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Abstract

This work aims at studying the control of medium manganese austenitic
stainless steels’ mechanical behavior and austenite to martensite transforma-
tion via chemical composition. Six grades of austenitic stainless steel were cast
with chemical compositions variations small enough able to keep relatively con-
stant the stacking fault energy (SFE) value, but high enough to change the
martensitic start temperature Ms. These experiments allow the effect of the
martensite transformation on the mechanical behavior in tension to be com-
pared while the austenitic mechanical behavior is almost unchanged. Tensile
tests were performed at room temperature and at a low strain rate (10−4 s−1).
In-situ magnetic measurement is implemented to quantify the martensite vol-
ume fraction evolution with strain. Strain heterogeneities are detected by digi-
tal image correlation (DIC) analysis. For all grades, stress-strain curves exhibit
Portevin-le-Châtelier (PLC) phenomenon related to localized martensite trans-
formation within the deformation bands. For the two most unstable alloys, a
Lüders plateau is detected at the yield stress. The martensite evolution is mod-
eled using the Olson-Cohen approach, which confirms slower kinetics for the
most stable grades. Moreover, it is shown that the martensite fraction evolves
linearly with stress after a stress threshold function of the austenite stability
represented by Ms. The martensite volume fraction vs stress slope is constant
whatever the composition. This result leads to the development of a coupled
metallurgical/mechanical model which depends on a single parameter Ms re-
lated to the chemical composition.
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1. Introduction

Austenitic stainless steels are widely used in various industrial sectors thanks
to their high formability and good corrosion resistance. Their applications cover
the food industry, industrial equipment, chemical applications, power engineer-
ing, cryogenics, building industry, etc. [1]. More recently, austenitic steels are
becoming increasingly attractive to the automotive sector, which is looking for
alloys combining both a large ductility and a high mechanical resistance with
an ultimate tensile strength (UTS) that could achieve 1.6 GPa [2]. They allow
decreasing the vehicle weight while being able to absorb a significant amount of
energy in case of impact. This can be achieved since deformation mechanisms
in austenite - mainly planar glide and twinning - lead to high strain-hardening.
Higher characteristics can even be obtained with unstable austenitic grades
like AISI 301 in which martensitic transformation occurs during deformation.
Controlling the kinetics of transformation allows for optimizing the couple elon-
gation - UTS.

In addition, it is known that adjusting the chemical composition of the al-
loy leads to a change of Stacking Fault Energy (SFE) that favors or un-favors
strain-induced martensite formation [3]. However, this phase transformation
makes unstable the mechanical behavior [4]. Controlling this martensitic trans-
formation by precise adjustment of the composition of the alloys is therefore
essential, which supposes being able to accurately assess the transformation ki-
netics (for example the evolution of the martensitic phase fraction) under stress.
Several methods are reported in the literature that can be used for the evalua-
tion of martensite volume fraction in unstable stainless steels (see [1, 5, 6] for
comparisons between different techniques). The conventional optical or elec-
tronic microscopy observations allow a global view of the microstructure and
local identification of the martensite fraction. However, they lead to inaccu-
rate estimations since local hardening due to mechanical polishing can induce
martensite transformation and thus overestimate the martensite volume frac-
tion. X-rays diffraction is probably the most widely used method [7–10]. This
technique has also been used to estimate the retained austenite volume frac-
tion in TRIP steels [11, 12]. The martensite volume fraction is deduced from
peak intensities associated with the different phases. Corrections are required to
take account of the crystallographic texture and its evolution during deforma-
tion. Electron Back Scattered Diffraction (EBSD) is another interesting solution
since the phase analysis is coupled with microstructure observations. The quan-
tification remains however very local despite some recent strong improvements
in the indexation, and special care has to be paid for the surface preparation
to avoid any artifact. Electron or neutron diffraction can also be used. Except
for neutron and high energy X-rays available in synchrotron [8–10], diffraction
techniques lead only to a surface evaluation of the martensite fraction. In-situ
evaluations during strengthening with these methods are on the other hand
hardly implemented. Finally, other techniques like acoustic emission monitor-
ing and thermal analysis are reported in the literature to follow the martensitic
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transformation [5, 13].

Martensite volume fraction evaluation by magnetic monitoring has been the
subject of many former studies. Indeed, the α′ martensite is ferromagnetic
while austenite is paramagnetic (considered non-magnetic due to a very small
susceptibility). The most widely used method is probably the saturation method
[14–17]: the material is magnetized using a very high magnetic strength field (H
> 1.0×106 A/m). The main commercial solutions are sigmameter and vibrating
sample magnetometer (VSM). These methods are not suitable for in-situ mea-
surements since high field usually requires high current and large bulky windings
(composed of a large number of turns).

”Low” magnetic field set-up (using magnetic permeability or maximal mag-
netization) is preferred for in-situ measurements [5, 12, 15, 18]: they are based
on permeameters (primary coiling ensuring magnetization and pick-up coil mea-
suring the magnetic flux variations). Some commercial solutions like ferritescope
(or feritscope) can be employed [7, 19]. Other magnetic information extracted
from magnetic hysteresis (remanent induction, coercive field, incremental per-
meability, Barkhausen noise) can also be used [18, 20, 21]. Quantities are how-
ever not proportional to the martensite content. An accurate estimation usually
requires some correction due to demagnetizing effects and usually calibration
by comparisons to a full saturation situation (via high magnetic field or X-rays
diffraction measurements). Relative variation is sometimes preferred [15]. De-
spite these defaults, the main advantage of magnetic solutions is that they can
be easily implemented in a tensile machine. Their high sampling rate compared
to other techniques allows for high strain-rate tests for monotonic and fatigue
monitoring [22].

The main goal of this work is to study the influence of the chemical com-
position on the kinetics of the martensitic transformation induced by the de-
formation. Continuous magnetic measurements during tensile tests ensure an
in-situ quantification of the martensite fraction evolution with respect to the
strain and stress. Variations of austenite stability are obtained thanks to fluc-
tuations in composition fluctuations of very low Ni content austenitic stainless
steels. Section 2 presents the materials and experimental techniques that have
been employed. Experimental results, discussion, and reference modeling are
gathered in section 3. Results obtained lead to the proposition of a simple
macroscopic play model presented in section 4. This model is built from obser-
vations of common kinetics of martensite production between grades.

2. Materials and Methods

2.1. Material and metallography characterization

Six laboratory casts of low-Ni austenitic stainless steels were prepared, by
progressively increasing the total amount of alloying elements. The different
compositions are given in Table 1. They refer as ”ASS xx” (ASS as Austenitic
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Stainless Steel), ”xx” represents the element that is modified compared to the
previous grade in Table 1. Note that the Cr content of ASS Si grade is slightly
lower than for the other modified grades but it does not affect the composition
choice to allow the progressive increase of austenite stability.

Table 1: Chemical compositions (wt.%) of the six casts studied in this work.

Casts Cr Mn N C Ni Si Cu Mo Nb

ASS ref. 13.52 5.75 0.1 0.13 0.41 0.56 2.13 0.017 0.11
ASS Cr 14.32 5.81 0.1 0.13 0.41 0.54 2.14 0.017 0.11
ASS Ni 14.32 5.80 0.09 0.13 1.22 0.55 2.14 0.016 0.11
ASS Cu 14.35 5.78 0.09 0.13 1.21 0.55 2.68 0.017 0.11
ASS Mn 14.28 6.52 0.09 0.12 1.37 0.54 2.74 0.016 0.11
ASS Si 14.10 6.46 0.09 0.13 1.33 1.11 2.73 0.017 0.11

Ingots were first prepared, cast, hot-rolled at austenitizing temperature, and
then cold rolled to obtain 1.5mm thick sheets. The mechanical process is fol-
lowed by an austenitization annealing. They were then quenched to get a full
prior austenite composition.

