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A B S T R A C T   

The Vapor Phase Impregnation decomposition method (VP-IDM) is presented in this study as an alternative 
technique to obtain well-dispersed metallic nanoparticles on CNTs, for ammonia (NH3) gas detection. We have 
analyzed the effectiveness of this method by using chemiresistive sensors (CHRs) based on multi-walled carbon 
nanotubes (MWCNTs) decorated with Pt and Pd nanoparticles (NPs). We measured their sensitivity through their 
electrical resistance variation in the presence of NH3 gas at concentrations from 10 to 200 ppm. Pt/MWCNTs 
showed the highest sensitivity of about 120% at 100 ppm and 250 ◦C. It was revealed that the size, dispersion, 
temperature and type of metal NPs deposited on the MWCNTs are crucial for the detection of the NH3 gas by the 
CHRs.   

1. Introduction 

According to the Occupational Safety and Health Administration 
(OSHA), ammonia gas (NH3) is considered a toxic substance. OSHA has 
established the permissible exposure limit of 20 ppm during a working 
day of 8 h and 35 ppm for short-term exposure of 15 min. [1]. Due to its 
high impact on health and the environment, continuous monitoring of 
NH3 is necessary. Multi-walled Carbon nanotubes (MWCNTs) are 
nanostructured materials with a high potential for pollutant gas detec-
tion in real-time. This nanomaterial presents interesting electrical 
properties, large surface area-to-volume-ratio [2,3], efficient thermal 
stability, and high gas adsorption capability [4–9]. The interaction be-
tween the MWCNTs obtained directly from synthesis, and NH3 gas is 
weak, which affects the sensitivity and selectivity response [10]. It is 
possible to improve the response detection of the MWCNTs by its 
functionalization. This method increases the reactivity and dispersity of 
the material [11]. Nanoparticles (NPs) exhibit excellent physicochem-
ical properties and have many superficial active atoms [12]. Metallic 
NPs decoration on MWCNTs can modify their charge transfer behavior 
improving the adsorption mechanism [13]. Consequently, they have a 

better sensitivity for the detection of toxic gases in the environment. 
Nguyen et al. [14] compared the sensitivity between MWCNTs with and 
without metallic NPs in the presence of ammonia gas at 70 ppm. 
MWCNTs decorated with Pt–Ag NPs showed up to 5% more sensitivity 
than the MWCNTs without NPs, which have only 1.5%. Nanoparticles 
such as Au, Pt [15–17] SnO2 [18], Ag [14,19], Co [20], ITO [21], Ag/ 
polyaniline [22] Pd [23] and CdS [10] have been also used on MWCNTs, 
for ammonia gas detection. So far, techniques such as electron beam 
evaporation, plasma treatment, sputtering coating, precipitation from 
the metal salt solution, and thermal evaporation have been employed to 
decorate MWCNTs [15–23]. Even though interesting efforts have been 
made to increase sensitivity and selectivity on MWCNTs, it remains a 
constant need to find better techniques to gain a large response with a 
lower response and recovery times. The vapor phase impregnation 
decomposition method (VP-IDM) is an alternative to obtain well- 
dispersed metallic nanoparticles on MWCNTs [24]. This method is 
similar to the Chemical Vapor Deposition (CVD) method, except that 
first, an organic metal precursor is mechanically incorporated in the 
support. Then, it is impregnated by the precursor vapor. A well-known 
approach for integrating MWCNTs in gas sensing applications consists 
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in depositing the MWCNTs over a resistive substrate with interdigitated 
electrodes conforming a chemiresistive sensor (CHRs) and measure its 
electrical resistance change in the presence of a gas [25–27]. 

Therefore, in our present study, we have implemented the VP-IDM as 
a new alternative method to decorate MWCNTs with Pd and Pt NPs for 
Ammonia gaseous sensing applications. The sensitivity to different 
ammonia gas concentrations and temperatures was evaluated by inte-
grating the decorated MWCNTS on the CHRs. 

