
EUROGRAPHICS 2022
D. Meneveaux and G. Patanè
(Guest Editors)

Volume 41 (2022), Number 2
STAR – State of The Art Report

A Survey on Reinforcement Learning Methods
in Character Animation

Ariel Kwiatkowski1, Eduardo Alvarado1, Vicky Kalogeiton1, C. Karen Liu2, Julien Pettré3, Michiel van de Panne4 Marie-Paule Cani1

1 LIX, École Polytechnique/CNRS, Institut Polytechnique de Paris, Palaiseau, France
2 Stanford University, Stanford, CA, USA

3 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
4 University of British Columbia, Vancouver, Canada

Abstract
Reinforcement Learning is an area of Machine Learning focused on how agents can be trained to make sequential decisions, and
achieve a particular goal within an arbitrary environment. While learning, they repeatedly take actions based on their observa-
tion of the environment, and receive appropriate rewards which define the objective. This experience is then used to progressively
improve the policy controlling the agent’s behavior, typically represented by a neural network. This trained module can then be
reused for similar problems, which makes this approach promising for the animation of autonomous, yet reactive characters in
simulators, video games or virtual reality environments. This paper surveys the modern Deep Reinforcement Learning methods
and discusses their possible applications in Character Animation, from skeletal control of a single, physically-based character
to navigation controllers for individual agents and virtual crowds. It also describes the practical side of training DRL systems,
comparing the different frameworks available to build such agents.

CCS Concepts
• Computing methodologies → Reinforcement learning; Animation;

1. Introduction

Computer Graphics (CG) and Virtual Reality (VR) applications,
from movies to video games, make a wide use of virtual charac-
ters, i.e. digital representations of humans, animals or other living
creatures. For a long time, animation pipeline standards have pur-
sued realism and control over motion style through fully kinematic
characters, often designed manually by artists specifically for each
situation, resulting in high time and resource costs. However, the in-
creasing complexity of many applications makes the development
of more versatile authoring tools a priority. In particular, simula-
tors, games and VR environments share the need for autonomous
characters, able to act in the expected way, while being reactive to
any changes in their environment due to the user’s actions. In or-
der to produce such systems, learning-based approaches need to be
explored.

Modern Machine Learning is commonly divided into three cat-
egories: Supervised Learning (SL), Unsupervised Learning (UL),
and Reinforcement Learning (RL). Supervised Learning refers to
learning using data with labels, Unsupervised Learning, including
Self-Supervised Learning makes use of raw data without labels,
and Reinforcement Learning does not use data in the usual sense.
Instead, the learning stage in RL consists of an agent taking a se-
quence of actions in one or more environments, and trying to maxi-

mize a reward function dependent on the states it visits. During this
process, the agent progressively trains its own controller module,
which in the case of Deep Reinforcement Learning (DRL) is rep-
resented by a deep neural network. Once learned, the network can
be used in a new, and possibly evolving environment, to make the
agent take actions in a successful way towards its goals.

RL stands out as a promising approach for character anima-
tion because it provides a versatile framework to learn motor skills
without the need of labelled data. RL is particularly useful when
the dynamic equations of the environment are unknown or non-
differentiable, to which conventional gradient-based optimal con-
trol algorithms do not apply.

Compared to traditional methods in AI, the designer does not
need to specify what the character should do in each case – a time-
consuming and non scalable method. In contrast, the agent will dis-
cover the appropriate actions during the learning stage, given the
targeted task or goals expressed in the form of a reward function.

This survey reviews the most common modern DRL algorithms,
and how they can be used to tackle the main challenges in char-
acter animation. We consider two main categories of tasks – indi-
vidual motion skills, and motion planning tasks. Individual scenar-
ios typically involve skeletal motion control of a physically-based
character, while motion planning often involves multiple characters

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

interacting in a shared environment. In particular, we focus also on
the problem of crowd simulation, which focuses on determining
the trajectories of multiple agents in a shared environment, often
abstracting away their internal structure.

We begin by describing the main, most recent challenges in the
field of character animation (Sec. 1.1). Then, we present the key
principles and notations in RL (Sec. 2), and continue with a gen-
eral classification of the most common approaches (Sec. 3). Sub-
sequently, we divide the addressed RL solutions into two groups:
single-agent (Sec. 4) and multi-agent (Sec. 5) problems. Then, we
describe how these methods are used to solve computer animation
problems, for skeletal motion control (Sec. 6) and navigation prob-
lems (Sec. 7), as well as some works concerning interactions be-
tween virtual agents and humans (Sec. 8). Finally, we present a
description of current, available frameworks to apply RL-based so-
lutions (Sec. 9), before concluding with a summary of the most
relevant algorithms used for a particular problem.

Our work is largely complementary to a recent survey on deep
learning for skeleton-based human animation [MHC�21], which
we also recommend to readers. In particular, we provide a detailed
review of current RL methods (both single agent and multiagent)
and their mathematical foundations, a full review of RL methods
for character navigation methods, and a complementary classifica-
tion of physics-based character RL methods.

1.1. Problems in Character Animation

In the most general sense, the field of Character Animation con-
cerns everything related to animating virtual characters. In this
work specifically, we focus on the aspects of behavior of said
agents, on their skeletal motion control, as well as on their interac-
tions with a possible human user. Topics related to modeling and
animating the character’s face, skin, muscles, hair and clothes, or
rendering it are out of scope of this report.

When dealing with a single animated character (which may also
encompass situations with several independent characters), there
are two main levels that need to be considered:

• Skeletal Animation
• Character Motion Planning

Skeletal Animation deals with internal motions of an agent –
how the individual limbs move, while the position in the global
frame may be of secondary concern. Character Motion is the oppo-
site – it abstracts away the details of the character’s shape, instead
focusing on its displacements through the scene.

When considering Character Motion for multiple interacting
characters, the problem turns into that of Crowd Simulation. Typ-
ically, in those problems, each agent has a destination it wants to
reach, while avoiding collisions with the environment and with
other agents. Van Toll and Pettré [TP21] wrote an overview of the
modern approaches from the last decade.

2. Definitions and Preliminaries

In this section, we introduce the basic formal background of Re-
inforcement Learning. First, we describe and compare different

Agent

Observation

Environment

Figure 1: A visual depiction of the basic Reinforcement Learning
loop corresponding to the POMDP formalism. The agent and the
environment exchange information between each other. The agent
perceives the environment state and executes an action. The envi-
ronment then updates its state, and communicates it to the agent
via an observation function, together with the reward for the last
action.

ways of formalizing the RL task to specify what we want to solve.
Then, we describe the fundamental theorems supporting modern
RL methods to show how we can solve those tasks.

2.1. Reinforcement Learning Formalisms

While there exist several frameworks that are used to formal-
ize the Reinforcement Learning problem, they are based on the
Markov Decision Process [Bel57, SB98, SB18] (MDP), with vari-
ations adapting it to the specific task at hand. In this section, we
describe the variants relevant to character animation, both for indi-
vidual agents, as well as multiagent scenarios.

In essence, a Reinforcement Learning problem consists of two
parts – an environment, and an agent acting within that environ-
ment in order to achieve some goals. The agent observes the en-
vironment, receiving its state or observation, and based on that
executes an action. The state of the environment then changes, and
the agent receives a reward signal indicating how good that action
was. The agent’s objective is maximizing the total reward collected
during an episode. An episode starts from an initial state, and lasts
until the agent reaches a terminal state, or the environment termi-
nates otherwise (e.g. due to a time limit). A schematic representa-
tion of this loop is in Figure 1.

2.1.1. Single Agent

A general Markov Decision Process (MDP) is defined by a tuple
M = (S;A;T;R;µ), optionally with a sixth component g (which
can also appear in all other formalisms, and hence will be omitted
from their descriptions), where:

• S is a set of states of the environment.
• A is a set of actions available to the agent.
• T : S ×A → DS is the environment transition function, repre-

senting its dynamics.
• R : S×A×S→R is the reward function which is used to define

the agent’s task.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

• µ ∈ DS is the initial state distribution.
• g ∈ [0;1] is the discount factor.

Note that we use the notation DX to represent for the set of all
probability distributions over the set X .

During an episode, an initial state s0 ∈ S is sampled from µ.
The state is typically represented by a continuous vector in Rn, or
in simple cases, a discrete value. After which the agent repeatedly
selects an action at from A, observes a new state st+1 ∼ T (st ;at)
and receives a reward rt = R(st ;at ;st+1). The actions, similarly to
observations, are typically continuous vectors or discrete values,
although more complex nested structures are also used. This can
repeat infinitely, or until some termination condition, defined either
by a terminal state in S, or a time limit. The agent’s objective is
maximizing the total discounted reward åt g

trt , or simply non-
discounted total reward åt rt when g = 1.

