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Powerful and interpretable control of
false discoveries in differential
expression studies

Nicolas Enjalbert-Courrech' and Pierre Neuvial®

L Institut de Mathématiques de Toulouse;
UMR 5219, Université de Toulouse, CNRS
UPS, F-81062 Toulouse Cedex 9, France.

Abstract: Motivation: The standard approach for statistical inference
in differential expression (DE) analyses is to control the False Discovery
Rate (FDR). However, controlling the FDR does not in fact imply that the
proportion of false discoveries is upper bounded. Moreover, no statistical
guarantee can be given on subsets of genes selected by FDR thresholding.
These known limitations are overcome by post hoc inference, which provides
guarantees of the number of proportion of false discoveries among arbitrary
gene selections. However, post hoc inference methods are not yet widely
used for DE studies.

Results: In this paper, we demonstrate the relevance and illustrate
the performance of adaptive interpolation-based post hoc methods for DE
studies. First, we formalize the use of permutation-based methods to ob-
tain sharp confidence bounds that are adaptive to the dependence between
genes. Then, we introduce a generic linear time algorithm for computing
post hoc bounds, making these bounds applicable to large-scale DE stud-
ies. The use of the resulting Adaptive Simes bound is illustrated on a RNA
sequencing study. Comprehensive numerical experiments based on real mi-
croarray and RNA sequencing data demonstrate the statistical performance
of the method.

Availability: A cross-platform open source implementation within the
R package sanssouci is available at https://pneuvial.github.io/sanssouci/.

1. Introduction

Two-sample comparison problems are ubiguitous in genomics. The most clas-
sical example is the case of differential expression studies, where the goal is to
pinpoint genes (or transcripts) whose average expression level differ significantly
between two known populations, based on a sample of expression measurements
from individuals from these populations. A classical strategy to identify differ-
entially expressed (“DE”) genes is to test, for each gene, the null hypothesis
that its average expression is identical in both populations. DE genes are then
defined as those passing some significance threshold, after accounting for the
fact that many tests are performed simultaneously.

The state of the art approach to large-scale multiple testing is to control the
False Discovery Rate (FDR). Introduced by Benjamini and Hochberg (1995),
the FDR is the expected proportion of wrongly selected genes (false positives)
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among all selected genes. The most widely used method to control FDR is the
Benjamini-Hochberg (BH) procedure, which has been shown to control FDR
when the hypotheses corresponding to the non-differentially expressed genes
are independent or satisfy a specific type of positive dependence called PRDS
(Benjamini and Yekutieli, 2001). PRDS is widely accepted as a reasonable as-
sumption in differential gene expression (DGE) studies and in genomic studies
in general, see e.g. Goeman and Solari (2014). However, there exist two major
caveats to the practical use and interpretation of FDR in genomics. Let us as-
sume that we have obtained a list R of genes called DE by a FDR~controlling
procedure applied at level q.

Practical use: FDR of gene subsets is not controlled. As noted by
Goeman and Solari (2011), the statement FDR(R) < ¢ applies to the list R
only, and no further statistically valid inference can generally be made on other
gene lists. However, a common practice is to manually curate this list by adding
or subtracting genes, based on some external or priori knowledge (such as the
knowledge of gene sets or pathways). A typical example is the case of volcano
plots (Cui and Churchill, 2003), where one selects those genes passing both a
significance threshold and a threshold on the fold change (difference of average
gene expression on the log scale), see Figure 3. Ebrahimpoor and Goeman (2021)
have recently shown in an extensive simulation study that this type of double
filtering strategy yields inflated false discovery rates.

Interpretation: FDR control is not FDP control. The statement FDR(R)
q is often misinterpreted as “the proportion of false discoveries (FDP) in R is
less than ¢”. In fact, the FDP is a random quantity, and FDR(R) < ¢ only
implies that the average FDP over hypothetical replications of the same ge-
nomic experiment and p-value thresholding procedure, is upper bounded by
q. This distinction would not matter much if gene expressions were statistically
independent: indeed, as the number m of tests tend to infinity, the FDP concen-
trates to the corresponding FDR with a typical parametric convergence rate:
m~'/2 (Neuvial, 2008). Unfortunately, as the dependence increases, the FDP
distribution becomes strongly asymmetric and heavy-tailed, as illustrated by
the numerical experiments reported in Neuvial (2020, Fig. 2.1).

The notion of post hoc inference has been introduced by Goeman and Solari
(2011) to address these limitations. Building on earlier works by Genovese and
Wasserman (2006), Goeman and Solari (2011) have obtained confidence bounds
for the FDP in arbitrary, multiple and possibly data-driven subsets of hypotheses
using the theory of closed testing (Marcus et al., 1976). In practice, Simes post
hoc bounds are recommended in Goeman et al. (2019), as they are valid under the
PRDS assumption and can be calculated efficiently. Simes post hoc bounds have
recently been popularized in genomics by Ebrahimpoor and Goeman (2021), but
also in neuroimaging studies by Rosenblatt et al. (2018), where this approach
has been called “All-resolutions inference” (ARI).