The stability of austenite is usually evaluated by looking at the theoretical
martensite start (Ms) temperature. Ms represents the initial temperature of
the martensitic transformation, below which the phase transformation occurs.
According to [23], martensite start (◦C) evaluation in austenitic steels follows:

Ms(◦C) = 545− 330(C+N)− 14Cr− 23Mn− 13Cu− 5Mo− 13Ni− 7Si (1)

C, N, Cr, Mn, Cu, Mo, Ni, and Si denote the weight percentage of each
corresponding species. Niobium is not considered in this calculation without
consequence since the niobium content is the same for all casts. It must be
underlined that this temperature gives only a rough and theoretical estimation
of austenite stability, but it allows to rank the casts according to the relative
austenite stability (Table 2). Different other formulas are available in the lit-
erature to calculate Ms and some other authors prefer to use other indicators
such as Md30 [24]. These estimations do not give the same absolute temper-
atures but the relative position from one grade to another is quite the same.
ASS ref. exhibits the highest Ms and consequently the lowest stability. Suc-
cessive increasing of nickel, copper, manganese, and silicon content increases
progressively the austenite stability. Due to their actual composition (Cr, Si)
we observed that Ms is very close for ASS Mn and ASS Si. All next data pre-
sented in the paper have been tabulated using this list.

The Stacking Fault Energy (SFE) estimation is more problematic. On the
one hand, there are several definitions in the literature giving values that are
sometimes different by an order of magnitude. On the other hand, none of these
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Table 2: Martensite start (Ms) temperature and Stacking Fault Energy (SFE) of the casts
studied in this work (according to [23] and [25]).

Casts ASS ref. ASS Cr ASS Ni ASS Cu ASS Mn ASS Si
Ms (◦C) 114 100 93 86 68 67

SFE (mJ.m−2) 8.7 8.9 10.3 10.3 10.8 9.2

definitions takes all the chemical elements of our study into account. Among
the formulations, the one proposed by Pickering and detailed in [26] seems to
refer. A new formulation (equation (2)) has recently been proposed based on
the analysis of former results [25]. Among the significant species, only copper
does not appear in this formula.

SFE (mJ.m
−2

) = 2.2 + 1.9Ni− 2.9Si + 0.77Mo + 0.5C− 0.016Cr− 3.6N (2)

It can be seen that the SFE value is almost constant varying between 9
and 10 mJ.m−2 whatever the cast. Other formulations also give the same kind
of small variations. Copper quantity fluctuations are also sufficiently small to
consider that the SFE would remain insensitive to its inclusion.

2.2. Metallographic observations and X-rays diffraction

The experimental procedure for metallographic observations is as follows:
Samples are cut and then embedded in a resin to be able to observe through
the thickness and along the rolling direction. Surface preparation consists of
mechanical polishing (sandpaper and diamond suspension), followed by elec-
trochemical polishing using a 95% acetic acid and 5% perchloric acid, solution
and a 33V applied voltage for 60 seconds. Beraha etchant containing 0.30 g of
K2S2O5, 20 ml of HCl, and 100 ml of water was used to reveal the material
microstructure, for a duration of about 5 to 7 seconds.

The few X-rays diffraction measurements presented in this work have been
performed using a Brücker θ/2θ diffractometer and a Co shield (λKα = 0.1790
nm - Generator Current=10 mA - Generator Voltage=30 kV) at an angular
velocity of θ̇=0.2875 ◦/min.

2.3. Tensile tests

Several bone-shaped specimens as illustrated in figure 1 have been cut by
eletroerosion machining from e=1.5mm thick sheets for both tensile testing and
magnetic measurements. The double connection radius makes it possible to
avoid a premature rupture in the fillet. The useful zone is of l0=45mm in length
and of d = 7mm in width (width and thickness defining the initial S0 and
current S cross-sections). The small width makes it possible to ensure a defor-
mation mainly concentrated in this area. The deformation during the tests was
calculated in different ways: extensometry, images correlation and also simply
from the machine displacement. These techniques lead to very similar results.
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l=45mm

section=1.5x7 mm
2

Figure 1: shape and size of the tensile test samples used in this work.

Only measurements from the machine displacement (∆l) are presented, which
is consistent with the fact that the in-situ magnetic measurement system does
not allow the use of another technique. All tensile tests have been performed at
strain rate 10−4s−1 using an MTS-810 displacement controlled tensile machine.
Force F and the displacement ∆l are recorded as functions of time allowing
the plot of stress σ vs. strain ε curves using rational definition (equation (3)).
Inelastic strain εin can also be evaluated (equation (3) where Y denotes the
Young modulus).

ε = ln

(
1 +

∆l

l0

)
, σ =

F

S0

(
1 +

∆l

l0

)
, εin = ε− σ

Y
(3)

2.4. Digital Image Correlation

Digital Image Correlation allows the measurement of the displacement field
in the full active zone (of course without magnetic set-up). This method is rel-
evant in the case of strain localization (bands, necking) that may occur during
the test. The DIC software Correli 3.0 developed at LMT has been used [27].
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This technique also allows a more global deformation measurement comparable
to the extensometer measurements or obtained from the machine displacement.

The first step of the calculation is to find the displacement field. This one
is calculated from a comparison between the reference image and the deformed
one (e.g. figure 2a) requiring a mix of black and white speckle on the surface.
The DIC algorithm then locates some characteristic features on the sample sur-
face and calculates their displacement from one image to another [28]. Each
image is first separated into local areas called the region of interest - ROI ). The
displacement of each ROI is calculated using a grey level conservation princi-
ple between the reference configuration and the deformed configuration. DIC
problem resolution is ensured by the resolution of a Finite Element formulation
(mesh illustrated in figure 2b). For a more detailed presentation, readers are
invited to look at the work of [29–31] and at Appendix A for a very short
abstract.

a b

Figure 2: Illustration of pictures acquired during the tensile testing of cast ASS Cu - (a)
reference image and last deformed image; (b) mesh used for DIC and virtual vertical axis (in
yellow) used to extract spatio-temporal quantities.

Once the kinematic field is known for all ROI, the strain field can be obtained
as the symmetric part of the displacement gradient. Results are sometimes noisy
and convergence is sometimes hardly obtained. That’s why a mechanical-based
regularization has been proposed by [31]. This regularization acts as a low-
pass filtering and assumes that high-frequency components of the kinematic
field are most likely due to the ill-posed nature of DIC and its resolution. It
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is based on the mechanical admissibility of the problem, expressed in the sense
of Finite Elements interpolations. In the results presented in the next sections,
regularization has only been employed to fasten the initial convergence process.
Then regularization has been removed for the final convergence steps. Indeed,
regularization is not suitable in the case of strongly localized deformation that
tends to be smoothed.

2.5. Magnetic measurement set-up and procedure

The bench is the result of a continuous improvement of methods already
presented in previous works [32–36]. Reference [12] uses a procedure for mea-
surement of austenite volume fraction similar to the procedure we are presenting
in this section. Notable improvements have however been made.

secondary coil

(pick up coil)

Specimen

Figure 3: Apparatus for measurement of magnetic behavior during tensile test.