The solution to an MDP is defined as an optimal policy, typi-
cally denoted as p

� : S → DA. It is the policy that, when executed,
leads to the highest expected total discounted reward. While a pol-
icy may be stochastic or deterministic, depending on the properties
of the action distributions it outputs, note that the optimal policy is
generally stochastic, i.e. it returns a distribution over actions rather
than a specific action. For consistency, the notation we use in this
work is that the action distribution of a policy p in a given state s
is p(s), whether that policy is stochastic or not. The action is then
sampled from the policy a∼ p(s). An alternative notation uses the
notion of a conditional probability of the action given the current
state p(a|s), and is equivalent to ours.

A key property of MDPs is their full observability - agents
have complete information of the current environment state. This
is rarely the case in real applications, and thus a Partially Observ-
able Markov Decision Process [KLC98] (POMDP) is often used
instead.

A POMDP is defined by a tupleM= (S;A;T;R;W;O;µ), where
S;A;T;R;µ are defined as in MDPs. W is a set of possible observa-
tions, and O : S→ DW is the observation function mapping states
to observations. This time, the agent does not perceive the real state
st of the environment, but rather the observation ot ∼ O(st) which
may not contain the full information, hence the partial observabil-
ity.

2.1.2. Multiagent

While the MDP and POMDP formalisms are sufficient for prob-
lems with a single agent, the generalization to multiple agents can
be done in different ways depending on the extent of flexibility re-
quired for a given application. The most general case is a Partially
Observable Stochastic Game [HBZ04] (POSG) which is defined
as a tupleM= (I;S;{Ai};{Wi};{Oi};T;{Ri};µ), where:

• I is the finite set of agents, indexed 1; : : : ;n
• S is a set of states of the shared environment.
• Ai is a set of actions available to agent i, andA=×i2IAi is the

joint action set.
• W

i is the set of observations available to agent i.
• Oi : S →Wi is the observation function for agent i.
• T : S ×A → DS is the environment transition function, repre-

senting its dynamics.

• Ri : S ×A×S → R is the reward function of agent i, which
defines the agent’s task.
• µ ∈ DS is the initial state distribution.

Similarly to the single-agent scenario, the environment is ini-
tialized with a state s0 sampled from µ. Each agent then receives
an observation oi

t = Oi(st) and based on that, chooses an action
ai

t . The environment changes according to the joint action of all
agents at = (a1

t ;a2
t ; : : : ;an

t) generating the new state st+1, and each
of them then receives their rewards ri

t = Ri(st ;at ;st+1) and obser-
vations oi

t+1. This repeats until the episode ends. Since each agent
receives its own reward, the objective of an agent i is maximizing
its total reward åt ri

t .

A special case of POSG is a Decentralized Markov Decision
Process [BZI00] (DecPOMDP) in which all agents work together
to optimize a shared reward function ∀iRi = R. This formalism
is suitable for fully cooperative tasks. It is worth noting that any
POSG can be converted into a POMDP by setting the reward to be
equal to the sum of of individual rewards, but it will not make sense
in all POSGs (consider for example any zero-sum game).

An alternative, but equivalent to POSG formulation, is the
Agent Environment Cycle Game [TGB�21] (AEC) formal-
ism. As opposed to the previous options, it is more adapted
to dealing with environments in which agents do not act si-
multaneously. Formally, an AEC is defined by a tuple M =
(I;S;{Ai};{Wi};{Oi};P;{Ti};{Ri};n;µ), where Ti : S×Ai→S
is a deterministic agent transition function, P : S → DS is the envi-
ronment transition function, n : S ×I ×A→ DI is the next agent
function which determines which agent will be taking the action
next. The other symbols are defined as before, with the exception of
I which now also includes environment itself considered as a sepa-
rate agent, represented by the symbol 0. Furthermore, A is now an
union of all individual action spaces. All agents, including the en-
vironment, take turns taking their actions and modifying the shared
state, which enables a greater flexibility compared to the POSG for-
malism. AEC environments are primarily used in the Petting Zoo
framework [TBJ�21] (see Section 9).

In some cases, a more game theory-based approach is useful.
The Extensive Form Game [LLL�20] (EFG) formalism is notably
used in the OpenSpiel framework. It contains implementations of
many board games, which is the context that it excels in. However,
it is not very applicable to character animation, and thus we refer
the reader to the associated paper for further details on this formal-
ism.

Note: Many details of the described formalisms vary between
sources in the ordering of their elements, the size of the tuple, and
the signatures of the functions. This does not change the underly-
ing behavior, and we will therefore omit discussing the different
descriptions of the same formalism.

2.1.3. Environment design

A crucial element when applying RL to new problems is designing
an appropriate environment. This often involves building a simula-
tion that implements the common API of Gym (see Section 9.2),
since a purely mathematical formulation would quickly become

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

very convoluted in a complex scenario. Note that we omit the tran-
sition function from this description, as this is typically part of the
underlying simulation, and can therefore be implemented in any
way.

The first consideration is the observation space. This is com-
monly represented as a fixed-size vector space Rn, which can be di-
rectly used with regular feed-forward neural networks. More com-
plex nested structures as well as images are also possible, but they
require an adaptation in the structure of the policy being learned.

Second comes the action space. Depending on the environment,
a common choice is either a vector space Rn, or simply a finite set
of actions |A| = n <∞. While from the point of view of the im-
plementation it is important that the action space remains constant
between different states, one can employ invalid action masking to
restrict the available actions to a specific subset. Similarly to ob-
servations, it is also possible to use nested structures as long as the
policy is adapted correspondingly.

Finally, the reward function defines the actual task and guides
the agent’s behavior. This is often the most critical component to
develop, as a misspecified reward function can lead to unexpected
and undesirable behaviors. The simplest reward function can be
obtained by choosing a goal state, and giving the agent a reward
of 1 if it reaches that state, or 0 otherwise. However, this sparse
reward tends to make it very difficult for the agent to learn, as it
needs to reach it with random exploration to receive any training
signal. A common method is then using reward shaping [NHR99]
by adding a smaller, dense reward that guides the agent towards the
goal. In other cases, there might be a natural dense reward that can
be used instead of the sparse one, such as the distance from the goal
in environments with relatively simple dynamics.

2.1.4. Summary

We presented the most commonly used formalisms underlying the
RL problem, which serve as a basis for finding ways to solve these
tasks. The similarities and differences between them are in Table 1.
Typically, either MDP or POMDP can be used with a single agent.
POMDP offers stronger theoretical justification if the agent does
not observe the full environment state, but this high rigor is not
always necessary. Instead, MDP is often used due to its simplicity.
With multiple agents, POSG is a versatile choice that can work with
any scenario. If one needs to put an emphasis on some aspect of the
environment, other options are also available. It is worth noting that
those formalisms have dynamic programming solutions associated
with them for cases with discrete action and state spaces. This how-
ever is impractical in complex scenarios that emerge in character
animation, requiring more sophisticated algorithms.

2.2. Fundamentals of RL Algorithms

In this section we describe the mathematical theorems underly-
ing the most important RL algorithms used today. Specifically, we
show how the Policy Gradient Theorem enables directly optimiz-
ing a behavior policy function, and the Bellman Equation enables
learning the expected utilities of actions that the agent can take in
a certain state. These will serve as a basis for many modern algo-
rithms, which often combine the two aspects. We use the notation

of MDPs described in Section 2.1.1 because they provide sufficient
generality. Under partial observability, states are replaced with ob-
servations, and multiagent extensions of relevant algorithms are
discussed in Section 5.

In both cases, modern algorithms use Neural Networks as ap-
proximators for the relevant functions. Because a detailed explana-
tion of training neural networks is out of the scope of this work, we
refer the readers to e.g. the Deep Learning Book [GBC16] for more
information on that topic.

2.2.1. Policy Gradients

The Policy Gradient Theorem is a basis for all Policy Gradi-
ent (PG) algorithms, starting with the seminal REINFORCE al-
gorithm [SMSM99]. In the context of deep reinforcement learning,
the policy p : S → DA is represented as a neural network, and its
free parameters, e.g., the weights, are optimized using gradient as-
cent on the total expected reward. In order to do that, we need to
find the gradient with respect to the network’s weights using a batch
of collected experiences. Here we show a proof of the theorem
based on that published in OpenAI Spinning Up [Ach18], although
other approaches for proving the same result exist [Wil92, Jon20].