Despite their very attractive theoretical properties, post hoc methods are
not yet widely known and used for addressing multiple testing situations in
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genomics, where controlling FDR, via the BH procedure remains standard. Two
possible reasons for this situation are that contrary to the BH procedure for
FDR control, the Simes post hoc bound for post hoc inference is (i) typically
conservative in genomic applications, and (ii) its construction based on closed
testing may be difficult to understand for practitioners.

An alternative construction of post hoc bounds that has been proposed in
Blanchard et al. (2020) and further explored in Blanchard et al. (2021); Durand
et al. (2020). This strategy can yield sharper bounds, by an adaptation to the
statistical dependency between tests using permutations, and to the sparsity
of the signal using a step-down principle. The goal of the present paper is to
popularize the use of the post hoc bounds introduced in Blanchard et al. (2020)
in the context of DE studies. Besides providing a self-contained introduction
to interpolation-based post hoc inference (Section 2), the main contributions of
this paper can be summarized as follows:

1. Powerful post hoc bounds can be obtained by leveraging permutation
methods in order to adapt to the unknown dependency structure of a
given data set (Section 3);

2. Generic interpolation-based post hoc bounds can be computed in linear
time (Section 4);

3. Application of the resulting “adaptive Simes” method to a specific RNA
seq DE study yields more interpretable results than those derived from
FDR control, and sharper bounds than Simes post hoc bounds (Section 5);

4. Comprehensive numerical experiments based on real genomic data demon-
strate the statistical performance of the method (control of the target risk,
and statistical power) for DE studies, both for microarray and sequencing
data sets (Section 6).

These developments are implemented in the R package sanssouci available
from https://pneuvial.github.io/sanssouci/. The code used for the numerical
experiments s available from the package source.

2. Interpolation-based post hoc inference

We consider a DE study with m features. These features are called genes for
simplicity, but the methods described below are also applicable more generally.
For now, we only assume that a p-value is available to test the differential
expression of each gene. The vector of p-values is denoted by (p1, ..., pm). More
specfic assumptions on how these p-values are obtained are given in Section 3.

2.1. Objective: post hoc bounds

For a given subset S of genes called DE, we denote by FP(S) the number of
false positives in 5, that is, the number of genes in S that are not truly DE.
Our goal is to find a function FP, such that with high probability, FP,(S) is
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larger than the number of false positives in S:
P (VS, FP(S) < WQ(S)) >1l—a. (1)

Following Goeman and Solari (2011), a function FP,, satisfying (1) will be called
an a-level post hoc upper bound on the number of false positives. Post hoc in-
ference can be equivalently formulated in terms of upper bounds on the FDP:
FDP,(S) = FP,(S)/|S|, or in terms of lower bounds on the number or propor-
tion of true positives: TP, (S) = |S| — FP,(S), TDP,(S) = TP,(S)/|S]|.

2.2. Strategy: JER control and interpolation

The bounds studied in this paper rely on a multiple testing risk called the
Joint Error Rate (JER) and introduced in Blanchard et al. (2020). Given a
non-decreasing family of thresholds t = (tx)x=1.. x,

JER(t) =P 3k e {1,.... K} : qn < tz), 2)

where for k = 1,..., K, ¢q; denotes the k-th smallest p-value among the set of
truly non-DE genes (that is, true null hypotheses). A key result is that any
family t such that JER(t) < « yields an associated a-level post hoc bound, by
the following simple interpolation argument.

Proposition 1 (Interpolation-based post hoc bound (Blanchard et al., 2020),
Proposition 2.3). Ift = (tx)1<k<kx controls JER at level o, then (1) is satisfied
for the bound

FPO‘(S):1§1§<HK{ZI{MZtk}+k_1} . (3)
=7 lies

A proof of Proposition 1 is given in Appendix B for completeness.

2.3. Simes post hoc bounds

An important example is the Simes family t3(«), defined by t¥(a) = ak/m
for all k. The Simes (1986) inequality ensures that JER(t%(a)) < «a as soon as
the p-value family is PRDS (Sarkar et al., 2008). As noted by Blanchard et al.
(2020), the post hoc bound then derived by Proposition 1 coincides with the
Simes post hoc bound introduced in Goeman and Solari (2011).

Although the Simes inequality is sharp when the p-values are independent, it
is increasingly conservative as the dependence between tests gets stronger (Blan-
chard et al., 2020, Table 1). The associated JER control and post hoc bound
naturally inherit this conservativeness (as illustrated in the numerical experi-
ments of Sections 5 and 6). In order to address this conservativeness issue, it is
useful to note that for A > 0, the JER of the Simes family t°(\) can be written
as

JER(t5())) = P (13%137” % < )\> . (4)
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In view of (4), a natural idea in order to obtain a tight JER control is to select
the largest A such that JER(t°()\)) < a. This idea is the basis of the calibration
method described in Section 3.

3. JER calibration by permutation

The JER defined in (2) only depends on the joint p-value distribution of true
null hypotheses. Although this distribution is unknown in practice, in two-group
DGE studies, it can be approximated by permuting the group labels. Accord-
ingly, the first step of our calibration method is to build a B x m matrix P
of permutation p-values: P,; is the p-value of the test of gene i associated to
the b-th permutation of the group labels. This is illustrated in the first panel of
Figure 1.

