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Introduction

Modeling dependence structures of multivariate extremes is of great interest in many application fields such as for instance risk management and environmental studies (some applications can be found in [START_REF] De Haan | Sea and Wind: Multivariate Extremes at Work[END_REF], [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF]). A well known way to model these structures is to use Pickands dependence function [START_REF] Pickands | Multivariate extreme value distributions[END_REF].

Let (X 1 , X 2 ) be a bivariate vector of extremes with marginals F 1 and F 2 . Thus, Pickands dependence function A is defined via the extreme-value copula's type representation:

C(u, v) = P(F 1 (X 1 ) ≤ u, F 2 (X 2 ) ≤ v) = exp log(uv)A log(u) log(uv) , 0 ≤ u, v ≤ 1, (1) 
and totally characterizes the joint distribution F (x 1 , x 2 ) = C(F 1 (x 1 ), F 2 (x 2 )) of (X 1 , X 2 ) knowing its marginal laws. It may be shown that A : [0, 1] → [1/2, 1] is a convex function such that A(0) = A(1) = 1 and max(t, 1 -t) ≤ A(t) ≤ 1. The upper bound A(t) = 1 for all t ∈ [0, 1] corresponds to the independence copula C(u, v) = uv for u, v ∈ [0, 1] while the lower bound A(t) = max{t, 1 -t} corresponds to the comonotone copula C(u, v) = min{u, v}.

The problem of estimating Pickands dependence function by nonparametric methods has been extensively studied in the literature. From the pioneer estimator of Pickands [START_REF] Pickands | Multivariate extreme value distributions[END_REF], several alternative estimators have been proposed and studied (see e.g. [START_REF] Deheuvels | On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions[END_REF], [START_REF] Hall | Distribution and dependance-function estimation for bivariate extreme-value[END_REF], [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF], [START_REF] Jimémez | Nonparametric estimation of the dependence function in bivariate extreme value distributions[END_REF], [START_REF] Segers | Nonparametric inference for bivariate extreme-value copulas[END_REF], [START_REF] Genest | Rank-based inference for bivariate extreme-value copulas[END_REF], [START_REF] Bucher | New estimators of the Pickands dependence function and a test for extreme-value dependence[END_REF], [START_REF] Cormier | Using B-splines for nonparametric inference on bivariate extreme-value copulas[END_REF], [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF] in the bivariate setting and [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF], [START_REF] Ferreira | A New Estimator for the Pickands Dependence Function[END_REF] [24], [START_REF] Berghaus | Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence[END_REF], [START_REF] Gudendorf | Nonparametric estimation of an extreme-value copula in arbitrary dimensions[END_REF], [START_REF] Gudendorf | Nonparametric estimation of multivariate extreme-value copulas[END_REF] in the multivariate setting). One of the assumptions of the above mentioned studies is that the sequence of extremes values used for estimation is i.i.d., which excludes a possible serial correlation of the sequence. This bias is to a certain extent supported by theoretical results on maxima of strictly stationary sequences (see [START_REF] Leadbetter | On extreme values in stationary sequences[END_REF][START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF] in the univariate case and [START_REF] Hsing | Extreme value theory for multivariate stationnary sequences[END_REF][START_REF] Hüsler | Multivariate extreme values in stationnary random sequences[END_REF] in the multivariate case). A key result is the condition "D(u n )" of [START_REF] Leadbetter | On extreme values in stationary sequences[END_REF][START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF] (resp. "D * (u n )"

of [START_REF] Hüsler | Multivariate extreme values in stationnary random sequences[END_REF]) ensuring that under some kind of mixing condition on the underlying stationary process, the maximum of the process asymptotically follows an extreme value distribution as in the i.i.d. case, and that sufficiently separated rare events are almost dependent (resp. independent), thereby justifying the use of the block maximum approach for most stationary time series. However, in practical situations, it is well known that temporal dependence of the underlying series leads to local temporal clusterings of its extreme values, so that the temporal independence of extremes is usually an unrealistic assumption.

In this paper, we propose to study the properties of a classical estimator of Pickands dependence function, the so called CFG estimator (see [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF] and [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF]), based on a sequence which is assumed to be strictly stationary and absolutely regular in [START_REF] Rozanov | Some limit theorems for random functions I[END_REF]'s sense.

