
HAL Id: hal-03601214
https://hal.science/hal-03601214v1

Submitted on 8 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Securing IoT/IIoT from Software Attacks Targeting
Hardware Vulnerabilities

Nikolaos Foivos Polychronou, Pierre-Henri Thevenon, Vincent Beroulle,
Nikolaos Polychronou, Maxime Puys

To cite this version:
Nikolaos Foivos Polychronou, Pierre-Henri Thevenon, Vincent Beroulle, Nikolaos Polychronou,
Maxime Puys. Securing IoT/IIoT from Software Attacks Targeting Hardware Vulnerabilities. 19th
IEEE International New Circuits and Systems Conference (NEWCAS 2021), Jun 2021, Toulon, France.
�10.1109/NEWCAS50681.2021.9462776�. �hal-03601214�

https://hal.science/hal-03601214v1
https://hal.archives-ouvertes.fr


Securing IoT/IIoT from Software Attacks Targeting
Hardware Vulnerabilities

Nikolaos Foivos POLYCHRONOU1, Pierre-Henri THEVENON1, Maxime PUYS1, Vincent BEROULLE2

1Univ. Grenoble Alpes, CEA, LETI, DSYS, Grenoble, France
Firstname.Name@cea.fr

2Univ. Grenoble Alpes, Grenoble INP, LCIS, Valence, France
Firstname.Name@lcis.grenoble-inp.fr

Abstract—The microarchitecture of modern systems become
more and more complicated. This increasing complexity gives
rise to a new class of attacks which uses software code and
targets hardware vulnerabilities of the system microarchitectures.
Software attacks targeting hardware vulnerabilities (SATHVs)
gain popularity. In particular, cache side channel attacks, Spectre,
and Rowhammer are serious threats. They take advantage of
microarchitectural vulnerabilities to extract secret information or
harm the system. As these attacks target the system’s hardware,
they can avoid traditional software antivirus protections. How-
ever, they modify the normal operation of the system’s hardware.
Hardware Performance Counters (HPCs) are special registers
that allow counting specific hardware events. These registers can
help us monitor system’s execution at hardware level and detect
this set of attacks. Many solutions in the literature use HPCs to
detect SATHVs. Although, these solutions target detecting only
a limited set of the available SATHVs. If security designers do
not consider all the possibilities, attackers can bypass existing
protections using SATHV variants. In this article, we investigate
how the side effect selection proposed in the literature, could
or could not help us detect the studied attacks in our testing
platform. Our threat model includes Cache side channel and
Rowhammer attacks. We also discuss the limitations of software
monitoring and how hardware approaches can resolve them.

Index Terms—Security, Hardware performance counters, At-
tacks, Malware, Microarchitecture, Detection

I. INTRODUCTION

There is an increasing use of Internet of Things (IoT)
and Industrial IoT (IIoT) devices. The amount of sensitive
information they handle, the minimal protections integrated
due to a desired low cost, and the increasing complexity
of modern microprocessors requires to increase the security
of these devices. This is supported by recent cyber-security
threats such as Stuxnet and Mirai. Software and hardware
attacks have been studied for decades. However, a new class
of attacks which we refer to as Software Attacks Targeting
Hardware Vulnerabilities (SATHVs) arise. These attacks target
vulnerabilities in the microprocessor hardware architecture.
They require no physical access, in opposite to traditional
hardware attacks, and they behave as normal applications.
Thus, they are a great security threat. SATHVs target both
the microarchitecture hardware vulnerabilities and side-channel
leakages. They allow the attackers to extract secret information,
implant malicious code, or gain access to privileged code.

a) Related works: Such attacks can hardly be detected
by antivirus programs because they target hardware security
vulnerabilities and because they leave no traces in traditional log
files. To address this, researchers propose the use of Hardware
Performance Counters (HPCs) for online detection. HPCs are
special purpose registers, which count hardware related events
in the microprocessor. In 2013 [1], Demme et al. show that
it is possible to detect malware using HPCs. In 2016 [2],
Payer proposed mechanism allowing to detect some Cache
Side Channel attacks (CSCAs) plus Rowhammer. In 2017 [3],
Peng et al. also propose a detection mechanism for CSCAs
and Rowhammer.

b) Contributions: In this article, we propose to implement
detection mechanisms presented above on our test platform
and assess how accurate they are in detecting SATHVs. We
show that slight modifications on the experimental setup can
drastically decrease their detection rate and we discuss how
correct choice of side effects (metrics monitored by HPCs)
alongside hardware monitor implementation can help.

c) Outline: In Section II, we describe the methodology
we used to replicate state-of-the-art experiments. In Section III,
we present our experimental results and discuss the limitations
of proposed implementations. Then, in Section IV we discuss
how hardware can resolve some of the limitations. Finally, in
Section V we conclude and summarize our work.