Consider a trajectory in the environment, defined as a sequence
of consecutive states and actions taken by the agent, and rewards
t = (s0;a0;r0;s1;a1;r1 : : :). Given the parametrized policy pq, we
know that the probability of a trajectory is

P(t) = µ(s0)Õ
t

P(st+1|st ;at)pq(at |st) (1)

logP(t) = logµ(s0) +å
t

(logP(st+1|st ;at) + logpq(at |st)) (2)

and the total reward obtained in the trajectory is R(t) = åt rt

Consider now the expectation across all trajectories t. With the
optimization target defined as J(q) = Et�pq

R(t), using a few cal-
culus transformations, we can express the policy gradient as:

∇qJ(q) =∇q E
t�pq

R(t) (3)

=∇q

∫
t

P(t|q)R(t) (4)

=
∫

t

∇qP(t|q)R(t) (5)

=
∫

t

P(t|q)∇q logP(t|q)R(t) (6)

= E [∇q logP(t|q)R(t)] (7)

= E
t�pq

�
å
t

logpq(at |st)R(t)

�
(8)

With this, given a batch of trajectoriesD collected using the pol-
icy we are optimizing, we can finally compute the gradient esti-
mate:

ĝ =
1
|D| å

t2D
å
t
∇q logpq(at |st)R(t) (9)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

Table 1: A comparison of different formalisms used to define an RL problem. Legend:× – the property cannot be modelled in this formalism,
s – the property can be modelled in this formalism, but is not the intended use or requires extra effort, X – the property can be modelled in
this formalism, F – this formalism is particularly suitable for this property. Multiagent Cooperative and Competitive refers to the rewards
being either shared or zero-sum, respectively. Multiagent Mixed is neither fully cooperative nor competitive. Simultaneous and Turn-based
refers to whether all agents take their actions at the same time, or only one agent does.

Property MDP POMDP POSG DecPOMDP AEC EFG
Single Agent F F X X X X

Multiagent Cooperative × × X F X X
Multiagent Competitive × × X × X X

Multiagent Mixed × × F × F F
Multiagent Simultaneous × × F F s s
Multiagent Turn-based × × s s F F
Partial Observability × F X X X X
Full Observability F X X X X X

Note that this is merely the base form of the theorem, and various
modifications are possible, most notably in the form of importance
sampling [Rub81], or adding a baseline to the reward R(t). Some
of these are discussed in the context of specific algorithms that use
them in Section 4.

2.2.2. Bellman Equation

The Bellman Equation [Bel03] is a basis for all value-based algo-
rithms. Unlike the Policy Gradient method, here we do not learn a
policy directly. Instead, we try to approximate a state value function
V (s) or a state-action value function Q(s;a). The former estimates
the expected reward that the agent will collect in the future, given
that it is present in a given state s. The latter estimates the same
quantity, but given that the agent will take the specific action a in
the state s. Then, we use these functions to generate a policy by
choosing the best action in a given state. With a state value func-
tion V , this requires access to the environment transition function,
which is not necessary with a state-action value, where the policy
is simply given by a = argmaxa0 Q(s;a0).

The value function Qp (or analogously V p) associated with a
policy p represents the expected total reward if the agents is in a
given state s, takes a certain action a (a ∼ p(s) for the state value
function), and then proceeds by following the policy p for the rest
of the episode.

V p(s) = E
at�p

�
å
t

g
trt |s0 = s

�
(10)

Qp(s;a) = E
at�p

�
å
t

g
trt |s0 = s;a0 = a

�
(11)

The Q (or V) values of different state-action pairs (states) are
obviously not independent – they are in fact related via the transi-
tion function, which determines what state comes after them. This
is formalized by the Bellman Equation, which defines the consis-
tency criterion of a Q (or V) function (Equations 12, 14), and the
optimal function Q� (or V�) (Equations 13, 15):

V p(s) = E
a�p

s0�T

�
R(s;a) + gV p(s0)

�
(12)

V�(s) = max
a

E
s0�T

�
R(s;a) + gV�(s0)

�
(13)

Qp(s;a) = E
s0�T

�
R(s;a) + g E

a0�p

Qp(s0;a0)
�

(14)

Q�(s;a) = E
s0�T

�
R(s;a) + gmax

a0
Q�(s0;a0)

�
(15)

The intuition behind these equations is that the value of a state
is equal to the instant reward obtained at that state, and the dis-
counted expected value of the following state – which also includes
the value of the state after that (due to the recursive nature of the
equation), and so on until a terminal state. The value of a terminal
state is typically considered to be 0, however a different conven-
tion may be used in certain cases, e.g. if the episode timed out. It
also induces a dynamic programming solution of MDPs through
the Value Iteration algorithm [SB18]. It is however inapplicable or
impractical for many modern problems with complex state and ac-
tion spaces, and instead, the Bellman Equation is used as the source
of a differentiable loss function for value-based algorithms, as we
describe in detail in Section 4.

It is worth noting that by using a Q function estimator Q̂p, we can
obtain an alternative formulation of the Policy Gradient Theorem.
Indeed, as shown by Sutton et al. [SB18], we get the following
expression for the policy gradient:

ĝ = å
s

dp(s)å
a
∇p(a|s)Q̂p(s;a) (16)

where dp(s) is the marginal state distribution under the policy
p. This formulation does not use individual transitions, but instead
relies on statistics of the policy’s performance, and can thus be used
as an alternative algorithm to estimate the policy gradient.

2.3. Reward Hypothesis, Discounting, Advantage

It is worth taking a closer look at the assumption underlying all Re-
inforcement Learning research, sometimes called the Reward Hy-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

pothesis. It is formulated by Richard Sutton as “That all of what we
mean by goals and purposes can be well thought of as maximization
of the expected value of the cumulative sum of a received scalar sig-
nal (reward)" [SB18]. This is re�ected in the described formalisms
and equations by the inclusion of a reward functionR, with the goal
of agents being maximization of the total reward obtained over their
lifetime. Some argue that just the reward signal is suf�cient to rep-
resent any goals that intelligent agents might have [SSPS21], while
others point out that certain objectives cannot be represented with
a single scalar reward [Ale20]. That being said, as we focus specif-
ically on Reinforcement Learning in this work, we do not consider
alternative formulations – but it is possible that they will become
more relevant in the coming years as the �eld continues to develop.

An important element related to the reward function is thedis-
count factor mentioned in the description of an MDP in Sec-
tion 2.1.1. It can be considered either as a property of the envi-
ronment, or the learning agent, and while the two views are mostly
equivalent from the optimization point of view, they have potential
implications relating to the Value Alignment problem [Soa18]. If
we consider the discount factor to be a property of the MDP, this
is the real reward we want the agent to optimize, whereas other-
wise, we really want to optimize the total reward, and discounting
the rewards helps improve the training in some way, e.g. as a form
of regularization [AMC20]. It can also impact the range of meth-
ods that we can use – when considered as a part of the learning
agent, any arbitrary method of reward discounting can be used, in-
cluding non-exponential methods such as hyperbolic [FGB� 19] or
truncated [LH11] discounting.

One issue with using the raw rewards/utility for training is that
it is an absolute metric, with no a priori point of reference. If the
agent only perceives a single timestep where a certain actiona0
leads to a reward of� 1, this action's probability will be decreased
as the value is negative. However, it could still be the optimal ac-
tion if the counterfactual rewards due to taking other actions are
even lower. Asymptotically, this is all balanced out due to the fact
that decreasing the probabilities of other actions will necessarily
increase the probability ofa0. To decrease the variance of gradient
estimation, some algorithms use the notion ofAdvantageinstead.
This often results in more stable and ef�cient training. Intuitively,
advantage measures how much a certain action is better (or worse)
than expected. Given both the Q and V function approximations,
we de�ne the advantage as:

A(s;a) = Q(s;a) � V(s) (17)

In practice, algorithms that use advantage often computeQ(s;a)
from collected experience, i.e. , look at the trajectory and compute
the total reward, whileV(s) is approximated with a separate neural
network. Examples of this are included in Section 4.

3. Classi�cation of RL Algorithms

In this section we describe the main categories of modern RL algo-
rithms. While the division is not clear-cut and many algorithms at
least draw on ideas from other types, we nevertheless consider this

classi�cation to be useful for building an intuition of the RL algo-
rithm landscape. A diagram classifying the algorithms described in
this work is in Figure 2. The details of these algorithms are pro-
vided in Sections 4 and 5.

3.1. Policy-based or Value-based

The �rst axis of division is whether the algorithm ispolicy-based
(PB) or value-based (VB). Although the state-of-the-art algorithm
often use both components via Actor-Critic architectures, often-
times they still have one part that is dominant in the overall pic-
ture. The difference between PB and VB algorithms is in what the
model is actually trained to predict. In pure PB algorithms such as
REINFORCE [Wil92, SMSM99], the neural network is trained to
directly output theaction that will maximize the expected future
reward. On the other hand, pure VB algorithms like Deep Q Learn
ing (DQN) [MKS� 15] train the network to instead output thevalue
of each action in a given state, that is the expected future reward.
This works in environments with a discrete action space, because
a policy can then be generated by taking the action with the maxi-
mum expected value.

3.2. Actor-Critic

Very commonly, RL algorithms use the so-called Actor-Critic ar-
chitecture, which involves training two networks. One, theActor ,
also called thepolicy, is responsible for predicting the action that
the agent should take, as in PB algorithms. The other, theCritic ,
is responsible for predicting thevalue of an action in a given state,
as in VB algorithms. The outputs of the two networks, while not
always in agreement with each other, can be used to improve the
training process in ways that depend on the exact algorithm – for
example, by using the value prediction as a baseline for advan-
tage estimation as in PPO [SWD� 17], or by training the Actor to
�nd the action with the highest value predicted by the Critic in or-
der to use value-based methods in continuous action spaces as in
DDPG [LHP� 15].