2. Materials and methods 

2.1. Multi-walled CNTs decoration process 

The MWCNTs were produced by Chemical Vapor Deposition (CVD) 
[28] and purified by an oxidizing process using a mixture of HNO3 and 
H2SO4 (1:3 ratio), described in-depth in a previous paper [29]. The 
MWCNTs were decorated with Pt and Pd NPs by implementing a vapor 
phase impregnation decomposition technique (VP-IDM) [24]. Pd and Pt 
acetylacetonates (Pt (acac)2, Pd (acac)2) were used as precursors. In the 
first step, the metallic NPs and MWCNTs were mechanically mixed for 
15 min. The metallic deposition was carried out until an increase of 3% 
in the weight of the MWCNTs was obtained. Secondly, the mixture was 
placed inside a horizontal quartz-tube at 180 ◦C for 10 min. (at a pres-
sure of 500 Torr). After this, the temperature of the quartz-tube was 
increased to 400 ◦C and maintained 10 min at this temperature in order 
to decompose the precurso’s vapors. 

The prepared nanocomposites of Pt/MWCNTs or Pd/MWCNTs were 
dispersed in glycerol using sonication for 1 h. We have deposited the 
nanocomposites on silicon substrates to fabricate a CHRs based on Pt/Pd 
MWCNTs for ammonia gas detection. For this, a droplet of solution 
containing Pt/MWCNTs or Pd/MWCNTs was dropped on the Pt metal-
ized interdigitated electrodes of the CHRS and dried at 400 ◦C for 2 h. 

2.2. Gas detection measurements 

The shift in electrical resistance of the Pt/MWCNTs or Pd/MWCNTs 
nanocomposites deposited on the interdigitated electrodes of the CHRs 
was measured first by varying the concentration of ammonia gas (20, 60 
and, 100 ppm) with a constant flow and at room temperature. Later, the 
process was repeated but varying the sensor’s operating temperature 
(25, 120, and 250 ◦C), which was sensed by a thermopar and set with a 
Temperature controller. The CHRs were placed in a sealed stainless test 
cell (located at the center on Fig. 1). Then exposed for 30 s to a mixture 
(air+NH3) using the mass flow controllers of 500 ml/min depicted on 
the left side of Fig. 1. The electrical resistance was measured with a 
Keithley 6430 digital multi-meter connected to a PC for data acquisition, 
as observed in the right side of Fig. 1. 

The crystallographic structure of the MWCNTs was analyzed through 
X-ray diffraction measurements using a PANalytical-790 AC X’Pert Pro 
with a Cu Kα radiation and a wavelength of 1.54 Å. The morphology of 
the MWCNTs was examined using transmission electron microscopy 
(TEM), JEM 2100, with an accelerating voltage of 200 kV. 

3. Theory 

3.1. CHRs sensitivity calculation and determination of the response/ 
recovery times 

The CHRs sensitivity (S%) was estimated according to the following 
equation: 

S(%) =

(
Rg − R0

)

R0
*100 (1) 

Where R0 is the initial resistance of the sensor before gas exposure 
and Rg is the value of resistance produced by the sensor during its 
exposure to the ammonia (NH3) gas [30]. For this investigation, we 
defined the response time as the time required to reach the minimum 
value of the sensor’s resistance (minimum peak resistance) with respect 
to a base line level (reference resistance R0) during the NH3 exposure 
and the recovery time is defined as the time required to increase the 
resistance value until the reference base line level. 

4. Results and discussion 

4.1. Crystal structure of MWCNTs 

The XRD patterns obtained from MWCNTs with and without func-
tionalization are observed in Fig. 2(a,b). In Fig. 2(a), the most intense 
diffraction peak for the non-functionalized MWCNTs was located at 
26.32◦, followed by a weak diffraction peaks for the planes (002), (100), 
and (101). These peaks correspond to 2H graphite (JCPDS-089-7213). 
The agreement between the MWCNTs and graphite diffraction patterns 
is often given by the intrinsic properties of the graphene [31]. On the 
other hand, Fig. 2(b) shows the diffraction peaks for the functionalized 
MWCNTs, which are broader and less intense than these in Fig. 2(a). The 
variation in results might be caused by tension between the graphite 
layers and a decreasing number of walls in the MWCNTs during the 
oxidation process [32,33]. By analyzing only the diffraction peak of the 
(002) plane in both samples, it was observed that the peak is slightly 
displaced to the left for the functionalized MWCNTs. This effect is given 
due to the elimination of impurities, mostly of carbon present at the 
nanotube walls. It was also observed that the diameter decreases by the 
loss of walls that form the MWCNTs [34,35]. 

