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34 Abstract

35 Motivation: The standard approach for statistical inference in differential expression (DE) analyses is

36 to control the False Discovery Rate (FDR). However, controlling the FDR does not in fact imply that

37 the proportion of false discoveries is upper bounded. Moreover, no statistical guarantee can be given

38 on subsets of genes selected by FDR thresholding. These known limitations are overcome by post hoc

39 inference, which provides guarantees of the number of proportion of false discoveries among arbitrary

40 gene selections. However, post hoc inference methods are not yet widely used for DE studies.

4 Results: In this paper, we demonstrate the relevance and illustrate the performance of adaptive

42 interpolation-based post hoc methods for two-group DE studies. First, we formalize the use of permutation-

43 based methods to obtain sharp confidence bounds that are adaptive to the dependence between genes.

44 Then, we introduce a generic linear time algorithm for computing post hoc bounds, making these bounds

45 applicable to large-scale two-group DE studies. The use of the resulting Adaptive Simes bound is illustrated

46 on a RNA sequencing study. Comprehensive numerical experiments based on real microarray and RNA

47 sequencing data demonstrate the statistical performance of the method.

48 Availability: A cross-platform open source implementation within the R package sanssouci is available at

49 https://sanssouci-org.github.io/sanssouci/.

50 Contact: pierre.neuvial@math.univ-toulouse.fr

51 Supplementary information: Supplementary data are available at Bioinformatics online. Rmarkdown

g g vignettes for the differential analysis of microarray and RNAseq data are available from the package.

54

55

56 1 Introduction significance threshold, after accounting for the fact that many tests are
57 Two-sample comparison problems are ubiguitous in genomics. The most performed simultaneously.

58 classical example is the case of differential expression studies, where the The state of the art approach to large-scale multiple testing is to control
59 goal is to pinpoint genes (or transcripts) whose average expression level the False Discover.y Rate (FDR). Introducc.:d by|Benjamini and Hochberg
60 differ significantly between two known populations, based on a sample (1995}, the FDR is the expected proportion of wrongly selected genes

(false positives) among all selected genes. The most widely used method

of expression measurements from individuals from these populations. A ) T 3
to control FDR is the Benjamini-Hochberg (BH) procedure, which has

classical strategy to identify differentially expressed (“DE”) genes is to test,
for each gene, the null hypothesis that its average expression is identical
in both populations. DE genes are then defined as those passing some

been shown to control FDR when the hypotheses corresponding to the
non-differentially expressed genes are independent or satisfy a specific
type of positive dependence called PRDS (Benjamini and Yekutieli,2001).
PRDS is widely accepted as a reasonable assumption in differential gene
expression (DGE) studies and in genomic studies in general, see e.g.

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Goeman and Solari| (2014). However, there exist two major caveats to
the practical use and interpretation of FDR in genomics. Let us assume
that we have obtained a list R of genes called DE by a FDR-controlling
procedure applied at level q.

Practical use: FDR of gene subsets is not controlled. As noted by/Goeman!
and Solari| (2011), the statement FDR(R) < ¢ applies to the list R only,
and no further statistically valid inference can generally be made on other
gene lists. However, a common practice is to manually curate this list by
adding or subtracting genes, based on some external or priori knowledge
(such as the knowledge of gene sets or pathways). A typical example is
the case of volcano plots (Cui and Churchilll [2003), where one selects
those genes passing both a significance threshold and a threshold on the
fold change (difference of average gene expression on the log scale), see
Figure EI Ebrahimpoor and Goeman| (2021) have recently shown in an
extensive simulation study that this type of double filtering strategy yields
inflated false discovery rates.

Interpretation: FDR control is not FDP control. The statement
FDR(R) < ¢ is often misinterpreted as “the proportion of false
discoveries (FDP)in R is less than ¢”. In fact, the FDP is a random quantity,
and FDR(R) < q only implies that the average FDP over hypothetical
replications of the same genomic experiment and p-value thresholding
procedure, is upper bounded by g. This distinction would not matter much
if gene expressions were statistically independent: indeed, as the number
m of tests tend to infinity, the FDP concentrates to the corresponding
FDR with a typical parametric convergence rate: m ~ /2 (Neuvial,[2008).
However, as the dependence increases, the FDP distribution becomes
strongly asymmetric and heavy-tailed, as reported by Korn ez al.|(2004),
and further illustrated inNeuviall (2020} Fig. 2.1).