The benchmark for in-situ magnetic measurements is based on the princi-
ple of permeameter (figure 3). It is constituted of a primary coil made of 81
turns that allows the magnetization of the sample, and a secondary coil (pick-
up coil) made of 30 turns directly wound around the samples that allows the
measurement of the induced electromotive force u(t). The system is current-
controlled (current i(t) measured by a Tektronix AMS503S current probe) by
a Kepco supply driven in the primary coil by a National Instrument controller
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and a home-made Labview software. Two face-to-face positioned high section
ferrimagnetic U-yokes inside which the tensile specimen is positioned close to
the magnetic circuit and reduce the macroscopic demagnetizing field, enhancing
the magnetic field strength H(t) in the material. The set-up is designed so that
the heads of the specimen can be easily bitten by the jaws of the machine and
so that the specimen gauge length (45mm) is higher than the inner space of the
yokes (37mm) ensuring a homogeneous magnetic field strength.

The current waveform is a 2 seconds periodic signal made up of two sinusoidal
cycles at the frequency of 10Hz of amplitude 7.5A followed by a pause of 1.8
seconds (see figure 4). This magnetic loading is repeated until the end of the
mechanical test. The frequency of 10Hz is high enough to generate a measurable
induced signal even in the absence of a ferromagnetic phase. It is low enough
so that the field can be considered homogeneous throughout the thickness of
the sample regardless of the amount of ferromagnetic phases in the medium.
The 1.8 seconds pause allows the reduction of the input power to avoid heating
the sample by the primary coiling during the strengthening (by radiation or
convection).

t (s)

-8

-6

-4

-2

0

2

4

6

8

I 
(A

)

210 3

Figure 4: Typical periodic current waveform I(t).

Digitizing of i(t) and u(t) signals is ensured by a synchronized NI-DAQ 16bit
card using a 10kHz sampling frequency. Taking into account the high section
ratio between the yokes and the specimen gauge and the high initial magnetic
permeability of the ferrimagnetic material, the application of Ampere’s theorem
to the magnetic circuit formed of the specimen and the yokes makes it possible
to obtain a linear relationship between the current i(t) and the magnetic field
H(t) (equation (4)), involving the number of turns N of the primary coiling
and an equivalent length leq equal in first approximation to the inner-space of
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a yoke (≈ 37mm). On the other hand, the application of Lenz’s law allows the
magnetic induction B(t) in the useful zone to be related to the induced voltage
u(t) after time integration. This relation involves the number of turns n of the
secondary winding, its section Scoil, but also the instantaneous section of the
specimen in the useful zone S(t), since a part of the induced voltage is due to
the magnetic field present in the space between the specimen and the coil (this
magnetic field is H(t) by the principle of magnetic field tangential continuity),
as well as the vacuum permeability µ0.

H(t) =
Ni(t)

leq
(4)

B(t) =
1

nS(t)

∫
t

u(t) dt− µ0H(t)

(
Scoil
S(t)

− 1

)
with S(t) =

S0

1 + ∆l
l0

(5)

The true section S(t) has to be used in calculations since this section strongly
varies from the beginning to the end of the tensile test. Scoil remains constant on
the contrary. It approximately verifies Scoil ≈ 1.1S0. The magnetization M(t)
represents the contribution of the material to the induction. Its calculation is
given by equation (6).

M(t) =
B(t)

µ0
−H(t) (6)

It is then necessary to relate the magnetization to the martensite fraction.
Several points must be considered:

• Ferromagnetic source. We must, first of all, make the assumption that
there is no other source of ferromagnetic phase than martensite and that
the martensite created is exclusively the α′ ferromagnetic phase. Taking
into account the composition of the material (medium Mn content) and
according to the bibliographical sources (see [37] as a recent review), this
assumption is acceptable. This was also confirmed by X-rays measure-
ments on ASS ref. before and after straining.

• Reference magnetization. When the magnetic field is very high (>
106 A /m), the theoretical magnetization of a 100% ferromagnetic mate-
rial is the true saturation magnetization of the medium denoted as Msat

(NB: do not confuse with the martensite start temperature Ms), mainly
a function of the number of iron atoms in the study volume. When the
measured magnetization is less than this value, the ferromagnetic phase
fraction is less than 1. The volume fraction of the ferromagnetic phase
is then equal to the ratio between the measured magnetization and the
saturation magnetization. This situation is encountered in commercial de-
vices such as sigmameter or VSM (see introduction section). It is used by
several authors [14–16] for the phases assay. This technique is not suitable
for in-situ measurements given the size of the measuring devices that it
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implies. The maximum magnetic field obtained by our system is of the
order of 15kA/m. This value is insufficient to lead to a true saturation of
the material. The maximal magnetization obtained is denoted M15000. We
then denote by Ms

15000 the maximum possible magnetization in the pres-
ence of 100% ferromagnetic phase. This value is however inaccessible and
requires calibration. We denote by ζ the proportionality factor between
Ms

15000 and Msat. The identification of ζ is presented in the third section.
At this stage, the ferromagnetic phase fraction is calculated according to:

fα′ =
M15000

Ms
15000

=
M15000

ζMsat
(7)

The magnetization saturation Msat depends on the atoms present in the
alloy as indicated above. This value, therefore, varies from one grade to
another and is given by the following equation which is a modified version
of [38] by APERAM:

Msat (A/m) = 1.71×104 (100−5.5C−1.2Mn−1.5Ni−1.3Cr−1.2Mo−1.1Cu−2.8Si)
(8)

C, Cr, Mn, Mo, Ni, Cu, and Si denote the weight percentage of each
corresponding species. Niobium and nitrogen are the only two species not
considered in the formula. Considering their low weight percentage on the
one hand and supposing an influence not larger than the other atoms, on
the other hand, the error made by not taking them into account leads to an
error of less than 1% on Msat value for all casts. This error is considered
small enough to warrant the use of equation (8). Table 3 gathers the
obtained values used in equation (7). The typical error of Sigmameter
including uncertainties concerning the magnetization saturation is about
±0.02.

Table 3: Msat (106 A/m) values calculated from equation (8) and the composition of the six
grades

ASS ref. ASS Cr ASS Ni ASS Cu ASS Mn ASS Si
1.21 1.20 1.18 1.17 1.15 1.13

• Localization effect. A ferromagnetic phase dispersed within a non-
magnetic matrix behaves like a magnetic dipole. It, therefore, creates
its own magnetic field around and an internal magnetic field opposite to
the magnetization of the phase. The magnetic field perceived by a particle
i can be estimated via a homogenization method [39–41] using a secant
1D approach. It can be expressed as a function of the external magnetic
field (H = 15kA/m), the magnetization Mi of the particle, the average
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magnetization M in the medium, and a form factor N (also called local-
ization factor). i can also represent the whole martensitic phase or the
whole austenitic phase. The magnetic field perceived by the martensite is
then expressed according to:

Hα′ = H +N (M −Mα′) (9)

The magnetization M is equal to the average of the magnetizations, that
is to say:

M = fα′Mα′ + (1− fα′)Mγ

where Mγ is the magnetization in the austenite. The latter is almost zero,
leading to:

M = fα′Mα′

and
Hα′ = H −N (1− fα′)Mα′ (10)

The magnetic field in the martensitic phase is therefore lower than the
applied field while the martensite fraction does not reach high values.
And lower magnetic field means lower magnetization than expected. We
denote by MHα′ this magnetization, that verifies MHα′ < M15000. The
estimate of the martensite fraction f locα′ is therefore reduced:

f locα′ =
MHα′

ζMsat
< fα′ (11)

Several approaches are possible to link MHα′ with M15000. A method
based on a model link between the magnetization and the initial suscep-
tibility has been proposed in [12] assuming an ellipsoidal shape of the
martensite islands in the austenitic phase. We will see in the experimen-
tal part how it is possible to consider a homogeneous field situation for
this case study.