Formally, let P 0 = σ(X t , t ≤ 0), F m = σ(X t , t ≥ m) and define the decreasing sequence of absolutely regular coefficients of X by

β(m) = sup A i ∈P 0 ,B j ∈Fm 1 2 I i=1 J j=1 |P(A i ∩ B j ) -P(A i )P(B j )| (2)
where the supremum is taken over all pairs of partition {A 1 , . . . , A I } and {B 1 , . . . , A J } of a set Ω such that A i ∈ P 0 for each i and B j ∈ F m for each j. We say that X is β-mixing if it satisfies the condition:

lim m→+∞ β(m) = 0.
A lot of classical models satisfy this condition, in particular the important class of linear stochastic processes are absolutely regular, provided that they are based on innovation random variables with a Lebesgue-integrable characteristic function. We would to see what is going on the consistency and asymptotically normal of CFG's estimator of Pickands dependence function if the sequences of extremes have kind of weak dependence. We then discover that we can obtain a good properties of strictly stationary absolutely regular sequences of bivariate extremes under the weak convergence. In order to make the presentation clearer, we place ourselves in a bivariate setting, although the extension to the multivariate case is straightforward. The paper is organized as follows. In section 2, we recall the definition of the CFG estimator and its properties in the i.i.d setting. In Section 3, we study the consistency and asymptotic normality of the CFG estimator in our dependent setting. We moreover propose a test of independence of the vector's margins. Section 4 presents a simulation study allowing to investigate the finite sample properties of the estimate and to evaluate the performance of the test.

Section 5 is devoted to the proofs.

CFG estimator of the dependence function

Let X = (X t ) t∈Z with X t = (X t,1 , X t,2 ) be a strictly stationary process such that X t has a bivariate extreme value distribution (BEV). To fix ideas, we can think of X t as the pair of largest values of two characteristics observed at the same time t. We denote by F the joint distribution

X t . Recall that F (x 1 , x 2 ) = C(F 1 (x 1 ), F 2 (x 2 ))
, where C is a copula function defined by (1) and the marginals F 1 and F 2 of X 1,t and X 2,t belong to the parametric family of generalized extreme distributions (GEV)

(see [START_REF] Gnedenko | Second Series[END_REF]). Thus C and F only depends on the one-dimensional dependence function A as soon as F 1 and F 2 are known. Among the numerous estimators of A proposed in the literature, the CFG estimator proposed in [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF] has been shown to perform better than its major competitors from a theoretical point of view and a prior finite sample study seems to confirm its superiority in numerous practical situations.

In order to define the CFG estimator based on a size n stationary sequence (X i,1 , X i,2 ) 1≤i≤n of X, let us define as in [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF] an auxiliary bivariate sequence

Z i = (Z i,1 , Z i,2 ) 1≤i≤n by Z i,1 = log F 2 (X i,2 ) log F 1 (X i,1 ) + log F 2 (X i,2 ) , Z i,2 = log F 1 (X i,1 ) log F 1 (X i,1 ) + log F 2 (X i,2 ) , i = 1, . . . , n. (3) 
Notice that the Z ij 's belong to [0, 1]. Thus, when A has a first order derivative, it may be expressed as a function of the distributions H 1 (z) = P(Z i,1 ≤ z) or H 2 (z) = P(Z i,2 ≤ z). More precisely, one has by [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF]'s Proposition 2.1

H 1 (z) = z + z(1 -z) d dz log A zs 1 -s , H 2 (z) = z + z(1 -z) d dz log A(z), (4) 
so that solving the differential equations leads to two representations of

A log A 1 (s) = 1-s 0 H 1 (z) -z z(1 -z) dz and log A 2 (s) = s 0 H 2 (z) -z z(1 -z) dz. ( 5 
)
Replacing the unknown H 1 and H 2 by their empirical counterparts leads to the estimators

Â1 (s) = exp 1-s 0 Ĥ1 (z) -z z(1 -z) dz , and Â2 (s) = exp s 0 Ĥ2 (z) -z z(1 -z) dz . ( 6 
)
Therefore, one may propose for A the weighted estimator such that: log Â(s) = λ(s)

1-s 0 Ĥ1 (z) -z z(1 -z) dz + (1 -λ(s)) s 0 Ĥ2 (z) -z z(1 -z) dz, (7) 
leading to Ân (s) = Â1 (s) λ(s) Â2 (s)

1-λ(s)
, Ân (1) = 1, where λ(s) is an appropriately chosen nonnegative weight function in (0, 1). Notice that this definition of Ân is the particular case in our bivariate setting of [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF]'s definition, given in a multivariate setting.

In the bivariate case, one has [START_REF] Bucher | New estimators of the Pickands dependence function and a test for extreme-value dependence[END_REF] squares with [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF]'s equation ( 2), replacing λ by p, A 0 n by A 1 and A 1 n by A 2 . When λ is a bounded function on [0, 1], a closed form expression for Ân is given in [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF]. Namely,

Z i,1 = 1 -Z i,2 , H 2 (z) = 1 -H 1 (1 -z) so that
Ân (t) =            (1 -t)Q 1-λ(t) n if 0 ≤ t ≤ Z (1)2 t i/n (1 -t) 1-i/n Q 1-λ(t) n Q -1 i if Z (i)2 ≤ t ≤ Z (i+1)2 (1 ≤ i ≤ n -1) tQ -λ(t) n si Z (n)2 ≤ t ≤ 1, (8) 
with

Q i = i k=1 Z (k)2 1 -Z (k)2 1/n
and Z (i)2 the i th order statistic of the sample (Z 1,2 , . . . , Z n,2 ). Notice that since Ĥ1 and Ĥ2 are discontinuous functions, Ân is not a convex function. Moreover, Ân (1) = 1 for arbitrary functions λ. Following [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF], we can put λ(s) = s in order to achieve this property. An optimal choice for λ is given in [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF]'s Remark 3.

