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ABSTRACT  

BACKGROUND: Alcohol acts as an addictive substance which may lead to alcohol use 

disorder. In humans, Magnetic Resonance Imaging (MRI) showed diverse structural and 

functional brain alterations associated with this complex pathology. Single MRI modalities are 

mostly used, but are insufficient to portray and understand the broad neuroadaptations to 

alcohol. Here we combined structural and functional MRI and connectome mapping in mice, 

to establish brain wide fingerprints of alcohol effects with translatable potential. 

 

METHODS: Mice underwent a chronic intermittent alcohol drinking protocol for six weeks 

before being imaged under medetomidine anaesthesia. We performed open-ended multi-

variate analysis of structural data and functional connectivity mapping on the same subjects.  

 

RESULTS: Structural analysis showed alcohol effects for prefrontal cortex/anterior insula 

(PFC/AI), hippocampus (HIP) and somatosensory cortex (SS). Integration with microglia 

histology revealed distinct alcohol signatures, suggestive of advanced (PFC/AI, SS) and 

early (HIP) inflammation. Functional analysis showed major alterations of AI, ventral 

tegmental area (VTA) and retrosplenial cortex (RSP) connectivity, impacting communication 

patterns for salience (AI), reward (VTA) and default mode (RSP) networks. AI appeared as a 

most sensitive brain center across structural and functional analyses. 

 

CONCLUSIONS: This study demonstrates alcohol effects in mice, which possibly underlie 

lower top-down control and impaired hedonic balance documented at behavioral level, and 

aligns with neuroimaging findings in humans despite the potential limitation induced by 

medetomidine sedation. This study paves the way to identify further biomarkers, and to 

probe neurobiological mechanisms of alcohol effects using genetic and pharmacological 

manipulations in mouse models of alcohol drinking and dependence. 

Abbreviations 
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ACA Anterior cingulate cortex 

ACB Nucleus accumbens 

AD Axial diffusivity 

AI Agranular insula 

ALC Volontary alcohol intake mice 

AMG Amygdala nuclei 

AUD Alcohol use disorder 

BLA Basolateral amygdalar nucleus 

BST Bed nuclei of the stria terminalis 

cc Corpus callosum 

CTRL Control 

CEA Central amygdalar nucleus 

CP Caudoputamen  

(d)HIP (dorsal) hippocampus 

DMN Default-mode network 

DORpm Thalamus polymodal association cortex related 

DTI Diffusion tensor imaging 

ec External capsule 

ECT Ectorhinal cortex 

ENT Entorhinal cortex 

FA Fractional anisotropy 

FC Functional connectivity 

FD Fiber density 

fHIP Hipocampal formation  

(rs)fMRI (resting state) functional Magnetic Resonance Imaging 

GM Grey matter 

HBN Habenula 

MD Mean diffusivity  

MO Motor cortex 
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MRI Magnetic Resonance Imaging 

MRN Midbrain reticular nucleus 

PERI Perirhinal cortex 

PFC Prefrontal cortex 

PIR Piriform cortex 

RAmb Midbrain raphe nuclei 

RD Radial diffusivity 

RE Nucleus of reuniens  

ROI Region of interest 

RSP Retrosplenial cortex 

SEP Septal nucleus 

SS(p) (primary) Somatosensory 

TH Thalamus  

VTA Ventral tegmental area 

WM White matter
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Introduction  

 

Alcohol use and abuse account for a tremendous burden of disease worldwide (1,2)  and is a 

leading cause of physical and psychological harm to users and their social environment (3). 

After prolonged, repeated exposure, alcohol acts as an addictive substance that alters broad 

spectra of neuromolecular targets and signaling cascades (4), initiates genes expression 

changes, affects the synaptic function (5) and triggers functional and structural brain changes 

(6,7). Alcohol use disorder (AUD) is therefore considered a complex condition, characterized 

by distinct stages of the addiction cycle, associated to neuroadaptive brain changes (8).  

In humans, Magnetic Resonance Imaging (MRI) studies extensively describe  alcohol 

effects (9–12) highlighting vulnerability of the white matter (WM) (13–15) and revealing gray 

matter (GM) targets of alcohol use and abuse (16–18). Resting state functional MRI (rsfMRI) 

connectome investigations bring further evidence that chronic alcohol use leads to 

neurocircuitry adaptations across cognitive and emotional brain networks and across the 

alcoholism spectrum (19–23). Recent studies showed a link between patterns of functional 

connectivity (FC) and neuropathological conditions (24–27) in alcoholism. 

Single MRI modalities are however insufficient to portray the complex AUD patterns. 

Multi-modal MRI and multi-parametric classifiers are necessary to better understand how 

structural abnormalities relate to alterations of brain function and how these imaging 

signatures capture, or even predict alcohol consumption behavior. Many of these factors are 

difficult to control and document in human investigations where mechanistic studies are 

challenging (28–31). Therefore, translation of these approaches in animal neuroimaging 

research is essential to reveal the neurobiological underpinnings of multivariate imaging 

signatures and to advance the quest of stratification markers of AUD.  

In rodent behavioral models of alcohol exposure (32,33)  longitudinal MRI studies 

have tracked the brain morphometric profiles (15,34–39) and Diffusion Tensor Imaging (DTI) 

revealed WM sensitivity to alcohol exposure (14). Limited information is available regarding 

the effects of alcohol on functional networks’ architecture in rodents (20,40–45) and 
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multimodal studies combining structural and functional MRI are lacking in rodent models of 

alcohol drinking. 