3.3. On-policy or Off-policy

Another point of difference between RL algorithms is the data used
for the optimization process, which does not necessarily have to be
obtained with the same policy that is being learned. We normally
refer to thetarget policy as the policy that is being optimized and
will be used for evaluation, and thebehaviour policy as the policy
used by the agent to select actions and explore the environment.
In on-policy algorithms like REINFORCE, the neural network can
only be trained using data collected with the policy that is being op-
timized, meaning that the behavior policy matches the target policy.
This implies that after performing a single gradient update, the data
(in theory) has to be discarded. On the other hand, inoff-policy
algorithms like DQN, any data (trajectories) can be used, regard-
less of how it was generated (target and behaviour policies can be
different). Some algorithms like PPO toe the line between being
on-policy and off-policy, by allowing a relatively small number of
gradient updates before the data has to be discarded by using tricks
like importance sampling and clipping the loss function. Neverthe-
less, these algorithms are typically considered to be on-policy, as
they cannot use data collected by an arbitrary behavior policy.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

Figure 2: A diagram showing a taxonomy of the Reinforcement Learning algorithms described in this work. We focus on two divisions: single
agent or multiagent, and policy-based or value-based. The colors of nodes correspond to whether the algorithm is on-policy (red), off-policy
(blue), or in between (green). Algorithms marked with an asterisk (***) can only be used with discrete action spaces.

Typically, on-policy algorithms use arollout buffer which stores
the environment transitions collected with the current policy, and
is emptied after performing the gradient update. Off-policy algo-
rithms instead use anexperience replay buffer, which stores older
transitions, replacing the oldest ones once it reaches maximum ca-
pacity.

3.4. Model-free or Model-based

This division relies on whether or not the learning agent has access
to a model of the environmentT(s;a). In Model-free approaches
like DQN, PPO or DDPG, the agent learns in a true trial-and-error
fashion – it has no way of “knowing" the consequences of an ac-
tion until it tries it, and observes the outcome. On the other hand,
Model-based approachesadditionally learn a model of the envi-
ronment, allowing the algorithm to do something akin to traditional
planning algorithms by considering potential future states and ac-
tions, without actually having to execute them in the environment.
This is famously present in the AlphaZero [SHS� 17] algorithm that
achieved superhuman performance in the game of Go, where one
of the components is the Model-based Monte Carlo Tree Search
(MCTS) [Cou06]. While Model-based approaches can provide an
advantage in planning terms, the effectiveness of the agent will be
limited by the quality of the learned model, which can be nega-
tively affected if the environment is very complex, which is often
the case in character animation. This is not the case with Model-
free approaches, which do not require an accurate characterisation
of the environment to be effective, although they lack the ability to
explicitly foresee future states and actions. In this work, we focus
on model-free algorithms due to their relevance to character anima-
tion.

3.5. Single-agent or Multiagent

Finally, an algorithm can be designed to work with either one agent,
or multiple agents sharing the same environment. While most of
RL development focuses on single-agent algorithms, those can be
extended to become multiagent algorithms through Independent
Learning (see Section 5.1). In competitive multiagent scenarios,
algorithms typically use the concept of self-play, training against
(possibly old) copies of themselves so that they can be robust when
matched with a wide range of opponents. In cooperative scenar-
ios, a common trend is introducing some type of centralization of
information so that the agents can coordinate more effectively.

3.6. Summary

Looking at modern RL algorithms, it is dif�cult to cleanly sepa-
rate them into different categories. Many of the most successful
approaches combine different concepts, resulting in an algorithm
that is, technically speaking, actor-critic and off-policy. That being
said, if we are content with the de�nitions being fuzzy, we can still
gain useful insights about the differences between them.

Typically, value-based algorithms are also off-policy, and enjoy
higher sample ef�ciency compared to policy-based ones. This is
because any environment transition, once generated, can be used in
perpetuity in multiple gradient updates. Conversely, policy-based
algorithms like PPO make it possible to perform fewer gradient
updates, because they involve optimizing the objective function
directly through gradient ascent. This indicates that value-based
methods can be better when it is dif�cult to obtain additional data,
whereas policy-based methods can often be trained with smaller
hardware needs, as they require fewer network updates.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

4. Single-agent RL Algorithms

In this section we provide descriptions of the most important mod-
ern RL algorithms. Due to the large quantity of different methods
that appeared in the recent years, this is not meant to be a com-
prehensive list of all algorithms that could be applied in character
animation, but rather the ones with the most relevance, either to
this application in speci�c, or for the �eld in general. We also pro-
vide a suf�cient amount of detail for the reader to grasp the main
ideas of the algorithms, but refer them to the source papers for the
remaining information. Speci�cally, we do not aim to include suf-
�cient information that would make it possible to reimplement the
algorithms without referring to the main paper or existing imple-
mentation, as that tends to be a very complex process, with many
details being important.

4.1. DQN

The �rst algorithm we discuss is Deep Q Network
(DQN) [MKS� 15], which gained prominence when it was
used to master a suite of Atari games, achieving superhuman
performance in some of them, drawing signi�cant attention to the
�eld. It is a prime example of a Value-based, Off-policy algorithm,
and is remarkably simple in its basic form, allowing for a plethora
of modi�cations which we discuss further in this section. DQN is a
modern version of the older Q-Learning algorithm [WD92] which
relies on the same principles, but only works on tabular domains
(i.e. with a �nite number of states and actions).

In DQN, the agent is de�ned by a state-action value function
Q(s;a), represented with a neural network, which is then trained to
approximate the real optimal Q function of the environment. This
is achieved by performing gradient descent on a Bellman loss func-
tion, de�ned as

L i(qi) = E
s;a� r (�)

h
(yi � Q(s;a;qi))

2
i

(18)

yi = E
s;a� r (�)

s0� T(s;a)

�
R(s;a) + gmax

a0
Q(s0;a0;qi� 1)

�
(19)

wherei is the current training iteration,qi are the weights of the
neural network, andr is the probability distribution over state-
action sequences according to the behavior policy. Intuitively, the
network is trained in a way similar to supervised learning, with the
target being the empirical Q value of a given state-action pair, ob-
tained by executing the policy and estimating the future utility us-
ing the same current Q function estimate. Typically, an automatic
differentiation software is used to �nd the gradient of the loss func-
tion with respect to the network weightsq, leading to the actual
parameter update proportional tor qL (q)

In order to ensure suf�cient exploration, DQN usese-greedy
sampling. This means that given a value ofe 2 [0;1], then while
collecting data for optimization, the agent will choose a random
action with a probability ofe, and the optimal action (according to
the current Q function estimate) with a probability of 1� e. Com-
monly, e is treated as a constant during a single training iteration,
and progressively reduced to 0 as the training proceeds.

DQN also uses a replay buffer – the collected data is stored and
reused throughout the training, which is possible because DQN is
an Off-policy algorithm. So the general �ow of the algorithm is as
follows. First, collect a batch of data using the current behavior pol-
icy (de�ned by the weightsqi and some value ofe), and add that
data to the persistent replay buffer. Then, sample some data from
the replay buffer, and perform gradient updates according to Equa-
tion 18. Repeat this process, updating the weights and decreasinge
until convergence.

A crucial limitation of the DQN algorithm lies in the max opera-
tor of Equation 19. With a discrete action space, �nding the optimal
action is easy – simply evaluate the function for each action, and
then choose the best one. However, when dealing with continuous
action spaces, this turns into a potentially non-trivial and nonlin-
ear optimization problem, which in unfeasible to solve each time
the agent needs to choose an action, which means that effectively,
DQN is limited only to discrete action spaces. This can be avoided
by changing the action space through discretization, or changing
the algorithm (see Section 4.8).

4.2. Rainbow

Over the last few years, many modi�cations of the core DQN
algorithm have been developed, aiming at various improvements
to its performance. Six of them were combined in theRain-
bow [HMvH � 17] algorithm:

1. Double Q-Learning [vHGS15]
2. Prioritized Experience Replay [SQAS16]
3. Dueling Networks [WSH� 16]
4. Multi-step Learning [Sut88]
5. Distributional RL [BDM17]
6. Noisy Nets [FAP� 17]

The main ideas of them are as follows.Double Q-Learning
trains two neural networks, decoupling the action selection from
evaluation, in order to mitigate the problem of the learned Q net-
works overestimating the utilities.Prioritized Experience Replay
changes the way in which old experience is sampled to optimize the
Q network, so that more informative samples (i.e. ones with large
updates) occur more frequently.Dueling Networkshave two com-
putation streams, one for the value, and one for advantage, with
some of the weights shared between them.Multi-step Learning
involves a different way of bootstrapping the future rewards, by
looking a few steps ahead (as opposed to just one).Distributional
RL has the algorithm learn to predict the distribution of rewards,
as opposed to just the mean reward itself. Finally,Noisy Netsim-
prove exploration by using partially stochastic linear layers. For
further details on each of these modi�cations, we refer the reader
to the relevant papers.