When the margins of (X i,1 , X i,2 ) 1≤i≤n are i.i.d., [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF]'s Proposition 4.1 states that when A has a bounded first derivative, Ân is a uniformly strongly consistent estimator of A. Namely,

sup s∈[0,1] | Ân (s) -A(s)| a.s. -→ 0. (9) 
Moreover, [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF]'s Proposition 3.2 gives the weak convergence of the estimate to a Gaussian process.

More precisely, using the formulation of [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF],

√ n(log Ân -log A) D[0,1] ---→ U, ( 10 
)
with

U (s) = 2 j=1 λ j (s) 1-s j 0 B j (z) z(1 -z) dz,
where

s 1 = s, s 2 = 1 -s, t 1 = t, t 2 = 1 -t, λ 1 = 1 -λ 2 , B 1 (z) = B(z 1 , 1), B 2 (z) = B(1, z 2 )
and B is a bivariate centered Gaussian process with covariance function

E(B(z)B(z )) = V ar(1 Z 1 ≤z∧z ), (z, z ) ∈ R 4 (11) 
It may be easily shown that U is a mean zero Gaussian process with covariance function :

Γ(s, t) = 2 i=1 2 j=1 λ i (s)λ j (t) 1-s i 0 1-t j 0 H ij (z 1 , z 2 ) -H i (z 1 )H j (z 2 ) z 1 z 2 (1 -z 1 )(1 -z 2 ) dz 1 dz 2 , ( 12 
)
where

H ij (z 1 , z 2 ) = P(Z 1,i ≤ z 1 , Z 1,j ≤ z 2 )
. In particular, one has for all s ∈ [0, 1],

√ n(log Ân (s) -log A(s)) L -→ N (0, Γ(s)), with Γ(s) = Γ(s, s). ( 13 
)
Notice that a consistent estimator of Γ(s) is easily obtained by replacing H ij , H i and H j by their empirical estimators in [START_REF] Hüsler | Multivariate extreme values in stationnary random sequences[END_REF]. For statistical purposes, it is possible to choose the weight functions λ 1 and λ 2 so at to minimize Γ(s).

In the following, we propose to see what is going on with these properties if the sequences

(X i,1 , X i,2 )
1≤i≤n have some kind of weak dependence.

Remark 1. Notice that in our bivariate setting Γ(t) can be easily expressed as a function of H 1 only as in [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF]'s Proposition 3.2, using the fact that

H 2 (z) = 1 -H 1 (1 -z) and H 12 (z 1 , z 2 ) = H 1 (z 1 ∨ (1 - z 2 )) -H 1 (1 -z 2 ).

Remark 2. Extensive numerical work suggest that the CFG estimator performs better than its classical

competitors. Nevertheless, it suffers from limitations. Firstly, the margins F 1 and F 2 of X 1 and X 2 are assumed to be known, so that a sample

(F 1 (X 1,1 ), F 2 (X 1,2 )), . . . , (F 1 (X n,1 ), F 2 (X n,2 )) from A is available.
In practice, however, margins are rarely known. In [START_REF] Genest | Rank-based inference for bivariate extreme-value copulas[END_REF], the authors propose to estimate F 1 and F 2 by their empirical counterparts F1n and F2n and to base the estimation of A on the pseudoobservations ( F1n (X 1,1 ), F2n (X 1,2 )), . . . , ( F1n (X n,1 ), F2n (X n,2 )), which amounts to working with the pairs of scaled ranks. They show that their rank-based version of CFG estimators of A has the same asymptotic properties as the classical one and assess its finite sample superiority by a simulation study. Secondly, the CFG estimator is neither convex nor do it satisfies the boundary restriction

max{t, 1 -t} ≤ A(t) ≤ 1, in particular the endpoint constraints A(0) = A(1) = 1.
In [START_REF] Fils-Villetard | Projection estimators of Pickands dependence functions[END_REF], the authors propose a modified version of [START_REF] Genest | Rank-based inference for bivariate extreme-value copulas[END_REF] estimator which fits the above contraints, without changing the asymptotic properties.

