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Abstract 

This study investigates the core of the development of an electronic nose envisioned for non-

invasive blood glucose monitoring. Tungsten Trioxide (WO3), tin dioxide (SnO2) and zinc 

oxide (ZnO) homemade gas sensors have been exposed to various concentrations of acetone 

and ethanol in the presence of water vapor in order to create a dataset containing the changes 

in the resistance of the sensitive layer of sensors during the experiment. For the pattern 

recognition part of the system, this work reports the extraction of six features: two 

conventional steady-state features, two transient features and two features extracted from 

transform domain. The ReliefF algorithm is then used for the selection of the most efficient 

features. A classification method based on support vector machine using a linear Kernel 

function is employed and to estimate the gas concentration of acetone and ethanol, the same 

training data in the classification step are used to create a prediction model based on LS-

SVM. A classification accuracy of 100% is achieved and the concentration of acetone and 

ethanol is estimated with a root mean square error of 0.2236 and 0.6639 respectively. 

Keywords:  Acetone, electronic nose, feature extraction, gas sensor, support vector machine. 

 

1. Introduction 

     Diabetes mellitus is a chronic disease that affects 1 in 11 

adults according to the International Diabetes Federation [1], 

it is caused either by a lack of secretion of insulin, a use 

default by the body or in some cases both [2]. This serious 

illness affects the lifestyle of the patients because of the 

complications related to the abnormal glucose level that 

circulates in the blood, for example, it damages the eyes, the 

kidneys, the nervous system, the heart and the blood vessels 

over time and it can even cause death [2], [3]. 

In fact, nowadays diabetes is considered as being the ninth 

major cause of death around the world [1] which makes the 

prevention and the monitoring of the disease progression a 

primordial step in the diagnosis, control and the monitoring 

of the patient’s health condition by himself or clinicians [4], 

[5]. 
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Blood glucose monitoring devices that are on the market 

offer only a limited number of measurements per day while a 

diabetic needs continuous real time blood glucose monitoring 

CGM to be informed in the case of severe hyperglycemia or 

hypoglycemia especially for patients who are dependent on 

insulin [6], [7]. In addition to this, conventional glucometers 

require that patients prick their finger each time to get the 

amount of blood needed for the sensor operation, and it is so 

painful that there are some people who reduce the number of 

measurements just to avoid the pain [8]. So, the CGM ideal 

device must be non-invasive, portable, accurate, low-cost, 

easy to use and does not require much calibration [7], [9], 

[10], [11]. 

  In recent years, studies have shown that urine, tears, saliva, 

sweat and exhaled breath can be used to measure changes in 

glucose concentration indirectly instead of blood [12]. In this 

work, we are interested in the use of exhaled breath analysis 

for non-invasive blood glucose monitoring, a method that 

offers the advantage of being a mixture that is not as 

complex as urine and blood and that the collection of 

samples is not a complicated process [13]. In fact, a single 

human breath contains about 500 volatile organic compounds 

(VOC), many of them are considered as biomarkers that can 

indicate the state of many diseases non-invasively [12], [14]. 

The body of a diabetic use fat for energy, this conversion 

causes the production of acetone that is extracted in the 

breath and urine. It has been proven that the concentration of 

exhaled acetone is well correlated with the blood glucose 

concentration [12], [15], [16] this is the reason why we are 

focusing on the development of a system that makes it 

possible to measure very low acetone concentrations. 

  One of the most powerful techniques for VOC detection is 

the use of an electronic nose (e-nose) which is able to detect, 

quantify and even identify in some cases the desired gas 

molecules in a gas mixture sample [9], [17]. E-nose is an 

intelligent artificial system that mimics the human olfactory 

system, it consists of a gas sensor matrix coupled to a data 

acquisition system. The obtained data will be processed 

through a classification program in order to identify and 

quantify the examined gas [17], [18], [19], [20]. 

   One of the most challenging parts of the development of an 

e-nose is the design of the sensor array which must be both 

selective and sensitive especially because the acetone is in 

the breath with a small concentration which varies between 

0.2 ppm and 0.8 ppm for a normal person and exceeds 1.8 

ppm for a diabetic person [13], considering that those people 

are not fasting, or under ketogenic dieting or in a workout 

[21]. 

