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Highlights
these factors in regulating HBV replication,
revealing new therapeutic targets.
� Primate hepadnaviridae encode conserved hypoxia response
elements.

� Hypoxia inducible factors bind HBV DNA and activate the
basal core promoter.

� Pharmacological stabilization of hypoxia inducible factors
and low oxygen increases HBV transcription and particle
genesis.

� Knockdown studies show a role for both HIF-1a and HIF-2a in
regulating HBV transcription.
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Background & Aims: Hypoxia inducible factors (HIFs) are a tension. Hepatitis B virus (HBV) replicates in the liver, a naturally

hallmark of inflammation and are key regulators of hepatic im-
munity and metabolism, yet their role in HBV replication is
poorly defined. HBV replicates in hepatocytes within the liver, a
naturally hypoxic organ, however most studies of viral replica-
tion are performed under conditions of atmospheric oxygen,
where HIFs are inactive. We therefore investigated the role of
HIFs in regulating HBV replication.
Methods: Using cell culture, animal models, human tissue and
pharmacological agents inhibiting the HIF-prolyl hydroxylases,
we investigated the impact of hypoxia on the HBV life cycle.
Results: Culturing liver cell-based model systems under low
oxygen uncovered a new role for HIFs in binding HBV DNA and
activating the basal core promoter, leading to increased pre-
genomic RNA and de novo HBV particle secretion. The presence
of hypoxia responsive elements among all primate members of
the hepadnaviridae highlights an evolutionary conserved role for
HIFs in regulating this virus family.
Conclusions: Identifying a role for this conserved oxygen sensor
in regulating HBV transcription suggests that this virus has
evolved to exploit the HIF signaling pathway to persist in the low
oxygen environment of the liver. Our studies show the impor-
tance of considering oxygen availability when studying HBV-host
interactions and provide innovative routes to better understand
and target chronic HBV infection.
Lay summary: Viral replication in host cells is defined by the
cellular microenvironment and one key factor is local oxygen
0; accepted 24
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of Hepatology
hypoxic organ. Hypoxia inducible factors (HIFs) are the major
sensors of low oxygen; herein, we identify a new role for these
factors in regulating HBV replication, revealing new therapeutic
targets.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European
Association for the Study of the Liver. This is an open access article
under the CCBY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
HBV is a global health problem, with more than 250 million
people chronically infected and at least 880,000 deaths/year from
HBV-related liver diseases such as cirrhosis and hepatocellular
carcinoma (HCC) (WHO, Global hepatitis Report 2017). The HBV
vaccine has no effect on chronic infection and current treatments
suppress viral replication but are not curative. Chronic infection is
associated with a blunted host innate immune response, high
viral antigen expression and exhausted antiviral T cell responses
that fail to control HBV replication.1 In most cases, treatment may
be life-long and patients with a functional cure may still develop
liver cancer.2 Effective antiviral drugs have revolutionized treat-
ments for hepatitis C virus and there is a growing impetus to
identify curative therapies for HBV.3

HBV is the prototype member of the hepadnaviridae family
that replicate via episomal copies of a covalently closed circular
DNA (cccDNA) genome.4 cccDNA is frequently referred to as a
viral mini-chromosome, where gene expression is regulated by
DNA methylation, host RNA Polymerase II and transcription
factors (reviewed in5). Viral replication is primarily determined
by the size of the cccDNA pool and its transcriptional activity,
and host factors such as hepatocyte nuclear factor 4 alpha
(HNF4a)6 have been reported to regulate HBV replication
(reviewed in7). The viral genome has 4 promoters (the basal core
promoter [BCP], Sp1, Sp2 and Xp) that transcribe 6 major viral
RNAs of decreasing length with a common 3’ polyadenylation
2021 vol. 75 j 64–73
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signal. These RNAs include: pre-core (pC) that encodes the e
antigen (HBeAg); pre-genomic (pgRNA) that is translated to yield
core protein (HBcAg) and polymerase; preS1, preS2 and S RNAs
encoding the surface envelope glycoproteins and the X transcript
for the multi-functional x protein (HBx). Encapsidated pgRNA is
reverse-transcribed by the viral polymerase to generate new
DNA genomes that can be reimported to the nucleus to maintain
the cccDNA pool or are enveloped and secreted as infectious
particles.4 Defining the role of host factors that regulate HBV
pgRNA genesis and half-life will increase our understanding of
the HBV life cycle and enable the design of more effective anti-
viral approaches.