The CFG estimator for absolutely regular sequences

Hereafter, we assume that (X t ) t∈Z , X t = (X t,1 , X t,,2 ) is an absolutely regular strictly stationary process with BEV distribution F and margins F 1 and F 2 . We denote by A, the Pickands dependence function in [START_REF] Bacro | Testing the independence of maxima: from bivariate vectors to spatial extreme fields: Asymptotic independence of extremes[END_REF] and by A n the CFG estimator of A defined by [START_REF] Cormier | Using B-splines for nonparametric inference on bivariate extreme-value copulas[END_REF], based on a sequence (X 1 , . . . , X n ) of X. In the following, we study the asymptotic properties of A n in this setting and propose a test of independence for the margins of X.

Asymptotic properties

Let B * be a bivariate centered Gaussian process with covariance function

E(B * (z)B * (z )) = k∈Z Cov(1 Z 0 ≤z , 1 Z k ≤z ) (14) 
and denote by D[0, 1] in the usual D space on [0, 1] with Skorokhod topology (see. [START_REF] Billingsley | P Convergence of probability measures[END_REF]). Thus, we have the following Theorem 3.1. Let (X 1 , . . . , X n ) be an absolutely regular strictly stationary sequence with β-mixing coefficients (β(n)) n>0 . Suppose A(s) has a bounded first derivative and that λ in ( 7) is a bounded

function on [0, 1]. Then, i) If β(n) = O(n -θ ) for some θ > 1 + √ 2 thus, one has sup s∈[0,1] | Ân (s) -A(s)| P -→ 0, ( 15 
) ii) If β(n) = O(n -θ ) for some θ ∈ (1, 2] then √ n(log Ân (s) -log A(s)) D -→ U (s) = 2 j=1 λ j (s) 1-s j 0 B * j (z) z(1 -z) dz = N (0, Γ * (s)) ( 16 
)
where

s 1 = s, s 2 = 1 -s, t 1 = t, t 2 = 1 -t, λ 1 = 1 -λ 2 , B * 1 (z) = B * (z 1 , 1), B * 2 (z) = B * (1, z 2 )
and

Γ * (s) = E(U(s) 2 ) = Γ * (s, s) with Γ * (s, t) = 2 i=1 2 j=1 λ i (s)λ j (t) 1-s i 0 1-t j 0 E(B * i (z 1 )B * j (z 2 )) z 1 z 2 (1 -z 1 )(1 -z 2 ) dz 1 dz 2 < ∞ (17) 
Remark 3. Notice that asymptotic confidence intervals for A n (s) may be easily built as soon as we get a suitable estimator Γ * n (s) for Γ * (s). At the confidence level 1 -α and for large enough n , one has

P -q 1-α 2 ≤ n Γ * (s) log Ân (s) A(s) ≤ q 1-α 2 1 -α, so that CI 1-α =   Ân (s)e -q 1-α 2 Γ * n (s) n , Ân (s)e q 1-α 2 Γ * n (s) n   ,
where q 1-α/2 is the order (1 -α/2) th quantile of the normal distribution.

Testing for independence

Several tests of independence for bivariate extremes have been studied in the i.i.d. case by [START_REF] Bacro | Testing the independence of maxima: from bivariate vectors to spatial extreme fields: Asymptotic independence of extremes[END_REF][START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF] [20], [START_REF] Tawn | Bivariate Extreme Value Theory: Models and Estimation[END_REF] and [START_REF] Tiago De Oliveira | Bivariate extremes: foundations and statistics[END_REF]. Following the same scheme as [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF], we can exploit Theorem 3.1 to construct a test for pairwise independence of the extreme process. More precisely, we wish to test:

     H 0 : A(t) = 1 ∀t ∈ [0, 1] H 1 : ∃ t/A(t) = 1,
based on a sequence (X i,1 , X i,2 ) 1≤i≤n of the strictly stationary absolutely regular bivariate extreme process X. For that task, we will use the measure of association proposed in [START_REF] Tawn | Bivariate Extreme Value Theory: Models and Estimation[END_REF] and [START_REF] Tiago De Oliveira | Bivariate extremes: foundations and statistics[END_REF]. Set

m = 2(1 -A(1/2)
). One has m = 1 in case of total dependance and m = 0 in case of independence, so that the above test may be rewritten as

     H 0 : A( 1 2 ) = 1 H 1 : A( 1 2 ) = 1.
Thus, let's define the test statistic

U n = n Γ * n 1 2 log Ân 1 2 . ( 18 
)
Under H 0 , U n D -→ N (0, 1) so that for a nominal level α, we can base our test on the critical region

R α = (X i,1 , X i,2 ) 1≤i≤n , U n > q 1-α/2 ,
where q 1-α/2 is the order 1 -α/2 quantile of a standard Gaussian distribution. 