As observed in Fig. 3(a), the MWCNTs without functionalization are 

Fig. 1. Schematic of the experimental setup for the ammonia gas detection.  
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interconnected forming an entangled network. This phenomenon is 
caused by high Van der Waals forces among tubes [36]. Carbon nano-
tubes show average diameters of 43.1 ± 30 nm (Fig. 3b-c). In the same 
figure, it is observed the multi-walled nature of nanotubes. The spacing 
between the walls was 0.36 nm, see Fig. 3(c). Then, after the MWCNTs 
were functionalized, they showed a decrease in diameters down to 18 ±
25 nm, as observed for the sample in Fig. 3(d-f). This decrease in the 
nanotube walls showed an agreement with the XRD patterns results, as 
mentioned in the previous section. Besides, it was also observed for 

other functionalized MWCNTs an alteration in their walls, see Fig. 3(d). 
This alteration might be attributed to defects and the introduction of 
functional groups (Carboxylic (-COOH), carbonyl (-C=O), and hydroxyl 
(-OH)). The functional groups are frequently found on the surfaces of 
MWCNTs after oxidation treatments and act as efficient adsorption sites 
that promote the dispersion and nucleation of noble metal particles on 
MWCNTs [37]. 

4.2. Morphologic analysis of decorated MWCNTs 

The comparison between MWCNTs decorated with Pt and Pd NPs is 
observed in Fig. 4 (a-f). The statistical analysis was carried out to obtain 
the mean and non-parametric variance of the NPs sizes. The size results 
of the NPs are shown in the Table 1. We observed that the statistical 
distribution of sizes for both types of NPs was different. According to 
Muratore et al. [38], the difference between sizes relies on the cohesion 
energy (Ecoh) of the metal. Thus, metals with high cohesion energy (Ecoh) 
exhibits small particle sizes and high particle densities. Consequently, 
given that Pt and Pd have Ecoh values of 5.88 eV and 3.64 eV [39], we 
found a significant correlation between their Ecoh and particle size. Both 
types of NPs exhibited mainly spherical shape (see Fig. 4(a,b)). The 
measured interplanar distances of Pt and Pd NPs were 0.225 and 0.22 
nm (see Fig. 4(c,d)), corresponding to an FCC crystal of Pt and Pd 
(JCPDS cards 04–0802 and 00–046-1043). 

From the statistical analysis, we found that the Pt NPs have a lower 
variance value than Pd NPs. To support this statement, we computed a 
statistical distribution and fit two histograms with a LogNormal scale 
using the three parameters Kolmogorov-Smirnov test, as shown in Fig. 4 
(e,f) [40,41]. Afterward, we found that Pd NPs sizes have a more ho-
mogeneous and almost Gaussian distribution than Pt NPs. 

Pt NPs showed a more heterogeneous dispersion on the MWCNTs 
surface, as observed in Fig. 4(a). It was found a high accumulation of the 
NPs in some regions. This effect has an agreement with the one observed 
in Titania nanotubes reported by Encarnación et al. [42]. It was attrib-
uted to a low metallic charge (1 to 3%) and a preference for diffusion to 
regions with a low demand of saturation for the OH groups. Thus, a 
lower variance as the one observed for Pt NPs can also be interpreted as a 
lower density of NPs per unit of area caused by a poor homogeneity in 
the MWCNTs surface distribution. Fig. 4(g) shows the energy-dispersive 
X-ray (EDX) spectra of MWCNTs decorated with Pt NPs. The presence of 
Pt peaks are evident, confirming that the nanocomposites contain this 

Fig. 2. XRD diffraction patterns and TEM images from samples of MWCNTs. 
The MWCNTs non-functionalized are depicted in (a) and functionalized (b), 
respectively. 

Fig. 3. TEM images of the non-functionalized (a-c) and functionalized (d-f) MWCNTs at different magnifications.  
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element. Additionally, Cu, Fe and Si peaks are present in the sample but 
in smaller quantities. This contamination came from the grid employed 
to analyze the sample by TEM. 

4.3. Results of the sensitivity measurement of the CHRs 

Two Pt interdigitated electrodes conform the chemical resistive 

sensor devices, see Fig. 5 (a) and (b). The electrodes were deposited by 
pulverization over a silicon substrate, see the sensor’s architecture in 
Fig. 5c. For the activation of the sensitive nanomaterial (Pd or Pt/ 
MWCNTs) on the chemiresistive sensor surface, the drop coating method 
was employed. As observed in Fig. 5(d), the deposited Pt/MWCNTs or 
Pd/MWCNTs nanocomposites tend to accumulate at the substrate’s 
edges. This phenomenon is known as the “coffee ring effect” generated 
by the consecutive evaporation and replacement of material until 
reaching a limit that creates a stain with a “ring-like” shape [43]. 