Viral gene expression is shaped by the cellular microenvi-
ronment and one important factor to consider is local oxygen
tension. The liver receives oxygenated blood from the hepatic
artery and oxygen-depleted blood via the hepatic portal vein,
resulting in an oxygen gradient of 8–4% between the periportal
and pericentral areas, respectively.8 This oxygen gradient asso-
ciates with liver zonation, a phenomenon where hepatocytes
show distinct functional and structural heterogeneity across the
liver.9 Mammalian cells adapt to low oxygen through an
orchestrated transcriptional response regulated by hypoxia
inducible factor (HIF). This transcription factor, comprising HIF-
1b and HIF-1a or HIF-2a subunits, is regulated by oxygen-
dependent and independent stress signals such as inflamma-
tion and oxidative stress.10,11 The heterodimeric HIF complex
binds a consensus RCGTG(C) motif or hypoxic responsive
element (HRE) in the promoter and enhancer regions of
responsive genes. When oxygen is abundant, newly synthesised
HIFa subunits are hydroxylated by prolyl-hydroxylase domain
(PHD) proteins and rapidly targeted for proteasomal degrada-
tion. In contrast, when oxygen is limited, these HIFa subunits
translocate to the nucleus, dimerize with HIF-1b and regulate the
transcription of host genes involved in cell metabolism and im-
mune regulation.12 The majority of reports studying HBV repli-
cation in vitro are performed at atmospheric oxygen levels (18%)
where HIFs are inactive, so their role in viral replication has been
overlooked. We evaluated the effect of HIF signaling on HBV
replication and uncovered a positive role for HIFs in activating
viral transcription that could inform future therapeutic
strategies.

Materials and methods
HBV, cells and hypoxic culture
HBV (Genotype D) was purified from HepAD38 cells and the
infectious titer measured as previously reported.13 HepG2 cells
expressing sodium taurocholate co-transporting polypeptide
(NTCP) (Stefan Urban, Heidelberg University) were cultured in
DMEM with 100 U/ml penicillin/0.1 mg/ml streptomycin/10%
FCS/glutamax/non-essential amino acids. HepG2-NTCP cells
were seeded on collagen coated plasticware and infected with
HBV (multiplicity of infection 200–400 genome equivalents/cell)
with 4% polyethylene glycol 8000 for 6 h. Viral inoculum was
removed, cells washed 3x with PBS and infected cells maintained
in DMEM-10% FCS in the presence or absence of 2.5% DMSO. For
hypoxic cultures, cells were incubated in a Galaxy 48R incubator
(Eppendorf) with variable oxygen tension; unless otherwise
stated all incubations were for 72 h. Normoxic cells were
cultured at 5% CO2 and 18% oxygen.

For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.
Journal of Hepatology
Results
Hypoxia inducible factors activate the HBV basal core
promoter
To investigate a role for HIFs in the HBV life cycle, we first assessed
whether the viral genome encodes HREs. Screening >7,000 HBV
sequences available in the HBV database14 identified HREs within
Enhancer I (1236–1240) and an antisense motif between
Enhancer I and II (EnhI/II) (1604–1599) (Fig. 1A). It is interesting to
note that both HREs are present in HBV sequences obtained from
Bronze age and medieval samples.15 Analysis of hepadnaviridae
NCBI referent genomes16 shows that, with the exception of HBV
genotype H, all human, higher primate, and woodchuck viruses
encode both motifs (Fig. 1A). Monkey, bat, rodent and avian viral
genomes lack the motifs, suggesting a conserved evolutionary role
for HIFs in the regulation of primate members of this family. To
evaluate this hypothesis we stabilized HIF expression using the
licensed PHD inhibitor FG-4592 (Roxadustat).17 Since HIFa isoform
expression can vary between cell types we show that FG-4592
induced HIF-1a and HIF-2a expression in HepG2 cells derived
from a human HCC (Fig. 1B). Transfecting HepG2 cells with plas-
mids encoding EnhI/II and the basal core promoter (HBV-Luc) or
control HRE-luciferase showed that FG-4592 induced a significant,
time-dependent activation of both reporters (Fig. 1B).