The notion of post hoc inference has been introduced by |Goeman:
and Solari| (2011) to address these limitations. Building on earlier works
by |Genovese and Wasserman| (2006), |Goeman and Solari| (2011) have
obtained confidence bounds for the FDP in arbitrary, multiple and possibly
data-driven subsets of hypotheses using the theory of closed testing
(Marcus et al.||1976). In practice, Simes post hoc bounds are recommended
in/Goeman et al.|(2019), as they are valid under the PRDS assumption and
can be calculated efficiently. Simes post hoc bounds have recently been
popularized in genomics by [Ebrahimpoor and Goeman|(2021)), but also in
neuroimaging studies by Rosenblatt ez al.|(2018), where this approach has
been called “All-resolutions inference” (ARI).

Despite their very attractive theoretical properties, post hoc methods
are not yet widely known and used for addressing multiple testing situations
in genomics, where controlling FDR via the BH procedure remains
standard. Two possible reasons for this situation are that contrary to the
BH procedure for FDR control, the Simes post hoc bound for post hoc
inference is (i) typically conservative in genomic applications, and (ii) its
construction based on closed testing may be difficult to understand for
practitioners.

An alternative construction of post hoc bounds that has been proposed
in|Blanchard ef al.{(2020) and further explored inBlanchard ez al.|(2021);
Durand et al.| (2020). This strategy can yield sharper bounds, by an
adaptation to the statistical dependency between tests using permutations,
and to the sparsity of the signal using a step-down principle. The main
goal of the present paper is to popularize the use of the post hoc
bounds introduced in Blanchard et al.|(2020) in the context of two-group
DE studies. Accordingly, the main contributions of this paper can be
summarized as follows:

1. Providing a short and self-contained introduction to interpolation-
based post hoc inference (Section[2) and to the use of the permutation-
based calibration methods introduced in [Blanchard et al.| (2020) for
DE studies (Section[3);

2. Proving that generic interpolation-based post hoc bounds can be
computed in linear time (Section EI);

3. Applying the resulting “Adaptive Simes” method to a specific RNA
seq DE study, to illustrate that it yields more interpretable results than
those derived from FDR control, and sharper bounds than Simes post
hoc bounds (Section[3));

4. Assessing the statistical performance of the method (control of the
target risk, and statistical power) for DE studies via comprehensive
numerical experiments based on real genomic data, both for
microarray and sequencing data sets (Section [6).

Altogether, the results presented in this paper illustrate that subtantial
gains in power can be achieved with respect to state-of-the-art post
hoc bounds in the case of two-group DE studies, without sacrificing
computational efficiency.

These developments are implemented in the R package sanssouci

available fromhttps://sanssouci-org.github.io/sanssouci/.

The R code used for the numerical experiments is available fromhttps:

//github.com/sanssouci-org/IIDEA-method-paper). References

to the Supplementary data (text, figures, algorithms) are prefixed by ““S-”
throughout the paper.

2 Interpolation-based post hoc inference

We consider a DE study with m features. These features are called genes
for simplicity, but the methods described below are also applicable more
generally. For now, we only assume that a p-value is available to test the
differential expression of each gene. The vector of p-values is denoted
by (p1,-..,pm). More specfic assumptions on how these p-values are
obtained are given in Section[3]

2.1 Objective: post hoc bounds

For a given subset S of genes called DE, we denote by FP(.S) the number
of false positives in .S, that is, the number of genes in .S that are not truly
DE. Our goal is to find a function FP,, such that with high probability,
FP(9) is larger than the number of false positives in S

P (VS,FP(S) <FPa(S)) >1—a. 1)

Following (Goeman and Solari| (2011), a function FP,, satisfying (1) will
be called an a-level post hoc upper bound on the number of false positives.
Post hoc inference can be equivalently formulated in terms of upper bounds
on the FDP: FDP, (S) = FPo/(S)/|S|, or in terms of lower bounds on
the number or proportion of true positives: TP (S) = |S| — FP«(S),
TDP,(S) = TPa(S)/|S|.

2.2 Strategy: JER control and interpolation

The bounds studied in this paper rely on a multiple testing risk called the
Joint Error Rate (JER) and introduced in|Blanchard et al.|(2020). Given a
non-decreasing family of thresholds t = (tx)x—1.. K>

JER(t) =P (Fk e {1,....,K} : q, <ty), @)

where for k = 1,. .., K, g denotes the k-th smallest p-value among the
set of truly non-DE genes (that is, true null hypotheses). A key result is
that any family t such that JER(t) < « yields an associated a-level post
hoc bound, by the following interpolation argument.

Proposition 1 (Interpolation-based post hoc bound [Blanchard et al.
(2020), Proposition 2.3). Ift = (tx)1<rk<k controls JER at level o,
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then (|Z|) is satisfied for the bound

FP. = i i >ty — . 3
FPa(S) = min iezsl{pftk}w 1 ©)

For completeness and in order to emphasize on the simplicitly of the
argument, a proof of Proposition[T]is given in Appendix[S-T1.2]

2.3 Simes post hoc bounds

An important example is the Simes family t5(c), defined by ¢ (o)
ak/m for all k. The |Simes|(1986) inequality ensures that JER (t5 ()
« as soon as the p-value family is PRDS |Sarkar ef al.|(2008). As noted by
Blanchard et al.| (2020), the post hoc bound then derived by Propositionm
coincides with the Simes post hoc bound introduced in|Goeman and Solari
(2011).

