary material. Overall, runtime was al-
ways less than 2 seconds even for scenario 1 (3M vs 30K
patients). It can be noted that the current implementa-
tion uses all the available CPU cores, so runtimes would
decrease on a computer with more CPU cores.

4.2 Real Datasets

4.2.1 Brest Stroke Registry

Among the 3985 patients in the registry, the algorithm
found 3850 unique linked pairs and 135 proposals with
multiple candidates. After reviewing the linkage cartog-
raphy, the expert validated 3783 linked pairs. A clerical
review of the multiple candidates added 20 linked pairs,
so the total number was 3803, which represents 95.4%
of the registry. The linkage robustness was 2.36 and the
information usage was 95.5% (i.e. 4.5% missing data).

The linkage cartography can be found in the supple-
mentary material. It comprises 58 lines with a robustness
ranging from 0 to 5. If we aggregate all the lines with no
missed variables (i.e. |σ(y)| = 0), we obtain 3058 linked
pairs (see table 3), i.e. 76.7% of the registry. Roughly
speaking, the exhaustive exploration of all variable com-
binations enabled an increase from 76.7% to 95.4% of
the linkage rate, i.e. we gained 18.7% more linked pairs
than just by looking for patients sharing exactly the same
information between the source and the target. If we ag-
gregate all the lines with |σ(y)| ≤ 1, we have 3472 linked
pairs missing one or zero variables, i.e. 87.1% of the reg-
istry and with |σ(y)| ≤ 2, we have 3589 linked pairs, i.e.
90.1% of the registry. Clearly, we can see here the advan-
tage of scanning all the variable combinations. All the
linkage percentages per number of missed variables can
be found in the supplemental material. The runtime was
0.6 second which is consistent with the data volumetry
of scenario 2 involving synthetic datasets.

Linkage verification was performed by comparing the
distributions of gender, age, type of hospital admission,
and death between the resulting linked dataset and the
unlinked dataset (see table 4).

4.2.2 Artome trial

For the Artome trial, the two databases to be linked
shared many common timestamps (radiotherapy and
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Figure 2: Recall across the four linkage scenarios according to event date corruption.
(H for Huge, I for Intermediate, L for Large, M for Medium, S for Small, T for Tiny)

Figure 3: Precision across the four linkage scenarios according to overlap and marker event date missing data.
(H for Huge, I for Intermediate, L for Large, M for Medium, S for Small, T for Tiny)

Project name Brest Stroke Registry

Patients number

source Registry 3985

target SNDS 504795

ratio 0.007894

Linked pairs, n (%)

≤ 0 missed var 3058 (76.7%)

≤ 1 missed var 3472 (87.1%)

≤ 2 missed var 3589 (90.1%)

all 3803 (95.4%)

Robustness 2.36

min-max 0− 5

Linkage Variables

number 9

missing data 4.5%

Runtime (seconds) 0.6

Project name Artome trial

Patients number

source Trial 129

target SNDS 22426

ratio 0.00575

Linked pairs, n (%)

≤ 0 missed var 61 (47.3%)

≤ 1 missed var 102 (79.0%)

≤ 2 missed var 120 (93.0%)

all 127 (98.4%)

Robustness 4.18

min-max 2− 7

Linkage Variables

number 12

missing data 7.8%

Runtime (seconds) 0.01

Table 3: Linkage global indicators for the real-world studies; the associated linkage cartographies can be found in the
supplementary material
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Characteristics Linked patients Unlinked patients
Standardized

difference

Female, n (%) 2024 (53.2%) 100 (54.9%) 0.03

Age min (sd) 79.4± 12.5 79.2± 15.6 0.01

min-max 18− 104 16− 102

Male, n (%) 1779 (46.8%) 82 (45.1%)

Age min (sd) 71.5± 13.7 66.4± 16.4 0.33

min-max 17− 98 16− 96

Type of admission 1.11

Hospitalised 3907 ( 95.9%) 106 (56.1%)

Emergency 68 ( 1.7%) 4 (2.1%)

Death certificate 13 ( 0.3%) 6 (3.2%)

No hospitalisation (ex: radiology) 87 ( 2.1%) 73 (38.6%)

Death, n (%) 2178 (57.1%) 85 (46.7%) 0.21

Table 4: Brest Stroke Registry : Characteristics of linked and unlinked patients. There was a strong imbalance
for admission type. Obviously, patients who were not hospitalised but did suffered from stroke had few non missing
variables in the stroke registry: date of birth, sex, and the date of stroke has no obvious counterpart in the other
database. A patient who died with the diagnosis of stroke on death certificate and who was enrolled as such in the
registry would have only a date of death on top of a date of birth and sex. For those cases, we did found at least
two candidates for each patient enrolled in the registry, but we could not definitively choose which one was the true
candidate.

chemotherapy events, scans, ...), so the record linkage
was expected to provide good results. Only 2 records
among the 129 records were not linked due to a lack of
information in the trial (no treatment date), which pro-
vides a linkage proportion of 98.4%. All the other 127
records were linked with good (R=2) to very good (R=7)
robustness. A minimum robustness of 2 indicates that
the linked pairs are very reliable. The linkage robustness
was 4.18.