To extend these observations we used 2 model systems to
investigate a role for HIFs in regulating viral transcriptional ac-
tivity: HepG2 cells with an episomal replicating HBV (HepG2-
pEpi-HBV)18 and HepG2-NTCP cells that support de novo HBV
infection. The BCP drives transcription of pC and pgRNA from 2
start sites that are only 70 base pairs apart19 and since our PCR
cannot discriminate between these viral-encoded RNAs, we label
transcripts as pC/pgRNA to represent the sum of both RNAs. FG-
4592 induced a significant increase in pC/pgRNA and HIF-
regulated genes carbonic anhydrase IX (CAIX) and N-myc down-
stream regulated 1 (NDRG1) in both models (Fig. 1C). Since HIF-1a
and HIF-2a can show non-overlapping and opposing functions11

we were interested to investigate their individual roles in regu-
lating viral transcription. We transiently silenced HIF-1a or HIF-
2a, individually or together, in HepG2-NTCP cells prior to infecting
with HBV in the presence or absence of FG-4592. We demonstrate
effective silencing by western blotting for HIF expression and by
quantifying CAIX or vascular endothelial growth factor (VEGF)
mRNA levels (HIF-1a and HIF-1a/HIF-2a regulated host genes,
respectively) (Fig. 1D). The FG-4592-dependent increase in pC/
pgRNA in the infected cells was ablated by the combined HIF-1a
and HIF-2a silencing, demonstrating a role for both HIFa isoforms
in regulating promoter activity.

As our cell-based studies predict an association between HIF-
transcriptional activity and viral RNAs in the infected liver, we
quantified hypoxic gene transcripts and HBV RNA in liver biopsies
from patients diagnosed with chronic hepatitis (n = 12) or chronic
infection (n = 7) following the 2017 EASL guidelines20 (Fig. 2A). We
recently reported increased expression of hypoxia regulated gene
transcripts in chronic hepatitis B (CHB),21 enabling us to identify
hepatic HIF-target genes for inclusion in a customized nCounter
(Nanostring) array togetherwith a probe tomeasure HBV RNA. The
HBV probe detected a 400-fold range in viral RNA counts amongst
the CHB samples (Fig. 2B), enabling us to stratify patients into 2
groups (nCounter score low <350 and high >350). We found a sig-
nificant positive association betweenHIF-gene expression andHBV
RNA (Fig. 2C), consistent with our in vitro studies suggesting a role
for HIFs in positively regulating HBV transcription.
2021 vol. 75 j 64–73 65
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performed using a 2-Way ANOVA (**p <−0.01, ****p <−0.0001). (C) HIFs promote transcription in HBV de novo infection. HepG2 cells supporting episomal copies of
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Research Article Viral Hepatitis
HIFs regulate viral transcripts in HBV transgenic mice.
HBV can only infect humans and primates and no immune
competent animal models are available that support natural HBV
infection. The HBV transgenic mouse model (HBVtg)22 of chronic
infection transcribes viral RNAs from an integrated 1.3
66 Journal of Hepatology
overlength genome and, despite the lack of cccDNA, has been
used to study host pathways regulating viral transcription
(reviewed in7). Since both HIFa subunits dimerize with HIF-1b to
regulate gene transcription we transiently silenced HIF-1b by
siRNA injection and quantified viral parameters in the liver and
2021 vol. 75 j 64–73