In the present study we carried out a multi-modal in-vivo MRI investigation to identify 

the consequences of alcohol consumption on brain wide structural and functional circuitries 

in a mouse model of voluntary drinking. We used the chronic two-bottle choice intermittent 

access paradigm (46,47), and developed advanced multivariate analysis of structural data 

(DTI, fiber tractography, morphometry, histopathology) and functional network mapping on 

the same subjects. Our analyses generate both structural and functional fingerprints of 

alcohol effects consistent with literature from alcoholism research in humans. This study also 

sets the basis for further whole brain neuroimaging investigations, using genetic and 

pharmacological manipulations in mouse models of alcohol drinking. 

 

METHODS AND MATERIALS 

Mice and alcohol exposure paradigm. Male mice (50% C57BL/6J - 50% 129Sv Pas) were 

used for all experiments (ethics 35_9185.81/G‐13/15 from Freiburg-Germany and 2003‐10‐

08‐[1]‐58, Strasbourg‐France). Experimental details are given in Supplementary Information 

1.1). Voluntary alcohol intake was tested using intermittent access two-bottle choice drinking 

alcohol paradigm (Fig.1, A) in mice (ALC; n=11), compared to a control group that had 

access to water only (CTRL; n=12) as previously described (40) and detailed in 

Supplementary Information 1.2. 

 

In-vivo MRI experiments. 24h after the last alcohol drinking session, in-vivo mouse brain 

multimodal MRI was performed to acquire T2-weighed images, resting-state functional MRI 

(rsfMRI) and DTI data, as previously described (48). To evaluate significant structural 

differences between groups, we performed a multivariate analysis including parametric maps 

calculated from DTI and T2-weighted data. We generated spatial maps that combined all 

significant structural MRI parametric modifications in a global cluster. We then used a voxel-

wise approach and assigned a specific structural signature of modifications for each voxel. 
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Voxels presenting similar pattern of multivariate structural modifications were extracted as 

clusters, covering specific brain regions. We further explored rsfMRI data to map FC using 

graph theory (49) and seed-based analysis. Detailed methods are provided in 

Supplementary Information 1.3. 

Immunohistological staining. To investigate the brain microstructural substrate of alcohol-

induced modifications, we performed IBA1 and GFAP immunostaining of microglia and 

astrocytes, as described in Supplementary Information 1.4. 

 

RESULTS 

Setting up alcohol drinking for MRI investigations  

We used a classical model of voluntary alcohol drinking - the intermittent two-bottle choice 

drinking procedure (Figure 1A) - known to lead to high levels of alcohol consumption in mice 

(40). Levels of alcohol drinking stabilized over the sessions (Figure 1B) and the mean alcohol 

intake during the whole experiment was of 11.06 g/kg body weight / 24 hours (one-sample t-

test, p<0.05). Water intake was comparable in the two ALC and CTRL groups. Image 

acquisition was performed 24 hours after the last alcohol drinking session, leaving animals in 

a withdrawal/abstinent state. 

Open-ended structural MRI reveals distinct alcohol signatures in PFC/AI, HIP and SS  

To investigate potential structural modifications in ALC mice, we conducted a data-driven 

multivariate analysis combining DTI-derived quantitative parametric indices and voxel-based 

morphometry results (Figure 2A-D). Overall results are mapped in Figure 2A and E, 

indicating brain areas significantly impacted by alcohol in GM and WM respectively. We 

identified three GM clusters (Figures 2B, C, D) and one WM cluster (Figure 2F), each 

characterized by a specific structural MRI multi-parametric signature.  

For the GM regions, a first cluster, covering the prefrontal cortex (PFC) and partially 

the insular cortex (AI), featured significantly higher diffusivity values in ALC mice compared 

to CTRL (Figure 2B) including axial (AD, z = 2.98), radial (RD, z = 2.61) and mean (MD, z = 
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2.76) diffusivity. The fractional anisotropy (FA), depending on RD and AD values, was also 

higher in the PFC/AI (z = 2.57), a likely consequence of the high AD increase in ALC mice. 

Morphometry measurements showed a volumetric decrease of these areas (logjacobian, z = 

-2.13), while fibers density (FD) mapping derived from tractography showed higher values 

(FD, z = 2.66). Forming a second cluster, dorsal hippocampus (dHIP) presented a very 

different pattern of structural modifications (Figure 2C). FA values were significantly higher (z 

= 2.84) in the ALC group compared to CTRL, whereas decreased diffusivity values were 

found for AD (z = -2.1), RD (z = -2.98), and MD (z = -2.83). A third pattern of structural MRI 

signatures covered the somatosensory (SS) cortex of ALC mice (Figure 2D), showing a 

tendency for lower diffusivity values for MD (z = -1.85), RD (z = -1.83) and AD (z = -1.71). 

Morphometric measurements detected a significant decrease of SS volume (z = -2.09.16) in 

ALC mice (Figure 2D). Finally, a WM cluster (Figure 2E) covering the corpus callosum (cc) 

and the external capsule (ec) showed a similar pattern of change in ALC mice as for the 

dHIP, characterized by higher FA values (z = 3.49) and lower diffusivity in RD (z = -2.3), MD 

(z = -2.2) and AD (z = -1.79). 