• Magnetoelastic effect. It is now well established that mechanical stress
can change magnetic behavior [34, 40, 42–44]. This phenomenon com-
monly known as the Villari effect or inverse magnetostrictive effect is a
hallmark of magnetoelastic coupling. In particular, the magnetization at
a given magnetic field is dependent on stress. This apparent modification
of magnetization can lead, as in the case of localization, to an erroneous
estimate of the martensite fraction (except to estimate the fraction at
constant stress, which is incompatible with in situ testing). Taking into
account the stress was the subject of a detailed study by [12] which we will
not repeat here. The conclusion is that the magnetization Mσ

Hα′ measured

under stress σ for a global applied field of 15kA/m must be corrected using
a magnetoelastic factor η to obtain the corresponding reference magneti-
zation at zero stress MHα′ . Equation 12 applies:
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MHα′ =
Mσ
Hα′

1 + ησ
(12)

Several preliminary observations allowed us to estimate η = 3.12 × 10−5

MPa −1. Mechanical tensile stress thus leads to an overestimation of the
magnetization. The martensite fraction is then finally given by:

f locα′ =
Mσ
Hα′

ζMsat(1 + ησ)
(13)

3. Experimental results

3.1. Tensile tests

ε

0 0.1 0.3 0.4 0.5 0.60.2
0

400

800

1200
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σ
 (
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P
a

)

0.7

ASS ref.

ASS Cr

ASS Ni

ASS Cu

ASS Mn

ASS Si

Figure 5: Stress/strain curves (σ vs ε) for all casts studied in this work - tests repeated two
times for reproducibility purpose.

For the six grades, the stress-strain behavior in tension is nearly the same
with a relatively low work-hardening at low strain, then a higher, nearly linear,
hardening (Figure 5). This is particularly exemplified for the grades ASS Ni and
ASS Cu. The curves for ASS ref and ASS Cr show a Lüders plateau right after
the yield stress. The yield stress, roughly 380 MPa, is similar for all grades. It
is seen that the more stable are the grades – that is when Ms is the lowest – the
lower the strain hardening. It results that the maximum tensile stress is almost
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the same whatever the grade (about 1800 MPa), but with a total elongation
that grows as the austenite stability increases (from 0.27 for ASS ref to 0.65 for
ASS Si). The increase of the work hardening after a few percent of deformation
is associated with the induced martensitic transformation and was also early
reported [45]. In a given range of temperature and strain rate, a Portevin-
Le Chatelier-like (PLC) behavior is also reported (stress serrations appear for
any grade at large strain during the experiments): serrations on the stress-
strain curve are associated with heterogeneous deformation and deformation
band propagation, as already observed for medium manganese steels [12, 46–48].
When the austenitic stainless grade is very unstable, stress-induced martensite
transformation is noted within the elastic domain which leads to a transient
softening after the yield stress and a Lüders plateau [45].

3.2. Optical and X-rays diffraction measurements

The induced martensitic transformation was confirmed by X-rays diffraction
(XRD) and optical micrography. Figure 6 shows XRD spectra acquired for de-
formed and undeformed ASS ref. sample (measurement in the area of necking
after plastic deformation for the deformed state). Experimental results (lines)
are compared with theoretical austenite and martensite signatures (dots). Lat-
tice parameters employed to plot theoretical points are aγ = 0.359 nm for FCC
austenite and aα′ = 0.2860 nm and cα′ = 0.2886 nm for QC martensite.

Conclusions are the following:

• undeformed ASS ref. is austenitic; fully deformed ASS ref. is martensitic;

• however, a weak martensite signature is detectable at the undeformed
state, which may be due to sample preparation (grinding);

• a weak austenite signature is detectable at the deformed state underlining
the presence of residual austenite; its volume fraction can not be accurately
evaluated by this XRD technique;

• the tetragonality of martensite crystal is low with cα′ ≈ aα′ (tetragonality
magnitude (cα′ − aα′)/aα′ is about 0.91%) leading to a weak splitting in
two of BCC rays in the spectrum. This low tetragonality does not allow a
preferential selection of variants with stress. This generally leads to a low
stress induced transformation strain in accordance with results provided
by other authors.

Optical micrography reveals that austenite first transforms along bands par-
allel to the rolling direction (Figure 7 for ASS ref. cast). The same kind of
distribution appears for other samples. This is probably linked to a Mn-C seg-
regation which results from casting. It leads to bands which are enriched in
carbon and manganese and then are more stable. The martensite plates form
within the austenite grains and leave austenite films at their interface. No ac-
curate measurement was however performed sample by sample. Nevertheless
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Figure 6: XRD spectrum for ASS ref. sample before and after plastic deformation - compared
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deformation has been artificially shifted of about 104 counts.
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(a) (b)

(c)

Figure 7: Typical microstructures of ASS ref. sample where martensite appears as brown is-
lands and austenite is white : (a) fully austenitic material before deformation; (b) intermediate
plastic deformation; (c) at rupture in the necking region.

these observations allow us to answer the question of the magnetic field local-
ization (see section 2.5). The martensite bands are thus formed parallel to the
applied magnetic field. A homogeneous field hypothesis can therefore in theory
be applied which makes it possible to cancel the N coefficient in equation (9)
and to conclude that the magnetization value to be used in the calculation of
martensite volume fraction is simply the measured magnetization at 15000A/m
(MHα′ ≈M15000 and f locα′ ≈ fα′).

3.3. Digital Image Correlation

One of the two mechanical tests carried out for each cast was followed by
DIC. DIC measurements firstly confirm the presence of a Lüders band immedi-
ately after the yield point for the most unstable samples (ASS ref. and ASS Cr).
This mechanism does not appear for the other grades. On the other hand, all
grades deform by Portevin-le-Châtelier band propagation after a certain level of
plastic deformation. The nucleation and the propagation of these bands corre-
spond to the oscillations observed on the tensile curves. The strain threshold to
be reached where this mechanism starts varies from one grade to another: the
more stable the sample, the higher the strain threshold. It starts immediately
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after the Lüders deformation for the ASS ref. and ASS Cr grades. The strain
threshold is reaching about 40% for the ASS Si. The PLC mechanism start
is visible on the stress-strain curves. It results in an inflection point after an
almost linear hardening zone with an identical slope for most of the grades.