Γ * n 1 2 = M 2 M i=1 M j=1 1 ij(2M -i)(2M -j) F (i,j) 1,1 + F (i,j) 1,2 + F (j,i) 1,2 + F (i,j) 2,2 , ( 19 
)
where

F (i,j) r,s = |k|≤m w k m + 1 γ(i,j) r,s (k), γ(i,j) 1,1 (k) = 1 n n-|k| t=1 1 Z t,1 ≤t i -Z i,1 1 Z t+k,1 ≤t j -Z j,1 , Z j,1 = 1 n n t=1 1 Z t,1 ≤t j , γ(i,j) 1,2 (k) = γ(i,j) 2,1 (k) = 1 n n-|k| t=1 1 Z t,1 ≤t i -Z i,1 1 Z t+k,2 ≤t j -Z j,2 , Z j,2 = 1 n n t=1 1 Z t,2 ≤t j , γ(i,j) 2,2 (k) = 1 n n-|k| t=1 1 Z t,2 ≤t i -Z i,2 1 Z t+k,2 ≤t j -Z j,2 . t i = i 2M and Z i = (Z i,1 , Z i,2 )
1≤i≤n is given by [START_REF] Billingsley | P Convergence of probability measures[END_REF]. Following [START_REF] Boutahar | Comparison of non-parametric and semi-parametric tests in detecting long memory[END_REF] one can choose the Parzen window w(x) = 1 -x 2 and the truncation parameter is such that 1/m + m/n → 0 as n → ∞, and M is large enough.

A simulation study

In the sequel, we run a simulation study allowing to investigate the finite sample properties of the CFG's estimator and to evaluate the performance of the test proposed in [START_REF] Hsing | Extreme value theory for multivariate stationnary sequences[END_REF], based on bivariate logistic distributions (see [START_REF] Tawn | Bivariate Extreme Value Theory: Models and Estimation[END_REF]) This model is known to be flexible enough to cover a wide range of dependence functions for bivariate extremes.

Models

To generate a bivariate extremes (X 1 , . . . , X n ), X i = (X i,1 , X i,2 ) sequence which is not i.i.d. we first generate for given k ≥ 1 an i.i.d. bivariate sequence (Y 1 , . . . , Y n+k ), Y i = (Y i,1 , Y i,2 ) arising from a Gumbel copula (see Gumbel 1960), and hence with the following symmetric logistic dependence function :

A Y (t) = (t 1 r + (1 -t) 1 r ) r , r ∈ (0, 1), (20) 
with marginal distributions G 1 and G 2 .

Then we set for some k ≥ 1

X i =    max(Y i,1 , . . . , Y i-k,1 ) Y i,2    1 ≤ i ≤ n, (21) 
Thus, (X i ) i=1,...,n is a strictly stationary k-dependent bivariate sequence with marginal distributions

F 1 = G k+1 1 , F 2 = G 2
and dependence function given by the following Proposition 4.1. Let (Y i ) 1≤i≤n be an i.i.d sequence of bivariate extremes with Gumbel copula [START_REF] Hüsler | Testing asymptotic independence in bivariate extremes[END_REF].

Thus, the bivariate sequence ( 21) has an asymmetric logistic copula with the following Pickands dependence function.

A X (t) = 1 - 1 k + 1 t + t k + 1 1 r + (1 -t) 1 r r , r ∈ (0, 1), k ≥ 1
Remark. Since X = (X i ) i=1,...,n is k-dependent, it follows that the mixing coefficient defined in [START_REF] Berghaus | Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence[END_REF] is such that β(m) = 0 ∀ m ≥ k + 1, and hence X is β-mixing.

Independence between margins is obtained when r = 1 while dependence increases as r goes to zero.

To illustrate the serially correlation of X, we simulate some realisations by assuming that Y has a standard Gumbel marginal distributions G 1 = G 2 and that X is 1-dependent and given by the equation [START_REF] Jimémez | Nonparametric estimation of the dependence function in bivariate extreme value distributions[END_REF].

Note that in this case the bivariate distribution of Y is given by

F Y (y 1 , y 2 ) = exp   -(e -y 1 + e -y 2 )   e -y 1 e -y 1 + e -y 2 1 r + e -y 2 e -y 1 + e -y 2 1 r   r   .
Figure 1 shows the sequence (Y i ) 1≤i≤n for different sizes n = 100, 1000, 5000, and parameters dependency r = 0.1, 0.5, 0.9.

Figure 2 shows that the serial correlation of the sequence (X i ) 1≤i≤n is significant, observe that X i,1 and X i-1,1 are dependent (serial correlation), X i,1 and X i,2 are also dependent (the components of X i are dependent since r = 1).