All CHRs showed an increase in their electrical resistance in the 
presence of the ammonia gas. This effect occurred because it is a 
reducing gas and causes an electron donation to the conduction band of 
the sensitive material after the adsorption of the gas molecules 
[30,44,45]. The change of resistance in the sensors suggests that they are 
sensitive to the ammonia gas. We measured the sensitivity of the Pd/ 

Fig. 4. TEM images of the MWCNTs decorated with Pt in (a,c) and Pd in (b,d) are shown. The Pt and Pd nanoparticle distribution histograms are depicted in (e) and 
(f). EDX spectra of Pt NPs is showed in (g). 

Table 1 
Statistical results of size for the Pt and Pd NPs.  

Metal Mean size (nm) Variance size (nm2) 

Pt 6.85 17.64 
Pd 14.82 46.58  
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MWCNTs and Pt/MWCNTs for the detection of NH3 separately, see Fig. 6 
(a,b). First, the concentrations of NH3 was varied from 10 ppm to 200 
ppm with a fixed room temperature and constant gas flow. Subse-
quently, in a second test, we changed the temperature of the sensor 
(operating temperature) to 25 ◦C, 120 ◦C, and 250 ◦C for each gas 
concentration. 

From these results, we found the highest sensitivity at 250 ◦C for the 
Pt/MWCNTs based sensor, see Fig. 6(c). The cycles of NH3 detection for 
the Pt/MWCNTs based sensor are shown in Fig. 6(d). When the sensor is 
exposed to the NH3 (gas-in), an abrupt decrease of resistance occurred. 
Later, the gas flow is stopped (gas-out) and the resistance increases again 

reaching the original base line level. This is considered as one cycle of 
detection for the NH3 gas and several cycles were carried out to detect 
NH3 with different concentrations of 200 ppm (cycles 1–3), 100 ppm 
(cycles 4–6), 50 ppm (cycles 7 and 8) and 10 ppm (cycles 9–11). The 
response/recovery times were calculated from these detection cycles 
and the results were summarized in the Table 2. 

From the table above, we infer that our values of sensitivity 
(41–171.5) for the sensor containing Pt/MWCNTs (at 250 ◦C) are much 
higher than these previously reported in literature (0.025–10) for CNT 
based systems decorated with other metallic NPs. According to Young 
and Lin et al. [16,17], Au NPs can give a range of sensitivity from 1.1 to 
2.74%. Other cases, such as Ag/MWCNT sensors reported by Nguyen 
et al. [14] and Cui et al. [19] showed a sensitivity of 9% at room tem-
perature. For our particular case, the Pd/MWCNTs sensors at room 
temperature can be compared to those reported by Choi et al. [23], 
showing an average sensitivity of 0.20% for concentrations from 20 to 
100 ppm. Similarly, the Pt/MWCNTs sensors also showed a low average 
sensitivity of 0.15% at room temperature, but it increases to 171% at 
250 ◦C. In addition, we observed that our sensors tested at room tem-
perature had recovery time of several minutes, while the sensor made 
with Pt/MWCNTs and tested at 250 ◦C had a lower recovery time of 40 s. 
Thus, a higher operating temperature in the sensor produces higher 
sensitivity and higher response time, compare the values of response 
time for the Pt/MWCNT based sensor tested at room temperature with 
that for the sensor tested at 250 ◦C, see Table 2. It is worthy to mention 
that the sensors containing Pt/MWCNT are better for the NH3 detection 
than these made with Pd/MWCNT because their response time are 
lower, compare their response time at room temperature in Table 2. 
According to Abdulla et al. [22], the high binding energy (Eb) between 
the ammonia gas molecules, the defects present on the MWCNTs surface, 
and the absorbed oxygen could considerably increase the recovery time 
of the sensor at room temperatures. Furthermore, Van et al. [18] found 
that composites of SnO2/MWCNTs increase their sensitivity for the 
detection of the ammonia gas when high operating temperatures are 
employed, since this causes the desorption of the gas molecules from the 
surface of the MWCNTs. For this last reason, our sensors had lower re-
covery times at higher operating temperatures. 