   Among the best types of sensors that can be chosen are the  

semiconductor oxide metal-based sensors, these sensors are 

widely used because of their low cost, miniaturization and 

their high sensitivity compared to other types [15] [22]. For 

this purpose several materials have been used as a sensitive 

layer, in this paper we are interested in three of the most used 

materials in this subject: tungsten trioxide (WO3), tin dioxide 

(SnO2) and zinc oxide (ZnO). 

   The first one is based on WO3, the second on SnO2 and the 

third on ZnO. The sensors were tested in the presence of 

acetone, ethanol and water vapor. On the other hand, we 

developed a pattern recognition algorithm that was tested 

with the database consisting of sensors responses. 

    In fact, pattern recognition in the field of gas analysis can 

be defined as the process that allows the identification of the 

odors present in a gas mixture [23], [24]. 

   The feature extraction is of paramount importance in 

pattern recognition, its aim is to extract the useful and non-

redundant information in the original signal [25], [26]. It is 

already proven that the right selection of features increases 

the performance of the e-nose system [27]. 

   In gas analysis for e-nose applications, features are either 

extracted from the steady state of sensor response or from the 

transient response or some signal transforms such as fast 

Fourier transform (FFT) and discrete wavelet transform 

(DWT) [27]. 

   The proposed method in this study is based on the 

extraction of six features: two steady-state (fractional 

difference and difference), two transient (integral and first 

derivative) and from transform domain (FFT and DWT) with 

the selection of the best relevant features among them.  

   In the present paper, authors use support vector machine 

(SVM) based method for data classification. SVM is among 

the classifiers that have proven their efficiency in recent 

years since its appearance in 2000 by Vapnik [28].  

   Since SVM is also a supervised learning method that 

allows to predict the target values after creating a model 

based on the training data [29], [30], here we discuss the use 

of Least Squares Support Vector Machine (LS-SVM) for 

estimating acetone and ethanol concentration. 

   The paper is organized as follows. In Section 2 we 

describe our experimental setup; the next section presents the 

proposed method. Section 4 is focused on the results and 

discussion. At the end, the conclusions are illustrated in 

Section 5. 

2. Experimental Setup 

For the sensors realization the first step was the deposition 

of the metal oxide sensitive layers (WO3, SnO2 or ZnO) by  

magnetron cathode sputtering RF on silicon substrates 

containing platinum contact electrodes. 
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Fig. 1. Experimental set-up 

  After nano-particle film deposition, the sensors go through 

thermal annealing in dry air for 2 hours at 500°C in order to 

stabilize the oxide layer. Actually, each resulting active film 

has a thickness of 50 nm. 

   The block diagram of the experimental set up used for 

sensor’s measurements is shown in Fig. 1.   

   The responses of WO3, ZnO and SnO2 transducers to 

different concentrations of acetone and ethanol in the 

presence of water vapor were recorded separately. In our 

study, both water vapor and ethanol are considered as 

interfering elements. 

   As shown in the Fig. 1 during the experiments, the sensor 

is placed in a homemade test chamber made of stainless 

steel, the stainless steel avoid VOC adsorption. 

The operating temperature of the detectors is fixed at 

250°C for the three types; it is reached using an external 

heater. For the production of the concentrations of the chosen 

gases we used a water-containing bubbler where we insert 

the ethanol or acetone in liquid form using a micro needle, 

the liquids are diluted with distilled water and the amount of 

liquid introduced is calculated using the Dubowsky formula     

[31] in order to have the chosen concentrations. In facts, all 

sensors were exposed to 0, 1, 2, 5 and 10 ppm of each gas, a 

flow rate controller (0254, Brooks Instrument thermal mass 

flow) was used to control the flow of gas.  

   Keithley 6430 (Tektronix company) measures the voltage 

across via resistance and a computer controls the data 

acquisition via an HP-VEE Program.  

2.1 Resistance response  

   Fig. 2, illustrates the typical resistance response curves of 

SnO2, ZnO and WO3 gas sensors in the presence of different 

gases with 1 ppm at the operating temperature of 250°C that 

we considered as the optimal temperature for our 

transducers. At the beginning of the experiment, the sensors 

are powered for 30 minutes before starting the measurement. 