On the other hand, the information usage was 92.2%
(or 7.8% missing data) and not as good as the Brest
Stroke Registry project, but since a lot of information
was available for Artome, we could afford to use variables
that were not as accurate as for the Brest Stroke Registry
project. As a result, the number of linked pairs with
no missed variable (i.e. with |σ(y)| = 0) was only 61
compared to the total number 127. This can be explained
by the large number N = 12 of linkage variables with
some of them considered as moderately accurate by the
expert, which implies that in many cases perfect matches
could not be found.

The linkage cartography contains 49 lines and is given
in the supplementary material.

Table 3 summarizes global indicators for the two real-
world record linkages. The information usage for each
linkage variable is also provided in the supplementary
material.

5 Discussion

5.1 Main findings

Our study showed that the approach has very good ac-
curacy with a limited impact of some factors (dataset

size/ratio, overlap, and errors), scalability, and encour-
aging runtimes, as demonstrated by the dataset simula-
tions. Feasibility on real datasets with high record link-
age and good robustness was also shown on two stud-
ies representative of record linkages involving the French
National Health Insurance Information System (SNDS).
Our results showed that the approach is resilient to data
corruption (errors and especially missing data) by way
of an exhaustive exploration of the information, and can
considerably increase the number of linked pairs com-
pared to a more conservative approach in terms of infor-
mation exploration.

Of course, good resilience to missing data can occur
only if there are enough linkage variables. As we have
seen for the Artome project, this may not be so un-
common for oncology trials for instance, since there are
many temporal events in care trajectories in this kind
of pathology. More generally, the approach could open
the way to new habits in deterministic record linkage:
using as many linkage variables as possible, the algo-
rithm will deal with them even if they are not all very
accurate. However, one should take care not to use only
dubious variables and to deal with variables of which at
least half are reliable rather than less accurate variables,
which could be a good tradeoff. As a result, the robust-
ness of each linked pair can be improved even by the
less accurate variables. It can be noted that informa-
tion usage per variable could be used as an estimator of
variable reliability. Nevertheless, one must keep in mind
that the algorithm has to cope with the exploration of
2N combinations, so that unrealistically large values for
the number N of linkage variables should be avoided.
N = 15 seems to be a practical maximum choice for
keeping reasonable performances. For Artome, we used
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N = 12 linkage variables which means that 212 = 4096
combinations had to be explored for each candidate pair
(x, y) of the Cartesian product SxT . The observed run-
time was low (0.01 second) but essentially because the
datasets were small enough. Future work could assess
more precisely the impact of N and dataset sizes on per-
formance.

Results on synthetic data show that data errors lead to
lower recall than missing data. Indeed, a variable with an
erroneous value cannot be found in the target signature
of the true positive y but could be found in the target
signature of a potentially wrong candidate y′ (meaning
that |σ(y)| lost 1 and |σ(y′)| gained 1). If y′ has enough
variables in its signature, it can compete with y, making
y lose its uniqueness. On the other hand, missing data
will not be found in any target signature and therefore
will have less impact on recall than data errors.

5.2 Strengths and limitations

A first strength of the proposed method is its ability
to produce quality metrics useful for the expert’s deci-
sion. For instance, linkage cartography combines infor-
mation on source and target signatures, missing variable
information and also robustness, in a synthetic manner;
the expert can then use her/his knowledge of the data
to construct rules that make it possible to accept/reject
linked pairs and thus have control over decision-making.
Moreover, we believe that robustness, as the number of
variables that can be dropped without losing uniqueness
of a linked pair, is easy to understand for the expert and
can be used to assess linkage quality.

A second strength is its ability to reach high linkage
rate in a deterministic record linkage context. Indeed,
our approach guarantees a linked pair will be found if
there is one to be found with the available information.
Although the incentive was to design new quality met-
rics, the definition of the notion of robustness made it
clear that the need to explore the whole set of vari-
ables combinations would have a positive impact on re-
call compared to a strict deterministic approach with a
pre-defined set of matching rules. This fact is clearly
observed on the two real-world studies (see table 3): we
gained 18.7% and 51.1% linked pairs compared to a de-
terministic approach with perfect match, we gained 8.3%
and 19.4% linked pairs compared to a deterministic ap-
proach with N − 1 identifiers, etc... As proposed previ-
ously, the intent to use as many linkage variables as pos-
sible would be ruined in a strict deterministic approach
in case of data corruption. Indeed, the probability of
having perfect or nearly perfect matches (i.e. null or low
|σ(y)|) would strongly decrease with a larger number of
variables with corrupted data. Again, our approach will
not be affected by data corruption in this type of context
and will still have a chance of finding a linked pair.