In this section we will investigate, by simulation, the behavior of the CFG's estimator. Following the remark 2 of section 2 we will consider only the empirical version of this estimator, i.e. we consider the CFG's estimator given by the equations ( 8) and ( 3), but in the last one we replace the marginal distributions F 1 and F 2 by their empirical estimators

F1 (x) = 1 n + 1 n t=1 1 X t,1 ≤x , F2 (x) = 1 n + 1 n t=1 1 X t,2 ≤x
where 1 A is equal to 1 if A is true and equal to 0 otherwise. An extensive simulation shows that this empirical estimator has a good properties than the original one, moreover it has also the advantage that no parametric form is assumed for the marginal distributions

F 1 and F 2 .
All the following properties are based on R = 1000 replications.

Finite sample properties of the CFG's estimator

In this subsection we investigate, by simulation, the behavior of the mean integrated square error (MISE) of the empirical CFG's estimator which is defined as

M ISE = 1 0 E( Ân (s) -A(s)) 2 ds, ( 22 
)
where  is the estimator of A(s).

In our simulation we estimate the MISE by

M ISE = 1 RM R i=1 M j=1 Ân,i (s j ) -Â(s j ) 2 ,
where Ân,i is the empirical CFG's estimator of A in the i th replication and s j = j/M, and M is the size of grid on [0, 1] to obtain an appproximation of the integral in 22, in the following we choose M = 1000. We vary the within-dependence coefficient k as well as the between-dependence coefficient r, taking k ∈ {2, 3, 4} and r ∈ {0.1, 0.5, 0.9, 1} (r = 1 corresponds to independence between X i,1 and X i,2 while k = 1 corresponds to independence of the X i,1 's). The weight function in ( 8) is taken to be equal to λ(s) = 1 -s. 1.0 t A(t) q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q True A C F G Tables 1 to 3 show that the precision of our estimate increases with the sample size and the dependence between X's components, and it decreases as the dependence within the X i1 's increases.

Figure 3 shows the real dependence function and the CFG's estimator for one replication.

Proofs

5.1 Proof of Theorem 3.1

Proof of i)

By ( 5) and ( 7), one has log Â(s) -log A(s) = λ(s)

1-s 0 Ĥ1 (z) -H 1 (z) z(1 -z) dz + (1 -λ(s)) s 0 Ĥ2 (z) -H 2 (z) z(1 -z) dz.
Following [START_REF] Zhang | Nonparametric estimation of the dependence function for a multivariate extreme value distribution[END_REF]'s proof of theorem 1, we write for j = 1, 2 and ν ∈ (0, 1/2)

√ n( Ĥj (z) -H j (z)) z(1 -z) = √ n( Ĥj (z) -H j (z)) (H j (z)(1 -H j (z))) ν H j (z)(1 -H j (z)) z(1 -z) ν (z(1 -z)) ν-1 ( 23 
)
and we will show that the supremum over the integration interval of the two first terms at the right hand side of ( 23) are bounded in probability. Hence, -To show that sup

sup s∈[0,1] 1-s 0 Ĥj (z) -H j (z) z(1 -z) dz ≤ C √ n 1 0 (z(1 -z)) ν-1 dz = o p (1)
z∈[0,1-s j ] H j (z)(1 -H j (z)) z(1 -z) < C, let us set D 1 (z) = d dz log A zs 1 -s and D 2 (z) = d dz log A(z)
. By (4) one has for j = 1, 2

H j (z) = z + z(1 -z)D j (z). Since 1/2 ≤ max(s, 1 -s) ≤ A(s) ≤ 1 and A is bounded (by K), |D 1 (z)| = |A zs 1-s | A zs 1-s s 1 -s ≤ 2Ks 1 -s , |D 2 (z)| = |A (z)| A(z) ≤ 2K
so that, for any fixed s and 1 -s ,

H j (z)(1 -H j (z)) z(1 -z) = (1 + (1 -z)D j (z))(1 -zD j (z))
is bounded too.

-Let us show that sup

z∈[0,1-s j ] √ n( Ĥj (z) -H j (z)) (H j (z)(1 -H j (z))) ν < C.
We use for that task [START_REF] Qi-Man | Y Weak convergence for weighted empirical processes of dependent sequences[END_REF]'s theorem 2.2 for strong mixing sequences and use the fact that absolutely regular sequences are also strong mixing so that the theorem 2.2 also applies to absolutely regular sequences. Namely, Let {U n , n ≥ 1} be a strong mixing stationary sequence of uniform random variables on [0, 1],

with mixing coefficients (α n ) n>0 . If there exists some θ ≥ 1 + √ 2 and > 0 such that α(n) = O(n -θ-), then we have b n (.) q(.)