This step is very important for the stabilization of the 

sensitive film of each sensor for the reproducibility 

enhancement.  

 

 

 

Fig. 2. Response curve of   ZnO, SnO2 and WO3 gas sensors 

in presence of: (a) Acetone, (b) Ethanol. 

   The resistance of gas sensors decreased quickly when 

exposed to acetone or ethanol due to the gases reducing 

nature. We notice that the response and the recovery speeds 

of the SnO2 sensor in the presence of acetone were faster 

than those of the ZnO and WO3 sensors. Furthermore, the 

response and the recovery speeds of all the sensors were 

quite comparable to each other in the presence of ethanol. 

We also observe that 1 minute response time is adequate for 

the sensors to achieve a steady state, especially for the SnO2 

sensor. For the recovery time, 15 minute was applied  for  all  

sensors to  completely  return  to  their  original  baseline. 

The same concentrations were selected for the both gases: 0, 

1, 2, 5 and 10 parts per million (ppm). We repeat the 

operation of gas injection twice for each gas and for each 

concentration, which gives us 20 measurements for each 

sensor. 
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Fig. 3. Response of  SnO2 sensor exposed to 1ppm and 5 

ppm acetone at 250°C. 

2.2 Gas sensing behavior 

   The response of SnO2 sensor for 1 ppm and 5 ppm acetone 

exposure were shown in Fig. 3 for two exposure cycles of 

each concentration at the operating temperature of 250°C. 

For practical use in different applications, a good gas sensor 

must have the ability to produce the same pattern for the 

same conditions.  Perfect repeatability is a very important 

feature to make a commercial sensor. As we observe, the 

SnO2 sensor has very short response and recovery time that 

are almost stable for variant exposures and an agreeable 

repeatability was seen.   

3. Signal Processing 

The most important signal processing elements of an E-

nose are its feature extraction and classification techniques, 

which use the sensor’s response to extract and select the most 

relevant features and implement the pattern recognition 

methods in order to classify the different odors. 

 

 3.2 Feature Extraction 

The  goal  of  feature  extraction  is  to  extract relevant  

information  from  the  e-nose response with less 

redundancy, to  obtain  an  optimal  recognition  result.  

However,  it  is  still  a  great  challenge  to  select  features  

to  improve  the  pattern  recognition accuracy [30]. 

   According to the studies of feature extraction in the past 

twenty years, there are many feature  extraction  techniques  

which  have  been  applied  in  e-nose  applications.  In 

general, the features employed in the area of e-nose can be 

categorized into two main sections: Features extracted from 

the steady-state part, and features extracted from the transient 

part of the sensor response. Another approach to extract 

features for e-noses is based on some transforms and then the 

coefficients of these transforms will be used as new features 

to separate classes.  For this study, we have selected six 

features as characteristic parameters. 

 

   

Fig. 4. Example of  response  Curve  of  SnO2 in presence of 

Acetone with 10 ppm 

 We  have  first  used  two  main conventional  features  

as steady-state descriptors [32], fractional difference and 

difference (see Fig. 4), whose  expressions  are  shown  

by  the following equations (1) and (2):  

 

                      
       

  
                                      (1) 

 

                                                                      (2) 

 

•  : the initial resistance of a sensor calculated as the final 

value of its resistance before the injection gas phase. 

•     the steady-state resistance calculated by averaging the 

last five seconds of the injection gas phase.  

   Fractional difference  effectively serves to reduce the effect 

of the temperature on the sensors, in addition the fractional 

difference  is helpful to linearize  the  process  that  generates  

a  concentration  dependence  in  metal  oxide chemiresistor 

sensors.  

   On the other side, the difference feature is generally used to 

eliminate the additive errors, which are added both to the 

steady-state and baseline response. 

   It has been proven that features extracted from the transient 

response are more informative than the steady-state features 

[25]. For this reason, we have used two characteristics as 

transient features, integral and derivative.  

Integral  may  reflect  the  accumulative  total  of  the  

reaction  degree  change  and  derivatives may reflect the 

sensor reaction rate to the odor.   
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    The integral and derivative expressions are shown by the 

following equations (3) and (4) [33] :  

 

                  
 

 
                                                     (3) 

 

with f(t) is the sensor response value, a represents the start 

response time of the gas injection phase,  b  is  the  end  of  

the  recovery  time of the cleaning phase,  and  t represents a 

time point between a and b. 