As for the microstructure observations, we only report the few most signifi-
cant results below. They concern the ASS Cu sample, but the same observation
could be carried out for other samples. Figure 8 shows an illustrative exam-
ple of the PLC band propagation front at five different times. The reported
measurement is the axial plastic strain rate field ε̇yy(~x) calculated according to:

ε̇yy(~x) =
εj+1
yy (~x)− εjyy(~x)

tj+1 − tj
(14)

j refers to a picture number. Time delay ∆t = tj+1 − tj is 10s between two
pictures. The strain rate is high at the front of Portevin-le-Châtellier band
reaching 0.012 /s .

strain rate (/10s)

Figure 8: Bands propagation detected by DIC

Figures 9 and 10 plot a spatio-temporal evolution of the axial strain rate
and axial strain for the last part of the same tensile test, respectively. The
propagation speed of the bands given by the slope of the curves is relatively con-
stant throughout the test, indicating a constant-size strain front and a constant-
transported strain. The bands all initiate on the upper part of the specimen.
As the necking approaches, this mechanism changes: a penultimate PLC band
starts in the lower fillet. The deformation rate it carries is higher, leading to
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a slower propagation speed. The last band is born in the upper fillet shortly
after the arrival of the penultimate band. The front widens and the rate of
deformation increases, leading to a very significant slowing down of the band
up to the necking after a final direction change. These results are in agreement
with those already reported in [12].
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Time (s)
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Figure 9: Spatiotemporal DIC measurements of nominal longitudinal strain of ASS Cu grade
sample. The horizontal axis is the time in seconds, the vertical axis represents the position
along the tensile direction, and the color bar represents total strain in the tensile direction.
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Figure 10: Spatiotemporal DIC measurements of longitudinal strain rate measurements of
ASS Cu grade sample. The horizontal axis is the time in seconds, the vertical axis represents
the position along the tensile direction, and the color bar represents the strain rate (1/s) in
the tensile direction.

3.4. Magnetic measurements

Magnetic measurements allow us to estimate the evolution of the martensite
fraction during tensile tests. They are essential for a better interpretation of the
mechanical behavior and the strain fields measured by DIC. We use the results
obtained for the ASS Cu grade (as for DIC) for the first illustrations.

Figure 11 illustrates first of all the magnetic hysteresis cycles obtained: as
the deformation increases, an increase in the amplitude of the cycles is observed.
The increase of magnetization for a given magnetic field is a direct image of the
increase in the amount of ferromagnetic phase. Information contained in a cycle
is numerous. We however only focus on the maximum and minimum magne-
tization obtained for each cycle. Figure 12a thus shows a raw measurement of
the evolution of the maximum (in red) and minimum (in blue) magnetization
as a function of time from the start to the end of the test carried out with
ASS Cu sample. The figure shows a continuous increase in the magnitude of
the magnetization over most of the duration of the test. The decrease in am-
plitude on the last portion of the curve corresponds to the rupture of the test
piece. It mainly reflects a sudden reduction in the effective magnetic field by
the appearance of an air gap in the magnetic circuit. This measurement part is
therefore not usable. Figure 12b is a zoom of the previous figure for 12s. We can
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observe the maximum and minimum magnetization for the 6 cycles provided.
An average maximum magnetization is calculated from the norm of these two
values. Results are then interpolated.
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Figure 11: Evolution of magnetic hysteresis cycles with increasing inelastic strain εin.

Figure 13 shows a zoom of this interpolated temporal evolution. We can see
a stairway variation of magnetization as a function of time. The periodicity of
about 250s in the observed area corresponds to the subsequent passage of the
PLC bands. Each period consists of two parts: the first part is a fast variation
of magnetization. It corresponds to the moment when the front band crosses
the pick-up coil. The crossing time (of the order of 30s) depends on the band
speed (of the order of 0.18mm/s) and the width of the pick-up coil (of the order
of 5mm). These results indicate that most of the austenite-martensite phase
transformation occurs during the passage of the PLC band. The variation in
magnetization measured by the sensor is thus much slower once the band has
passed. The mechanism illustrated for the ASS Cu grade appears for the other
grades at different strain levels. Figure 14 thus allows the comparison of the
magnetization variation as a function of the inelastic deformation for all grades.
This figure is a very clear illustration of the stability of a grade compared to each
other. The variation in magnetization of the most stable materials (low Ms) is
the lowest at a given strain. It is stronger for the less stable materials (high Ms).
The stability of a grade dictates not only the evolution of the magnetization with
the deformation but also the level of deformation from which this variation be-
comes significant, defining an increasing deformation threshold. This threshold
corresponds to the end of the Lüders stage for ASS ref. and ASS Cr grades.
It corresponds more or less to the inflection point observed in the stress-strain
curves associated with the propagation start of the Portevin-le-Châtelier bands.
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a

b

Figure 12: Evolution of maximal and minimal magnetizations.

All the curves show the fluctuations associated with the passage of these bands
through the pick-up coil. The amplitude of these fluctuations seems to increase
with increasing deformation. A start of magnetization saturation seems to be
observed for the less stable grades. This saturation could correspond to the

21



2400 2500 2600 2700 2800 2900 3000

Time (s)

0.8

1

1.2

1.4

1.6

M
m

a
x
 (

1
0

  
 A

/m
)

5
period

front band

in pick-up coil

Figure 13: Evolution of maximal and minimal magnetization - interpolation

approach of a total transformation of austenite into martensite.
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Figure 14: Evolution of magnetization as function of inelastic strain for all grades.

3.5. Extraction of martensite volume fraction and discussion

The extraction of the martensite fraction from the magnetization measure-
ment was explained in the previous section. Equation (13) allows this calcula-
tion. We have been able to establish that, taking into account the homogeneity
of the magnetic field, the measured magnetization M15000 can be directly used
in the formula. An elastic loading-unloading mechanical test on a fully marten-
sitic material also made it possible to evaluate the magnetoelastic parameter
η. Only the ζ parameter remains unidentified. Its identification was made
possible thanks to the use of a commercial Sigmameter (D6025 Sigmameter
from SETARAM). Sigmameter equipment applies a magnetic field larger than
8.0 × 105 A/m over a small sample such that it reaches its saturation magne-

tization M sigma
sat at zero stress (post-mortem samples are used). Equation (15)

thus gives the estimate of the martensite fraction via the Sigmameter. This
estimate must then correspond to the estimate given by equation (13) at the
end of the test. Figure 15 then plots the evolution of M15000

Msat(1+ησ) at the end of

the test (measurement points correspond to the tests carried out with the six
grades and tests not reported in this paper) depending on the martensite frac-
tion measured by the Sigmameter. The error considered for experimental values

23



is about ±0.04 (given mainly by uncertainties considering the magnetoelastic η
parameter). We obtain a linear relation whose slope equals the dimensionless ζ
constant according to equation (16). We estimate ζ = 0.806.

fα′ =
M sigma
sat

Msat
(15)

M15000

Msat(1 + ησ)
= ζfα′ (16)
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Figure 15: M15000
Msat(1+ησ)

vs. martensite volume fraction estimated by the commercial Sigmame-

ter.
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Curves reported in figure 16 show finally the fraction of martensite as a
function of the inelastic strain fα′ vs. εi. The evolution of the fractions and the
variations of magnetization, already observed and commented, are in agreement.
The martensite fraction of the two most unstable grades reaches almost 100% at
fracture, following a distribution law similar to a normal law. The appearance
of martensite for the other grades seems to follow the same rule but the rupture
prematurely interrupts the transformation more or less late depending on the
grade stability. The lowest martensite evolution is obtained for the ASS Mn
and ASS Si grades which have the lowest Ms value.
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Figure 16: Martensite volume fraction as a function of inelastic strain for all grades.
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For unstable austenitic stainless steels and medium Mn 3rd generation steels,
it is rather usual to describe the martensite evolution as a function of strain by
the Olson-Cohen model [12, 49] or its extension for stress-assisted mechanisms
proposed by Stringfellow [50–52]. Olson-Cohen model applies in quasi-static
condition and is given by equation (17) where α is a material parameter re-
lated to the number of shear bands and so, to the stacking fault energy of the
austenite; β accounts for the probability of a martensite nucleus to form, which
is in turn defined by the driving force for the phase transformation. The ex-
ponent n is usually considered constant since it describes a topological relation
that relates the number of shear bands to the number of shear band intersec-
tions. In equation (17), inelastic strain εin is considered for simplicity reasons,
even if only the plastic part should be considered. The transformation strain is
negligible compared to the plastic strain part.

fOCα′ = (1− exp(−β (1− exp(−α εin))n)) (17)

A least square method was used to fit the model parameters from the marten-
site volume fractions measurements. The best fit is obtained when β and n
values are kept constant whatever the chemical composition (Figure 17). α is
then material dependent and increases when the austenite stability decreases
(Table 4).