D[0,1]
----→ B * (.) q(.) [START_REF] Marcon | Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials[END_REF] for any weight function q satisfying q(t) ≥ C(t(1 -t)) ( So, assume that the mixing coefficients of (X 1 , . . . , X n ) satisfy α(n) = O(n -θ-) for some θ ≥ 1 + √ 2 and > 0. Then, the sequences (Z 1,j , . . . , Z n,j ), j = 1, 2 are mixing since they are obtained from the former sequence by a measurable transformations. Their mixing coefficients α j satisfy α j (n) ≤ α(n), so that they satisfy the conditions of the theorem and the same holds for the transformed uniform sequences (H j (Z 1,j ) . . . , H j (Z n,j )), j = 1, 2. Moreover let us set m = 1/2 -1/(2θ) and q(t) = (t(1 -t)) ν for some ν ∈ (0, 1/2) such that ν < m (note that it is still possible since θ > 1). Thus, it is easily seen that q(t)

≥ C(t(1 -t)) (1-1/θ)/2 with C = 1 4 m . Hence, for j = 1, 2 one has √ n( Ĥj (z) -H j (z)) (H j (z)(1 -H j (z))) ν = b n (H j (z)) q(H j (z)) D[0,1] ----→ B * (H j (z)) q(H j (z)) , ( 25 
) so that R n = sup z∈[0,1] √ n( Ĥj (z) -H j (z)) (H j (z)(1 -H j (z))) ν D -→ sup z∈[0,1] B * (H j (z)) (H j (z)(1 -H j (z))) ν = sup u∈[0,1] B * (u) (u(1 -u)) ν .
Since the sequence R n converges in distribution, then by Prohorov theorem, it is bounded in probability:

sup z∈[0,1] √ n( Ĥj (z) -H j (z)) (H j (z)(1 -H j (z))) ν = O p (1). (26) 

Proof of ii)

First, the bivariate process Z is absolutely regular since it is obtained by a measurable transformation of X. Using [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]'s Theorem 1.4 and the fact that

β Z (k) ≤ β(k), Cov (1 Z 0 ≤z , 1 Z k ≤z ) ≤ 2β(k) so that (14) exists since β(k) < ∞. Now, recall that For s = 1, A(s) = 1 and √ n(log Â(s) -log A(s)) = 0. For s = 1, √ n(log Â(s) -log A(s)) = λ(s) 1-s 0 √ n( Ĥ1 (z) -H 1 (z)) z(1 -z) dz + (1 -λ(s)) s 0 √ n( Ĥ2 (z) -H 2 (z)) z(1 -z) dz.
In order to prove the asymptotic normality, let us first show that for j = 1, 2

1-s j 0 √ n( Ĥj (z) -H j (z)) z(1 -z) dz D -→ 1-s j 0 B * j (z) z(1 -z) dz. ( 27 
) Set 1-s j 0 √ n( Ĥj (z) -H j (z)) z(1 -z) dz = 1 n 0 √ n( Ĥj (z) -H j (z)) z(1 -z) dz + 1-s j 1 n √ n( Ĥj (z) -H j (z)) z(1 -z) dz = I 1 + I 2
It follows from ( 23) and ( 26) that

I 1 = o p (1). (28) 
We will then show that

1-s j 1 n √ n( Ĥj (z) -H j (z)) z(1 -z) dz - 1-s j 1 n B * j (z) z(1 -z) dz = o p (1) (29) 
so that

I 2 = 1-s j 0 B * j (z) z(1 -z) dz + o p (1). (30) 
and ( 27) can be obtained by combining [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF] and [START_REF] Segers | Nonparametric inference for bivariate extreme-value copulas[END_REF]. For that task we will apply [START_REF] Dedecker | Strong approximation of the empirical distribution function for absolutely regular sequences in R d[END_REF]'s theorem 3.1 to the bivariate process Z.

Let {Z n , n ≥ 1} be an absolutely regular strictly stationary bivariate sequence with distribution function H and mixing coefficients (β n ) n>0 satisfying β(n) = O(n Fixing t = n, K(z, t) turns out to be the centered Gaussian process n 1/2 B * (z) defined in Subsection 3.1 so so that we get the Csörgö and Horváth's type result: (n 1/p-1/2 (log n) η+ +1/p ) [START_REF] Tawn | Bivariate Extreme Value Theory: Models and Estimation[END_REF] so that for all s j > 0,

1-s j 1 n √ n( Ĥj (z) -H j (t)) z(1 -z) dz - 1-s j 1 n B * j (z) z(1 -z) dz ≤ sup z∈R √ n( Ĥj (z) -H j (z)) -B * j (z)
1-s j 

as soon as > 0 and η = (5 -2/p)1 p∈(2,3) + (14/3)1 p=3 . When s j = 0, we may show that (32) still holds writing

I 2 = 1-1 n 1 n √ n( Ĥj (z) -H j (z)) z(1 -z) dz + 1 1-1 n √ n( Ĥj (z) -H j (z)) z(1 -z) dz.
Finally,

I 1 + I 2 = 1-s j 0 B * j (z) z(1 -z) dz + o p (1)
so that 

Remark 4 .