In sum, our analysis detected significant effects of voluntary alcohol drinking on the 

mouse brain microstructure, with distinct multivariate signatures characterizing PFC/AI, dHIP, 

SS and cc/ec areas. 

 

Alcohol exposure induces activation of microglia and astrocytes in PFC/AI and HIP  

To investigate the neurobiological basis for microstructural differences induced by alcohol 

drinking, we examined neuroinflammatory processes considered essential in alcohol-related 

neuroadaptations (50). We focused on AI, PFC and HIP (Figure 3), the main nodes for 

plasticity identified in our functional and structural MRI analysis. We performed IBA1 and 

GFAP immunostaining of microglia and astrocytes. We quantitatively evaluated the surface 

(% area) of marked cells (for both IBA1 and GFAP), as well as the number of microglial cells 

(for IBA1). GFAP % area quantification revealed an astrogliosis trend in PFC/AI (p=0.0525) 

and HIP (p=0.047, data not shown), associated with cell reshaping into dominant bipolar 
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features in the ALC group, specific to astrocytic activation. IBA1 staining revealed 

comparable changes in the PFC and AI of ALC mice, characterized by significant increase in 

microglial cell number for ALC mice with higher statistical significance for PFC (Figures 3A). 

This was associated with microglial shape changes: less ramified cell processes with larger 

extra-cellular space for ALC mice (Figure 3B) resulted in a lower % of IBA1 stained surface 

compared with the CTRL brains in AI and PFC. A different pattern was observed in HIP 

(Figure 3A), which also showed significant increase of microglial cells (p<0.001), but 

combined with increased IBA1 staining coverage for ALC mice. Altogether therefore, alcohol 

increased the number of microglial cells in all three regions, accompanied with either cell 

processes shrinking (AI, PFC) or hypertrophy (HIP), consistent with the distinct MRI 

signatures. 

 We next integrated structural multi-parametric MRI (Figure 2) and histological 

quantification of microglial activity (Figure 3B) to provide a fingerprint of structural 

modifications in the PFC/AI and HIP of alcohol-exposed mice. In the PFC/AI areas (Figure 

3C), the global significant increase of DTI-derived features was associated with microglial 

activation and processes shrinking, suggestive of inflammatory processes that may have led 

to other tissue damages. In contrast, the HIP signature (Figure 3D) showed a significant 

increase of FA only, associated with increased number of activated, ramified microglial cells, 

a likely hallmark of an earlier phase of neuro-inflammation.  

 

Graph network analysis of rs-fMRI data demonstrates major alteration of AI, VTA and 

RSP connectivity 

We further evaluated FC differences using graph network analysis. We focused on a circuit 

of 26 brain regions known for their involvement in drug reward, alcohol seeking and drinking 

behavior (5,6). We first used the 26x26 FC matrix to characterize group-specific FC patterns 

(Figure 4), and mapped the FC organization of statistically significant connected nodes for 

each group (network diagrams, Figures 4A and B). We ranked these nodes according to their 

significance in “degree”, and also show their associated significant “hubness” (Figures 4A 
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and B – graph bars). Overall, there was a lower number of significantly connected nodes in 

ALC (20) compared to CTRL (23) mice. The most significant node in terms of degree was the 

HIP for both groups. However, in ALC mice, graph network diagrams highlighted hyper-

connectivity of RSP, appearing as the second most influential node in the ALC brains for the 

number of significant connections (degree=7), and showing highest hubness values (10.3). 

Further, reward-related nodes decreased their hubness, including the ACB (ALC 3.3 vs 

CTRL 4.6), VTA and RAmb (not-significant in ALC group). In contrast, aversion-related 

nodes strengthened their importance as hubs in ALC mice, including habenula (HBN, ALC 

5.7 vs. CTRL 4.6) and central amygdala (CEA, ALC 1.1 vs CTRL non-significant), suggesting 

altogether modifications in the hedonic balance. 

Next, we carried-out an inter-group statistical comparison of FC matrices (ACL vs. 

CTRL; two-sample t-test, p<0.05, uncorr.), showing alcohol sensitive nodes and connections 

(Figure 4C and D). We established a ranking for most changed nodes (Stouffer coefficient, 

p<0.05, uncorr., Figure 4C), and summarized significantly changed connections graphically 

(Figure 4D).  We found significant FC differences for three nodes: AI, VTA and RSP. As 

regards to their connectivity, edges connecting AI to DORpm (p=0.0009), prefrontal cortex 

(PFC; p=0.022), raphe nuclei (p=0.034), hippocampal formation (PERI/ECT/ENT or fHIP; p 

=0.038) and the septum (SEP; p=0.048) were significantly modified in ALC compared to 

CTRL mice. Additionally, core nodes of the Default Mode Network (DMN), the RSP and ACA, 

showed strongly modified connectivity with sensory areas in the ALC group: RSP with 

olfactory cortical areas (RSP - PIR connection; p=0.037) and ACA with somatosensory 

cortex (ACA – SSp connection; p=0.001). FC was also modified for VTA – ACA (p=0.010), 

representative for DMN-reward inter-network connectivity. Finally, some other significant FC 

alterations were observed, involving basal ganglia/extended amygdala nodes and 

connections (SEP, CP, CEA, BLA) (Figure 4C). 

In conclusion, three brain areas and their associated connections show most 

significant differences: the AI – hub of the salience network; VTA – core node of the 
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mesocorticolimbic dopamine circuitry and key for reward/aversion mechanisms; RSP –main 

driver of the DMN in the rodent brain.  