A third strength is the ability to quantify ”how well”
information has been used in the source and target
databases. Indeed, information usage tells us how many
times linkage variables available in the source database

have been actually found in the target database. It
should be noted that information usage can be accu-
rately computed because the approach ensures that a
linked pair will be found if it can be found. The fact is
that poor values for information usage evidence poten-
tial issues in the source and/or target databases. For the
two real-world studies, information usage seemed good
enough with 95.5% and 92.2%. At a more granular level,
it is also possible to estimate the information usage for
each linkage variable. The expert can compare this in-
formation with her/his data knowledge. For instance in
the Artome project, it was expected that the ”first plan-
ification” linkage variable will be hard to map between
the source and target databases; its information usage
(77.5%, see supplementary files) is indeed the lowest for
the set of linkage variables. On the other hand, infor-
mation usage for the ”date of death” linkage variable of
the Brest Stroke Registry project was 88.9% and lower
than expected; it was eventually explained by the fact
that this linkage variable was harder to build in the tar-
get database than expected. In summary, the expert can
use information usage for a better understanding of the
source and target datasets.

A fourth strength is scalability, as the current results
show low runtimes even on large datasets. For instance,
scenario 1 took less than 2 seconds to link a dataset with
30,000 patients to a dataset with 3,000,000 patients on
a 4 CPU core computer. Today, the current implemen-
tation can use all the CPU cores of one computer but
cannot use the power of a computing grid. However, this
implementation could be extended to take advantage of
a computing grid for extreme record linkage projects in-
volving very large datasets.

On the other hand, the limitations of our approach
are:

• only structured data can be used for linkage vari-
ables which precludes the use of free text like names
or addresses. As a matter of fact, our studies mainly
deal with pseudonymized healthcare databases hold-
ing structured data (ICD codes, ATC drug codes,
postcodes, etc...) associated to temporal informa-
tion. We believe that such temporal events in care
trajectories are more useful in our specific data link-
age context because (i) an event defined by a code
and a date provides discriminant power which helps
the algorithm to be attracted to the true positive
record, and (ii) in case of oncology trials and reg-
istries for instance, many temporal events can be
found in each care pathway, which can greatly im-
prove robustness.

• our approach does not allow partial agreement on
identifiers like ICD codes, ATC drug classes, etc...
On the other hand, dates can be compared ±d days,
where d can be defined by the expert.

• our approach is only appropriate for 1:1 linkage, i.e.
each record in the source database has at most one
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record in the target database. Although it is pos-
sible to find multiple target records for one source
record, it is no more possible to compute robustness
in such a case.

• we used the notion of source and target databases,
which creates an asymmetry in the process. The al-
gorithm itself takes one x from the source and looks
for its counterpart in the target. The resulting draw-
back is that the algorithm does not check whether
the same y of the target dataset can be linked to
a different x in the source dataset. An extra verifi-
cation should be performed by the expert to check
whether any such linked pairs have been found.

• we have currently not fully compared our approach
to probabilistic linkage which will be addressed later
on in a dedicated paper. It is worth noting that our
approach uses an exhaustive exploration of all iden-
tifiers combinations and does not require blocking
techniques. Preliminary results seem to show an ad-
vantage for our approach in terms of execution time
or required computer resources when the volume of
input data becomes large. In some respects, com-
parison to a strict deterministic linkage approach
with a given set of matching rules is achieved by the
fact that our approach generates as a side product
how many linked pairs can be found in addition to
a strict deterministic linkage approach.

• our synthetic datasets introduced different kinds of
error but only on one variable at a time. A more con-
figurable synthetic dataset generation should make
it possible to introduce errors on more than one vari-
able in order to assess the effect of these patterns of
error on the results. Data are currently randomly
corrupted but it could be non-randomly as well. The
5% error rate was low in order to mimic administra-
tive health system used in our real-world studies.
However, it would be of great interest to assess re-
call/precision on much more corrupted data with
error rates ranging from 0% to 100%.

5.3 Future work

Following the ideas in [23], it would be interesting to pre-
cisely assess the place of our approach among the other
deterministic and probabilistic approaches and possibly
among other record linkage packages [24]. It was not
the primary aim of our paper, but the characteristics of
our approach suggest that it could obtain good results
in both accuracy and performance. A full simulation
study will be conducted in future with improved simu-
lated datasets as described in the previous chapter.

Robustness definition captures only a fraction of the
information contained in set Y (combinations of identi-
fiers that lead to a linked pair, see chapter 2.3) and set
Z (combinations that lose the uniqueness of that linked
pair). Further use of Y and Z could be imagined. For in-
stance, linking the source dataset to itself makes it possi-
ble to know the truth since a patient x has to be linked to

itself 1. In this context, (Y, Z) would fully characterize x
in the source dataset and could be used as ”gold standard
information” when processing the source/target linkage.
Future work will precisely assess this observation and
see how it could be systematically used in our linkage
methodology.

Concerning scalability, the current results show low
runtimes even on large datasets. For instance, scenario
1 took less than 2 seconds to link a dataset with 30, 000
patients to a dataset with 3, 000, 000 patients on a 4 CPU
core computer. Future work could test our implementa-
tion with much more CPU power, e.g. at least 64 phys-
ical cores. It would be interesting to assess the scalabil-
ity as the function returning linkage runtime for a given
number of CPU. Today, the current implementation can
use all the CPU cores of one computer but cannot use
the power of a computing grid. However, this imple-
mentation could easily be extended to take advantage
of a computing grid for extreme record linkage projects
involving very large datasets.
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