Although the Simes inequality is sharp when the p-values are
independent, it is increasingly conservative as the dependence between
tests gets stronger (Blanchard er al.| |2020] Table 1). The associated JER
control and post hoc bound naturally inherit this conservativeness (as
illustrated in the numerical experiments of Sections and @) In order

IN

to address this conservativeness issue, it is useful to note that for A > 0,
the JER of the Simes family t5 (\) can be written as

. mqg
JERES(N\) =P Ak A 4
@S0 =P (ayin " <) @
In view of (@), a natural idea in order to obtain a tight JER control is to
select the largest A such that JER(t%(\)) < a. This idea is the basis of
the calibration method described in Section[3]

3 JER calibration by permutation

The JER defined in (Z) only depends on the joint p-value distribution of
true null hypotheses. Although this distribution is unknown in practice, in
two-group DGE studies, it can be approximated by permuting the group
labels. Accordingly, the first step of our calibration method is to build a
B x m matrix P of permutation p-values: P; is the p-value of the test
of gene 7 associated to the b-th permutation of the group labels. This is
illustrated in the first panel of Figure [T}

The next steps of the calibration are best explained in the particular
case of the Simes family. Indeed, by @), JER(t® (X)) is the value of
the cumulative distribution function of ¢ = minj <p<m mqr/k at A.
Accordingly, the calibration method proceeds by calculating B samples
from the “pivotal statistic” 1), and the output is the quantile of order o of
these statistics.

The method as described in Figuremcovers not only the case of the
Simes family, but any family 7(\) = (7%(\))k=1...x Where the 7
are invertible functions. Following |Blanchard et al.| (2020} 2021), such a
family is called a template. A more formal description of this calibration
algorithm is given in Algorithm [S-T} Note that for simplicity, we have
described here a ““single-step” version of the calibration algorithm. We have
also implemented a “step-down” version: it is a slightly more powerful
algorithm that is also adaptive to the unknown proportion of true null
hypotheses (Blanchard et al.| 2020, Proposition 4.5).

Validity. Theorem 1 in Blanchard et al| (2021) ensures that this
calibration method yields JER(X) < a, for tests whose p-value for a given
gene depends on the data only via its own expression values. In particular,
this is the case for two-sample Student tests or Wilcoxon rank sum tests,
which can be used for microarray and RNA sequencing (RNA-seq) DE
studies, respectively. However, note that this permutation-based strategy is
formally only valid for two-group comparisons with no adjustment factors.

1. Permutation p-values

group labels: ¢

2 Data: X
L
§ J 2. Pivotal statistic
=
g

p -
= él:-__.;i Test: p o

By

KAty P Py
T late:
3. Quantile empiate: 7

min

Fig. 1. Illustration of the three main steps of permutation-based JER calibration. The input
data is in the form of a n X m gene expression matrix X and a binary vector ¢ of n group
labels, specifying which observations belong to each of the two populations to be compared.
The parameters are the target JER level o and the number B of permutations, the p-value
function to perform the test and the template .

More generally, the theory developed in|Blanchard et al.|(2020) is valid as
soon as the joint distribution of the test statistics satisfies a randomization
assumption (Romano and Wolf}2005;Hemerik and Goeman,|2018). In the
above case of two-sample tests, this is obtained via permutation of group
labels. As noted in [Blanchard et al.| (2020), this assumption also holds
for one-sample tests, where permutations at step 1 is replaced by sign-
flips. It also holds when testing for the marginal independence between
each gene’s expression and a continuous outcome via a correlation test, as
further explained and illustrated in Section@

Let us recall that our methods relies on group label permutations in
order to obtain statistically valid procedures that adapt to the dependency
between genes observed in the data set at hand. While being theoretically
valid regardless of the sample size n, such permutation techniques require
a large enough sample sizeto appropriately learn gene dependencies. As
a rule of thumb, we advocate the use of this method in studies with more
than 5 samples per group.

Complexity. Assuming a linear time complexity O(n) to perform
the test of one single null hypothesis, the overall time complexity of the
calibration method is O(mB(n + log(m))). Indeed, the most costly
step is the calculation of Py, which involves mB tests followed by B
sorting operations on a vector of size m. The overall space complexity is
O(m(B + n)).