Table 4: Olson-Cohen model parameters

β n α ASS ref. α ASS Cr α ASS Ni α ASS Cu α ASS Mn α ASS Si
4.5 5 12 7.9 4.1 3.1 2.0 1.7

n value is equal to 5. This value is coherent with the hypothesis by Ol-
son and Cohen [49] assuming that the shear bands are not randomly oriented.
However, since the chemical composition of the different grades is very similar,
the SFE value is almost constant (Table 2). β represents the austenite stability
(related to the probability for a shear band intersection to transform towards a
martensite nucleus) and should be the main evolving parameter from one grade
to another. However, no fitting of the experimental curves was possible while
keeping α constant and varying β. The only possible way for an accurate fitting
was to keep β constant (β = 4.5) and varying α, which is not in agreement with
Olson and Cohen hypotheses .

Other modeling ways are available in the literature. Most of the recent mod-
els are micromechanical models based on discrete microplasticity or continuum
mechanics and using a large variety of constitutive laws, some of them coming
from shape memory alloys modeling. All use homogenization rules, either ana-
lytical, either numerical by finite elements [53] or using phase-field approaches
[54]. There are very few macroscopic approaches proposed in the recent years.
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Figure 17: Martensite volume fraction as a function of inelastic strain - experiments compared
with Olson-Cohen model but using constant β and variable α parameters.

They all use transformation kinetics borrowed from Olson-Cohen or alternative
forms where the transformation kinetics depend on the deformation [9, 55]. The
macroscopic forms of these models suppose the identification of a large number
of parameters [56].

Another modeling way can however be proposed. The martensite volume
fraction is plotted as a function of stress in figure 18. It is striking to see how,
for five over six grades, and beyond a clear stress threshold, the variation of
martensite fraction seems linearly related with the variation of stress (it must
be noticed that such linearity has recently been reported in [8]). Only the ASS
Si grade does not exhibit such a variation. This result is understandable given
that the production of martensite did not begin for this very stable grade. This
plot shows that it would be possible to model the transformation using material
dependent thresholds and a single slope value. The following section gives the
tools for such modeling. The advantage of such an approach is to be able to
couple phase transformation and mechanical behavior in a single macroscopic
model.

4. Attempt of macroscopic modeling

This section addresses the modeling of strain-induced martensite produc-
tion and the stress/strain behavior as a consequence. The proposed approach
partly joins that of [57] by the use of relatively simple constitutive laws for
each medium. 3D thermodynamics is required to express balance equations and
constitutive laws. The 3D model that can be proposed is however incomplete,
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Figure 18: Martensite volume fraction as a function of stress for all grades.

missing an accurate expression of equivalent stress for phase transformation
threshold. The 1D macroscopic modeling is available, allowing some interest-
ing comparisons with 1D experiments and discussions concerning mechanisms
involved in the process. Thermal effects are not addressed as well since exper-
iments have been carried out in quasistatic conditions (meaning a global suffi-
cient thermal exchange is considered). Thermal aspects could be considered if
needed, asking for a few extensions as detailed in Appendix B. Magnetic con-
tribution to the internal energy is not considered either. Magnetic measurement
does not participate in the global equilibrium and martensite fraction rate. The
reader can refer to references [34, 35] that gather the main tools required for
this extension. The thermodynamics developed hereafter do not consider diffu-
sion mechanisms either, arguing that the phase transformation is diffusion-less.
Finally the modeling proposed can be considered as a simple representative vol-
ume element play modeling that can not address of course bands propagation
or other localized phenomena.

4.1. Thermodynamics of stress/strain induced phase change

The bulk is supposed to be composed of two phases (austenite γ and marten-
site α′) without any distinction of grains or variants. Phases do not of course
remain at constant volume fraction in the proposed modeling. α′ is the ferro-
magnetic phase. When submitted to stress, both phases are supposed to deform.
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Plastic deformation of γ phase leads to strain-induced γ → α′ displacive trans-
formation. This transformation leads on the other hand to a distortion of the
lattice, at the origin of a so-called transformation strain. We propose to model
the mechanism described above in this section. This modeling is built at the
macroscale in the framework of irreversible processes thermodynamics and takes
advantage of experimental observations. Localization phenomena observed dur-
ing experiments are not considered: the modeling of a representative volume
element (RVE) is looked for. Material is consequently considered as biphasic
where the volume fraction of martensite (for example) can be considered as an
internal variable of the macroscopic problem. The martensite volume fraction
is denoted as fα′ or simply f . The austenite volume fraction is fγ verifying
fγ = 1− fα′ = 1− f .

4.1.1. Macroscopic thermodynamics

The first and second laws of thermodynamics are considered without elec-
tromagnetic power, mass transfer, and chemical reaction. They lead to the
so-called Clausius-Duhem inequality (or dissipation equation)[58]:

ρ(T ṡ− u̇) + σ : ε̇− 1

T
gradT.qs ≥ 0 (18)

u (J.kg−1) and s (J.kg−1.K−1) indicate the specific internal energy and entropy
densities, ρ (kg.m−3) is the mass density, σ is the stress tensor, ε is the linearized
strain tensor. T and qs denote the local temperature (K) and the entering heat
flux (W.m−2).

Helmholtz free energy ψ verifies, on the other hand:

ψ = u− Ts (19)

so that
ψ̇ = u̇− Ṫ s− T ṡ (20)

A new formulation of the dissipation is obtained:

ρ(−ψ̇ − sṪ ) + σ : ε̇− 1

T
gradT.qs ≥ 0 (21)

The specific free energy density is considered as a function of elastic de-
formation εe (plastic and transformation deformations are considered at the
origin of purely dissipative powers), temperature, and phases volume fraction:
ψ(εe, T, fi), so that:

ψ̇ =
∂ψ

∂εe
: ε̇e +

∂ψ

∂T
Ṫ +

∑
i

∂ψ

∂fi
ḟi (22)

The total deformation rate is supposed seen as a sum of elastic, plastic ε̇p

and transformation ε̇tr strain rates:

ε̇ = ε̇e + ε̇p + ε̇tr (23)
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Experiments showed, on one hand, that deformation occurs by a successive
propagation of bands. A homogeneous stress condition can consequently be
considered. This hypothesis leads to define the total strain as a contribution of
each phase weighted by their volume fraction, on the other hand:

ε =
∑
i

fiεi (24)

This equation leads to the following decomposition for strain rate:

ε̇ =
∑
i

fiε̇i +
∑
i

ḟiεi =
∑
i

fi
(
ε̇ei + ε̇pi + ε̇tri

)
+
∑
i

ḟiεi (25)

Equation (21) can be rewritten:

ρ

(
−∂ψ
∂T
− s
)
Ṫ+

(
σ − ρ ∂ψ

∂εe

)
: ε̇+

∑
i

(
σ : εi − ρ

∂ψ

∂fi

)
ḟi+

∑
i

fiσ : ε̇pi+
∑
i

fiσ : ε̇tri −
1

T
gradT.qs ≥ 0

(26)
If we use, on the other hand, the following state laws:

s = −∂ψ
∂T

; σ = ρ
∂ψ

∂εe

Dissipation gives simply:∑
i

fiσ : ε̇pi +
∑
i

fiσ : ε̇tri +
∑
i

(
σ : εi − ρ

∂ψ

∂fi

)
ḟi +

1

T
gradT.qs ≥ 0 (27)

The first two terms refer to the plastic deformation and transformation de-
formation powers. The third term is a part of heat sources associated with
phase fraction rate (part of latent heat phenomenon - see Appendix B). The
last term is the irreversible entropy rate due to heat transfers.