periphery. To assess the efficacy of the silencing we measured
mRNA levels of HIF-1b, the HIF-regulated host genes VEGF and
PHD2, the key oxygen sensor that regulates HIF expression. We
observed a coordinated reduction of all 3 gene transcripts in 6 of
7 male mice receiving siRNAs targeting HIF-1b and a negligible
effect of the siRNA-HIF-1b in 5 female mice (Fig. 3A, Fig. S1). We
noted reduced pC/pgRNA and total viral RNAs in 4 of 6 siRNA-
HIF1b treated male mice compared to siControl treated animals
(Fig. 3B), demonstrating a role for HIFs in regulating HBV tran-
scription. Alanine aminotransferase values were comparable in
all mice suggesting a negligible cytotoxic effect of the siRNA-HIF-
1b treatment. Furthermore, visual inspection of H&E-stained
liver biopsies from siCtrl or siRNA-HIF-1b treated animals
showed no evidence of hepatocyte proliferation. We observed a
reduced frequency of HBcAg-expressing hepatocytes, peripheral
HBeAg and HBsAg levels in the siRNA-HIF-1b treated male mice
(Fig. 3B,C). Core antigen (HBcAg) expression showed a peri-
central staining pattern (Fig. 3C), consistent with this area of
the liver representing a low oxygen environment.23 These data
highlight a role for HIFs in regulating HBV transcription in this
transgenic mouse model.
Hypoxia inducible factors bind HBV DNA
To assess whether HIFs bind HBV DNA we isolated chromatin
from HepG2-pEpi-HBV cells and quantified HIF-1b binding to
episomal genomes by chromatin immunoprecipitation and
quantitative PCR (ChIP-qPCR).24 Under normoxic conditions we
failed to precipitate HIF-1b with any target gene (Fig. 4A),
whereas HNF4a bound viral DNA and the promoter of Apolipo-
protein B (APOB)6,25 (Fig. 4A). The retinoic acid receptor-related
orphan receptor-a (RORa) is an important regulator of
A Characteristic Chronic
Age, median years (range) 50 (34-66
Sex (female/male) 5/7
HBV DNA, median IU/ml (IQR) 6,000 (10
HBsAg, median logIU/ml (IQR) 2,100 (89
HBeAg, median PEIU/ml (IQR) negative
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nCounter HBV RNA, median (IQR) 1,312 (46
*HBsAg available for n = 16 patients 
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Journal of Hepatology
circadian rhythm and hepatic lipid metabolism26 and, to the best
of our knowledge, does not interact with the HBV genome. As a
control for these ChIP experiments, we showed that RORa bound
its circadian target gene BMAL1 but failed to bind HBV DNA
(Fig. 4A). In vitro studies to stabilize HIFs are routinely performed
under 1% oxygen27 and culturing cells under these conditions or
treatment with FG-4592 induced HIF-1b binding to HBV DNA
and the host target gene CAIX (Fig. 4B). HIF-1b showed no
binding to the c-Globin promoter, a known housekeeping gene
lacking an HRE motif (Fig. 4B). To assess whether HIFs bind HBV
DNA in vivo we studied infected chimeric human liver FNRG
mice.28 HBV-infected mice were sacrificed at 4 weeks post-
infection and viral replication was confirmed by measuring he-
patic cccDNA along with peripheral HBV DNA, HBeAg and HBsAg
(Fig. 4C). ChIP-qPCR using primers spanning the BCP24 showed
enriched HIF-1b, HIF-1a and HIF-2a binding to viral genomes
relative to an irrelevant IgG (Fig. 4C). In agreement with our
earlier in vitro experiments HNF4a also bound viral DNAwhereas
there was no evidence for an interaction with RORa (Fig. 4C). In
summary, these experiments provide clear evidence for HIF-1b
binding HBV DNA following FG-4592 or low oxygen treatments.
Furthermore, HIF-1a and HIF-2a complexed with HBV DNA in
infected human hepatocytes isolated from liver chimeric mice,
without any specific treatments to stabilize HIFs, showing the
presence of these complexes in vivo.
A low oxygen environment activates HBV BCP and associated
transcripts
To investigate the functional consequences of a low oxygen
environment on HBV transcription activity we cultured HepG2-
NTCP cells under 1% oxygen and measured promoter activity
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) 54 (49-85) 0.139

2/5 0.656
8-87,500) 1,600 (490-4,387) 0
5-4,400) 604 (165-930) 0

negative
8) 32 (23-40) 0.008
0-2,577) 50 (30-172) <0.001

C

Low High
0

5

10

15

H
yp

ox
ic

 g
en

e 
ex

pr
es

si
on ***

HBV RNA

infection. (A) Clinical characteristics of CHB cohort. (B) HBV RNA in the CHB
>350: n = 9 and red symbols) or low (Normalized count <350: n = 10 and blue
ates the assay cut-off defined by analyzing liver RNA samples from uninfected
5 HIF-regulated genes (BNIP3, BNIP3L, CA9, EPO, FAM115C, FGF11, GLUT1, IGLON5,
ed using Wilcoxon match-pairs signed rank test (p = 0.00012). CHB, chronic
b.)