 

Seed voxel-wise analysis of rsfMRI data reveals alcohol FC patterns for salience (AI), 

reward (VTA) and default mode network (RSP) nodes  

 To acquire a brain-wide view of functional alterations for the three major alcohol-

modified nodes, we performed a seed-based voxel-wise inter-group comparison (p<0.05, 

FDR cluster-corrected; Figure 5). We examined FC for AI (salience), VTA (reward) and RSP 

(DMN), and also explored the PFC, amygdala (AMG), bed nuclei of stria terminalis (BST) 

and SS (Suppl. Figure 2) networks, as they showed either strong modifications in our 

structural analysis, or have been largely associated with alcohol seeking/drinking behavior 

(19,21,40,45,51). First, AI significantly increased its connectivity with somatomotor cortices 

(SS and MO) and VTA following ALC exposure (Figure 5A). Next, alcohol consumption 

induced VTA hyperconnectivity with core regions of reward (ACB, CP), aversion (HBN), 

salience (AI) and DMN (ACA and RSP) (Figure 5B). VTA additionally showed increased FC 

with nucleus of reuniens (RE), thalamic area associated with memory processes. Third, 

alcohol drinking altered RSP’s FC (Figure 5C), with increased patterns toward somatomotor 

cortices, substantia nigra (SN), midbrain reticular nucleus (MRN) and thalamic areas (TH). 

Finally, modifications of PFC FC (Suppl Figure 2) included significantly weaker PFC - AI 

connectivity in ALC compared to the CTRL mice, but stronger FC between PFC and CP, 

AMG and VTA  

 Data from seed-based analysis (Figure 5A, B, C and Suppl. Figure 2) are summarized 

in network diagram (Figure 5D), representing significant voxel-wise FC modifications, with a 

focus on AI, VTA and RSP. In sum, this analysis shows strong alterations of salience (AI), 

reward (VTA) and DMN (RSP) -like networks, with basal ganglia (ACB, BST, CP) and 

aversive subcortical centers (AMG, HBN) and several cortical areas (PFC, HIP, SS). 

 

DISCUSSION  
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In this study, we used the 2-bottle choice chronic intermittent access paradigm 

(40,47,52–54), considered a standard model of excessive voluntary alcohol drinking in mice. 

We performed non-invasive MRI in these mice and analyzed their brain state after 6 weeks 

drinking using multi-parametric structural MRI and classification approaches, as well as 

mapping of intrinsic functional networks’ architecture. Our data provide in-vivo fingerprints of 

alcohol-induced modifications of both microstructural and functional connectome, capturing 

brain-wide and regional effects of chronic alcohol consumption.  

Structural MRI indicators point to specific modifications in GM areas, shown critical in 

human AUD (6,16,51,55), including prefrontal, insular and sensory-motor cortices and 

hippocampus. We mapped region-specific microstructural patterns – possibly accounting for 

differential vulnerability or reactivity to alcohol, or highlighting time-dependent evolution of the 

pathology. The results were attuned with ex-vivo findings of differential histopathologic 

patterns of microglial and inflammatory processes. 

We further show in the same animals, perturbed functional inter-play between driver-

nodes of salience (AI), reward (VTA) and default mode networks (RSP). FC modifications 

include basal ganglia (ACB, BST, CP and AMG), aversive subcortical centers (HBN) and 

executive as well as sensory control areas (PFC, SS), all evocative of connectome 

modifications described in AUD (19,56). The key findings are schematically summarized in 

Figure 6, showing areas found most affected from structural analysis and FC alterations. It is 

of note that, in our multimodal analysis, PFC/AI is a key disrupted brain region at both 

structural and functional levels.  

 

The analysis of microstructural modifications uncovers region-specific fingerprints  

Multivariate statistics of structural MRI identified three different parametric profiles of 

significant alcohol effects in GM, spatially localized in PFC/AI, SS, and HIP. This data-driven 

finding is consistent with previous reports of altered cortical and subcortical systems 

involving the PFC, HIP and SS (57) in both human and rodents (58–62) . 



13 

 

The first cluster – overlapping PFC and partly AI shows increase of all diffusivity 

values, with higher increase of AD - associated to main diffusion/fibers orientation - than RD 

and resulting in a significant FA elevation. This particular parametric signature relates to 

immunohistochemistry findings in PFC/AI, showing a greater number of microglial cells but 

reduced/depleted ramifications in ALC mice. This is suggestive of an activated microglial 

phenotype, often described in the context of ongoing neurodegeneration and neurotoxicity 

(63). Therefore, higher diffusivity indices in PFC/AI might reflect combined inflammatory and 

degenerative processes, enlargement of extracellular space and/or cellular loss. Alcohol 

consumption has indeed been related to neuroinflammation (50,64,65) and 

neurodegeneration in postmortem human alcoholics (66) and mice treated with ethanol 

(64,67).  

The second (HIP) and the third (SS) clusters of significant alcohol induced effects 

identified by multivariate classification as well as the WM cluster (cc/ec); are characterized by 

lower diffusivity and higher FA. The higher density of IBA1+ cells with highly ramified profile 

in the HIP of ALC mice correspond to an earlier stage of microglial reactivity and proliferation 

(68), although other microstructural affectations cannot be excluded. Reduced AD and RD 

values were previously associated with early phase of microglial, astrocytes infiltration, and 

acute axonal damage in mice (69,70). However, these reduced diffusivities could also reflect 

the development of cytotoxic brain edema (71). 