 4 Straigtforward computations, based on multivariate smoothed periodogram see [?], lead to the following estimator of the asymptotic variance Γ * 1 2 :

Figure 1 -Figure 2 -

 12 Figure 1 -Scatter plots of X for different values of n and r

Figure 3 -

 3 Figure 3 -The empirical CFG's estimator, k = 1, n = 500.

  so that since λ is a bounded function on [0, 1] sup s∈[0,1] log Â(s) -log A(s) = o p[START_REF] Bacro | Testing the independence of maxima: from bivariate vectors to spatial extreme fields: Asymptotic independence of extremes[END_REF], and i) holds by continuity of the log function.

  1-1/θ)/2 for some C > 0, where b n (z) = √ n( Ên (u)-u), Ên denotes the empirical cdf of the observations and B * is the centered Gaussian process on [0, 1] such that B * (0) = B * (0) = 1 and E( B * (s) B * (t)) = k∈Z 1 U 0 ≤s 1 U k ≤t

sup z∈R 2 √

 2 n( Ĥ(z) -H(z)) -B * (z) = O a.s. (n 1/p-1/2 (log n) η+ +1/p ) Hence, for j = 1, 2, sup z∈R √ n( Ĥj (z) -H j (z)) -B * j (z) = O a.s.

1 2= O(n 1 p - 1 2

 111 (log n) η+ +1/p ) log 1 -s j s j + log(n -1) (log n) η+ +1/p+1 ) Ĥj (z) -H j (z)) z(1 -z) dzz(1 -z) dz = o p (1)

,

  z) dz + o p[START_REF] Bacro | Testing the independence of maxima: from bivariate vectors to spatial extreme fields: Asymptotic independence of extremes[END_REF].Therefore, for all s ∈ [0, 1]√ n log Ân (s) -log A(s) P -→ λ(s) 1-s 0 B * 1 (z) z(1 -z) dz + (1 -λ(s)) s 0 B * 2 (z) z(1 -z) dzand then√ n log Ân (s) -log A(s)for all t ∈ [0, 1], which completes the proof.

Table 1 -

 1 10 5 × estimated MISE for the CFG's estimator with k = 1.

	1 1.885537 0.9952461 0.4765154 0.1917919
	0.2 6.948347 3.275925	1.698192 0.6732344
	0.5 53.33643 25.70162	12.92988	5.148036
	0.7 142.7788 74.63336	35.32554	12.89887
	0.9 319.2063 154.8809	85.00207	32.37675
	1	455.4138 273.8141	122.5095	49.02234

Table 2 -

 2 10 5 × estimated MISE for the CFG's estimator with k = 2.

	r=	n=50	n=100	n=200	n=500
	0.1 106.0859 49.1597 25.32425 9.812296
	0.2 111.5493 49.61342 27.13266 9.482449
	0.5 162.2376 80.07837 39.35513 15.13582
	0.7 275.2151 128.0954	62.669	26.31388
	0.9 470.7487 229.0321 118.0711 45.28518
	1	566.4828 298.0881 172.282 60.13233

Table 3 -

 3 10 5 × estimated MISE for the CFG's estimator with k = 3.

  Thus, there exists a centered Gaussian process{K(z, t), t ∈ R + , z ∈ R 2 } with covariance function E(K(z, t)K(z , t )) = E (B * (z)B * (z )) (t ∧ t ) with E (B * (z)B * (z )) defined in (14), such that sup |R(z, t) -K(z, t)| = O a.s. (n 1/p (log n) η+ +1/p )for any > 0 and η = (5 -2/(p))1 p∈(2,3) + (14/3)1 p=3 .

		sup
	t≤n	z∈R 2

1-p 

) for some p ∈

[START_REF] Berghaus | Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence[END_REF][START_REF] Billingsley | P Convergence of probability measures[END_REF]

. Let us set

R(z, t) = i≤t (1 Z i ≤z -H(z)), t ∈ R + , z ∈ R 2 .

which achieves the proof.

Finally, it remains to show that the limiting process U has the desired covariance function [START_REF] Hall | Distribution and dependance-function estimation for bivariate extreme-value[END_REF] and that it exists. This may be done by applying Fubini's theorem.

Proof of proposition 4.1

Let F and G be the joint distributions of the vectors (X 1 , X 2 ) and (Y 1 , Y 2 ) respectively. Moreover, denote by G 1 and G 2 the margins of (Y 1 , Y 2 ) and C X and A X (resp. C Y and A Y ) the copula and

Using ( 33) and ( 1)

Let us set for all 0 ≤ u, v ≤ 1, t = log u log uv . Using [START_REF] Hüsler | Testing asymptotic independence in bivariate extremes[END_REF], then