Overall, Rainbow agents generally train faster and reach a higher
performance than the baseline DQN agents. This comes at the
cost of implementation complexity, with only some of the standard
frameworks supporting it (see Section 9), whereas DQN is very
common, and relatively easy to implement in its basic form even
for beginners.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

4.3. REINFORCE

Similarly to how DQN is the simplest Value-based algorithm,RE-
INFORCE [Wil92,SMSM99] is the original Policy-based method
that is used with neural networks as function approximators. In its
simplest form, it is a direct implementation of the Policy Gradient
Theorem (see Section 2.2.1). It involves training a neural network
to directly approximate the optimal stochastic policyp: S ! DA ,
so that the expected total reward is maximized. This process is per-
formed in an On-policy manner, with a fundamentally simple basic
training loop:

1. Execute the policy and collect a batch of experience.
2. Perform a single gradient update of the policy and discard the

data.
3. Repeat (1) and (2) until convergence.

REINFORCE can employ some improvements to a naive im-
plementation of the Policy Gradient Theorem. Recall the general
policy gradient estimate:

ĝ =
1

jDj å
t 2D

å
t

r q logpq(at jst)R(t) (20)

While the rewardR(t) is computed for the entire trajectory, it
is reasonable that when considering the action at a stept0 > 0, we
disregard the rewards obtained before, i.e. fort < t0, since the ac-
tion att0 could not have affected them. Furthermore, subtracting a
state-dependent baseline from the reward does not change its ex-
pectation, which means we can use theadvantageinstead, as de-
�ned in Section 2.3. This is useful as it decreases the variance of
the gradient estimation, leading to a faster and more stable training
procedure.

The policy trained by REINFORCE is stochastic, which means
that it outputs a distribution over actionsDA rather than a single
action. During training, the agent samples an action from the distri-
bution in accordance with the policy gradient theorem. During de-
ployment, it might be desirable to use the deterministic optimal ac-
tion (i.e. maxa2A pq(�js)) for improved stability and predictability
of the agent. Typically, a stochastic policy with continuous actions
is modeled by a Normal (or Multivariate Normal for multidimen-
sional action spaces) distribution. The neural network then outputs
the mean actionµ, and the variances2 under the assumption that
the individual components of the action vector are uncorrelated. Al-
ternatively, a global, state-independent variance can be maintained
in the model, and adjusted during the training. In the case of dis-
crete actions, the policy uses a Categorical distribution, with the
neural network outputs corresponding to their logits. Mixed action
spaces are also possible, and can be modeled as joint distributions.

REINFORCE, as well as the algorithms based on it, can be
trained as Actor-Critic algorithms. The Actor is the policy network
pq which is responsible for the actual decision making, while the
Critic Vq is trained using regular supervised learning techniques,
and is responsible for the value estimation in computing the advan-
tage.

4.4. TRPO

Trust Region Policy Optimization (TRPO) [SLA� 15] is based on
REINFORCE combined with the notion of a Natural Policy Gradi-
ent [Kak01]. It aims to improve the amount of utility that the agent
can obtain from a single batch of data. Recall that REINFORCE
can only perform a single gradient update with a batch of data, usu-
ally with a constant or decaying learning rate. If the learning rate is
too large, a small change in the policy weights can have a large im-
pact on the behavior of the agent, making it dif�cult to tune while
still maintaining good training ef�ciency.

In TRPO, there are several approximations that deviate from
the theoretically-justi�ed REINFORCE algorithm, but instead en-
able better practical performance. The key idea is thetrust region,
which corresponds to a constraint on the allowed KL divergence
between policies in consecutive training steps. The general (theo-
retical) TRPO update in the training stepk+ 1 is:

qk+ 1 = argmax
q

L (qk;q) (21)

s.t.D̄KL(qjj qk) < d (22)

whered is a hyperparameter de�ning the size of the trust region,
andL is the surrogate advantage:

L (qk;q) = E
s;a� pqk

�
pq(ajs)
pqk(ajs)

A(s;a)
�

(23)

which measures how the new policy performs compared to the old
one. The most important feature of this approach is that theoret-
ically, the KL divergence constraint ensures monotonic improve-
ments with a suf�ciently smalld, while still being more sample-
ef�cient than REINFORCE.

Due to the argmax operator in Equation 21, each step is a con-
strained optimization problem, which is infeasible to solve hun-
dreds or thousands of times throughout the training. For this rea-
son, the actual algorithm uses additional approximations, resulting
in an ef�cient, but complex Policy Gradient method. Due to this
complexity, as well as the fact that other methods can be applied on
minibatches of data and are more ef�cient (see: PPO, Section 4.5),
TRPO is rarely used in practice.

4.5. PPO

Proximal Policy Optimization (PPO) [SWD� 17] is the succes-
sor to TRPO, which through additional simpli�cations and approx-
imations achieves comparable performance, but with a signi�cantly
simpler implementation. It is the de facto standard Policy Gradient
algorithm at the moment, and is supported by all major libraries.

Its core idea is to take several gradient update steps with an im-
portance sampling term, without making the policy deviate too far
from the original behavior policy. There are two main variants of
PPO: PPO-Clip and PPO-Penalty. The former introduces a clipping
term to the relative action probabilities in order to disincentivize
large policy changes, as measured by KL divergence. The latter

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

adds a penalty term to the loss function for the same effect. In prac-
tice, the PPO-Clip variant is more commonly used. Their respective
loss functions are as follows:

LCLIP(q) = E[min(rt (q)At ;clip(rt (q);1� e;1+ e)At)] (24)

LKLPEN(q) = E
�
rt (q)At � bKL[pqold (�jst);pq(�jst)]

�
(25)

whereeis a hyperparameter,rt (q) = pq(at j st)
pqold (at j st)

is the probability ra-

tio of the action, andb is a coef�cient which is adaptively adjusted
during the training (if using the Penalty variant).

PPO typically uses an entropy bonus to improve exploration.
This means that there is an additional term in the loss function pro-
portional to the entropy of the policypq, resulting in the policy
maintaining some randomness, even at the cost of ef�ciency.

PPO is an Actor-Critic algorithm, with the Critic being responsi-
ble for value estimation that is then used to compute the advantages.
The Critic network is typically trained by performing gradient de-
scent on a Mean Square Error loss function between its outputs,
and the empirical returns observed in the collected data.

While PPO is typically considered as an On-Policy algorithm,
that is not entirely accurate. A single PPO update typically involves
several gradient updates, often performed on minibatches of expe-
rience, after which the data is discarded as is the case in REIN-
FORCE. This means that while the data can be reused, it can only
be done in a very limited way, unlike typical Off-Policy algorithms.

It is worth noting that policy-gradient algorithms (REINFORCE,
TRPO, PPO), tend to be sensitive to the implementation details
which we omit from this survey. This phenomenon is analyzed
in three large-scale studies, to which we refer interested readers:
[HIB � 17,EIS� 20,ARS� 20].

4.6. A3C, A2C

The Asynchronous Advantage Actor Critic (A3C) [MBM � 16]
algorithm, and its synchronous equivalentAdvantage Actor Critic
(A2C) [WML � 17] are largely of historical value now. The key idea
of A3C is using multiple parallel copies of the environment, from
which the data can be collected asynchronously, without needing
to synchronize them between episodes, or between individual steps.
This is meant to improve training ef�ciency by eliminating the time
when an individual worker has to wait for the main process to col-
lect their experience and perform a gradient update.

When researchers continued working with A3C, they discovered
that the asynchrony was not a necessary component, but rather an
implementation detail, so they developed a simpli�ed, synchronous
version named A2C. This algorithm, in its essence, is very similar
to REINFORCE with speci�c details such as using multiple parallel
copies of the environment, and using a learned baseline for advan-
tage estimation (which is not the original intent of REINFORCE,
but is nevertheless an option in it).

4.7. GAE

While it is not a Reinforcement Learning algorithm in the same
sense that DQN and PPO are,Generalized Advantage Estima-

tion (GAE) [SML� 18] is a method that can be applied to any al-
gorithms which use the notion of advantage. It is heavily based on
the concept of TD-lambda [Sut88], and can be seen as its extension
using Advantages. In the simplest sense, given a trajectory with re-
wardsrt and a value estimation at each stepVt , we de�ne theMonte
Carlo advantage as:

At = å
i

girt+ i � Vt (26)

which is to say that we compute the expected total reward obtained
by the agent, and subtract its estimated value. To use this expres-
sion directly, we need a full episode, which in certain environments
might be infeasible or inef�cient. Furthermore, as the sum of re-
wards depends on many decisions that the agent has yet to take
in the future, the variance of this advantage estimation tends to be
very large.

An alternative way is usingTemporal Difference (TD) estima-
tion by bootstrapping the expected returns, using the value function
itself. Like before, given the rewardsrt and value estimationsVt , we
de�ne the TD advantage, or one-step advantage, as:

A(1)
t = rt + gVt+ 1 � Vt (27)

With an unbiased value estimator, the expected value of this ex-
pression is the same as Equation 26. At the same time, the variance
can be signi�cantly lower due to the lack of direct dependence on
future rewards. With a biased value estimate, this becomes an ex-
ample of the classic bias-variance trade-off, prevalent in Machine
Learning.