 

                  
             

       
                                        (4) 

 

with    is the time point from a to the start time of the 

cleaning phase, and       and         represent the sensor 

response value at      and        time points, respectively. 

    The integral and derivative features have been investigated 

for the response and recovery time [25]. The derivative 

feature presents better performance considering only the gas 

injection phase. On the other hand, the integral feature 

presents better performance considering the whole curve 

analysis (gas injection phase + cleaning phase). In this study, 

instead of using the whole cleaning phase with 15 minutes, 

only 5 minutes will be used as a recovery period, since after 

5 minutes the response curve is almost stable, see Fig. 4. 

   As features extracted from transform domain,  we  have  

used the  most  frequently  transforms in  signal processing 

step of an e-nose, which are Fast Fourier transform  (FFT)  

[34] and  the  discrete  wavelet  transform  (DWT) [35].   The  

Fourier  transform, which  used the sine  and cosine as the 

basis functions, decomposes the response  signal  of  the  gas  

sensor into the superposition of the DC component and  

different  harmonic  components,  and the amplitude  of  each 

component can be selected as a feature. In this study for the 

FFT feature we have used the amplitudes of the DC 

component.  

   Wavelet transformation [35] is an extension of Fourier 

transform. It maps the sensor response signals into a new 

space with basis functions precisely localizable in time and 

frequency space. The DWT divides the signal into the 

approximation (low frequency) and details (high frequency) 

at each scale or level.  The coefficients are extracted by 

convolving the mother wavelet and the signal, which means 

that they represent the correlation degree. In this study, to 

guarantee the orthogonal requirement of feature extraction, 

we have used the Daubechies family (DB1) as the mother 

wavelet. 

   Like the integral and derivative features, the DWT has 

been also investigated in three time intervals, response time, 

recovery time and the complete curve (i.e. from the response 

time to the next when a new odor is present). The DWT 

feature presents better performance considering the whole 

curve analysis (gas injection phase + cleaning phase) [25]. In 

this study, for both FFT and DWT we have used the whole 

curve to calculate the FFT and the DWT coefficients and 

only 5min will be used as a recovery period, since after 5 

min the response curve is almost stable as we said earlier. 

3.2 Feature selection 

   To choose, precisely, the most relevant features in order to 

make a separation of the two classes of gas, we used the 

ReliefF algorithm [36], which is one of the most effective 

strategies in the feature selection. This algorithm is known 

for his robustness, and can work perfectly with datasets of 

highly interdependent features, even for incomplete and 

noisy data. Another suitable characteristic for this algorithm, 

it can be used in multi-class problems [37]. 

   For the majority applications of e-nose, it is a challenge to 

choose the best classification method for gas identification. 

Depending on different odors and employed sensors, we can 

select different classifier for each combination. The recent 

methods are turning to statistical learning techniques; the 

most widespread of them is the SVM (support vector 

machine). SVM is a supervised learning technique widely 

used for both classification and regression problems [38], 

with the possibility to work with large data. This technique 

deals well with nonlinear discrimination problems by 

plunging the data into a larger space in which the 

classification problem is linearized. The goal of this 

technique is to find a separating hyper-plane, with the largest 

margin possible between classes. For this reason we chose to 

work with Lib-SVM (A Matlab Library for SVM) [39]. This 

library helps users to easily use SVM as a tool. 

3.3 Quantitative Analysis 

After the classification step and the identification of the 

target gas, the following process will be the concentration 

estimation for quantitative analysis of the analyte.  In this 

study, we chose the least squares version of the SVM (LS-

SVM) in the regression mode to estimate the gas 

concentration. This version can perform calculations faster 

than the original version. 
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Fig. 5. Flowchart of the proposed e-nose. 

  The LS-SVM method provides a high degree of accuracy 

for concentration prediction, particularly for data sets for 

which a considerable nonlinearity can be expected. 