1. Permutation p-values

group labels: ¢
a - Data: X
.S —
k5 2. Pivotal statistic
=
: :5‘:-;.':‘:-.'
o Test:
._._':i p sort

~q e —

- -lz

ads

Al L qu’ |

3. Quantile Templfte: 4
o i min
(U S

Fic 1. Illustration of the three main steps of permutation-based JER calibration. The output
is highlighted in orange, and inputs are highlighted in yellow. The input data is in the form
of a n X m gene expression matriz X and a binary vector ¢ of n group labels, specifying which
observations belong to each of the two populations to be compared. The parameters are the
target JER level o and the number B of permutations, the p-value function to perform the
test and the template T.

The next steps of the calibration are best explained in the particular case
of the Simes family. Indeed, by (4), JER(t%())) is the value of the cumulative
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distribution function of ¥ = mini<g<m mqx/k at A. Accordingly, the calibration
method proceeds by calculating B samples from the “pivotal statistic” 1, and
the output is the quantile of order « of these statistics.

The method as described in Figure 1 covers not only the case of the Simes
family, but any family 7(\) = (7%x(\))g=1...x where the 75 are invertible func-
tions. Following Blanchard et al. (2020, 2021), such a family is called a template.
A more formal description of this calibration algorithm is given in Algorithm 2.
Note that for simplicity, we have described here a “single-step” version of the
calibration algorithm. We have also implemented a “step-down” version: it is a
slightly more powerful algorithm that is also adaptive to the unknown propor-
tion of true null hypotheses (Blanchard et al., 2020, Proposition 4.5).

Validity. Theorem 1 in Blanchard et al. (2021) ensures that this calibration
method yields JER(A) < a, for tests whose p-value for a given gene depends
on the data only via its own expression values. In particular, this is the case
for two-sample Student tests or Wilcoxon rank sum tests, which can be used
for microarray and RNA sequencing (RNAseq) DE studies, respectively. The
theory developed in Blanchard et al. (2021) is also valid for one-sample tests: in
this case, permutation p-values at step 1 are replaced by sign-flipping p-values.

Complexity. Assuming a linear time complexity O(n) to perform the test
of one single null hypothesis, the overall time complexity of the calibration
method is O(mB(n + log(m))). Indeed, the most costly step is the calculation
of Py, which involves mB tests followed by B sorting operations on a vector of
size m. The overall space complexity is O(m(B + n)).

Figure 1 also illustrates the modularity of Algorithm 2, where the three main
steps are highlighted in different colors. This modularity is important in practice.
For example, it makes it possible to obtain the result for several values of «
without re-computing the permutation matrix Py. This modularity is also useful
for the computational efficiency of the above-mentioned step-down version of the
calibration algorithm.

4. Linear time interpolation-based post hoc bound

Post hoc bounds can be used for multiple gene selections .S without compromis-
ing the corresponding error control. For post hoc inference to be applicable in
practice FP,(S) must be computed efficiently.

A naive implementation of the bound FP,(S) defined in (3) would require s
operations (where s is the size of S) by performing a loop on both k=1,... s
and i € S in order to calculate vy (S) = > ;. g 1{pi > tx} +k — 1 for all k. This
induces a quadratic worst case time complexity O(m?), which is achieved when
evaluating FP,, on the set of all genes. A quadratic time complexity for a single
set is too slow for DE studies with m > 10,000. Moreover, a useful application
of post hoc bounds is to build the false positive confidence curve associated to
S, that is, all the bounds FP,(S;) for i = 1...s, where S; is the index set of
the ¢ smallest p-values in S. Using the above naive algorithm, this would require
O(s?) operations, implying a cubic worst case time complexity O(m?) to build
the false positive confidence curve associated to all hypotheses.

2
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In contrast, Algorithm 1 computes FP,(S) in linear time and space O(s)
for a given S In fact, it even outputs the entire false positive confidence curve
associated to SFor example, the largest set S such that FDP,(S) < v is then
obtained in linear time and space for any user-defined . This complexity cannot
be improved since the size of the output vector is s. The validity of algorithm 1
relies on the following formulation for FP,(S;).

Algorithm 1 Linear algorithm for interpolation-based post hoc bounds.

Require: p = (p(1:5),- - P(s:5))st = (t1,t2,. .. tK)
7 + rep(0, s)
: for k< 1 to s do
if £k < K then
7[k] < t[k]
else
7[k] + t[K]
end if
: end for
9: Kk,r < rep(s,s)
10: ki« 1
11: while (kK <s) & (1 <s) do
12: if (p[i] < t[k]) then

—_

QDT W

13: k[i] « k—1 > kli] = [{k/pli] > t[k]} |
14: i1+ 1

15: else

16: rlk] < i—1 > rlk] = |{i/pld] < t[k]}|
17: k+—k+1

18: end if

19: end while

20: V, A, M < rep(0,s)

21: for k < 1 to s do

22: Alk] < r[k] — (k—1)
23: if £ > 1 then

24: M K] + max(M([k — 1], A[k])
25: end if
26: end for

27: for i <+ 1 to s do
28: if k[i] > 1 then

29: V[i] = min(x[i], i — M[xli]]))
30: end if
31: end for

32: return V

Proposition 2. Fori € {1,...,s}, let S; be the index set of the i-th smallest
p-value in S, and k; =Y,y 1{pi >tk }. Then

FP,,(S;) = min (R,-,lggg ue(S) = (s — i)) . (5)

SR

Proposition 2 is proved in Appendix C. The fact that FP,(S;) depends on i
only via k; but not S; in (5) is crucial for obtaining a linear time complexity.
The properties of Algorithm 1 can be summarized as follows:
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Corollary L(Validity and complexity of Algorithm 1). Algorithm 1 returns
the vector (FP,(S:))1<i<s in O(s) time and space complexity.