Figure [T also illustrates the modularity of Algorithm [S-T} where the
three main steps are highlighted in different colors. This modularity is
important in practice. For example, it makes it possible to obtain the result
for several values of o without re-computing the permutation matrix FPp.
This modularity is also useful for the computational efficiency of the above-
mentioned step-down version of the calibration algorithm.

4 Linear time interpolation-based post hoc bound

Post hoc bounds can be used for multiple gene selections S without
compromising the corresponding error control. For post hoc inference
to be applicable in practice FP4 (.S) must be computed efficiently.

A naive implementation of the bound FP (S) defined in (3) would
require s operations (where s is the size of S) by performing a loop
onboth &k = 1,...,s and ¢ € S in order to calculate v (S) =
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> ics Hpi > tx} + k — 1 for all k. This induces a quadratic worst
case time complexity O(m?), which is achieved when evaluating FP,
on the set of all genes. A quadratic time complexity for a single set is too
slow for DE studies with m > 10, 000. Moreover, a useful application of
post hoc bounds is to build the false positive confidence curve associated
to S, that is, all the bounds ﬁa(si) fori = 1...s, where S; is the
index set of the ¢ smallest p-values in S. Using the above naive algorithm,
this would require O(s?) operations, implying a cubic worst case time
complexity O(m?) to build the false positive confidence curve associated
to all hypotheses.

In contrast, Algorithm computes FP (S) in linear time and space
O(s) for a given S. In fact, it even outputs the entire false positive
confidence curve associated to S. For example, the largest set .S such
that FDP,,(S) < 7 is then obtained in linear time and space for any user-
defined . This complexity cannot be improved since the size of the output
vector is s. The validity of algorithm(T]relies on the following formulation
for FP o (S;).

Algorithm 1 Linear algorithm for interpolation-based post hoc bounds.
Require: p = (p(1.5),---P(s:5))st = (t1,t2,. .. tK)

1: 7 < rep(0, s)

2: for k < 1to sdo

3: if k < K then

4: 7[k] < t[k]
5:  else

6: T[k] + t[K]
7:  endif

8: end for

9: k,7 <+ rep(s,s)
10: ki1

11: while (k < s) & (i < s)do
12: if (p[i] < t[k]) then

13: K[i] ¢k —1 > kli] = [{k/pli] > t[k]}|
14: i+ i+1

15:  else

16: rlk] «i—1 >rk] = |{i/pli] < t[k]}]
17: k41

18:  endif

19: end while

20: V, A, M «+ rep(0, s)

21: for k < 1to sdo

22: Ak« r[k] - (E—1)
23:  if k > 1 then

24: M k] < max(M ([k — 1], A[k])
25:  endif
26: end for

27: for i < 1to sdo

28:  if k[i] > 1 then

29: V[i] = min(k[i], s — M[x[d]]))
30:  endif

31: end for

32: return V/

Proposition 2. Fori € {1,...,s}, let S; be the index set of the i-th
smallest p-value in S, and k; = 3,1 1{p;i > txar }. Then
PP (5 = min (i min w($)=(5-0)) . ©

Ki

Proposition [2f is proved in Appendix The fact that FP (S;)
depends on % only via k; but not S; in () is crucial for obtaining a linear

time complexity. The properties of Algorithm [I] can be summarized as
follows:

Corollary 1 (Validity and complexity of Algorithm [T). Algorithm [I]
returns the vector (FP o (S;))1<i<s in O(s) time and space complexity.

Proof of Corollary[T] Valididy. The for loop at lines |I|- |§| stores
the thresholds (txax) for & € {1,...,s}. The while loop at
lines outputs both (k;);es and (rx)i<p<x, Where rp =
|>ies H{pi < ti}|. Noting that r, = s — vg(S) + (k — 1), the
for loop at lines outputs My, = maxy/<j s — vy (S), that is,
My, = s — mings < v/ (S). Thus, the for loop at linesoutputs
V; = FP,(S;) by Proposition

Complexity. All the vectors stored within the algorithm are of size s,
so the space complexity of Algorithmmis O(s). For the time complexity,
the (x;); and (rg)x are calculated within a single while loop of size s,
in which exactly one of 7 or k is incremented at each step. The rest of the
algorithm consists of two for loops of size s consisting of O(1) operations.