While interpretation of some diffusion parameters can be challenging (72), they have 

been extensively used to better understand the physiopathology of brain diseases (73–76) 

investigating combined white and grey matter changes (77–83). 

Modifications in diffusion parameters have been associated to different stages of 

Wallerian degeneration in axons, initiating an inflammatory response (84). According to the 

profile of diffusion indices, microstructural alterations following a nerve injury could be divided 

in two phases: (i) decrease of diffusion parameters would be related to the earliest stage of 

neuroinflammation (microglial proliferation) whereas (ii) gradual increase of MD, AD, RD 

have been associated with the later phase of neuropathological processes, including 
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microglial activation with morphology changes; myelin clearance and astrocytosis (84). A 

recent translational study in chronically drinking humans and rats associated a widespread 

increased MD in the brain GM with robust decrease in extracellular space tortuosity 

explained by reduction of microglia complexity (85). Additionally, ethanol abstinent rats (86) 

showed increased MD occurring concomitantly with increases in myelin associated proteins, 

flayed myelin, enhanced mitochondrial stress and neuroinflamatory response in medial PFC. 

In coherence with our histological findings, we therefore suggest that the observed 

microstructural modifications in the PFC, HIP and SS could be related to differential stages of 

the neuroinflammatory and neurodegenerative process. In PFC, the global increase of 

diffusion parameters, might reflect more advanced pathology associated with alcohol induced 

neurotoxicity and characterized by reactive microglia, astrogliosis and possibly ongoing 

axonal and myelin damage (50,64,66,67). 

In our study we also report regional morphometric divergence in the ALC mice: (i) 

decreased volume of the PFC/AI and SS, where advanced inflammatory processes might 

lead to various degenerative processes; (ii) enlarged HIP volume corroborating a different 

pattern of IBA1 staining. Similarly, a group exploring a transgenic mouse presenting higher 

alcohol consumption detected decreased volume of the PFC and SS but not HIP (87). 

Alcohol related brain volume changes have been previously reported in human (55,88) 

studies, showing reduction in fronto-parietal areas including PFC, AI, and brain reward 

system as well as white matter tracts (89), also consistent with our functional analysis. 

Finally, higher FA values were intriguingly but constantly observed in our study and 

positively correlated with alcohol consumption (Suppl Figure1). McEvoy et al., recently 

examined the WM FA as a function of alcohol intake in Human, and found increased FA in 

several major tracts – including cc - with increasing alcohol intake, reaching a maximum at 

the moderate drinking level, and only decreasing with greater alcohol intake. Because many 

studies previously reported decreased FA values related to AUD mechanisms or abstinence 

(9,10,58,86), we suggest that our findings might capture ongoing moderate pathology. 
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Impaired inter-networks communication reflects corticolimbic dysfunction.  

Our functional analysis identified remodeling of network connectivity. We show with 

graph theory a strong impact of alcohol drinking on hubness properties of cortical FC nodes, 

notably RSP and SS. In addition, reward/aversion centers of the mesocorticolimbic circuitry 

(VTA, ACB and HBN) as well as basal ganglia (CP, SEP, PAL, BST and CEA) showed 

altered (decreased or increased) hubness, suggestive of unbalanced processing of the 

reward/aversion mechanisms at circuitry level. Direct statistical comparison of FC matrices of 

ALC and CTRL groups completed the picture with alterations of AI and the salience network, 

and seed-based analysis revealed modified communication between AI and reward/aversion 

and default mode systems.  The latter analysis also highlighted FC differences of other 

nodes, which were also identified in the multivariate structural analysis: (i) the PFC/ACA - 

involved in decision-making and inhibitory control behavior in alcohol dependency (51); (ii) 

SS/MO areas, (iii) HIP network and (iv) basal ganglia nodes (ACB, BNT, AMG). This overlap 

between structural and functional findings is in line with the structural-functional 

correspondence hypothesis of brain networks (90,91). 

Our findings from the rsfMRI analysis are aligned with both preclinical and human 

studies - consistently showing perturbed mesocorticolimbic communication in AUD (19,92). 

In rodent research, VTA has been widely described as crucial node of this system, regulating 

dopamine release in addiction and responsible for the craving state in alcohol dependency 

(44,93,94). Our results indicate increased FC of the VTA with other reward centers including 

ACA, ACB, CP, HBN, HIP; and the thalamus. Several pathological mechanisms have been 

associated with an increased inter-network FC and hyperconnectivity (95–97), which could 

be explained as a maladaptive mechanism mediated by dedifferentiation of functional 

networks (98). Other studies in mice showed a predictive link between elevated activity within 

reward-related networks and vulnerability for alcoholism (51,99). A comparable intermittent 

ethanol exposure protocol in mice (93) generated similar hyperexcitability of the cortico-

striatal pathway. The hypersynchrony of the VTA’s rsfMRI signal with other reward areas 

(notably ACB)  might be related to increased firing rate of dopamine neurons led by chronic 
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alcohol consumption (94,100) and/or an increase of its release in the ACB (101). In humans, 

VTA-RSP and VTA-ACA increased inter-communication – as seen in the seed-based 

analysis - has been associated with increased anxiety in alcoholics (23). RSP and ACA 

nodes are central for the DMN state, and DMN changes in AUD have been largely 

associated to disrupted cognitive and emotional functions. DMN disrupted interaction with 

other networks, including salience and the executive control network (102) is known to affect 

cognition, emotion, attention and impulsivity, contributing to craving and relapse in substance 

use disorders (23). Moreover, the weakened “willpower” of alcohol users has been 

suggested to be the consequence of the disruption of a triadic model (56) involving the AI, 

PFC, and basal ganglia networks. 