Notice that intermediate n-step advantages can be de�ned by
simply delaying the bootstrapping:

A(2)
t = rt + grt+ 1 + g2Vt+ 2 � Vt (28)

A(n)
t =

n� 1

å
i= 0

h
girt+ i

i
+ gnVt+ n � Vt (29)

which introduces a wide range of possible advantage estimation
methods. What GAE proposes is using all n-step advantage esti-
mates, weighted exponentially with a factor ofl 2 [0;1]:

AGAE
t = (1� l)(A1

t + l A2
t + l 2A3

t + : : :) (30)

This turns out to have a simple analytic expression that can be
computed with a single pass algorithm. Empirically, GAE often no-
ticeably improves the performance of RL algorithms, and is the de
facto standard for advantage estimation in Actor-Critic algorithms.

4.8. DDPG

An algorithm on the boundary between Value-based and Policy-
based methods is theDeep Deterministic Policy Gradient
(DDPG) [LHP� 15]. It is based on the notion of a Deterministic
Policy Gradient [SLH� 14], which is the gradient of a state-action

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

value function with respect to the action. It can also be seen as an
adaptation of the DQN algorithm to continuous action spaces.

In DDPG, we train two separate networks – a state-action value
network Qf : S � A ! R, and a (deterministic) policy network
pq : S ! A . The value network is trained in a way similar to DQN,
with some tricks such as using a replay buffer and a target network
to stabilize the training. The key difference lies in the max operator
of Equation 19, which is not trivial with a continuous action space.
This is where we use the second, policy network, trained to predict
the optimal action according to the reward function. The Q network
is optimized to minimize the following loss functions:

L(f) = E
h�

Qf (s;a) � y(r;s0;d)
� 2

i
(31)

y(r;s0;d) =
�

r + g(1� d) max
a0

Qf (s0;a0)
�

(32)

where(s;a; r;s0;d) are the transitions in the replay buffer, withs;s0

being the current and next state,a the action that was taken,r the
reward, andd is equal to 1 if the state was terminal, and 0 otherwise.
Then, the policy is optimized using gradient ascent to maximize the
following objective:

L(q) = E
�
Qf (s;µq(s))

�
(33)

This can then be differentiated using the chain rule, giving the pol-
icy gradient of:

r qL(q) = (r aQf (s;a)) � (r qµq(s)) (34)

Overall, DDPG can be seen as the simplest way of adapting
DQN to continuous action spaces, without having to discretize
the action space. Because it is off-policy, it can be more sample-
ef�cient than competing on-policy algorithms, making it suitable
for environments in which it is dif�cult to collect large amounts
of data. However, its asymptotic performance is often worse than
that of competing on-policy algorithms like PPO, which leads to its
limited practical use in character animation.

4.9. TD3

Twin Delayed DDPG (TD3) [FvHM18] is to DDPG what Rain-
bow is to DQN – it introduces a series of tricks that signi�cantly
improve the algorithm's performance. The main changes are as fol-
lows:

1. Clipped Double Q-Learning
2. Delayed Policy Updates
3. Target Policy Smoothing

Clipped Double Q-Learning works similarly to Double Q-
Learning described in Rainbow (Section 4.2, using the smaller
value of the two networks' outputs to prevent value overestima-
tion. Delayed Policy Updatesinvolves performing policy updates

less frequently than Q function updates. Finally, withTarget Pol-
icy Smoothing, noise is added to the target action, so that it is more
dif�cult for the policy network to exploit errors in the Q function.

4.10. SAC

Soft Actor-Critic (SAC) [HZAL18] is in many ways similar to
TD3, in that it is a modi�cation of DDPG with certain changes
introduced in order to improve its performance. Primarily, it uses
entropy regularization by adding a term proportional to the policy's
entropy to its optimization objective. This encourages the policy
to remain stochastic, increasing exploration. Similarly to TD3, it
uses Clipped Double Q-Learning, minimizing the Bellman loss of
DDPG. However, there is no explicit policy smoothing, as SAC
trains a stochastic policy instead of a deterministic one. As a re-
sult, the additional regularization is unnecessary, since actions are
sampled from a nontrivial distribution.

Speci�cally, SAC learns three functions in parallel: the policy
pq, and two Q functionsQf 1, Qf 2, with the usual double Q-learning
approach. Since they are trained on an entropy-regularized ob-
jective, the Q function optimization objective takes the following
form:

L(f) = E
h�

Qf i (s;a) � y(r;s0;d)
� 2

i
(35)

y(r;s0;d) = r + g(1� d)
�

min
j= 1;2

Qf j (s
0; ã0) � a logpq(ã0js0)

�
(36)

whereã0 � pq(s0), anda > 0 is the entropy regularization coef�-
cient. Notice the similarity to Equations 31 and 32 of DDPG, with
the key difference being that the objective now has a term propor-
tional to the entropy of the action distributiona logpq(ã0js0), and
the action used for computing the Q value of the following step is
taken directly from the behavior policy.

When it comes to policy learning, as SAC learns a stochastic
policy, it must output a distribution over the action space. The op-
timization takes the following form:

L(q) = E

�
min
j= 1;2

Qf j (s; ã
0) � a logpq(ã0js)

�
(37)

where ã0 � pq(s0). Notice again the similarity to Equation 33,
which con�rms that SAC is, in its essence, an updated and im-
proved version of DDPG.

It is important to keep in mind that while this is a general outline
of the algorithm, there are many details that can signi�cantly affect
its performance. For more information on this, we refer the reader
to the original paper, as well as the existing open-source implemen-
tations (Section 9.3).

4.11. Learning from Data

As a general rule, Reinforcement Learning does not need expert
data to train agents, instead using an environment that the agent

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

can interact with. In some cases, however, it may be bene�cial to
use expert data to augment the learning process, or even eliminate
the use of a simulation whatsoever. This is often referred to asImi-
tation Learning, because the agent learns to imitate the actions of
an expert whose experience is shown to it.

Behavior Cloning (BC) [BS99,RGB11,DBH16] is the simplest
way to perform Imitation Learning. Its core idea is to treat Imitation
Learning as a supervised learning problem, which given a dataset
consisting of observations and actions, learns to map the former to
the latter by training a classi�er or a regressor.

By including a model training phase in which the agent can in-
teract with the environment, we can remove the requirement that
the dataset contains the actions [TWS18]. This signi�cantly sim-
pli�es the data required to perform imitation learning, and enables
learning by simply observing someone, much like humans do in the
real world. However, the quality of the resulting behaviors is typi-
cally lower due to the fact that the dynamics model is only trained
with on-policy data, which means that out-of-distribution errors are
likely to occur. For this reason, if the data about actions is available,
it is better to use it instead of relying only on observations.

The Generative Adversarial Imitation Learning
(GAIL) [HE16] algorithm represents the main alternative to
Behavior Cloning. It relies on the concept ofInverse Reinforce-
ment Learning (IRL) [ZMBD08], which means learning the
reward function from demonstrations (as opposed to regular RL,
where the agent learns a policy, or generates demonstrations, given
the reward function). This, combined with the notion of adver-
sarial learning known fromGenerative Adversarial Networks
(GAN) [GPAM� 20], and a PG-based update rule (originally
TRPO) produces an ef�cient algorithm for Imitation Learning.

A common practice is using Imitation Learning methods in con-
junction with standard, reward-based RL algorithms [GGL� 20].
This can be done by including a term derived from Imitation Learn-
ing either in the reward function, indirectly encouraging the agent
to act similarly to the data, or by including it directly in the opti-
mization objective.

4.12. Summary

We described the most noteworthy RL algorithms used in single-
agent environments. From a practical point of view, we recommend
either using the on-policyPPOwith GAE for advantage estimation,
or the off-policySAC, which are the most popular algorithms of
their respective categories. If the training data is dif�cult to obtain,
SAC is typically better as it can reuse the data enabling higher sam-
ple ef�ciency. On the other hand, PPO often offers faster training
in terms of the wall time by using parallelism in data collection and
larger performance improvements per gradient update. If working
with discrete actions, Rainbow or another version of DQN is also
a viable choice. Finally, if one wants to incorporate real data in the
training process, both BC and GAIL are strong options and can be
integrated with other algorithms.

5. Multiagent RL Algorithms

Here, we describe the algorithms that are adapted speci�cally for
multiagent environments. Those are typically based on existing

single-agent algorithms, with modi�cations that improve the train-
ing process by abusing the speci�c multiagent structure of the prob-
lem.

5.1. Independent Learning

Any single-agent algorithm can be used in a multiagent scenario
by using Independent Learning, with the resulting algorithms
typically calledIPPO, IDDPG etc. This entails treating the other
agents as parts of the environment, possibly including information
about them in the observation, and then simply training as if it were
a single-agent task. A simple way to accelerate this training process
when all agents are identical is treating them ashomogeneous, also
calledParameter Sharing [TGH� 20]. With this approach, every
agent receives their own observation and takes their own action,
but they share the underlying neural network, and their experience
can be combined for the training. Otherwise, if each agent has its
own separately trained neural network, it is referred to asheteroge-
neous. It is possible to introduce some degree of heterogeneity by
including an agent indicator in the agent's observations, as shown
by Gupta et al. [GEK17].