5 Urothelial Bladder Carcinoma data set

In this section, we focus on an Urothelial Bladder Carcinoma (BLCA) RNA
sequencing data set from the [Cancer Genome Atlas Research Network
et al| (2014, TCGA). This preprocessed data set is available from the
R/Bioconductor package curatedTCGAData. Internally, this package
itself relies on the R/Bioconductor package RTCGAToo 1box to download
TCGA data that have already been preprocessed by TCGA pipelines.
For convenience, this data set has also been made available in the R
package sanssouci.data. This data set consists of gene expression
measurements for n = 270 patients, classified into two subgoups: stage 11
(no = 130) and stage III (n1 = 140). Bladder cancer stages range from
0 to IV, quantifying how much the cancer has spread. We have filtered
out unexpressed genes, here defined as those for which raw expression
counts were lower than 5 in at least 75% of the patients. This results in
m = 12, 534 genes. To identify DE genes between the stage II and stage
IIT populations, we test for each gene the null hypothesis that the gene
expression distribution is identical in the two populations. The calibration
method described in Section[B)is performed using a[Wilcoxon|(1945) rank
sum test (also known as [Mann and Whitney| (1947) test) with the Simes
template, with B = 1,000 permutations and target risk (JER) set to
a = 10%. The resulting method is called the Adaptive Simes method.

5.1 Confidence curves

In the absence of prior information on genes, a natural idea is to rank them
by decreasing statistical significance. Post hoc methods provide confidence
curves on the number (or proportion) of true positives (truly DE genes)
among the most significant genes. Such curves are displayed in Figure|2|for
the BLCA data set. The black lines in Figureare 1—a = 90% confidence
curves obtained by the Adaptive Simes method. Upper bounds on FDP and
lower bounds on FP are displayed in the left and right panels, respectively.
For reference, the corresponding curves obtained by ARI are displayed
in gray; they are almost identical to the ones obtained from the original
bound of[Goeman and Solari| (20TT) (Equation (3)), see Section[S=2.1]

Post hoc guarantees. Post hoc inference makes it possible to define DE
genes as the largest set of genes for which the FDP bound is less than a
user-given value g. The arbitrary choice ¢ = 0.1 is illustrated in Figure[Z]
corresponding to the horizontal line in the left panel. The black lines in
Figure |Z|correspond to the set S of 1064 genes for which the adaptive
Simes method ensures that FDP(.S) < ¢. This corresponds to at least
TP« (S) = 958 true positives (since 1 —958/1064 = 0.1), as illustrated
in the right panel.



Page 5 of 8

Bioinformatics

“output” — 2022/9/7 — 8:27 — page 5 — #5

Powerful and interpretable error control for two-group DE studies
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1000
0.4+

500
0.2+

Post hoc confidence bounds

0.0+ : 0 :
0 1000 2000 0 1000 2000
Number of top features selected

Method === Adaptive Simes ARI

Fig. 2. 90% confidence curves on “top k” lists for the Urothelial bladder carcinoma data
set. Left: upper bound on the False Discovery Proportion (FDP); right: lower bound on the
number of true positives (TP). The adaptive Simes bound (black curves) outperforms ARI
(gray curves). For reference, the set of 1, 787 genes called DE by the BH(0.05) procedure

is represented by a dot.

Table 1. Post hoc bounds on BLCA data set for ARI and the proposed
permutation method, for gene selections S illustrated in Figures |Z| (target
FDP= 0.1) and(genes filtered by p-value).

Confidence curve (Fig. EI)

Volcano plot (Fig. EI)

ARI Adaptive Simes ARI  Adaptive Simes
Number of genesin S 781 1064 569 569
TP, (S) 703 958 456 492
FDP,(S) 0.1 0.1 0.199 0.135

Adaptation to dependence. The above example also illustrates the increase
in power obtained by Adaptive Simes thanks to the calibration described
in Section@ Indeed, for an identical statistical guaranty (FDP < 0.1),
ARl yields a substantially smaller subset of 703 DE genes. More generally,
the comparison between the black and gray curves in Figure ] illustrates
the gain in power obtained by using permutations methods to adapt to the
dependence between genes.

Comparison to FDR control. For this data set, the BH procedure calls a
set S of 1,787 genes DE for a target FDR level of 0.05. As stated in
Section m the BH procedure does not provide guarantees on the FDP
of these genes, but only on their FDR, that is, the average FDP over
hypothetical replications of the same genomic experiment and p-value
thresholding procedure. (Note that this remark is not specific to the BH
procedure: the same would be true for any FDR controlling procedure.)
In contrast, the Adaptive Simes bound guarantees (with 90% confidence)
that the number of true positives in SBPH is at least 1, 289, or, equivalently,
that the corresponding FDP is less than 0.279.

5.2 Volcano plots

Volcano plots are a commonly used graphical representation of the results
of a differential expression analysis [2003)), illustrated
in Figure 3] Each gene is represented in two dimensions by estimates of
its effect size (or “fold-change”, x axis) and significance (y axis). The
fold change of a gene is generally defined as the difference between the
average or median (log-scaled) gene expressions of the two compared
groups. Its significance is quantified by — log o (p)-values for the test of its
differential expression, where the “— log, ", transformation ensures that

large values of y correspond to genes which are likely to be differentially
expressed.