2021 vol. 75 j 64–73 67



HBVHypoxic response
37
58
49
38
40
61
57
47
48
54
55
66

-2

M
al

e
Fe

m
al

e

0

2

A
HIF

-1
β

Ve
gfa

Phd
2

pC
/pg

RNA
To

tal
 H

BV R
NA

B
Mouse
(Sex) siRNA ALT

(IU/ml)

39 (m) siCtrl 11.44 2.40 42.0
56 (f) siCtrl 4.41 0.15 32.1
59 (m) siCtrl 10.05 2.25 44.0
65 (f) siCtrl 8.99 10.3 33.9
37 (m) siHIF-1β 0.03 0.12 61.2
38 (m) siHIF-1β 0.08 0.22 69.2
49 (m) siHIF-1β 0.00 0.00 37.8
58 (m) siHIF-1β 0.00 0.02 46.4

N
orm

alized expression
(Z-score)

Average HBc
count/mm2

(x102)

HBeAg
(x103 IU/ml)

C 39 56 59 65

37 584938

si
C

trl
si

H
IF

-1
β

Fig. 3. HIFs regulate viral transcription in HBV transgenic mice. (A) siRNAs targeting HIF-1b were delivered into male and female HBV1.3 transgenic mice and
animals were culled after 1 week. RNAwas isolated from liver biopsies and transcript levels of HIF-1b, Vegfa and Phd2, together with pC/pgRNA and total viral RNA
quantified. The amount of each transcript was normalized (Z-score) and presented as a heat map (suppression = red, enhancement=blue). (B) HBcAg expression in
the liver was assessed by measuring the number of antigen expressing cells/mm2. Peripheral HBeAg, HBsAg and ALT levels were quantified in siCTRL and HIF-1b
silenced mice and tabulated per individual mouse. (C) HBcAg staining from fixed murine liver sections. 20x images are shown with scale bars representing 100
lm. ALT, alanine aminotransferase; HIFs, hypoxia inducible factors; pC/pgRNA, pre-core/pre-genomic RNA. (This figure appears in color on the web.)

Research Article Viral Hepatitis
and pC/pgRNA levels in de novo infected cells. Under low oxygen
conditions HepG2-NTCP cells express both HIFa isoforms and
show a time-dependent increase in promoter activity (Fig. 5A),
increased pC/pgRNA levels and HBcAg expression (Fig. 5B). We
observed a significant increase in the level of secreted HBV DNA
under low oxygen conditions using 2 independent model sys-
tems (Ad-HBV transduced HepG2-NTCP and HepG2.2.15 cells)
(Fig. S2), consistent with reports showing that a modest increase
in HBcAg promotes cytoplasmic HBV replication.29 Low oxygen
had no impact on cccDNA levels, consistent with our interpre-
tation that HIFs positively regulate BCP activity. To further
explore this conclusion, we infected hypoxic HepG2-NTCP cells
with a transcriptionally active but replication deficient HBV re-
porter virus (rHBV-Gluc) and showed a low oxygen-dependent
increase in pC/pgRNA (Fig. 5C). This virus encodes Gaussia
luciferase under the control of an exogenous transthyretin pro-
moter within the S open reading frame.30 We observed a modest
reduction in reporter activity in the hypoxic infected cells,
demonstrating the promoter-dependency of low oxygen in
68 Journal of Hepatology
regulating HBV transcription. HIFs are rapidly degraded under
normoxic conditions to facilitate dynamic cellular transcriptional
responses to fluctuating oxygen levels. We were interested to
assess the impact of re-oxygenation on HBV transcription. HBV-
infected HepG2-NTCP cells were maintained in 1% oxygen for 72
h, moved to 18% oxygen and sampled at 0, 6, 24 and 48 h post-
oxygenation. We quantified cccDNA and transcript levels of pC/
pgRNA, CAIX and NDRG1. cccDNA levels showed no significant
change over the period of re-oxygenation, however, pC/pgRNA
levels declined rapidly, with a 50% reduction by 11 h compared to
8 h and 2 h for CAIX and NDRG1 RNAs, respectively (Fig. 5D).
These data clearly show that low oxygen regulates cccDNA
transcriptional activity, highlighting the dynamic nature of this
phenotype.