4.2. Admissible constitutive law for dual-phase stainless steel

In this subsection, some constitutive laws are proposed. Our objective is
not to present the most relevant or up-to-date modeling (especially for plastic
strain or multiaxial situations) but show how experimental observations can be
taken into account in a very simple way. We consider the following points that
apply for the present study:

• the stainless steel is composed of two phases: austenite γ and martensite
α′;

• the martensite volume fraction is denoted f so that the austenite volume
fraction is 1− f leading to easy factorizations in equation (27);
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• isothermal conditions are retained (gradients are null): the last term in
equation (27) vanishes;

• transformation strain is obviously null in the austenite. It can be on
the other hand considered as constant in the martensite, neglecting some
possible variant selection or twinning/de-twinning mechanism. Martensite
transformation deformation rate therefore verifies ε̇trα′ = 0;

• Applying a mixing law to the specific Helmholtz free energy density (ψ =∑
i fiψi), the partial derivative writes: ρ ∂ψ∂fi = ρψi. The dissipation term

associated with transformation rate can be developed as follows;∑
i

(
σ : εi − ρ

∂ψ

∂fi

)
ḟi =

∑
i

(σ : εi − ρψi) ḟi =
∑
i

−ρgiḟi (28)

where gi denotes the specific Gibbs free energy density of phase i.

The Clausius-Duhem inequality is finally obtained for our problem using
austenite and martensite quantities, as a simplification of the dissipation equa-
tion (27):

fσ : ε̇pα′ + (1− f)σ : ε̇pγ − ρḟ(gα′ − gγ) ≥ 0 (29)

The positivity of this inequation is obtained by a positivity of each term.
Let us now have a look at each term separately in order to build a set of simple
constitutive laws. Terms are developed for a 3D problem first:

• Plastic power in the martensite phase

σ : ε̇pα′ ≥ 0 (30)

This inequality is corresponding to positive dissipation in α′ phase. This
condition is verified using for example a Prager or Prandtl-Reuss flow
rule in the framework of associate plasticity (non-associated plasticity
is another possible framework allowing non-linear kinematic or isotropic
strengthening [57]), considering yield stress σyα′ , von Mises equivalent
stress σeq, yield function f, isotropic strengthening Rα′ and cumulative
plastic strain pα′ . The following flow rules are obtained:

f(σ, Rα′) = σeq(σ)− σyα′ −Rα′

if f < 0 , then ε̇pα′ = 0 and Ṙα′ = 0

if f = 0 , then ε̇pα′ = ṗ′α
df
dσ and Ṙα′ = kα′ ṗα′

(31)

with, s denoting the stress deviator,

σeq =

√
3

2
s : s ; ṗ =

√
2

3
ε̇p : ε̇p
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• Plastic power in the austenite phase

σ : ε̇pγ ≥ 0 (32)

We apply the same rule for phase γ than for α′ phase defining the same
set of quantities and parameters: considering yield stress σyγ , von Mises
equivalent stress σeq, yield function f, isotropic strengthening Rγ , and
cumulative plastic strain pγ , the following flow rules are obtained:

f(σ, Rγ) = σeq(σ)− σyγ −Rγ
if f < 0 , then ε̇pγ = 0 and Ṙγ = 0

if f = 0 , then ε̇pγ = ṗγ
df
dσ and Ṙγ = kγ ṗγ

(33)

• Specific Gibbs free energy density balance

−ρḟ(gα′ − gγ) ≥ 0 (34)

This equation states that martensite production occurs when the specific
Gibbs free energy density of martensite is lower than the specific Gibbs
free energy density of austenite. Expression of energy densities is not
required, however. The linear relationship between martensite ratio and
stress that has been observed experimentally once a specific yield stress
(phase transformation threshold) has been overcome agrees with the pos-
itive dissipation principle.
Once the transformation threshold has been reached, the martensite pro-
duction occurs. The reverse transformation is not possible. The marten-
site rate rule looks very close to a cumulative plastic strain. Then, as for
plasticity description, we propose to define a transformation yield func-
tion f, a transformation yield stress σs, a linear isotropic strengthening
Rm verifying: 

f(σ) = σeq(σ)− σs −Rs
if f < 0 , then ḟ = 0

if f = 0 , then Ṙs = ksḟ until f = 1

(35)

Equivalent stress σeq for phase transformation would have to be defined.
The reader can refer to the work of [59] where such equivalent stress has
been proposed. Since only uniaxial stress conditions are met in the exper-
imental part of the work, this point has not been developed further, by
considering it out of the scope of the paper.

The transformation strain is generally considered as low even at satura-
tion as indicated in 3.2. We propose not to take it into account for the
comparison with the experiments, avoiding the identification of one more
parameter.
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4.3. Application to 1D monotonic loading and identification of paramaters

The previous flow rules can be written for a 1D monotonic situation as
follows: 

f(σ,Rα′) = σ − σyα′ −R′α
if f < 0 , then ε̇pα′ = 0

if f = 0 , then ε̇pα′ = Ṙα′
kα′

(36)


f(σ,Rγ) = σ − σyγ −Rγ
if f < 0 , then ε̇pγ = 0

if f = 0 , then ε̇pγ =
Ṙγ
kγ

(37)


f(σ,Rs) = σ − σs −Rs

if f < 0 , then f = 0

if f = 0 , then ḟ = Ṙs
ks

until f = 1

(38)

These rules define 3 yield stresses and 3 strengthening constants. All param-
eters are a priori materials-dependent. However, experimental measurements
have shown similarities in the behavior of the six grades, making it possible
to limit the number of parameters. A correlation with the theoretical phase
transformation temperature Ms can also be sought. We consider for modeling
that:

• austenite yield stress σyγ is the same for all grades;

• martensite yield stress σyα′ is the same for all grades;

• transformation threshold σs is different from one grade to another, ob-
tained by a simple linear fitting of the different f(σ) characteristics;

• martensite strengthening parameter kα′ is the same for all grades;

• austenite strengthening parameter kγ is the same for all grades before the
transformation threshold σs;

• austenite strengthening parameter kγ is different from one grade to an-
other above the transformation threshold σs: it is obtained by a simple
linear fitting of the different σ(ε) curves for a linear portion of about
100MPa just above σs. The strengthening parameter is referred as θs in
the following.