II. METHODOLOGY

As attacks modify the behavior of the microprocessor, we
propose an experimental platform allowing us to test and
evaluate different side effects. Our goal is to test attack libraries
adapted to our target. To find how they differ from normal
applications, we choose normal programs representative of the
applications running in our target.

Figure 1 describes our methodology. In step 1, we analyze
the detection capabilities of our platform. First, we want to
know what are the available hardware events. Then, we need
to know if access to these monitoring capabilities is allowed.
Finally, a set of hardware events is selected for analysis plus
the monitoring interval. The monitoring interval specifies the
time between consecutive measurements.

Step 2 implements a monitoring module which configures the
HPCs with the hardware events selected from Step 1. It resets



Fig. 1: Methodology

the HPCs and sleeps for the specified monitoring interval letting
the application execute. After the specified time, it disables
the HPCs. This is necessary to disregard the behavior of our
monitoring module from the trace. It reads the counter values
and extracts them to a .csv file. Finally, it re-enables the HPCs
with the configured events, and continues the same loop until
all the application data set executes.

Step 3 and 4 includes the extraction of the raw data
traces from the HPCs for offline analysis via a Python script.
We plot the raw data traces, boxplots, and distributions of
each application. We treat each application separately, or we
categorize normal applications with the same label and attacks
with different. The offline analysis shows the effectiveness of
the side effects selection using our platform and the available
attack vectors. The loop of Steps 1, 2, 3, and 4 is repeated for
all the available hardware events.

In Step 5, we choose the side effects that gave us the best
results during the offline analysis. If there is no clear separation
between the behavior of a normal and malicious application,
the accuracy of a detection mechanism decreases. Steps 6
and 7 describe how to effectively monitor the application in
production after the benchmarking phase described in this paper.
Step 6 is the implementation of a detection module using the
selected hardware events to monitor. The detection module
runs in parallel with the applications, as the monitoring module.
In Step 7, instead of exporting the results to a .csv file, the
detection module stops the execution of the system, in case of

malicious activity detection.

III. RESULTS

The platform that we use for testing is the ZYBO Z7, a Zynq-
7000 ARM/FPGA SoC Development Board. It is equipped with
a 667MHz dual-core Cortex-A9 processor with 1 GB DDR3L
memory. The system is equipped with a Debian GNU/Linux 10.
The instruction set is based on ARMV7. For the ARM Cortex
A9, there are in total 55 available events. Our platform allows
us monitoring 6 events concurrently. In our platform, this is
forbidden and a kernel module was written to allow access to
HPCs. The aforementioned mechanisms studied attack vectors
that take advantage of the existence of the flush instruction.
As ARMV7 cache maintenance instructions are not available
in userspace, we use eviction based techniques to reproduce
the studied attacks. Our attack library includes CSCAs in the
AES T-Tables and Rowhammer. The CSCA in the AES T-
Table uses the Evict+Reload [4] approach. For our normal
applications, we use MiBench [5] and PARSEC [6] suites. We
choose MiBench suite as it has the goal of representing the
spectrum of embedded applications used in the industry. On
the other hand, PARSEC focuses on the application domains
in financial, computer vision, physical modeling, future media,
content based search, and deduplication.

We focus our experiments on [2] and [3]. These solutions
have no general fair cost strategy to detect set of multiple
attacks, and they need to update the mechanisms depending
on the application and the platform. This raises as a major
problem. As new attack vectors appear every year, and the big
database of existing ones, detection mechanisms are limited
to specific attack vector detection and with no possibility to
upgrade them in the future to include the new ones, will not
be adopted by vendors.

We studied the proposed mechanisms, to understand their
limitations and their advantages. Table I summarizes authors’
experimental setups with regard to ours.

A. Effectiveness of proposed solutions on our platform

Eviction techniques try to remove the targeted address from
the cache without the help of cache maintenance instructions.
To succeed attackers must find a set of addresses that map
in the same cache line. When loaded, they evict the targeted
address. Because of the random-replacement policy in ARM
caches, more addresses than the cache line size are needed.
Eviction is thus slower than just “flushing” an address. This
difference greatly modifies the expected side effects. Attackers
can be more versatile using different eviction strategies. Figure
2 illustrates this. We can observe that the L2 miss rate and
number of L2 misses do not increase for attacks compared to
normal applications. Rowhammering using eviction showed to
be possible by [11].