RsfMRI acquisition in our study was performed under anesthesia using the alpha‐2‐

adrenergic agonist medetomidine. Based in literature (103–106), medetomidine at low doses 

induces sedation rather than full anesthesia, and reasonably preserves the integrity of FC 

networks as compared to awake rodents. Nevertheless, we cannot exclude a specific impact 

of the medetomidine sedation on the FC of ethanol exposed mice. Repeated 

dexmedetomidine subcutaneous administration during withdrawal was previously reported to 

lead to a decrease of withdrawal symptoms in rats exposed to alcohol (107). So far no data 

are available regarding such an interaction and its impact on the functional connectome. 

Of note is that AI was identified from both structural and functional analyses as a 

brain center strongly altered by alcohol exposure (Figure 6). Similar changes were found in 

AUD patients (108) using graph-based analysis, showing stronger connectivity and increased 

centrality of the anterior insula associated with increased risk of relapse. AI may therefore 

drive integration of interoceptive states in AUD, coherently with AI within-networks FC 

modifications that have been associated with motivation and alcohol craving (19). 

Consistently, several preclinical studies showed that functional modulation of insula (93,109) 

significantly alters alcohol intake. This brain structure mediates interoceptive effects of 

alcohol (110) and addiction-related internal states (112,114). Particularly, the anterior insula 

presenting a distinct connectivity pattern from posterior/medial insula (111), would drive 
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alcohol consumption despite negative consequences (113,115). All these roles may 

modulate the alcohol intake (116), therefore AI structure and function may represent both a 

biomarker and a mechanistic basis to evaluate and understand AUD. 

 

 

Conclusions 

 With multimodal structural and functional MRI performed in the same subjects, we 

here identify several signatures of alcohol-induced neuroadaptations in mice, pointing at 

strong and possibly early sensitivity of the PFC/AI. More broadly, the preclinical model of 

excessive alcohol drinking used in this study identifies brain-wide alterations, possibly 

underlying the lower top-down control and impaired hedonic balance typically observed at 

behavioral level (117). Finally, our data also corroborate neuroimaging results in humans 

(19,56), paving the way to identify further translatable biomarkers and probe circuit and/or 

treatment mechanisms using genetic and pharmacological manipulations in mouse models of 

alcohol drinking and addiction. 
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LEGENDS TO FIGURES 

 

Figure 1:  Chronic alcohol exposure: experimental design and drinking behavior.  

A. Experimental design of the two-bottle choice drinking alcohol paradigms, consisting in 20 

sessions of 24h hours of access to alcohol (ALC mice, n=11) or water (CTRL mice, n=12) for 

45 days. Alcohol consumption over time is represented in B. C. 24h after the last alcohol 

access session, mouse brain MRI is acquired combining resting-state functional MRI 

(rsfMRI), advanced-DTI and anatomical imaging sequences to respectively investigate 

functional connectivity, structural connectivity and morphological brain changes. Brains were 

then collected for immunohistology of microglia cells (IBA1 and GFAP). 

 

Figure 2. Signatures of structural modifications upon voluntary alcohol drinking.  

Multivariate data driven analysis was performed using several quantitative MR-based 

parameters reflecting structural tissue characteristics. Structural MRI parameters include 

axial diffusivity (AD), associated to longitudinal diffusivity of water molecules along tissues; 

radial diffusivity (RD) informing perpendicular diffusion to the longitudinal axis; mean 

diffusivity (MD) extracted from rotationally invariant diffusion in a voxel; fractional anisotropy 

(FA) corresponding to a normalized measure of diffusion direction (118); fiber density (FD) 

extracted using tractography algorithms to calculate the intervoxel connectivity, and 

morphological deformation (logjacobian). Voxels with significant inter-groups differences in 

the GM (A) and the WM (E) between ALC (n=11) and CTRL (n=12) groups (ALC vs. CTRL 

groups) are shown in red (p<0.05 uncorr; freedom degree = 21. B, C, D. Data driven 

clustering results identify three main clusters of inter-group differences (ALC vs. CTRL), with 

specific multivariate signatures presented in the associated radar plots. Dark blue circles 

represent CTRL group values; larger circles show an increase from CTRL values and smaller 

circles indicate a decrease. Significant differences between groups (ALC vs. CTRL) at 

p<0.05 (z =2) are represented by light blue circles, and at p<0.01 (z = 3) in red circles. B. 

Coronal slices show the first cluster covering prefrontal cortex (PFC) and partly rostral 
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agranular insular (AI) areas characterized by similar parametric signatures (associated plot 

shows higher AD, RD, MD, FA, FD and lower volume in ALC mice), C. The cluster covering 

dorsal hippocampal brain regions (dHIP) shows lower diffusivity (AD, RD, MD) and higher 

FA, FD and volume in ALC than CTRL group. D. The cluster covering somatosensory (SS) 

and motor areas is characterized by lower diffusivity (AD, RD, MD) and FD, higher FA and 

smaller volume in ALC than in CTRL group. F. A significantly different WM cluster was found 

covering the corpus callosum (cc) and the external capsule (ec) characterized by lower 

diffusivity (AD, RD, MD), higher FA and smaller volume in ALC than in CTRL group. 