Results are gathered in tables 5 and 6. Figures 19, 20 and 21 allow the
performance of the modeling to be appreciated, by plotting experimental and
modeled martensite fraction versus stress, stress-strain curves (using a Young
modulus Y= 190 GPa), and martensite fraction versus inelastic strain. Despite
the use of very simple linear strengthening relationships, experimental results
and modeling are in good agreement. The model reproduces accurately the well-
known supplementary work hardening after the transformation threshold. The
discrepancy between the experiment and the model for ASS-ref is explained by

33



the fact that there is no ingredient in the model to reproduce the stress plateau.
Martensite is produced at constant stress over 2% strain range. Agreement be-
tween experiment and modeling becomes satisfactory when this shift is taken
into account. The model also poorly reproduces the evolution of the martensite
fraction for the most stable grades. Only introducing a linear relationship be-
tween martensite fraction and stress seems finally a simple and relevant way to
model the behavior of unstable medium manganese stainless steels, however. A
non-associated framework for plasticity and appropriate modeling of the stress
plateau would have probably led to better results but would require the identi-
fication of more parameters.
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Figure 19: Martensite volume fraction as a function of stress for all grades - experimental
(dashed lines) vs. modeling results

Table 5: Plastic strengthening parameters

σyα′ (MPa) kα′ (MPa) σyγ (MPa) kγ (MPa) ks (MPa)

1600 4000 410 1900 1450

On the other hand, it looks interesting to plot the material-dependent pa-
rameters in table 6 as a function of theoretical martensite start temperature. As
highlighted in figure 22, σs exhibits a linear variation with Ms. A least-square
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Figure 20: Stress/strain curves for all grades - experimental (dashed lines) vs. modeling
results

Table 6: Martensite fraction threshold σs and strengthening θs parameters

Casts ASS ref. ASS Cr ASS Ni ASS Cu ASS Mn ASS Si
σs (MPa) 320 470 665 790 1080 1150
θs (MPa) 6842 4614 3636 2810 2345 2260

curve fitting allows the following equation to be proposed:

σs = a1Ms + a2 (39)

with a1 = −17.86 MPa/◦C and a2 = 2314 MPa.

Figure 23 shows θs as a function of Ms. The following function has been
used for the curve fitting. This function allows an asymptotic saturation at kA
(strengthening parameter of pure austenite) for low temperature.

θs = kA + a3 exp

(
Ms + a4

a5

)
(40)

A least-square curve fitting allows the following parameters to be identified:
a3 = 13.28 MPa, a4 = −248.2◦C and a5 = 18.31◦C.
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Figure 21: Martensite volume fraction as a function of inelastic strain for all grades - experi-
mental (dashed lines) vs. modeling results

These new relationships complemented with Ms vs. composition equation (1)
allow a theoretical evaluation of stress-strain and martensite fraction production
for various stainless steel compositions (remaining in the same Ms range as the
range of our results).
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Figure 22: Transformation stress threshold σs as a function of martensite start temperature
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Figure 23: Austenite strengthening parameter θs as a function of martensite start temperature
Ms.
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5. Conclusion

The strain-induced martensitic transformation was studied in medium man-
ganese austenitic stainless steels. Tensile tests at room temperature were carried
out on six casts with different chemical compositions so that the stability of the
austenite can be varied. The martensite transformation was followed by mag-
netic measurements during straining. Strain heterogeneities were analyzed by
digital image correlation (DIC). The main results are:

• DIC measurements confirm the nucleation and propagation of a Lüders
band immediately after the yield point for the most unstable samples
(ASS ref. and ASS Cr). All grades deform by Portevin-le-Châtelier band
propagation after a certain level of plastic deformation. The more stable
is the sample, the higher the strain threshold.

• after a stress threshold which depends on the grade, the martensite frac-
tion evolves linearly with the stress with a constant slope whatever the
austenite stability.

• this linear relationship allows the development of a metallurgical/mechanical
model that couples the austenite deformation with the martensite trans-
formation. Depending on a single parameter that describes the austen-
ite stability, Ms, the predicted stress-strain curves account for the most
salient experimental results. The model remains however a simple play
model that cannot be used without precaution in cyclic, multiaxial, or
non-proportional situations.
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Appendix A. Digital image correlation (DIC)

This appendix brings some comprehension elements about the DIC algo-
rithm employed in this work. However, it does not substitute to some more
detailed and accurate presentations available in [29–31].

Each image is first separated into local areas called the region of interest
(ROI). The DIC algorithm assumes first that the grey level is conserved between
the reference image f(x) of the ROI at initial configuration (x denoting a
2D position of a pixel) and a current image g(x) at a deformed configuration,
and that variations between images f and g are only due to the displacements
u(x, t). The displacement field solution of the problem minimizes the correlation
residuals functions Φ2(x) over the chosen ROI made of m×m pixels:

Φ2(x) =

∫
ROI

[φ(x)]2 dx =

∫
ROI

[g(x + u(x))− f(x)]2 dx (A.1)

where φ(x) = |g(x + u(x)) − f(x)| defines the field of correlation residuals. In
Correli 3.0 software, the DIC problem resolution is ensured by the resolution
of a Finite Element formulation (mesh illustrated in figure 2b). By adopting a
global linear formulation, the residual field is integrated inside the ROI:

u(x) = arg min

∫
ROI

|g(x) + grad(g(x)).duk − f(x)|2 dx (A.2)

where superscript k denotes the iteration index of the Newton procedure,
and u(x) is spatially discretized using the spatial form functions ϕn and an the
associated degrees of freedom:

u(x) =
∑
n

anϕn(x) (A.3)

The resolution of the kinematic field u(x) is achieved by solving successively
the following linear system:

M.du = b

with
M = Mijei ⊗ ej

and

Mij =

∫
ROI

(ϕi.grad(f(x))(ϕj .grad(f(x)) dx (A.4)

b is a vector that vanishes when a perfect fit is obtained for each pixel.
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Appendix B. Heat equation

The dissipation process must be complemented by the heat equation. We
go back to the first principle:

ρu̇ = σ : ε̇+ q − div qs (B.1)

and introduce
u̇ = ψ̇ + Ṫ s+ T ṡ

using again, on one hand, equation (22) and equation (28), on the other hand,
we obtain:

ρT ṡ =
∑
i

fiσ : ε̇pi +
∑
i

fiσ : ε̇tri −
∑
i

ρgiḟi + q − div qs (B.2)

We consider s as a function of the same variable than ψ: s(εe, T, fi):

ṡ =
∂s

∂εe
: ε̇e +

∂s

∂T
Ṫ +

∑
i

∂s

∂fi
ḟi (B.3)

so that

ρT

(
∂s

∂εe
: ε̇e +

∂s

∂T
Ṫ +

∑
i

∂s

∂fi
ḟi

)
=
∑
i

fiσ : ε̇pi+
∑
i

fiσ : ε̇tri −
∑
i

ρgiḟi+q−div qs

(B.4)
Considering next:

• thermoelasticity term

ρT
∂s

∂εe
: ε̇e = −ρT ∂2ψ

∂T∂εe
: ε̇e = −ρT ∂σ

∂T
: ε̇e

• mixture law for specific entropy density as applied for specific free energy
density

s =
∑
i

fisi

leading to: ∑
i

∂s

∂fi
ḟi =

∑
i

siḟi

• specific enthalpy density of phase i

hi = gi + Tsi
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• specific heat capacity at constant strain

∂s

∂T
=
cε
T

The final expression of heat equation is obtained:

ρcεṪ =
∑
i

fiσ : ε̇pi +
∑
i

fiσ : ε̇tri −
∑
i

ρhiḟi + ρT
∂σ

∂T
: ε̇e + q − div qs (B.5)

The heat sources are the following:

• plastic strain

• transformation strain

• latent heat

• thermoelasticity

q denotes ”other” sources (electromagnetic...), qs figures out the heat ex-
changes.
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