   In our study we use the regression mode of the LS-

SVMLab toolbox v1.8 in Matlab [40]. Using this toolbox, in 

the experimental step we can create a mathematical model in 

order to predict the gas concentrations.  Concerning the 

kernel function of the model, LS-SVM works with four 

types, which are linear, polynomial, radial basis function 

(RBF) and multi-layer perceptron (MLP). After choosing the 

kernel function, the most important next step is the selection 

of the model parameters to get a good estimation of gas 

concentration [41, 42]. In our empirical study, these 

parameters were found by using some optimization 

algorithms. First, suitable starting points are determined by 

coupled simulated annealing method (CSA). Next, from the 

starting points, the final parameters are calculated by 

multidimensional unconstrained non-linear optimization. The 

obtained parameters are the regularization parameter γ and 

the squared kernel parameter (σ²).  

4. Results and Discussion  

4.1 Feature matrix 

  Let “I” be the feature matrix, which will constitute the 

database. In this work, the rows, which represent the 

measurement; are the various combinations of different 

classes of gas and concentrations at the operating 

temperature of 250 °C. Whereas the columns, which 

represent the variables; are the selected six features extracted 

from the response of every sensor. 

  

   

Fig. 6. The feature matrix 

In our case, every line or measurement is represented by 

eighteen features (three sensors and six features). The 

organization of all features is represented in the following 

matrix (fig. 6): 

whereas      
   

,      
   

,      
   

,      
   

,      
   

,      
     represent the 

fractional difference, difference, derivative, integral, FFT and 

wavelet features, respectively, for each class "c",  exposure 

cycle "e", concentration "i" and sensor "j". 

c = 1, 2; is the class number, they correspond to acetone and 

ethanol, respectively. 

e = 1, 2; is the exposure cycle, they correspond to the first 

and the second sample of the repeatability, respectively. 

i = 0, 1, 2, 5, 10; gas concentration (ppm). 

j = 1, 2, 3; the sensor number, they correspond to the SnO2, 

WO3 and ZnO, respectively. 

All features of the matrix are then normalized, which 

means that each column is normalized between 0 and 1. 

4.2 ReliefF algorithm for feature selection 

The resulting six feature vectors were used with target 

values for the selection of the best relevant features that have 

the ability to separate the two types of gas (Acetone and 

Ethanol). We calculated the weights of six features. To better 

observe the values, we have multiplied all the values by 100, 

so we will get (-100 ≤ W[i] ≤ 100), while W[i] ≤ 0 means 

that this feature i has no relevance. All results are presented 

in the next table I. 
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Table I - ReliefF algorithm results 

FEATURES WEIGHTS RANKING 

FRACTIONAL DIFFERENCE  4.6338 5 

DIFFERENCE 3.9008 6 

DERIVATIVE 6.5427 1 

INTEGRAL 5.3418 4 

FFT 6.3716 3 

WAVELET 6.5426 2 

 

Regarding the results of this table, we observe that some 

features are more relevant than the others, and we can easily 

see the difference. The Derivative has the most pertinent 

feature for gas identification, followed by the Wavelet 

coefficients, which confirms the good results of gas 

identification based on transient response and transform 

domain.  

4.3 Classification with LIB-SVM 

   After the feature extraction step with the ReliefF algorithm, 

the best two features (Derivative and Wavelet coefficients) 

are selected to learn the classifier in order to identify the 

tested gases. The performance of the classifier was evaluated 

by the accuracy. In his study, we used the LIB-SVM-3.23 

package for the multi-class classification phase, with the 

optimal regularization parameter C=1.  The training and 

testing data were acquired by dividing the raw data in two 

groups, 50% of the data were used for training and the rest 

50% were used for testing.  

   A set of SVM methods, based on different kernel types, 

were evaluated in order to select the best kernel type. 

Efficient results were obtained with linear kernel function, 

LIB-SVM achieve the classification accuracy of 100%. The 

other methods based on polynomial, radial basis function and 

sigmoid give only 50% for the accuracy. 

4.4 Estimating Gas Concentration Using LS-SVM 

   As in the classification stage; the same 50% of the training 

data are employed to create a mathematical model for the 

LS-SVM, and the rest 50% are used to test the accuracy of 

the model. After comparing the results of different kernel 

function, we choose the RBF kernel, which work very well 

with such type of data, as considered also in other studies 

[43, 44]. 