5.2. MADDPG

MultiAgent DDPG (MADDPG) [LWT � 20] is an extension of the
DDPG algorithm to explicitly use the structure of multiagent envi-
ronments in the training procedure. It relies on the idea ofCentral-
ized Training, Decentralized Execution (CDTE), which means
that the algorithm can use global or hidden information, as long as
the resulting agent only needs access to its own observations.

In multiagent environments, there are two main pieces of infor-
mation that is not available during execution – other agents' ob-
servations (or the global state), and the actions they take. How-
ever, when training in a simulation that we have total control over,
these quantities are readily available, and so can be used in an
Actor-Critic paradigm to optimize the Critic. Then, in the execu-
tion phase, only the agent's local observation is necessary for the
Actor network to choose the action.

5.3. MAPPO

MultiAgent PPO (MAPPO) [YVV � 21] is the result of extending
the PPO algorithm analogously to the difference between DDPG
and MADDPG. Because PPO is an Actor-Critic algorithm, the
Critic similarly use centralized information such as other agents'
observations and actions, while only the Actor is actually involved
in the decision making during evaluation.

Since the concept and the name of MAPPO is generic, there are
other works that introduce a similar extension [GTZL20,LWL� 20,
HHL21]. The details are different between those papers, but in the
most robustly evaluated version of it uses the following �ve tricks:

1. Value normalization through a running mean, for robustness
with respect to the reward scale

2. Value function input includes both global and agent-speci�c fea-
tures, pruned to reduce the input dimensionality

3. Data is not split into minibatches, and the algorithm uses rela-
tively few training epochs

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

4. The clipping factor is tuned as a trade-off between training sta-
bility and fast convergence

5. Using death masking (inputs for dead or deactivated agents)
through zero states with agent ID

The resulting algorithm delivers results comparable with more
sophisticated off-policy algorithms, while being viable to train us-
ing a single machine with one GPU.

5.4. QMIX

QMIX [RSdW� 18] and its derivatives are a family of algorithms
that adapt Q-learning in cooperative scenarios, so that it can use
centralized training, while maintaining the option to perform de-
centralized execution. The core idea is that the joint state-action
value is a monotonic function of the state-action values of each in-
dividual agent.

Consider the two extremes in terms of centralizing Q value esti-
mation. On one hand, we have fully independent Q learning, where
each agent optimizes their own reward, which can be a viable op-
tion as described in Section 5.1. On the other hand, we can also
consider fully centralized Q learning, with a single network pro-
cessing all agents' observations, and outputting their joint action. A
simple middle ground can be found in Value Decomposition Net-
works (VDN) [SLG� 17], where a joint Q function is expressed as
a simple sum of the agent's individual Q functions:

Qtot(s;a) = å
i

Qi(s
i ;ai) (38)

QMIX introduces additional �exibility to this approach. It re-
places the summation operator with an arbitrary function of the in-
dividual values, with the only restriction being that it is monotonic
with respect to all its inputs:

¶Qtot

¶Qi
� 0;8i 2 I (39)

This is obtained by using amixing network to representQtot.
The weights of the mixing network are the outputs of a set of hy-
pernetwork [HDL16] conditioned on the environment state. This
whole setup can be trained with signi�cant information sharing be-
tween the cooperating agents, while in the execution phase, each
agent only requires its own Q functionQi .

Due to the popularity and effectiveness of QMIX, researchers
have developed various modi�cations aimed at improving its per-
formance even further [ZLS� 20, WRL� 21, YHL� 20, RFPW20,
SKK� 19]. However, recent work suggests that using regular QMIX
with appropriate implementation details is enough to achieve re-
sults comparable or even superior to the more complicated algo-
rithms [HWH� 21].

5.5. Summary

When working with multiagent problems (e.g. crowd simulation),
we typically recommend using one of the single-agent algorithms

and applying it with anIndependent Learning approach as a
starting point, with eitherIPPO or ISAC following the notation
from Section 5.1, as well asParameter Sharing. This is signi�-
cantly simpler in implementation than using algorithms that intro-
duce centralized communication, and can often yield competitive
results. While adding some additional communication or central-
ization may be bene�cial, MADDPG tends to be dif�cult to train in
new environments.

6. Skeletal Animation

Individual characters can be animated using kinematic or physics-
based methods. For the former case, the action space directly con-
sists of kinematic poses or existing motion clips, and are de�ned
based on motion capture data. In contrast, physics-based methods
have action spaces that directly or indirectly produce joint torques
that drive the motion. In this section, we �rst provide an abridged
overview of RL as applied to kinematic methods. We then shift
our focus to physics-based methods. This begins with a general
summary of the many nuances involved when using RL to control
physics-based character movement, given that the default motions
produced by RL algorithms for humanoid characters in the RL lit-
erature are usually of low quality as compared to what is needed
for computer animation applications. We then categorize and re-
view many of the recent methods and results for RL-based physics-
driven character animation.

6.1. RL for Kinematic Motion Synthesis

RL has a long-standing history of being used to learn kine-
matic controllers from motion capture data. Here we provide a
brief overview of work in this direction. Motion generation can
be framed as an RL problem where actions correspond to the
choice of motion clips, as �rst applied to automatically-constructed
graphs [AF02, KGP02, LCR� 02] and then in ways that were bet-
ter tailored to locomotion tasks, e.g., [LL06, TLP07]. Lee et
al. [LWB� 10] later introduced the concept of continuous motion
�elds in support of a data-driven state-dynamics model. Optimal
actions on this model are then learned via a table-based represen-
tations for the policy and value function. Modern motion matching
methods can be seen as a short-horizon version of motion-�elds.
Ling et al. [LYZ� 20] learn a latent action space using autoregres-
sive variational autoencoders to de�ne character controllers and
thereby enabling optimal goal-based animations.

6.2. The Many Challenges Beyond the Choice of Algorithm

A considerable amount of thought is typically required to de�ne
a character movement task, articularly in a physics-based setting.
This begins with the design of the character, which involves mak-
ing decisions related to joint torque limits, contact friction, mass
distribution, joint limits, joint damping, simulation and control time
steps, and more. The choice of action space can also have implica-
tions for the learned results. Available options include joint torques,
joint PD-target angles, joint PD-target angle offsets from an avail-
able reference motion, muscle-based activations, or more abstract
actions for hierarchical control approaches. It is also sometimes

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

possible to learn simpli�ed actions spaces that avoid redundan-
cies or that sample from a reduced-dimensionality action manifold,
which can possibly be learned as well. The de�nition of the state of
a character that is provided to the policy can also have a signi�cant
impact. The pose can be represented as Cartesian joint locations, or
in a more traditional form consisting of a root position and orienta-
tion, followed by a set of internal joint angles. Contact information
can also be an important part of the state.

Next, the task rewards need to be designed, which may need
to balance generic and possibly temporally-sparse rewards related
to the goals, rewards that encourage energy-ef�cient behavior, and
shaping rewards that help guide the solution in what can otherwise
be an exceedingly-large search space. Rewards also tend to work
better when mapped to a �xed range, as commonly done using a
negative exponential. Episode termination criteria are also impor-
tant, as they effectively constrain the search space and, by virtue of
providing no further rewards, also provide an implicit negative task
reward. Reward terms can be combined, using a weighted addition,
e.g., [PBYVDP17] or in a multiplicative fashion, e.g., [PRL� 19],
and these choices can strongly impact the �nal learned policies.

The optimization criteria to de�ne a natural human or animal
motion are dif�cult to determine, and thus a natural alternative is
to instead seek to imitate motion capture data, either as individual
motion sequences, or as distributions using adversarial approaches.
The choice of initial states for a task is important, as it can affect
the task dif�culty [RTvdP20], and can also simplify the learning,
as in the case of a motion imitation task where the initial states
can be drawn from the given reference trajectory [PALvdP18].
Curriculum-driven learning can enable an easy-to-dif�cult learning
order for a task [XLKvdP20]. Policies can be "warm-started" from
existing solutions. Prior knowledge should be used where possi-
ble to set the relevant variances and exploration rewards. External
forces can also be allowed early on in the optimization [YTL18],
and then slowly withdrawn. Hierarchical learning can also be lever-
aged, by �rst learning low-level control that operates at a �ne time
scale, followed by higher-level control that allows for long-horizon
tasks [PBYVDP17].