Proof of Corollary 1. Valididy. The for loop at lines 1- 8 stores the thresholds
(tenrc) for k € {1,..., s}. The while loop at lines 11-19 outputs both (k;);cs and
(rk)1<k<k, where 1, = | ;g 1{p; <t }|. Noting that r, = s —vi(S) + (k—1),
the for loop at lines 21-26 outputs My = maxp <k s — vi(S), that is, My =
s — ming <k vg (S). Thus, the for loop at lines 27-31 outputs V; = FP,(S;) by
Proposition 2.

Complexity. All the vectors stored within the algorithm are of size s, so the
space complexity of Algorithm 1 is O(s). For the time complexity, the (k;); and
(rk)g are calculated within a single while loop of size s, in which exactly one of
1 or k is incremented at each step. The rest of the algorithm consists of two for
loops of size s consisting of O(1) operations. O

5. Urothelial Bladder Carcinoma data set

In this section, we focus on an Urothelial Bladder Carcinoma (BLCA) RNA
sequencing data set from the Cancer Genome Atlas Research Network et al.
(2014). This data set is available from the R/Bioconductor package curatedTCGAData.
For convenience it has also been made available in the R package sanssouci.data.
This data set consists of gene expression measurements for n = 270 patients,
classified into two subgoups: stage II (ng = 130) and stage III (n; = 140).
Bladder cancer stages range from 0 to IV, quantifying how much the cancer
has spread. We have filtered out unexpressed genes, here defined as those for
which raw expression counts were lower than 5 in at least 75% of the patients.
This results in m = 12,534 genes. To identify DE genes between the stage 11
and stage IIT populations, we test for each gene the null hypothesis that the
gene expression distribution is identical in the two populations. The calibration
method described in Section 3 is performed using a Wilcoxon (1945) rank sum
test (also known as Mann and Whitney (1947) test) with the Simes template,
with B = 1,000 permutations and target risk (JER) set to @ = 10%. The
resulting method is called the Adaptive Simes method.

5.1. Confidence curves

In the absence of prior information on genes, a natural idea is to rank them by
decreasing statistical significance. Post hoc methods provide lower confidence
curves on the number (or proportion) of true positives (truly DE genes) among
the most significant genes. Such curves are displayed in Figure 2 for the BLCA
data set. The black lines in Figure 2 are 1 —a = 90% confidence curves obtained
by the Adaptive Simes method. Upper bounds on FDP and lower bounds on
FP are displayed in the left and right panels, respectively. For reference, the
corresponding curves obtained by ARI are displayed in gray; they are almost
identical to the ones obtained from the original bound of Goeman and Solari
(2011) (Equation (3)), see Section D.



Enjalbert-Courrech & Neuvial/Powerful and interpretable error control for DE studies 9

FDP =
0.6
2]
©
c
3 1000 A
o]
Q 0.4
c
(0]
S
2
c
o
S 500+
g 0.2+
ey
< )
2] y
(o]
g
0.0- : 0- :
0 1000 2000 0 1000 2000

Number of top features selected

Method === Adaptive Simes ARI

Fic 2. 90% confidence curves on “top k” lists for the Urothelial bladder carcinoma data
set. Left: upper bound on the False Discovery Proportion (FDP); right: lower bound on the
number of true positives (TP). The adaptive Simes bound (black curves) outperforms ARI
(gray curves). For reference, the set of 1,787 genes called DE by the BH(0.05) procedure is
represented by a red dot.
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TABLE 1
Post hoc bounds on BLCA data set for ARI and the proposed permutation method, for gene
selections S illustrated in Figures 2 (target FDP=0.1) and 3 (genes filtered by p-value and
fold-change).

Confidence curve (Fig. 2) Volcano plot (Fig. 3)
ARI  Adaptive Simes ARI Adaptive Simes
Number of genes in § 781 1064 569 569
TP (S) 703 958 456 492
FDP.(S) 0.1 0.1 0.199 0.135

Post hoc guarantees. Post hoc inference makes it possible to define DE
genes as the largest set of genes for which the FDP bound is less than a user-given
value q. The arbitrary choice ¢ = 0.1 is illustrated in Figure 2, corresponding
to the horizontal line in the left panel. The black lines in Figure 2 correspond
to the set S of 1064 genes for which the adaptive Simes method ensures that
FDP(S) < g. This corresponds to at least TP,(S) = 958 true positives (since
1 —958/1064 = 0.1), as illustrated in the right panel.