In HexPADS [2] the attacks studied were the Flush+Reload,
Prime+Probe, and Rowhammer. The side effects measured are
the number of executed instructions, Last Level Cache (LLC)
accesses and LLC misses. In addition, they use the status
information of each process as exported from the kernel, e.g.,



Reference Platform Normal applications Attack library

HexPADS [2] Intel Core i7-3770 CPU SPEC CPU2006 Rowhammer, Flush+Reload [7]
4 cores, 3.40 GHz, 16 GB, Ubuntu 14.04 PARSEC 3.0 ctemplate [4], C5 [8]

Rowhammer, Flush+Reload, ctemplate
Peng et al. [3] N/A Quicksort, urlopen C5, RSA timing attack [9]

Web timing attack [10]
Zynq-7000 ARM/FPGA SoC,

Our 667MHz dual-core Cortex-A9, MiBench, PARSEC 3.0 Rowhammer, Evict+Reload
1GB, Debian GNU/Linux 10

TABLE I: Experimental setup comparison

number of minor page faults, number of major page faults, and
execution time. HexPADS detects CSCAs and Rowhammer
using three features. If the cache miss ratio is greater than
70%, the total number of cache misses more than 100 million,
and page fault miss rate of less than 0.01% then attacks are
detected. These metrics are platform dependent. As we can see
from Figure 2, the cache miss ratio is not a good indicator in
our platform and attack selection. We can see that the average
for CacheSCA is at the same level as for normal applications.
Rowhammer has on average a higher miss rate, on the other
hand. The cache misses decreased for both attacks. This is
because during eviction techniques we observe a lot of hits in
the cache. Also, eviction is slower than just flushing the targeted
address. As one of the indicators used for attack detection by
HexPADS is not performing as expected in our platform, a
similar detection technique is not applicable.

Peng et al. [3] observed that normal applications can exhibit
a high cache miss ratio. To reduce the false positives, they
used another indicator regarding the Data Translation Lookaside
Buffer (DTLB) miss rate, which set as 0.2%. Figure 2c presents
the DTLB miss rate. CSCA and Rowhammer attacks exhibit a
reduced DTLB miss rate on average than normal applications.
But, as we can see from the boxplot of normal applications, the
distribution of measurements is wide. The main reason behind
the increase in the expected DTLB miss rate during eviction
based attacks is that when the attackers try to find congruent
addresses to evict the target, they request data addresses that
they did not use before as shown Figure 3. A lot of MiBench
applications exhibit low DTLB miss rate and high LLC miss
rate.

B. Limitations of existing approaches

Both of the aforementioned approaches use the utilities of
the operating system to extract the information from the HPCs.
This limits their ability for better time resolutions. Perf tool [12]
is a performance analyzing tool in Linux. The minimum time
interval between consecutive measurements for perf is 100ms.
HexPADS [2] uses a 1s monitoring time and also averages 60
measurements for each process. On the other hand, [3] uses
the perf utility, but the time interval between measurements is
not specified. However, monitoring with an interval of 100ms
is still not accurate enough since Rowhammer must induce
the bitflips in less than 64ms. Attackers can use the rest of
the time doing operations that decrease the side effects, thus,
to fool the detection mechanism. This can be succeeded by
sleeping e.g., for 30ms, which will reduce the cache misses

(a) (b)

(c) (d)

Fig. 2: (a) L2 miss ratio, (b) L2 misses label as Coherent
linefill miss, (c) DTLB miss rate, (d) DTLB misses.

(a)

Fig. 3: 10 round Rowhammer DTLB miss rate.

during the monitoring interval. For CSCAs, one round of the
attack in the AES T-Table implementation took less than 120ms.
Attackers can reduce the time needed, increasing the noise in
their measurements. Though, it is necessary to be able to detect
the attacks as soon as possible.

Another limitation of the two approaches is the use of hard-



coded values. They are platform dependent and a clever attacker
could easily bypass the detection with evasive malware.