In the adult liver hepatocytes are non-proliferating and the
majority of in vitro experiments studying HBV replication use
DMSO to arrest cell proliferation. We noted that culturing
HepG2-NTCP cells under 1% oxygen arrests cells (Fig. S3),
providing a physiological method to limit cell proliferation.
2021 vol. 75 j 64–73
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DMSO can induce wide-ranging effects on host gene expres-
sion31 and we evaluated the effect of low oxygen on pC/pgRNA
levels in DMSO-arrested HepG2-NTCP cells, comparing a naïve de
Journal of Hepatology
novo infection to a pre-established infection. In both cases we
noted a blunted response of low oxygen to regulate pC/pgRNA in
the DMSO-arrested cells (Fig. S4A,B). Screening a panel of hyp-
oxia genes by PCR-array showed a reduced activation of both
HIF-1a and HIF-2a regulated genes in DMSO-treated HepG2 cells
cultured in 1% oxygen (Fig. S5).

Primary human hepatocytes (PHHs) are considered the gold
standard for studying HBV replication. However, PHHs can de-
differentiate and lose hepatocyte-specific function in vitro.32

One approach to limit their de-differentiation is to culture
them in DMSO-containing media. Since DMSO blunts HepG2
cellular response to hypoxia, we cultured PHHs and HepG2-NTCP
cells in 5%, 3% or 1% oxygen for 48 h and showed negligible
expression of HIF-1a and greater levels of HIF-2a in PHHs
compared to HepG2-NTCP (Fig. S5). We observed a more domi-
nant pattern of HIF-2a regulated genes in PHHs compared to
HepG2-NTCP cells (Fig. S5C). To understand whether HIF-2a
transcriptional activity dominates in the HBV-infected liver we
investigated the relative contribution of HIF-1a or HIF-2a activity
in CHB biopsy samples.21 38 of the hypoxia genes showing
increased expression in CHB were defined as HIF-1a (n = 26),
HIF-2a (n = 11) or co-regulated (n = 1) genes,33 showing clear
evidence for both HIF-1a and HIF-2a transcriptional activity
in vivo. These data show the complexities of studying viral and
host transcriptional responses to low oxygen in PHHs ex vivo.

Oxygen-regulation of episomal and integrated HBV DNA
In the human genome HIFs bind motifs that can regulate distant
gene promoters. We previously reported a qPCR technique to
quantify the relative abundance of HBV RNAs34 and used this
method to assess the effect of low oxygen on the pattern of viral
RNAs in infected HepG2-NTCP cells. pC/pgRNA was the major
viral-encoded RNA in infected HepG2-NTCP cells, consistent with
a recent report using 5’RACE to study HBV transcripts.19 Low
oxygen increased pC/pgRNA levels compared to preS1/S or HBx
RNAs in HepG2-NTCP cells (Fig. 6A). Furthermore, following
oxygen reperfusion of hypoxic infected cells, preS1/S RNA levels
showed no significant change, suggesting a minimal role for low
oxygen in regulating their genesis or estimated half-life (Fig. 6B).
Recent reports highlight a role for HBV integrants in driving
HBsAg expression.35,36 Since integration of the linear viral DNA
generated during viral replication may separate the HREs from
downstream transcription initiation sites, we hypothesize that
integrated copies of HBV will be oxygen-insensitive. We used 3
well-characterized hepatoma lines: PLC/PRF5, Hep3B and Huh-1
that harbor transcriptionally active integrated genomes.37,38 Low
oxygen had a minimal effect on preS1/S2 RNA levels (Fig. 6C),
with a modest reduction in transcripts in PLC/PRF5 cells, and no
significant changes in HBsAg expression. We confirmed the
integrant lines were responsive to low oxygen, showing an
approximate 10-fold induction in CAIX RNA levels. These exper-
iments show the differential effect of HIFs in the regulation of
transcription of episomal cccDNA and HBV integrants.

Discussion
Oxygen sensing is a fundamental cellular process that shapes the
liver transcriptome. We identify a role for HIFs in activating the
HBV core promoter and increasing pC/pgRNA, HBcAg expression
and secreted viral DNA. Our ChIP experiments show HIF binding
to HBV DNA in hypoxic infected cells and from HBV-infected
human liver chimeric mice in vivo, supporting a direct role for
2021 vol. 75 j 64–73 69
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HIFs in the regulation of HBV transcription. Furthermore, we
translate these observations into CHB and show a positive as-
sociation between hypoxic gene expression and viral RNAs,
consistent with a role for HIFs in regulating HBV in vivo. HBV
encodes 2 HREs in its compact genome and we show their
evolutionary conservation among primate members of the
hepadnaviridae.