For the evaluation of the proposed method, we use the root 

mean square error (RMSE) to compare between the actual 

concentrations and the predicted values. RMSE expression is 

shown by the following equation (5): 

 

      
            

 
                                                         (5) 

 

Where    ,  , n are actual concentration, predicted 

concentration, and the number of data, respectively. 

For the input data of the LS-SVM, instead of working with 

the standard method which uses the sensor resistance ratio 

between    and    as input to determine the gas 

concentration, we propose a new method which uses, for 

each sensor, a single feature that gives the best result for the 

concentration estimation. So, the input data of the LS-SVM 

will be the combination of the best three features plus a 

vector of the target gas concentration. As result, for the 

acetone the best three features of SnO2, WO3 and ZnO are 

difference, derivative and integral, respectively. For the 

ethanol the best three features of SnO2, WO3 and ZnO are 

fractional difference, Fourier and derivative, respectively. 

   Fig. 7 shows the regression plot to estimate the 

concentration of the acetone and ethanol, where the vertical 

axis is the estimated concentration using LS-SVM and the 

horizontal axis is the real concentration. Perfect estimation 

leads to find points in the diagonal, which means that the 

estimated values of the gas concentration match the real 

values. (i.e., x=y). 



Fig. 7. Quantitative estimation, real concentrations (X-axis) and predicted concentrations (Y-axis)

 

   As can be seen in Fig. 7, with the exception of the first 

point for ethanol, all the estimated concentrations are 

predicted very well, since all the values are very close to the 

diagonal. For the quantitative analysis, the general 

performance is evaluated by the RMSE. 

   Table II show the RMSE results between the real and the 

estimated concentrations of the standard method using the 

sensor resistance ratio 
  

  
  for each sensor, the combination of 

the three ratios and the proposed method. 

    As can be seen from the RMSE values, our method 

presents the best result to estimate the concentration for both 

acetone and ethanol with an error of 0.2236 and 0.6639 

respectively. By comparing this with the conventional 

method used to estimate the concentration even in gas 

sensors sold on the market we can clearly see that our 

method is much better. 

The presented procedure and the use of the LS-SVM 

algorithm helped to define which of the working conditions, 

applied to the investigated gas sensing layer, was most 

informative for gas detection.  

    So, based on the combination of the best three features of 

diverse sensors using LS-SVM, we can determine with high 

precision the estimated gas concentration especially for the 

acetone which will be used for acetone detection in the 

breath of diabetes mellitus patients. 

 

  Table II Root Mean Squared Error (RMSE) results 

for different method. 

INPUT OF LS- SVM 
GAS 

ACETONE ETHANOL 

  

  
  (SnO2) 266.0717 0.9459 

  

  
 (WO3) 236.3854 1.6644 

  

  
 (ZnO) 2.2222 1.211 

  

  
  (SnO2, WO3, ZnO) 1.1985 0.7533 

OUR METHOD 0.2236 0.6639 

 

5. CONCLUSION 

   In this study, a sensor array made of three different 

semiconductor gas sensors is applied to classify and predict 
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acetone and ethanol concentrations using an SVM 

classification algorithm.  

    In this approach, six different features were selected from 

the sensors response, the selection of the most effective 

features based on the ReliefF algorithm shows that the use of 

transient features and features extracted from transform 

domain is the best method for gas recognition. Classification 

accuracy of 100% was achieved using the LIB-SVM 

classifier based on a linear kernel function.  

    Also, a new method based on the implementation of only 

the best feature for each sensor in the LS-SVM algorithm is 

proposed for the estimation of the gas concentration. The 

quantitative prediction of acetone and ethanol concentration 

is obtained successfully with a root mean square error of 

0.2236 and 0.6639 respectively. 

    The results of this work confirm that the good selection of 

the extracted features and classifier leads to a better 

performance of the electronic nose in both the fields of gas 

identification and gas concentration prediction.  

    Further studies aim to use the proposed technique to 

design and develop an effective portable electronic nose 

device for continuous non-invasive blood glucose monitoring 

by using our three homemade sensors accompanied by a 

humidity sensor and a temperature sensor plus the algorithm 

described in this manuscript and test the system on human 

breath samples then do some clinical in vivo studies to 

validate the obtained results. 
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