Adaptation to dependence. The above example also illustrates the increase
in power obtained by Adaptive Simes thanks to the calibration described in
Section 3. Indeed, for an identical statistical guaranty (FDP < 0.1), ARI yields
a substantially smaller subset of 703 DE genes. More generally, the comparison
between the black and gray curves in Figure 2 illustrates the gain in power
obtained by using permutations methods to adapt to the dependence between
genes.

Comparison to FDR control. For this data set, the BH procedure calls a
set S of 1787 genes DE for a target FDR level of 0.05. As stated in Section 1,
the BH procedure does mot provide guarantees on the FDP of these genes, but
only on their FDR, that is, the average FDP over hypothetical replications of
the same genomic experiment and p-value thresholding procedure. In contrast,
the Adaptive Simes bound guarantees (with 90% confidence) that the number of
true positives in SPH is at least 1,289, or, equivalently, that the corresponding
FDP is less than 0.279.

5.2. Volcano plots

Volcano plots are a commonly used graphical representation of the results of a
differential expression analysis (Cui and Churchill, 2003), illustrated in Figure 3.
Each gene is represented in two dimensions by estimates of its effect size (or
“fold-change”, = axis) and significance (y axis). The fold change of a gene is
generally defined as the difference between the average or median (log-scaled)
gene expressions of the two compared groups. Its significance is quantified by
—log,,(p)-values for the test of its differential expression, where the “—log,”,
transformation ensures that large values of y correspond to genes which are
likely to be differentially expressed.



Enjalbert-Courrech & Neuvial/Powerful and interpretable error control for DE studies 11

As noted by Ebrahimpoor and Goeman (2021), post hoc inference makes it
possible to select genes of interest based on both fold change and significance,
without compromising the validity of the corresponding bounds. Moreover, even
if Wilcoxon tests have been performed for the calibration of the post hoc bounds,
it is possible to rely on other statistics for the selection genes of interest. Fig-
ure 3 illustrates this idea by making a volcano plot based on the p-values and
log-fold changes obtained from the limma-voom method of Law et al. (2014)
implemented in the limma package of Ritchie et al. (2015)'. An example gene
selection of 569 genes is highlighted in red. It corresponds to genes whose p-value
is less than 1073 and fold change larger than 0.5 in absolute value. The Adaptive
Simes method ensures that with probability larger than 90%, the proportion of
false discoveries (FDP) is less than 0.14. It also ensures that the FDP among
the subset of genes with positive fold change is less than 0.14, and that the FDP
among the subset of genes with negative fold change is less than 0.63. As already
noted, the proposed bounds can be computed for multiple, arbitrary genes sub-
sets without comprising their validity. Here again, the bounds provided by the
ARI method are less tight than the Adaptive Simes method, as illustrated in
Table 1.

6. Statistical performance for DE studies
6.1. Existing post hoc inference methods

The first post hoc inference methods introduced in were not adaptive to the
dependence between tests, since they were obtained from probabilistic inequal-
ities:

e The Simes bound was first proposed in Goeman and Solari (2011) to-
gether with a quadratic algorithm ((O(m?))). It has been implemented in
the R package cherry

e A slightly sharper version of the Simes bound has been introduced in Goe-
man et al. (2019), together with an algorithm of linearithmic complexity.
This method is known as ARI for “All resolution inference” and imple-
mented in the R package hommel.

The idea of using randomization to obtain sharp risk control is not new in the
multiple testing literature. In particular, resampling or permutations have been
used to control the Family-Wise Error Rate (FWER) (Ge et al., 2003; Westfall
and Young, 1993) and the k-FWER (Romano and Wolf, 2007). For post hoc

inference:

e The Adaptive Simes method described in this paper exploits sign-flipping
and permutation-based approaches introduced in Blanchard et al. (2020,
2021) in order to build post hoc bounds. It is implemented since 2017 in
the R package sanssouci.

1A quantitative comparison of the Wilcoxon and limma-voom p-value is provided in Figure
6. It illustrates the coherence of the two methods for identifying DE genes.
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Fic 3. Volcano plot for the urothelial bladder carcinoma data set. Each dot corresponds to
a gene, represented by its fold change (x axis) and p-value (y axis) on the log scale. Fold
changes and p-values were obtained by the limma-voom method (Ritchie et al., 2015). The
569 genes with p-value less than 10~3 and fold change larger than 0.5 are highlighted. The
Adaptive Simes method ensures that at least 492 of these genes are true positives.
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e A closely related approach called pARI has recently been proposed by
Andreella et al. (2020) for the analysis of neuroimaging data. It is imple-
mented in the R package pARI.

Both pARI and Adaptive Simes rely on the calibration method described in
Section 3, combined with the interpolation bound (3). However, two important
differences between Adaptive Simes (R package sanssouci and pARI are worth
to be mentioned. First, sanssouci implements the linearithmic time complexity
algorithm descrined in Section 4. In contrast, the algorithm used to calculate the
post hoc bound after calibration is the “naive” interpolation algorithm described
in the beginning of Section 4, which has a quadratic complexity for a single set.