Fig. 7 shows the values of sensitivity for our best Pt/MWCNT based 
sensor as a function of the NH3 concentration as well as for other pre-
vious reported sensors. It is observed that the Pt/MWCNTs sensor 
fabricated in this work has and operated at 250 ◦C had superior values of 
sensitivity in comparison with the previous publications. In general, the 
sensitivity value is directly proportional to the increase of the ammonia 
concentration. 

The method to decorate the CNTs with different metallic NPs as well 
as the density, dispersion, surface functionalization and size of the 
metallic nanoparticles had a strong influence on the sensitivity of the 
sensors. The process of functionalization for the CNTs determines the 
reactivity, the mechanical and electrical behavior of the CNTs [46]. The 
functionalization introduces functional groups on the CNTs surface, 
increasing wettability, hydrophobicity, and gas absorption [37,47]. The 
internal defects present at the CNTs surface might serve as nucleation 
sites or anchors for the incorporation of NPs [48,49]. The nucleation 
sites are responsible for the size and dispersion of the NPs. Mendoza et al. 
[50] suggested that a high density of defects can be interpreted as an 
increased number of preferred adsorption sites for different types of 
gases. These defects can change the interaction between the NPs and the 
CNTs [51]. 

According to Chang et al. [4], it was reported for single-walled CNTs 
(SWCNTs) that the gaseous ammonia adsorption showed low binding 
energy and can be supported in the density functional theory. However, 
when metallic NPs are incorporated on the surface of a nanotube, this 
binding energy is modified, improving the sensitivity response. They 
found a relationship between the amount of binding energy (Eb) and 
electron charge transfer. This relationship is intrinsically linked to the 
sensitivity response. By focusing only on the role of the NPs size, it has 

Fig. 5. 3D representation and Optical top view images of the chemiresistive 
sensor (CHRs) before (a,c) and after (b,d) the MWCNTs were deposited over 
the surface. 

Fig. 6. The sensitivity of the CHRs with Pd and Pt at different temperatures is 
shown in (a and b). In (c), the best results for the Pt/MWCNTs sensor at 250 ◦C 
is observed. The performance of the Pt/MWCNTs sensor for different concen-
trations is depicted in (d). 
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been reported by Randeniya et al. [45] that Au NPs with a length of less 
than 3 nm exhibit a higher sensitivity response. Li et al. [52] also re-
ported for Pt/CNTs that the sensitivity properties can be related to the 
nanoparticle size and distribution on the surface. 

By considering these previous results, we have observed that the 
sensitivity increased with smaller sizes of NPs. This increase maximizes 
the effect of adsorbents on metal clusters. The NPs size is dependent on 
catalytic activity [53] and, the density of NPs over the CNTs surfaces 
influences the sensing response dramatically [52]. Additionally, it was 
observed that the larger is the metallic load deposited over the CNT’s 
surface, the more significant number of reactive locations may interact 
with the ammonia gas molecule, increasing the sensitivity response of 
the CHRS consequently. Another factor to be considered in the sensor 
response to NH3 detection is relative humidity (RH). Rigoni et al. [54] 
performed a study using functionalized SWCNTs with carboxylic acid 
(COOH) and cetyltrimethyl ammonium bromite (CTAB) at different RH 
values. Both samples exhibited an increase sensitivity response to 

ammonia as the percentage of relative humidity increases. Liu et al. [55] 
claimed that the resistance of MWCNTs increases with the increase of % 
RH. 

5. Conclusions 

Two different Chemiresistive sensors were fabricated based on 
MWCNTs decorated with Pd and Pt NPs by vapor-phase impregnation 
decomposition method. Both sensors were able to detect ammonia gas at 
different concentrations and temperatures. We found that Pd/MWCNTs 
exhibited the best sensitivity at room temperature, and at 250 ◦C, Pt/ 
MWCNTs showed the best sensitivity. We have seen that the type of 
metal deposited, the temperature, and the size of the NPs played an 
essential role in fast ammonia gas detection. We observed that with a 
smaller NPs size, larger is the reactivity of the sensor. We related the size 
of the NPs with a larger number of active sites, having, in consequence, 
more considerable gas adsorption. We observed the level of dispersion 
between NPs through TEM images, and we found that CNTs decorated 
with Pt NPs have a higher dispersion than those with Pd NPs. 
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