As noted by [Ebrahimpoor and Goeman| (2021), post hoc inference
makes it possible to select genes of interest based on both fold change

and significance, without compromising the validity of the corresponding
bounds. Moreover, even if Wilcoxon tests have been performed for the
calibration of the post hoc bounds, our proposed post hoc bounds are still
valid when relying on other statistics for the selection genes of interest.
Figure@illustrates this idea by making a volcano plot based on the p-values
and log-fold changes obtained from the limma-voom method of [Caw e7 al|
(2074), which is implemented in the ‘limma‘ package of
‘ In this example, the function FP, defined in (E[) depends on the
Wilcoxon tests via the p-values (p;); and the thresholds (¢ ) obtained at
the calibration step, but it is statistically valid for arbitrary gene selections
S. By construction, for a given selection size |S|, the tightest bound
FPq(S) corresponds to the set of the |:S| smallest Wilcoxon p-values.
More generally, smaller bounds FPa (S) will be obtained for selections
S that consist of small Wilcoxon p-values. A quantitative comparison
between the Wilcoxon and limma-voom p-value is provided in Figure[S-2}
It illustrates the coherence of the two methods for identifying DE genes in
the settings considered.

An example selection of 569 genes is highlighted in in Figure 3] It
corresponds to genes whose p-value is less than 10~3 and fold change
larger than 0.5 in absolute value. The Adaptive Simes method ensures that
with probability larger than 90%, the proportion of false discoveries (FDP)
isless than 0.14. It also ensures that the FDP among the subset of 493 genes
with positive fold change is less than 0.14, and that the FDP among the
subset 76 of genes with negative fold change is less than 0.63. As already
noted, the proposed bounds can be computed for multiple, arbitrary gene
subsets (obtained e.g. by changing the p-value and fold change thresholds
in Figure 3) without comprising their validity. Here again, the Adaptive
Simes method yields tighter bounds than ARI, as illustrated in Tablem

569 genes selected
At least 492 true positives (FDP <0.14)

S 76 genes 493 genes
TP=>28; FDP<0.63 WP 2426; FDP<0.14
'

0 — .
)
[S]
o
L © o
3 o0
o . .
L ° .
@ . . °
R .
©
T .
o

~ 4

o -

T T T T T
-2 -1 0 1 2 3

Fold change (log scale)

Fig. 3. Volcano plot for the urothelial bladder carcinoma data set. Each dot corresponds to
a gene, represented by its fold change (z axis) and p-value (y axis) on the log scale. Fold
changes and p-values were obtained by the limma-voom method|Ritchie et al| (2015). The
569 genes with p-value less than 10 ™3 and fold change larger than 0.5 are highlighted.
The Adaptive Simes method ensures that at least 492 of these genes are true positives.
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5.3 Influence of the number of permutations

The adaptive Simes method relies on random permutation of class labels.
As such, running this method several times could lead to different results.
Larger values of the number B of permutations are expected to give more
stable results. However, this comes at a higher computational price, since
the theoretical time complexity of the calibration step is linear in B, see
Section 3] We have quantified the variability of the post hoc bounds as a
function of B, by performing the calibration 1,000 times for each B €
{100, 200, 500, 1000, 2000, 5000} The results of these experiments are
reported in Section [S-2.3]  For B = 1,000 (the default value in the
sanssouci package), for the 1, 787 genes selected by the BH procedure
at level ¢ = 0.05, the FDP bound is between 0.23 and 0.37 for 99% of
the 1,000 replications of the calibration procedure. Choosing a larger
value for B increases the precision of the post hoc bounds. In particular,
with B = 5,000 the precision increases by a factor 2 (the FDP bound is
between 0.26 and 0.33), at the price of an increased computation time.
On a standard laptop, calibration takes < 20s for B = 1,000 and < 50s
for B = 5, 000 without parallelization. More generally, we observed that
the empirical complexity of the calibration is slightly less than linear (see

Figure[S-4).

6 Statistical performance for DE studies
6.1 Existing post hoc inference methods

The first post hoc inference methods introduced in were not adaptive to
the dependence between tests, since they were obtained from probabilistic
inequalities:

e The Simes bound was first proposed in |Goeman and Solari
(2011) together with a quadratic algorithm ((O(m?2))). It has been
implemented in the R package cherry.

e A slightly sharper version of the Simes bound has been introduced
in |Goeman et al.|(2019), together with an algorithm of linearithmic
complexity. This method is known as ARI for “All resolution
inference” and implemented in the R package hommel.