Secondly, contrary to pARI, sanssouci implements a step-down principle
in order to adapt to the unknown quantity of signal (or, equivalently, to the
proportion 7 of true null hypotheses). This makes the Adaptive Simes method
slightly sharper than pARI. In the numerical results below, we have used in-
stead of the instead of the pARI package, the single-step version of the Adaptive
Simes method, which is mathematically equivalent, algorithmically faster, and
implemented in the sanssouci package. The main features of existing post hoc
bounds are summarized in Table 2.

TABLE 2
Main features of existing post hoc inference methods and software.
Time Adaptivity to:
Method R Package | complexity | dependence mg
Simes cherry | quadratic NO NO
ARI ARI | linear NO YES
permutation ARI pPARI | quadratic YES NO
Adaptive Simes sanssouci | linear YES YES

6.2. Evaluation framework

The mathematical validity of the post hoc bounds considered in this paper has
been proved in Blanchard et al. (2020), where their numerical performance has
also been illustrated by experiments on synthetic data. The goal of this section is
to complement these results by numerical experiments based on gene expression
data, which are more realistic for the purpose of DE studies.

Data set generation. In the absence of a gold standard data set where one
would know which genes are truly DE or not, we created such data sets as
follows. Starting from a n X m gene expression data set X, where each row cor-
responds to a gene and each column to an experiment or statistical observation,
we have

1. partitioned the observations into two groups of size ng and ni, such that
ng + Ny =n;

2. partitioned the genes into mg null genes and mg non-null genes, with
mo+my =m
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3. modified the expression of the non-null genes in group 1 by shifting or
scaling the corresponding submatrix of X of size n; X my.

This process results in a perturbed gene expression data set Y where the null and
non-null genes are known. Following Blanchard et al. (2020), we have quantified,
for a set of such experiments, estimates of the risk (JER) and of the power of
each method considered, for each value of the target risk . The JER results are
presented in Section 6.3. The power results, which are highly consistent with
the JER results, are postponed to Supplementary Materials.

The empirical risk of a given method is estimated by the proportion of ex-
periments for which the corresponding confidence curve on the false positives
is now always below the actual number of false positives. This quantity is the
empirical counterpart of the JER defined in (2), and can be compared to the
target risk a: JER is empirically controlled if the empirical JER is lower than
a, and the closer it is to «, the tighter JER control.

The parameters of such a numerical experiment are the proportion my =
mo,/m of null genes, and a measure of distance (or signal to noise ratio) between
null and non-null genes. Section 6.3 reports the numerical results obtained for
RNA sequencing data. We have also performed the same type of experiments
with microarray data. The results are similar, and they are reported in Section
D.4.

6.3. Results for bulk RNA sequencing data

Our starting point is the data set used in section 5. For this experiment we
have selected only stage III samples, and performed the same filtering as in
Section 5 on these samples only. We obtained a “null” data set (with no signal),
consisting of 130 patients and m = 12,418 genes, after applying the same process
as described in Section 5 for filtering out unexpressed genes. The parameters
of the experiments are set as follows. The proportion of null genes is set to
7o € {0.8,0.95,1}. We have considered an multiplicative signal for differential
expression: for each gene g among the m; non-null genes, the original expression
values of g are multiplied by a constant s, for n; of the n observations, where
sg is drawn uniformly between 1 and a signal to noise (SNR) parameter. The
SNR value is set to 1 (no signal), 2 or 3 (weak to strong signal). We have used
a two-sided Wilcoxon rank sum test for comparing the two groups.

The results are summarized by Figure 4, where the average empirical risk
(JER) achieved across 1000 experiments is plotted (together with 95% confi-
dence curves) against the target risk « for the methods described in Section 6.1.
In particular, pARI is represented by the “Adaptive Simes (single step)” method.

Each panel corresponds to a combination of the parameters my € {0.8,0.95,1}
(in columns) and SNR € {1,2,3} (in rows). The JER is controlled for all meth-
ods and all parameter combinations, since all curves are below the diagonal.
The risk for the Adaptive Simes methods is substantially closer to the target
risk than for the parametric Simes methods (Simes and ARI). This illustrates
the systematic gain in tightness provided by the calibration method described
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in Section 3. We also note that the gain obtained from the adaptation to mg is
very small, and even negligible for a@ < 0.2. Indeed, the Simes and ARI meth-
ods are essentially indistinguishable from each other, and the same holds for
the single-step and step-down Adaptive Simes methods. These results are also
confirmed by those of the power assessment, which are given in Supplementary
Materials.

7. Discussion

This paper advocates for the use of post hoc inference in DE studies, which pro-
vide more interpretable statistical guarantees than classical inference based on
the False Discovery Rate. The methods proposed in this paper make it possible
to obtain post hoc bounds that are both fast to compute, and powerful (in the
sense of the proportion of true signal recovered). The resulting improvement
over the state-of-the-art is illustrated by realistic numerical experiments based
on RNAseq and microarray data. These methods are implemented in the open-
source R package sanssouci. The code used for the numerical experiments of
this paper and to generate the figure is also provided, making the results of this
paper reproducible and exploitable for future research.