The algorithms themselves are challenging to work with, with
a typical improve-and-test debugging iteration requiring between
hours and days, depending on the task dif�culty and the availabil-
ity of compute. In many cases, wall-clock time is a more important
consideration than sample-complexity, and algorithms whose com-
mon implementations support a high-degree of parallelization, e.g.,
PPO, are then sometimes preferred over that are more dif�cult to
parallelize, e.g., SAC. Tuning the algorithm hyper-parameters plays
an important role in the learning ef�ciency and success, and may
require grid search or other hyper-parameter optimizations. The re-
sults of model-based trajectory optimization can be used to guide
policies towards suitable solutions for dif�cult tasks. Debugging
RL tasks is also an important skill, and points to initially working
with simpli�ed or more-constrained systems, visualizing reward
terms, understanding the limitations of physics engines, and much
more. More speci�c algorithmic features to consider include the
use of a Huber loss instead of the conventional quadratic loss for
Q-learning, considering various forms of conservative Q-learning,
choice of temporal-difference horizon, and more.

Many simulated robotic control environments are standard
benchmarks for RL algorithms. MuJoCo [TET12b] and PyBul-
let [CB16], two of the most commonly used physics simulation
engines in RL, provide several robot models with a Gym [BCP� 16]
interface. These robots range from abstract ones like Hopper
or Reacher, through animal-like Ant and HalfCheetah, to more
human-like ones like Humanoid and Walker2d. While not realistic,
they share many of the principles of skeletal character animation.

We next review work that uses reinforcement learning to develop
a variety of full-body motion skills for physics-based characters.
These leverage many of the insights described above.

6.3. RL for Individual Character Skills

For the remainder of this section, we further categorize methods
into: (a) those which use motion capture data, typically as a key
part of the imitation objective, and (b) methods that use a more gen-
eral “pure” learning objective. In both cases, there exists a variety
of prior art that is entirely model-based or uses other optimization
methods. However, for our purposes here, we restrict ourselves to
methods that use reinforcement learning for motion imitation.

6.3.1. Motion imitation RL methods

One of the �rst RL methods to be able to successfully imitate mo-
tion capture data, including highly dynamic motions such as �ips,
uses data from a stochastic planning method, �rst developed as
an open-loop trajectory optimization method [LYvdP� 10]. Build-
ing on this type of method, the work of [LPY16] proposed to use
data from multiple runs of the stochastic trajectory optimizer to
then learn a state-conditioned feedback policy. The desired motion
sequence is divided into a sequence of 0.1 s duration control frag-
ments, and for each such fragment computes a multivariate linear
regression of the actions with respect to the state. This yields a sim-
ple linear policy for actions as a function of the state, for the du-
ration of the control fragment. This model is then able to robustly
imitate walking, running, spin-kicks, and �ips, as well as transi-
tions. Further work has then shown how learned control fragments
can be treated as abstract actions, which can be resequenced us-
ing deep Q-learning [LH17], and can further be adapted to learn
basketball playing skills [LH18].

The use of policy gradient RL methods to imitate human mo-
tion capture clips was �rst explored by Peng et al. [PBYVDP17]
for a variety of walking gaits. This also introduced a hierarchical
reinforcement learning approach, with a low-level policy �rst be-
ing trained to reach target stepping locations while also striving
to imitate the reference motion. A high-level policy then operates
once for every walking step, generating step targets in support of
tasks, including control of a ball with the feet, navigating paths,
and avoiding dynamic obstacles. Peng et al. [PALvdP18] further
develop the imitation learning approach to train controller for a di-
verse set of motions, including highly-dynamic spin kicks and �ips
for humanoids, sequencing such motions, and using the same im-
itation approach for quadruped controllers. Imitation-based learn-
ing of a wider variety of quadruped gaits, including sharp turns,
is demonstrated in [PCZ� 20], along with successful transfer to
quadruped robots. Peng et al. [PMA� 21] use ideas from adversar-
ial imitation learning by combining a reward function to control the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

A. Kwiatkowski et al. / A Survey on Reinforcement Learning Methods in Character Animation

high-level behaviors, with low-level controls speci�ed with an un-
structured dataset of motion clips. This method can be used on both
humanoid and non-humanoid models. It produces high-quality an-
imations that match tracking-based methods, but the training pro-
cess can still be prone to mode collapse, as is common in GAN-
like algorithms. Some of these examples in Imitation Learning are
shown in Figure 3. The choice of action space is also shown to
have an impact the speed and quality of imitation-based learn-
ing [PvdP17].

Computer vision based pose tracking can also be used as a source
of motions to imitate, allowing robust control policies to be learned
from video clips [PKM� 18]. Isogawa et al. [IYOK20] construct
an end-to-end pipeline that converts Non-Line-Of-Sight measure-
ments to 3D human pose estimation by employing a diverse set of
techniques, including an RL-based humanoid control policy. Yuan
et al. [YWS� 21] introduce the SimPoE framework, which trains an
RL agent to control a physics-based character to estimate plausible
human motion, while conditioning it on a monocular video.

The majority of the works described above develop control poli-
cies that only reproduce single clips, or a speci�c set of motion
clips. The motion to imitate plays a role via the reward, but is not
provided to the policy as an input. The policies are conditioned on
a time or motion phase. An important next step has been to repro-
duce a richer variety of motions by conditioning the policy on a
short time window of the future motion to imitate. This can also
be seen as a generalized form of learned inverse dynamics, with a
longer anticipatory window as needed to make motion corrections
for more dif�cult motions. Chentanez et al. [CMM� 18] �rst de-
velop this type of conditioning and apply it to large motion datasets.
Signi�cant further developments follow from improvements that
target scalability, motion transitions, motion quality, generalization,
and learning ef�ciency [PRL� 19, BCHF19, WGSF20, WGH20].
These methods are further extended to work with muscle-based
actuations [LPLL19], a large diversity of body shapes [WL19],
and producing large motion variations even from a single motion
clip [LLLL21]. Other work shows how to allow for more �exi-
ble forms of imitation [MYT� 21], and that leverage residual ex-
ternal forces to enable learning more challenging motions [YK20].
Imitation-based controllers can also be used to learn a latent
human-like action space via distillation (“neural probabilistic mo-
tor primitives”), which can then be used as an abstract action space
for new tasks [MTA� 20]. Similarly, Luo et al. [LSCC20] learn a
natural action distributions from reference motions for quadrupeds,
while a GAN-based controller reproduces suitable actions based on
user-input. This is followed by high-level DRL �ne-tuning.

6.3.2. Pure objective RL methods

Reinforcement learning has also been successfully used for full-
body character animation without an imitation objective. Here, the
objective can be framed in terms of rewards that include energy,
progress towards a goal, stylistic hints, and regularization terms.

Model-predictive control (MPC) methods, which iteratively re-
plan and then execute the �rst action, have been successfully em-
ployed for humanoid animation and are a form of model-based RL.
The work of Tassa et al. [TET12a] demonstrated the online use of
iLQG (Iterative Linear Quadratic Gaussian) trajectory optimization

Figure 3: Imitation-based Learning. Proposed methods as
in [PALvdP18] allow to successfully synthesize animations from
motion capture data. In other works, as in [PMA� 21], they combine
such techniques with the possibility of adding low-level behaviours
to control the production of high-complexity animations.

for online control of humanoid characters for a variety of tasks, in-
cluding getting up, using a 0.5 s planning time horizon. Sampling-
based methods can also be used to achieve trajectory optimization
over a �nite planning horizon, and have been explored in detail by
Hämäläinen et al. [HET� 14, HRL15]. Online trajectory optimiza-
tion and policy learning can also be used in a mutually supportive
fashion [RH17], with the policy serving to accelerate the trajectory
optimization, and the trajectory optimization helping to bootstrap
the policy learning. In addition, trajectory optimization can bene�t
from more complex search spaces, for instance by including con-
tact points [MTP12] to improve simultaneously both, trajectory and
policy learning.

Actor-critic methods for RL can more easily tackle motion tasks,
such as locomotion, by being provided with task-speci�c action ab-
stractions. For example, the action space can consist of a discrete
set of existing controllers, with a high-level actor-critic controller
being trained to make a discrete selection among the set of available
controllers at each step of the gait. This setup is used with akNN-
based value function approximator to achieve high-level objectives
by Coros et al. [CBVdP09]. An abstracted, tailored action space
is used by Peng et al. [PBvdP15] to include a continuous action
space as de�ned by a conveniently-parameterized �nite-state ma-
chine controller. AkNN-based actor-critic pair is then used to train
dog-like and bipedal models to traverse variable terrain. Later, Peng
et al. [PBvdP16] develop a mixture-of-experts based Actor-Critic
algorithm named MACE for improved performance on a similar
dynamic locomotion task, this time using deep neural networks for
the actors and critics, and thereby eliminating some of the feature
engineering required by the previous approach.

Can policy-gradient RL algorithms be used with pure learning
objectives to generate natural human movement, as opposed to the
unrealistic frenetic motions commonly seen resulting from popular
RL benchmarks? Yu et al. [YTL18] encourage symmetric and low-
energy motions by appropriately modifying the loss function of the
algorithm, by adding the so called mirror-symmetry Loss to the
usual surrogate loss of PPO. This allows for high-quality motions
without using any imitation of motion examples. This is particu-
larly important for non-humanoid characters for which there is no

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