 

Figure 3. Microglia modifications upon voluntary alcohol drinking.  

A. Representative images of IBA1 staining are shown in the PFC of CTRL and ALC mice, 

exemplifying counting (top panels) and thresholding approaches to segment on the IBA1 

staining the morphology of the microglial cells (red) and to measure the % IBA1 stained area. 

B. Quantitative histopathological analysis of IBA1 staining in the prefrontal cortex (PFC), the 

insular cortex (AI), and the hippocampus (HIP) in CTRL (grey) and ALC (blue) mice 

Differences between groups were evaluated regarding the density of positive cells 

(cells/100000µm2) and the stained % area (two-sample t-tests; *p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001).  

C and D. Quantitative parameters derived from advanced-DTI and histological differences 

reaching statistical significance in inter-group comparison, and are represented in Z-score 

(*p<0.05, **p<0.01). The radar-plots in C and D show the pattern (dark blue line) of 

combined results including significant group differences in MD, RD, AD, FD, FA, IBA1 

stained % area, IBA1 density of positive cells, and logjacobian in AI/PFC and HIP. The green 

lines indicate the p<0.05 thresholds of significance (increase or decrease) relative to the 

CTRL group parameters – bold grey line. Giving a global perspective on the pathological 

state of the PFC, C shows a potential relationship between the significant increase of all 

diffusivity-related quantitative MRI parameters and a microglial response reflecting an 

increased number of IBA1 cells but a decrease of %stained area in ALC mice due to 
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shrinkage of microglial processes. D. In HIP, the plot illustrates a different pathological 

pattern than in the PFC, showing a significant increase in FA only, associated with an 

increase of both the number and the coverage percentage of microglial cells in the HIP.  

 

Figure 4. Remodeling of functional connectivity across 26 brain regions upon 

voluntary alcohol drinking. 

A, B. Network diagrams for each group (A – CTRL group n=12; B – ALC group n=11) of the 

brain functional connectivity. Statistically significant connections (p<0.01, FDR corrected; 

CTRL freedom degree = 11; ALC freedom degree = 10) are presented as lines connecting 

the nodes in each graph (thickness is correlated with the connection strength, and colors with 

the correlation coefficient value). The size of nodes indicates the “hubness” property while 

their color reflects the “degree” property of the respective node (higher in green). Histograms 

represent the ranking of significantly connected nodes according to the degree, and the 

hubness coefficient of each node. A. In CTRL mice dorsal hippocampus (dHIP), DORpm 

thalamic nucleus (thalamus polymodal association cortex-related) and caudate putamen 

(CP) present the highest degree (rank 1, highest degree = 7). Cortical retrosplenial area 

(RSP) and pallidum (PAL) were ranked equally on the second position (degree = 6), followed 

by septal nuclei (SEP) (rank 3, degree = 5). Nodes of basal ganglia system showed particular 

prominence within the global FC matrix: the caudate putamen (CP), pallidum (PAL), septal 

nuclei (SEP) and bed nuclei of the stria terminalis (BST) were ranked 2nd, 3rd, 4th and 6th 

respectively (CP: degree = 7; hubness = 7.2; PAL: degree = 6; hubness = 7; SEP: degree = 

5, hubness = 6.9; BST: degree = 4, hubness = 6.5). Reward-aversion related nodes such as 

the accumbens nucleus (ACB), ventral tegmental area (VTA), raphe nucleus (RAmb) or 

habenula (HBN) showed comparative degree values (degree = 4) but different influences in 

hubness. The RSP presented a high degree of connectivity and hubness (degree = 6; 

hubness = 5). The insular cortex (AI) showed strong significant connectivity particularly 

towards prefrontal cortex (PFC), VTA, piriform cortex and CP. B. In ALC mice, we found 

higher maxima and lower minima of significantly connected nodes, in both degree (ALC: max 
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= 8, min = 1; CTRL: max = 7, min = 2) and hubness (ALC: max = 10.3, min = 1.14; CTRL: 

max =7.7, min = 1.3), when compared to CTRL mice. The most significant node in degree 

was the dHIP, also showing higher hubness values in ALC group (9.6) then in CTRL (6.7) 

group. RSP was found as one of the most influential nodes in the ALC brains, showing the 

highest hubness values, and ranked 2nd for the number of significant connections (degree = 

7; hubness = 10.3). The reward related nodes such as ACB, VTA and RAmb decreased their 

hubness (ACB: hubness = 3.3 in ALC group vs. 4.6 in CTRL group; VTA and RAmb: not 

significant hubness in ALC group). The aversion related nodes strengthened their importance 

as hubs, including the HBN (hubness = 5.7 in ALC group vs. 4.6 in CTRL group) and the 

central amygdala (CEA hubness = 1.1 in ALC vs. not significant in CTRL). C and D show 

inter-groups comparison graphs (ALC vs CTRL) of the brain functional connectivity. 

Statistically significant differences (p<0.01, FDR corrected) were calculated according to the 

Stouffer coefficient. C. Ranking of most different nodes between ALC and CTRL groups 

(Stouffer analysis, p<0.05, uncorr., freedom degree = 21) is provided in the histogram. 