The methods proposed in this paper and their implementation in the R pack-
age sanssouci are generic, in the sense that they can be used with reference
families (or templates) of arbitrary shape. The most natural choice is that of
the Simes family, as it is closely related both to FDR control and to the first
post hoc bounds introduced by Goeman and Solari (2011). This results in the
Adaptive Simes method, which has been used in the numerical experiments re-
ported in this paper. An interesting perspective of this work is to compare the
performance of other templates. Our experience in DE studies indicates that
improving on the Simes family is challenging; similar conclusions have been
reported in Andreella et al. (2020) for the analysis of fMRI data.

While this paper focuses on DE studies, these methods and our implemen-
tation are applicable to any practical situation involving multiple two-sample
(or one-sample) tests. Such situations are frequent in genomics (differential ex-
pression, differential splicing, differential methylation) but also in neuroimag-
ing, which is another field where post hoc inference methods have been in-
troduced (Rosenblatt et al., 2018). However, for studies have more complex
designs such as multi-sample comparisons or studies including covariates, the
calibration-based approach proposed here cannot be applied directly. Exten-
sions of the present work to the problem of testing parameters of a general
linear model is another interesting perspective.
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Appendix A: Calibration algorithm

The calibration algorithm described in Section 3 and illustrated in Figure 1 is
formalized in Algorithm 2.

Algorithm 2 Calibration

ReqUire: X7 C7B7 p, (Tkil)k:Lqu (6%

1: for b+ 1 to B do > 1. Permutation p-values:
2: c? < sample(c) > O(mB(n + log(m)))
3 for i <+~ 1 to m do

4 Pb,i] « p(X[i], ")

5: end for

6: Polb,] + sort(P[b,])

7: end for

8: for b+ 1 to B do > 2. Pivotal statistics:
9: for k + 1 to K do > O(BK)
10: S[b, k] < 7, " (Po[b, k])

11: end for

12: Y[b] < min(S[b,])

13: end for

14: X < quantile(), a) > 3. Quantile: O(B)
15: return X

Appendix B: Proof of Proposition 1 (interpolation-based post hoc
bound)

We denote by Hg C {1,...,m} the (unknown) subset of true null hypotheses.
Then for a given subset S of genes, the number of false positives in S can be
written as FP(S) = |S N Hol.

Proof of Proposition 1. The proof relies on the following simple observation: for
any subsets S and R of {1,...,m}, we have
|SNHol=[SNR N Ho|+ |SNRNH|
< [SN R+ |RNHol

Letting Ry, = {i € {1,...,m},p; <tr} be the set of genes whose p-value is
less than t; for 1 < k < K, we note that

@ISN R =Y 1{pi > ti}
i€S
(’LZ)'Rk ﬂ?—l0| <k—-1 <<= q >t
By (2), it holds with probability greater than (1—a) that for all 1 < k < |Ho|AK,

g > tx. Therefore, there exists an event of probability greater than (1 —«) such
that for any S C {1,...,m},

VI<Ek<|Ho|AK, [SNHo| <Y Up; >ti}+k—1
€S

which concludes the proof. O
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Appendix C: Validity of Algorithm 2 (linear time interpolation
bound)

A first step is to rewrite the bound FP,, on arbitrary subsets of S as a minimum
over |S| items:

Lemma 1. Let S C {1,...,m}. Then for any R C S,

FP,(R) =|S| A 1312131\13\ ve(R), (6)

where v (R) = Y, cp W{pi > tearx } +k — 1.

Proof of Lemma 1. Let R € S C {1,...,m}. Let vQ(R) = > ;cp H{ps > ti} +
k—1for k=1,...,K. With this notation, we have

FP,(R) = min v)(R)

1<k<K
=I5 A | min,_oR(R) 7)
= [S]A 1Sk1£|igMKU;2(R) (®)
=ISiA s k() (9)
= |S| A 15%1513\ vi(R). (10)

Above, Equation (7) holds since v)(R) = >, p 1{p; > t:} < |R| < |S]. Equa-
tion (8) is obvious if || > K;if | S| < K then for k > |S|AK, v)(R) > k—1 > |S].
Equation (9) holds since vy, (R) = v2(R) for k < |S| A K. Finally, Equation (10)
is obvious if |S] < Kj; if |[S| > K then for k > |S| A K (= K), we have tpax = tx
which implies that vg(R) = (k — K) + vx(R) < vi(R). O

We are now ready to prove Proposition 2.

Proof of Proposition 2. We consider the nested subsets S; for ¢ = 1,...,s. By
Lemma 1, we have

FP,(S;) =sA 1?}325 v (S;) - (11)

If p; > tsak, then k; = s, which implies that

FPQ(SZ‘) = K AN 1;1];11%1*% ’Uk(Si) . (12)

If p; > tsak, then k; < s. This implies that vg(S;) > &, forallk € {x; +1,..., s},
and v, 1+1(S;) = k;. Therefore, we have

min v (S;) = ki,
ki<k<s
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so that (12) holds as well. We conclude by noting that for k < &,

(S) =5 = S 1ny > )
JES\S;

since for j € S\ Si,pj > pi > te,ak > thnk- 0

Appendix D: Additional results
D.1. Comparison between existing post hoc bounds

This section complements the results presented in Section 5 of the main paper,
by providing the results of the (non-adaptive) Simes method and the single-step
adaptive Simes method (which corresponds to the pARI method). All methods
are described in Section 6.1. This Figure illustrates the fact that for DE studies,
the adaptation to dependency provided by the calibration method described in
Section 3 (black vs gray curves) yields a more substantial improvement than the
adaptation to the proportion of true null hypotheses (dashed vs solid curves).
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F1c 5. 90% confidence curves on “top k” lists for the Urothelial bladder carcinoma data
set. Left: upper bound on the False Discovery Proportion (FDP); right: lower bound on the
number of true positives (TP). Adaptive methods (black curves) outperforms non-adaptive
ones (gray curves).
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TABLE 3
Post hoc bounds on BLCA data set for the four compared methods. Left panel: Gene
selections from Figures 2 and 5, with target FDP set to 0.1. Right panel: gene selection for
the volcano plot (Figure 3).