IV. DISCUSSION

As we observe from the results presented, the side effects
selection plays an important role in the accuracy of a detection
mechanism. To find broader applications in different platforms,
we must choose side effects with stable behaviors among
platforms, and between attack variants. From our conducted
experiments, we observe that eviction based attacks exhibit
different behaviors than expected from the proposed detection
mechanisms and thus they could possibly act unnoticed in our
platform. To be able to detect them, we need to look closer
at their malicious behavior. In addition, the limited amount
of events we can monitor concurrently limits our detection
capability. For example, the number of L2 Cache accesses
is not available on our platform. To calculate it we can use
the information from other hardware events. If the additional
events are good indicators to detect the attacks, we will not
waste resources. Attacks are versatile, with numerous variants,
and if not studied carefully, hypothesized protected target can
be vulnerable. This was shown, as in CSCA an attacker who
uses eviction might be able to bypass the studied detection
mechanisms.

Of course, detection mechanism using collected data from
HPCs, will be able to detect some of these software attacks. But,
we question if implementing a detection mechanism in software
is enough. To detect the attacks we monitor the system every
specified time interval. Ideally, we want to monitor closely
the applications. For our mechanism, we use the nanosleep()
function. The nanosleep function was quite noisy for timing
intervals less than 1ms. As well, the minimum time we could
use was 120µs. Noisy timings between measurements add extra
noise.

Further, most of the attacks require some kind of privileges
to succeed. For example, pagemap information, that is used
for retrieving the virtual to physical mapping, is restricted in
Linux. Moreover, to read the cycle counter in ARM, a kernel
module must be written to enable access. Other methods to
find this information exist, such as reverse engineering the
virtual to physical mapping, but increase the attack steps or
the noise. Consequently, this decreases the success probability
of an attacker succeeding to extract useful information and
increases the probability for a security mechanism to detect the
attack. If the attackers can access some restricted information,
that will let them proceed with the attack, what holds them
from modifying the detection mechanism and taking advantage
of it to keep them undetected. This is more serious when
considering the numerous bugs found in the software code of
applications and the operating system. Besides, as software
detection mechanisms and the applications share the same
resources, there is a performance overhead. Apart from this,
sophisticated malware can detect the presence of a detection
mechanism, and hide its activity. On the other hand, a hardware
implementation can address the issue of performance overheads,
and hide its presence from the user applications. Also, a

hardware implementation can access more hardware resources
than software. This means, that a hardware implementation
can have more information that will let it detect with better
accuracy the attacks. But, it comes at the cost of adding a
new component in the architecture, which increases the design
time, surface, cost, etc. Security designers must perform their
vulnerability analysis and decide which implementation is better
for their system. This is why, we believe a hardware mechanism,
independent of the operating system and the applications, with
unrestricted access to hardware information, and no time limit
between monitoring times are more suitable.

V. CONCLUSION

In this article, we propose to implement existing detection
mechanisms on our test platform and assess how accurate
they are in detecting SATHVs. We show that slight modi-
fications on the experimental setup can drastically decrease
their detection rate and we discuss how correct choice of
side effects (metrics monitored by HPCs) alongside hardware
monitor implementation can help. Our future works include
implementing a hardware detection component. We will try to
fit a hardware friendly machine learning classifier. Machine
learning can help us detect new variants of attacks, plus detect
evasive attacks, in which attackers insert nominal operations
to fool our mechanism.

REFERENCES

[1] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumad-
havan, and S. J. Stolfo, “On the feasibility of online malware detection
with performance counters,” in The 40th Annual International Symposium
on Computer Architecture, ISCA’13, Tel-Aviv, Israel, June 23-27, 2013,
A. Mendelson, Ed. ACM, 2013, pp. 559–570.

[2] M. Payer, “Hexpads: a platform to detect stealth attacks,” in International
Symposium on Engineering Secure Software and Systems. Springer,
2016, pp. 138–154.

[3] S.-h. PENG, Q.-f. ZHOU, and J.-l. ZHAO, “Detection of cache-based side
channel attack based on performance counters,” DEStech Transactions
on Computer Science and Engineering, no. aiie, 2017.

[4] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015, pp. 897–912.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the fourth annual IEEE international
workshop on workload characterization. WWC-4. IEEE, 2001, pp. 3–14.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 72–81.

[7] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 719–732.

[8] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: cross-cores
cache covert channel,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2015,
pp. 46–64.

[9] P. Paul Cristian, “Rsa timing attack,” https://github.com/paul110/
RSA-Timing-Attack, 2016.

[10] H. Daniel, “web timing attack,” https://github.com/dkhonig/web timing
attack, 2016.

[11] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in International conference
on detection of intrusions and malware, and vulnerability assessment.
Springer, 2016, pp. 300–321.

[12] A. C. De Melo, “The new linuxperftools,” in Slides from Linux Kongress,
vol. 18, 2010, pp. 1–42.


