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Multiple shock acceleration is thought to take place in various environments, including chaotic
winds, accretion disks and superbubbles. In the latter, multiple supernovae may explode within
small timescales in compact regions and successively reaccelerate the distribution of cosmic rays
which do not have time to escape far away from the star cluster. Reacceleration by successive
shock waves is therefore expected to take place. We develop a model of nonlinear shock reac-
celeration and show that the downstream distribution of particles rapidly reach an asymptotic
concave solution, such that the cosmic ray pressure saturates at the level of a few percent of the
hydrodynamic pressure.
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1. Introduction

The problem of particle reacceleration by successive shocks has been early tackled in the test-
particle regime [1–4]. It was shown that the spectrum hardens until it reaches an asymptotic p−3

power-law. However, the pressure of the reaccelerated particles is expected to quickly rise above
the ram pressure of the shocks, which implies that the backreaction of the particles onto the shocks
must be taken into account. While many models have been devoted to the modelling of cosmic
ray acceleration by nonlinear shocks (e.g. [5–9]), there have been very few attempts to account for
the presence of preexisting “seed” particles [10–12]. We therefore seek to develop an up-to-date
semi-analytical modelling in order to compute the reacceleration of particles by many successive
shocks.

2. Nonlinear model of shock reacceleration

2.1 Kinetic equation

We consider a plane infinite shock propagating along the x axis with a flow profile u(x). The
distribution of seed particles upstream of the shock is denoted f∞ while the total distribution of
particles, including the reaccelerated seeds as well as the particles accelerated from the thermal
bath, is denoted f . The transport equation integrated around the shock reads [7]:

p
3

(
u2 − up

) d f1
dp
=

(
up +

p
3

dup

dp

)
f1 − u0 f∞ −Q1δ(x)δ(p − p0) , (1)

with up defined as:

up(p) ≡ u1 − vA,1 −
1

f1(p)

∫ 0

−∞

dx dx (u − vA) f (x, p) . (2)

The indices “0”, “1” and “2” respectively denote quantities evaluated at upstream infinity, immedi-
ately upstream of the shock and immediately downstream of the shock. vA is the Alfvén velocity
which is introduced in order to account for the Alfvénic drift [13]. Q1 is the injection rate of
particles from the thermal bath, determined such that the non-thermal distribution f matches the
thermal (Maxwell Boltzmann) distribution at the injection momentum, which eventually provides
the following boundary condition [14]:

f1(p0) =
n0Rtot

π3/2p3
0
ξ3e−ξ

2
, (3)

where n0 is the density of the plasma at upstream infinity, Rtot = u0/u2, p0 is the injection
momentum and ξ ≈ 2.5 − 4 the injection parameter.

2.2 Fluid equation

The hydrodynamic profile of the shock is driven by the conservation of mass and momentum.
The latter reads:

1 + Pg,0 + Pc,0 = U(x) + Pg(x) + Pc(x) + PB(x) , (4)
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where the pressures have been normalised with respect to the ram pressure ρ0u2
0 and U = u/u0.

Pc(x) = 4π/(3ρ0u2
0)

∫ ∞
p0

dpp3v(p) f (x, p) is the pressure of the particles. The gas pressure Pg is
obtained assuming an adiabatic equation of state of index γ(= 5/3): Pg(x) = U−γ(x)/(γM2

0 ). The
magnetic pressure pB is obtained by solving the transport equation of the magnetic field amplified
by resonant streaming instability, which provides PB(x) = (2/25)

(
1 −U(x)5/4

)2
U(x)−3/2 [13].

2.3 Method of resolution

An approximate solution of the problem is obtained by introducing the typical distance xp(p)
probed by particles of momentum p ahead of the shock [10, 15]. The spatial dependency of the
distribution function can be approximately explicated as:

f (x, p) = [ f1(p) − f∞(p)] ϑ[x − xp(p)] + f∞(p) , (5)

such that the expression of the cosmic ray pressure simplifies to:

Pc(xp) ≈
4π

3ρ0u2
0

{∫ p

p0

dp′p′3v(p′) f∞(p′) +
∫ ∞

p

dp′p′3v(p′) f1(p′)
}
. (6)

Defining ζ(p) ≡ U(xp(p)), the problem reduces to a system of coupled ordinary differential equa-
tions:

p
3

d f1
dp

(
1

Rtot
−

7
5
ζ +

2
5
ζ−1/4

)
=

f1 − f∞
5

(
7ζ − 2ζ−1/4 +

p
6

(
14 + ζ−5/4

)
ζ ′(p)

)
, (7)

ζ ′(p)

[
27
25
−
ζ−γ−1

M2
0
+
ζ−5/4

25
−

3ζ−5/2

25

]
=

4π
3ρ0u2

0
p3v(p) [ f1(p) − f∞(p)] , (8)

which can be solved iteratively with suitable boundary conditions determined by the Rankine-
Hugoniot jump conditions at the subshock [8]. The initial value of the distribution function f is
given by Equation 3 while the hydrodynamic equation 8 is supplemented by the boundary condition
ζ(pmax) = u0, for the flow should not be modified far upstream. Because nonlinear shocks generally
produce hard spectra in the high energy bands, it is mandatory to introduce a maximum momentum
pmax which is equivalent to assume a free escape boundary in the upstream region. The solution is
eventually found following the procedure detailed in [10].