Confidence curve (Fig. 2) Volcano plot (Fig 3)

|S] TP.(S) FDP.(S5) S| TPa(S) FDP,(S)
Adaptive Simes 1042 958 0.1 569 492 0.135
Adaptive Simes (single step) 1042 938 0.1 569 490 0.139
ARI 781 703 0.1 569 456 0.199
Simes 757 682 0.1 569 452 0.206

D.2. Comparison between limma-voom and Wilcoxon p-values

As explained in Section 3, the theoretical results underlying our calibration
method require the test statistic (or p-value) for each gene to depend on the
data only via the expression measurements associated with this gene. Hovever,
the most commonly used statistical tests in DE studies with RNAseq data (DE-
seq2 Love et al. (2014), edgeR Chen et al. (2014) and limma-voom Ritchie et al.
(2015)) do not formally meet this assumption. In particular, these methods are
using moderated variance estimators that borrow information from all genes,
which is crucial when dealing with low sample sizes. Let us emphasize that, by
the very nature of post hoc bounds and is illustrated in Figure 3, our methods
can still be used to evaluate the number of false positives in any gene selection,
including selections obtained from the above-mentioned methods.

For completeness, Figure 6 provides a graphical comparison between the p-
values obtained by the limma-voom and the Wilcoxon rank sum test for the
bladder urothelial carcinoma data set. This plot illustrates the consistency be-
tween these p-values.

D.3. Power assessment for RNAseq data

For a given subset S of genes, the power of a method providing the post hoc
bound TP, is defined in Blanchard et al. (2020) as

E <TT1;§“(;S))‘ TP(S) > o> . (13)

This quantity corresponds to the expected proportion of signal in S actually
recovered by the method considered. Again, it is estimated by its empirical
counterpart, that is, the average proportion of signal in S recovered over those
experiments for which some signal was actually present in .S. We considered four
different gene selections S for estimating the power as defined in (13):

BH_05: the set genes selected by the Benjamini-Hochberg procedure Benjamini
and Hochberg (1995) at level 5%

first_100: the 100 genes with lower p-value

p_05: the genes whose p-value is less than 5%
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Fic 6. Comparison between limma-voom and Wilcozon p-values on the BLCA data set.

H: all genes in the data set.

Figure 7 displays the empircal power for the following choice of parameters:
mo = 0.8 and SNR € {1.5,3} The power of the Adaptive Simes methods is
higher than the one of parametric Simes methods. This is coherent with the
increased tightness of the Adaptive Simes bounds relative to their parametric
counterpart already observed in Figure 4. We also note than the adaptivity to
mo does not make a difference in terms of power: the Simes and ARI methods
are essentially indistinguishable from each other, and the same holds for the
single-step and step-down Adaptive Simes methods.

D.4. Statistical valididy: results for microarray data

We considered the GSE19188 Hou et al. (2010) data set available from GEO Bar-
rett et al. (2012) and the R package GSEABenchmarker Geistlinger et al. (2020).
This data set consists of 91 non-small cell lung cancer tissue samples and 62 nor-
mal samples. Each of these observations corresponds to a vector of m = 21,407
gene expression values.

The parameters of the experiments have been set as follows. The proportion
of null genes is set to mp € {0.5,0.8,1}. We have considered an additive signal
for differntial expression: the expression level for the m; non-null genes are then
shifted by a constant value for ny of the n observations. We have used a two-
sided Welch test for comparing the two groups. The results are summarized by
Figure 8.
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The conclusions are identical to those obtained for RNAseq-based experi-
ments in the main paper: JER is controlled for all methods and all parameter
combinations, and the risk for the Adaptive Simes methods is substantially
closer to the target risk than for the parametric Simes methods (Simes and
ARI), illustrating a substantial gain provided by the calibration method de-
scribed in Section 3. The gain obtained from the adaptation to mg is negligible,
except for case with strong and dense signal (mo = 0.5 and SNR= 5), which is
the less realistic scenario for DE studies.

Appendix E: Implementation notes

The calibration method described in Section 3 has been available since 2017
within the R package sanssouci. Algorithm 1 has been available since 2016
within sanssouci®. The original implementation of Algorithm 1 had O(K V
s) time and space complexity, i.e. O(m) worse case complexity. It has been
improved to O(s) complexity in 2021 by adding the lines 1-8.

2See https://github.com/pneuvial/sanssouci/commit/ag83082b.


https://github.com/pneuvial/sanssouci/commit/a83082b
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