Tables show all significantly different connections (edges) between groups (***p<0.001, 

**p<0.01, *p<0.05). Four separate sections are presented, to get together the AI changed 

connections, the DMN-related areas (RSP and ACA), and the VTA. The last section shows 

significantly modified edges between all other nodes. D. Differences between ALC and CTRL 

brain FC are graphically represented on a sagittal brain view, showing both significantly 

changed nodes (green circles) and significantly different edges (red lines, increased FC; blue 

lines, decreased FC). Connection strength differences are depicted on a scale of correlation 

coefficients. 

[Abbreviations: anterior cingulate area (ACA); nucleus accumbens (ACB); agranular insular 

cortex (AI); auditory area (AUD); basolateral/basomedial amydgalar nuclei (BLA/BMA); bed 

nuclei of the stria terminalis (BST); caudate putamen (CP); central amygdalar nucleus (CEA);  

dorsal hippocampus (dHIP); thalamus polymodal association cortex related (DORpm); 

thalamus sensory-motor related (DORsm); habenula (HBN); primary motor cortex (MOp); 

periaqueductal grey (PAG); pallidum (PAL); piriform cortex (PIR); prefrontal cortex (PFC); 
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perirhinal/ectorhinal/entorhinal cortex (PERI/ECT/ENT or fHIP); Raphe nucleus (RAmb); 

retrosplenial cortex (RSP); septum nucleus (SEP); primary somatosensory cortex (SSp); 

temporal association area (TEa); ventral hippocampus (vHIP); visual area (VIS); ventral 

tegmental area (VTA)] 

 

Figure 5. Remodeling of seed-voxelwise functional connectivity for most changed 

nodes upon voluntary alcohol drinking. Inter-group (ALC vs. CTRL) differences in the 

functional connectivity patterns derived from seed-based analysis for: A. agranular insula 

(AI); B. ventral tegmental area (VTA); C. retrosplenial cortex (RSP). Voxel-wise inter-groups 

statistical comparison was carried out on seed-based connectivity maps, using a two-sample 

t-test, p<0.05, FDR cluster corrected, freedom degree = 21. Scales represent t-values for 

contrasts: ALC FC > CTRL FC in red (there was no significant ALC FC < CTR). D. Summary 

scheme of functional seed-based analysis showing key FC modifications for each of the 

three selected seeds (AI, VTA and RSP) in addition to differences in prefrontal cortex (PFC – 

suppl. Figure 2A), amygdala (AMG - suppl. Figure 2B), bed nuclei of stria terminalis (BST– 

suppl. Figure 2C) and somatosensory cortex (SS - suppl. Figure 2D). Alcohol exposure 

strongly impacted the functional connectivity of all these centers with limbic areas, known to 

mediate reward/aversion and stress responses (accumbens - ACB; AMG; habenula – HBN; 

caudate putamen – CP and BST). Additionally, the network drivers displayed perturbed 

functional connectivity towards brain areas that shown structural MRI parametric 

modifications: PFC; Anterior cingulate area – ACA, SS and hippocampus – HIP. Red lines 

indicate increased connectivity in ALC group, while blue lines indicate weakened FC in 

alcohol drinking mice, compared to CTRL.  

[Abbreviations: anterior cingulate area (ACA); nucleus accumbens (ACB); agranular insular 

cortex (AI); amygdala (AMG); caudate putamen (CP); habenula (HBN); hippocampus (HIP); 

motor cortex (MO); midbrain reticular nucleus (MRN); retrosplenial cortex (RSP); reuniens 

nucleus (Rn); substantia nigra (SN); somatosensory cortex (SS); thalamus (TH); ventral 

tegmental area (VTA)] 
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Figure 6. Summary of key structural and functional modifications in mice upon 

voluntary alcohol drinking. 

Schematic representation of key structural and functional findings. Centers identified from 

open-ended multivariate structural analysis are shown (PFC/AI, SS, HIP, grey). Centers 

identified from graph theory results among 26 regions of interest (AI, green; VTA, red; RSP, 

yellow) are shown combined with seed-based FC mapping data, highlighting significantly 

altered cross-talk between salience network (AI connectivity - green), reward-aversion 

circuitry (VTA connectivity – red) and default mode network (RSP connectivity - orange) in 

the ALC group. Alcohol exposure strongly impacted FC of these centers with limbic areas, 

known to mediate reward/aversion and stress responses (acumbens – ACB; amygdala – 

AMG; habenula – HBN; caudate putamen – CP and bed nuclei of stria terminalis – BST). 

Additionally, these driver networks displayed perturbed FC towards brain areas that showed 

structural MRI parametric differences: prefrontal cortex – PFC; Anterior cingulate area – 

ACA, somatosensory cortex – SS and hippocampus – HIP. Solid lines indicate increased 

connectivity, while dashed lined indicate weakened FC in alcohol drinking mice, compared to 

CTRL.  

[Abbreviations: anterior cingulate area (ACA); nucleus accumbens (ACB); agranular insular 

cortex (AI); amygdala (AMG); bed nucleus of stria terminals (BST); caudate putamen (CP); 

thalamus polymodal association cortex related (DORpm); thalamus sensory-motor related 

(DORsm); habenula (HBN); hippocampus (HIP); piriform cortex (PIR); prefrontal cortex 

(PFC); retrosplenial cortex (RSP); raphe nucleus (RAmb); reuniens nucleus (Rn); septal 

nuclei (SEP); somatosensory cortex (SS); ventral tegmental area (VTA)] 

 
