2.4 Adiabatic decompression and escape flux

The medium is compressed by a factor u0/u2 during the passage of a shock. In between two
shocks, the decompression must be taken into account. This is properly computed according to
Liouville’s theorem as discussed in [4].

Because we introduce a maximum momentum pmax , a non-negligible fraction of particles
may escape at upstream infinity. The escape flux is computed as in [16], including the additional
pressure of the seeds at upstream infinity.

3
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Figure 1: Evolution of the downstream distribution of particles (left panels) as the shocks succeed each
other, compared to the test-particle solution (top right panel). The bottom right panel displays the profile of
the flow effectively experienced by particles of momentum p. The Mach number is set to 20, the upstream
temperature to 106 K, the injection parameter ξ = 3 and the maximum momentum pmax = 1 PeV.

3. Results

3.1 Asymptotic solution

Figure 1 shows the evolution of the cosmic ray spectrum and flow profile as the shocks
successively sweep-up the medium. It is well-known that the pressure of cosmic rays slows down
the flow ahead of the shock, as shown in the bottom right panel. As the shocks succeed each other,
the pressure of the particles increases and the flow is more and more modified. This implies that low
energy particles feel a reduced compression ratio which makes their acceleration inefficient, while
high energy particles feel an enhanced compression ratio and are very efficiently (re)accelerated.
This results in amore andmore concave spectrum, in contrast to the test-particle case (top right panel
of Figure 1). The asymptotic solution has a spectral index of about 5 at the injection momentum
and 3.5 at the maximum momentum.

Remarkably, the asymptotic solution is nearly universal. As shown in Figure 2, it does not
depend on the Mach number, even for weak shocks. Neither does it depend on the maximum
momentum, providing the spectrum is rescaled accordingly. Only low energy bands do depend on
the injection efficiency, which is expected since the fresh injection of particles is introduced as a
boundary condition.

Figure 3 shows how the pressure of the downstream distribution of cosmic rays evolves as the
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Figure 2: Asymptotic solutions for various sets of parameters. Left: the Mach number is set to 20, the
maximum momentum to 1 PeV. Middle: ξ = 3, pmax = 1 PeV. Right: the Mach number is set to 20, ξ = 3.
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Figure 3: Evolution of the cosmic ray pressure in the downstream region. The parameters are similar to that
set in Figure 2.

shocks succeed each other. The top left panel demonstrates that nonlinearities must be taken into
account even when considering a small number of shocks. The pressure asymptotically converges
to about a few percent of the shock ram pressure, for any set of parameters. In particular, even
assuming a very small acceleration efficiency (e.g. 10−10 percent of thermal particles injected in
the mechanism), the pressure saturates after about 10 reaccelerations at the level of a few percent of
the hydrodynamic pressure. In the saturated regime, only a fraction of the seeds are reaccelerated
and most of the energy is carried by the escape flux at the maximum momentum.
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Figure 4: Asymptotic spectrum accounting for the expansion of the medium and particle escape. We assume
a Mach number of 20 and ξ = 3.

3.2 Particle escape

The previous computation was performed in an idealistic scenario where the properties of the
swept-up medium are constant in time and the particles do not escape the region of acceleration.
In reality, the medium must be heated by the successive shocks, unless it expands. A more
realistic model can be implemented by accounting for an adiabatic expansion of the region, which
is typically the case in superbubble environments. We assume that the density decreases in between
the passage of each shock according toWeaver’s scaling [17] and we allow for the escape of particles
in a timescale τ(p) ∝ p−1/3 as expected in the Kolmogorov regime of turbulence [18]. Figure 4
shows how the asymptotic solution is modified. Although the rarefaction of the medium does not
have a major impact on the spectrum of particles, the escape of cosmic rays steepens the high energy
bands. If the escape time of low energy particles is smaller than the typical time interval between
supernovae ∆t, the spectrum is very steep. The asymptotic solution is in fact only approximatively
retrieved up to the momentum p∗ such that τ(p∗) = ∆t. The concave spectrum from the injection
momentum to 1 PeV would only be realised in very massive compact clusters containing more than
a thousand massive stars, such as the ones observed in the galactic centre.

4. Conclusion

Successive shocks efficiently accelerate cosmic rays such that the pressure of the particles
quickly raises at the level of the ram pressure of the shocks. This implies that the test-particle
approximation breaks down. The cosmic rays react onto the shock and in particular slow down
the upstream flow. We have computed the reacceleration of particles in such setup using a semi-
analytical model including the resonant excitation of hydromagnetic waves and self-consistently
accounting for the injection of particles. The asymptotic spectrum obtained after a few reaccelera-
tions is very concave. In the nonlinear regime the cosmic ray saturates at the level of a few percent
of the shock ram pressure and most of the energy is carried by the escaping flux. Remarkably,
the asymptotic solution is nearly universal. In particular, the asymptotic pressure weakly depends
on the injection efficiency. The model is eventually applied to a more realistic case considering
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the expansion of the medium as well as the energy-dependent escape of the particles, which is a
step towards a nonlinear model of acceleration in superbubbles. The asymptotic spectrum is only
retrieved if the shocks succeed each other very quickly. Eventually, the framework developed in
this analysis can be used to compute the reacceleration of seed particles in various environments,
not limited to superbubbles.
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