Silencing HIF-1b in male HBVtg mice reduced pC/pgRNA and
total RNA levels, the frequency of HBcAg-expressing hepatocytes,
and peripheral HBeAg and HBsAg levels, revealing a role for HIFs
in regulating viral transcription in this model. Analyzing pub-
lished single cell-RNA sequences of mouse liver23 for transcrip-
tional activators and repressors reported to regulate HBV
replication (reviewed in39) showed no zonal patterns of
expression, consistent with a role for HIFs in regulating viral
transcription in this mouse model. We noticed a discrepancy
between the male and female mice in our study, where HIF-1b
silencing was ineffective in females, consistent with reports
showing a greater response in male rats to chronic intermittent
hypoxia compared to females.40,41 Furthermore, ovariectomy
rendered the 2 sexes equally responsive to hypoxia.41 Estrogen
signaling was reported to inhibit both HIF-1a transcriptional
activity42 and HBV transcription,43,44 providing a potential
explanation for the sex-dependent differences noted in our
model. A recent in-depth proteomic study investigating the
molecular basis of sex difference in zebrafish responses to hyp-
oxia preconditioning identified a complex network of signaling
70 Journal of Hepatology
pathways.45 Hypoxic gene expression and HBV RNA levels in our
CHB samples were independent of sex, however, this may reflect
the post-menopausal age of females in our small cohort and is
worthy of further investigation.

Hypoxia is known to induce a broad range of cellular changes
beyond those regulated by HIFs.46 Importantly, we observed
higher pC/pgRNA in de novo HBV-infected cells cultured under
low oxygen compared to those treated with the PHD inhibitor
FG-4592 (Roxadustat), suggesting a potential role for other
members of the oxygenase family in the regulation of HBV
replication. To investigate this possibility, we completed a tran-
scriptional and proteomic analysis of hypoxic human hepatoma
cells (Fig. S6) and observed negligible changes in the expression
of host activators or repressors previously reported to regulate
HBV replication. A recent study using chemical mimetics (CoCl2
and dimethyloxalylglycine) to stabilize HIFs reported increased
DNASE1 levels and a reduction in HBV genome copies,47 how-
ever, our hypoxic studies showed no impact on DNASE1
expression that may reflect differences in the model systems
used.

Integration of the HBV genome is associated with HCC
development48,49 and the introduction of HREs could regulate
downstream targets such as oncogenes that could be activated in
the hypoxic tumor environment. HBV integrants are thought to
be the major source of HBsAg expression in chronic disease that
have been associated with exhausted antiviral T cell re-
sponses.1,50 Our observation that integrant encoded preS1/S
2021 vol. 75 j 64–73
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transcripts are oxygen-insensitive is relevant if one considers the
hypoxic nature of the HCC environment21,51 and how this could
influence HBsAg expression, a biomarker for monitoring pa-
tients’ response to new therapies.52

In summary, we demonstrate a new role for HIFs to positively
regulate HBV transcription. A hypoxic environment was also
reported to potentiate hepatitis C virus replication via HIF-
dependent53,54 and independent55 pathways. Hypoxia can have
variable effects on virus replication, most likely reflecting the
differing oxygen tensions at the sites of replication.56 HBV, along
with other members of the hepadnaviridae family, may have
evolved to replicate and exploit the HIF-signaling pathway to
persist in the low oxygen environment of the liver.

Our observations raise questions as to how cellular hypoxia
translates to humans, both in terms of HBV replication, hepatic
immunity and response to new therapies. CHB reflects a dynamic
interaction between the virus and host immune system cells,
where active hepatitis associates with increased cccDNA tran-
scription.57 Our data showing a role for HIFs in promoting HBV
transcription provide an explanation for how inflammatory re-
sponses may potentiate HBV replication. The recent licensing of
HIF-prolyl hydroxylase inhibitors as erythropoiesis-stimulating
agents for the treatment of anemic patients with chronic kid-
ney disease in China and Japan58 could impact HBV replication
and is worthy of further study. Finally, pharmacological agents
that inhibit HIF signaling-pathways10 may be considered for
further exploration in clinical trials. Understanding the biology of
HBV under more physiological conditions will reveal novel
therapeutic targets and provide an environment for innovative
antiviral drug screening.
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