The idea of using randomization to obtain sharp risk control is not new
in the multiple testing literature. In particular, resampling or permutations
have been used to control the Family-Wise Error Rate (FWER, |Ge et al.
(2003); |Westfall and Young|(1993)) and the k-FWER (Romano and Wolf]
2007). For post hoc inference:

e The Adaptive Simes method described in this paper exploits sign-
flipping and permutation-based approaches introduced in [Blanchard
et al.|(2020112021) in order to build post hoc bounds. It is implemented
since 2017 in the R package sanssouci.

o A closely related approach called pARI has recently been proposed
by |Andreella ez al.|(2020) for the analysis of neuroimaging data. It is
implemented in the R package pART.

Both pARI and Adaptive Simes rely on the calibration method described
in Section 3} combined with the interpolation bound (3). An important
difference between Adaptive Simes (R package sanssouci)and pARIis
that sanssouci implements the linearithmic time complexity algorithm
described in SectionEl In contrast, the algorithm used in pART to calculate
the post hoc bound after calibration is the “naive” interpolation algorithm
described in the beginning of Section[d] which has a quadratic complexity
for a single set.

While pART initially only implemented a single-step version, it has
been updated after the initial submission of ths manuscript, so that both
sanssouci and pARI now implement a step-down principle in order to
adapt to the unknown quantity of signal (or, equivalently, to the proportion

7o of true null hypotheses). These two step-down methods have the same
goal but they are based on different principles. The experiments reported
below show that our proposed step-down typically provides only marginal
performance improvements on real data, due to the sparsity of the signals.
Similar observations have been made for the step-down version of pART,
see |Andreella et al.| (2020), so we have not included this method in our
comparisons.

The main features of existing post hoc bounds are summarized in
Table[2)

Adaptivity to: Time

Method R Package | dependence mp | complexity
Simes cherry | NO NO | quadratic
ARI ARI [ NO YES | linear
permutation ARI PARI | YES YES | quadratic
Adaptive Simes  sanssouci | YES YES | linear

Table 2. Main features of existing post hoc inference methods and software.

6.2 Evaluation framework

The mathematical validity of the post hoc bounds considered in this
paper has been proved in Blanchard ef al.|(2020), where their numerical
performance has also been illustrated by experiments on synthetic data.
The goal of this section is to complement these results by numerical
experiments based on gene expression data, which are more realistic for
the purpose of DE studies.

Data set generation. In the absence of a gold standard data set where one
would know which genes are truly DE or not, we created such data sets as
follows. Starting from a n X m gene expression data set X, where each
row corresponds to a gene and each column to an experiment or statistical
observation, we have

1. partitioned the observations into two groups of size ng and n1, such
that ng + n1 = n;

2. partitioned the genes into mg null genes and m non-null genes, with
mo-+mi =m

3. modified the expression of the non-null genes in group 1 by shifting
or scaling the corresponding submatrix of X of size n1 X mj.

This process results in a perturbed gene expression data set Y where the
null and non-null genes are known. Following |Blanchard ez al.| (2020),
we have quantified, for a set of such experiments, estimates of the risk
(JER) and of the power of each method considered, for each value of the
target risk «. The JER results are presented in Section [6.3] The power
results, which are highly consistent with the JER results, are postponed to
Supplementary Materials.

The empirical risk of a given method is estimated by the proportion
of experiments for which the corresponding confidence curve on the false
positives is now always below the actual number of false positives. This
quantity is the empirical counterpart of the JER defined in (2), and can be
compared to the target risk a: JER is empirically controlled if the empirical
JER is lower than «, and the closer it is to «, the tighter JER control.

The parameters of such a numerical experiment are the proportion
mo = mgo/m of null genes, and a measure of distance (or signal to noise
ratio) between null and non-null genes. Section [6.3]reports the numerical
results obtained for RNA sequencing data. We have also performed the
same type of experiments with microarray data. The results are similar,
and they are reported in Section[S-4]

A core feature of our proposed method is to use group label
permutations in order to obtain statistically valid procedures that adapt to
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the dependency between genes observed in the data set at hand. However,
the number of distinct permutations is limited for lower sample sizes: for
example, 252 distinct permutations are available for a comparison between
two groups of size 5. We have evaluated the impact of the sample size
on the performance of the methods in Section E This can be done by
down-sampling the BLCA data set and retaining only a smaller number
of observations. Our experiments demonstrate that even for sample sizes
less than 10, the Adaptive Simes method yields sharper bounds than
its competitors. Although the Adaptive Simes method is formally valid
regardless the sample size, we recommend using it in studies with more
than 5 samples per group.

6.3 Results for bulk RNA sequencing data

Our starting point is the data set used in section[5] For this experiment we
have selected only stage III samples, and performed the same filtering
as in Section E] on these samples only. We obtained a “null” data set
(with no signal), consisting of 130 patients and m = 12,418 genes,
after applying the same process as described in SectionE]for filtering out
unexpressed genes. The parameters of the experiments are set as follows.
The proportion of null genes is set to mo € {0.8,0.95,1}. We have
considered an multiplicative signal for differential expression: for each
gene g among the m1 non-null genes, the original expression values of g
are multiplied by a constant sg for 3 of the n observations, where s is
drawn uniformly between 1 and a signal to noise (SNR) parameter. The
SNR value is set to 1 (no signal), 2 or 3 (weak to strong signal). We have
used a two-sided Wilcoxon rank sum test for comparing the two groups.

The results are summarized by Figure[d] where the average empirical
risk (JER) achieved across 1000 experiments is plotted (together with 95%
confidence curves) against the target risk « for the methods described in
Section [6.1] In particular, the single-step version of pARI is represented
by the “Adaptive Simes (single step)” method.

Each panel corresponds to a combination of the parameters mg €
{0.8,0.95,1} (in columns) and SNR € {1,2,3} (in rows). The JER
is controlled for all methods and all parameter combinations, since all
curves are below the diagonal. The risk for the Adaptive Simes methods is
substantially closer to the target risk than for the parametric Simes methods
(Simes and ARI). This illustrates the systematic gain in tightness provided
by the calibration method described in Section El We also note that the
gain obtained from the adaptation to 7q is very small, except for situations
with both high signal (SNR= 3) and low sparsity (mg = 0.8). This gain
is negligible for ¢ < 0.2 in all situations. Indeed, the Simes and ARI
methods are essentially indistinguishable from each other, and the same
holds for the single-step and step-down Adaptive Simes methods. These
results are also confirmed by those of the power assessment, which are
given in Supplementary Materials.

7 Discussion

This paper advocates for the use of post hoc inference in two-group
DE studies, which provide more interpretable statistical guarantees than
classical inference based on the False Discovery Rate. The methods
proposed in this paper make it possible to obtain post hoc bounds that
are both fast to compute, and powerful (in the sense of the proportion of
true signal recovered). The resulting improvement over the state-of-the-
art is illustrated by realistic numerical experiments based on RNA-seq and
microarray data. These methods are implemented in the open-source R
package sanssouci. The code used for the numerical experiments of
this paper and to generate the figures is also provided. The default number
of permutations used for the calibration of the method is setto B = 1, 000
in the sanssouci package. Choosing a higher number of permutations
will lead to an increased precision of the bounds, at the price of a higher
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Fig. 4. Validity and compared tightness of the post hoc bounds on RNA-seq based
numerical experiments. The average empirical JER achieved across 1000 experiments
is plotted (together with 95% confidence curves) against the target risk o for all considered
methods. Each panel corresponds to a combination of the parameters o and SNR. The
adaptive methods yield tighter risk control than parametric ones.

computation time. Moreover, even though our proposed methods are
theoretically valid regardless of the sample size, we recommend using
them in studies with at least 5 samples per condition, so that the number
of distinct group-label permutations is large enough to provide adaptation
to the dependency between genes observed in the data set at hand. The
methods proposed in this paper and their implementation in the R package
sanssouci are generic, in the sense that they can be used with reference
families (or templates) of arbitrary shape. The most natural choice is the
Simes family (which corresponds to a linear template), as it is closely
related both to FDR control and to the first post hoc bounds introduced
by |[Goeman and Solari| (201T). The resulting method, which is called the
Adaptive Simes method, is used in the numerical experiments reported
in this paper. An interesting perspective of this work is to compare the
performance of other templates. Our experience in DE studies indicates
that improving on the Simes family by changing the templat is challenging;
similar conclusions have been reported in|/Andreella et al.| (2020) for the
analysis of fMRI data. Recent works in this field have shown the superiority
of a fully non-parametric approach, whereby the entire family of templates
(instead of a single parameter A as in the present work) is learned from
external data (Blain ez al.l [2022). Applying this method to genomic data
is another exciting perspective for the present work.

While this paper focuses on DE studies, these methods and our
implementation are applicable to any practical situation involving multiple
two-sample test, or one-sample tests, or tests of association with a
continuous outcome. Such situations are frequent in genomics (differential
expression, differential splicing, differential methylation) but also in
neuroimaging, which is another field where post hoc inference methods
have been introduced (Rosenblatt et all 2018). However, for studies
have more complex designs such as multi-sample comparisons or studies
including covariates, the calibration-based approach proposed here cannot
be applied directly. This is a limitation of the Adaptive Simes method
when compared to the state-of-the-art ARI method, which is applicable
in any multiple testing framework where the Simes inequality holds. This
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limitation is the current price to pay in order to obtain the substantial
power gains that are illustrated numerically in this paper. Extensions of
the present work to the problem of testing parameters of a general linear
model is another interesting perspective that requires additional statistical
developments.
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