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Abstract 16 

Assessing and modelling the coastal plume dispersion of nuclearized rivers is strategic in 17 

case of accidental releases for the protection of vulnerable areas, but taking into account 18 

all the possible hydrodynamical conditions is challenging. River plumes are mostly 19 

affected by wind and river discharge, but the variability of these two forcings suggest 20 

that data mining methods may be particularly effective to define their major trends and 21 

influences on the plume behavior. 22 

This study uses fuzzy c-mean clustering on Rhone River (France) discharge and wind 23 

speed at its estuary for two objectives: explaining the variability of the riverplume by 24 

defining scenarios of hydrodynamic forcings, and relating these scenarios with the 25 
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spatial extension of the plume  . The application to the Rhone River, the most 26 

nuclearized European river, highlighted the ability of this method to classify a 10 years 27 

serie of wind and discharge into 6 scenarios with remarkable characteristics. These 28 

scenarios correspond to different surface currents and plume behaviors, and they were 29 

used to simulate the extension and dilution of a radioactive release. These simulations 30 

can be used as a quick decision tool, and a decisional tree is also proposed to identify in 31 

real time which climatological scenario occurs at the river mouth and the potential 32 

plume pattern. 33 

Keywords : 34 

Coastal plume, Fuzzy c-mean clustering, modelling scenarios, Rhone River, radioprotection, coastal 35 

management 36 

 37 

1.Introduction : 38 

 39 

The Rhone River catchment extends over 98000 km² and covers one fifth of the French 40 

metropolitan territory. It is the main source of particles and freshwater for the Gulf of 41 

Lion in the North Western Mediterranean sea (Durrieu De Madron et al., 2000), and all 42 

together one of the most important input to the Mediterranean sea (Ludwig et al., 2009). 43 

The Rhone valley also hosts the largest concentration of nuclear power plants in Europe 44 

with 4 nuclear power plants in process and a spent fuel reprocessing center, under 45 

dismantlement since 1997. Eyrolle et al. (2020) recently synthesized the studies showing 46 

that this river carries artificial radionuclides from decades, resulting from authorized 47 

releases of low level radioactive liquid wastes and from the export of atmospheric 48 

deposits on watersheds consequently to nuclear weapons testing and Chernobyl accident.  49 

France is presently ranked second in the world for the production of nuclear energy, and 50 

the total electricity production in the combined regions of Northern, Western and 51 

Southern Europe is projected to increase by 2050 (IAEA 2019). Also, the risk of incident 52 
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on any kind of nuclear installations is still of concern in France and must be taken into 53 

account. As for any river, the transport of artificial radionuclides in case of accidental 54 

release will occur both in dissolved and particulate form, depending on the amount of 55 

suspended particulate matter and on the chemical properties of the radionuclides, and 56 

particularly their distribution coefficient (Tomczak et al., 2019). For the Rhone River, the 57 

prediction of dissolved vs particulate fluxes and the associated time scale for transit can 58 

be evaluated through numerical modeling (Launay et al., 2019), but the behavior of 59 

radionuclides once at sea is clearly less constrained, because it will primarily depend on 60 

the forcings governing the shape of the Rhone River plume.  61 

The area of the Rhone river mouth is characterized by a very small tidal amplitude 62 

about 30 cm inducing the formation of a sedimentary delta. As usual in this case, the 63 

freshwater input forms a thin stratified plume of low salinity water (and higher 64 

turbidity) overlying the seawater and extending between 4 and 1000 km² (Estournel et 65 

al., 1997; Gangloff et al., 2017) with a thickness decreasing seaward (Pairaud et al., 66 

2011; Gangloff et al., 2017). It is preferentially deflected westward in a clockwise 67 

orientation running East to West (Reffray et al., 2004) due to the general circulation 68 

induced by the Northern Current along the continental slope. Under north-northwest 69 

winds, the plume extends offshore towards the southwest, whereas it is pushed to the 70 

coast west of the river inlet in case of southeastern winds. Satellite and modelling 71 

results have also shown that the plume size increases with river discharge (Fraysse et 72 

al., 2014; Gangloff et al., 2017). More episodic processes impact the plume pattern such 73 

as dense water formation and cascading (Ulses et al., 2008), upwelling cells and marine 74 

storms (Millot, 1990; Millot, 1999). As a result, this plume extends far beyond the coastal 75 

areas and may covers a large area in the GoL extending from the vicinity of the mouth 76 

up to the Cap de Creus at the french-spanish border (Sanchez-Cabeza et al., 1992). It can 77 

also reach the Gulf of Fos (Gontier et al., 1992; Charmasson et al., 1999) or the Bay of 78 
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Marseille (Pairaud et al., 2011 ; Fraysse et al., 2014) on the eastern side of river mouth. 79 

The Gulf of Fos is an important economic area with one of the biggest commercial port in 80 

Europe and a large shellfish area, and Marseille is one of the biggest Mediterranean 81 

coastal city with one million inhabitants. Due to the oligotrophic nature of the 82 

Mediterranean Sea, the region of freshwater influence (ROFI) of the Rhone river has a 83 

major influence on the distribution of plankton groups (Diaz et al., 2019) and thus 84 

pelagic catches on the GoL. Obviously, the inputs of chemical contaminants from the 85 

Rhone River can greatly affect the fishery activity. 86 

The combination of meteorological and hydrodynamic forcings with the dynamics of the 87 

Rhone River discharge results in a large spatio-temporal variability in freshwater and 88 

associated pollutants delivery to the GoL (Martin et al., 2019). If an accidental release 89 

occurs in the Rhone River, the dissolved radionuclides may reach the estuary within 48h 90 

hours to few days depending on the source location and water discharge [unpublished 91 

results]. Once at sea, the different shapes that the plume may present will depend on 92 

hydrodynamic and weather conditions and will lead to contaminate different areas. 93 

Since one goal of radioprotection is to predict the transfer of radionuclides in the 94 

environment, there is a need to anticipate their dispersion at any time and in any kind of 95 

meteorological and hydrodynamical conditions.  96 

Different numerical hydrodynamic models have been set up in the GoL, including the 97 

river mouth (Pairaud et al., 2011 ;Duffa et al., 2016), and they could be used actually in 98 

case of accidental release in order to predict the behavior of the freshwater input. 99 

However, the delay necessary for their implementation will range from few hours to few 100 

days, whereas very quick and concise information should be provided to experts and 101 

decision-makers as a first picture of the local issues. Alsothe potentially impacted zones 102 

will be better defined by performing afine spatial scale simulation adequately centered , 103 

compared to a large-scale simulation 104 
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As a result, a preliminary study embraces all possible plume patterns is necessary, and a 105 

first step is to target the general behavior of the estuarine-plume system. Bárcena et al., 106 

(2015) explained that two approaches may be conducted for that: simulating several 107 

scenarios using constant conditions of hydrodynamic forcings or simulating few scenarios 108 

using the most frequent or extreme real hydrodynamic forcings during short-medium 109 

term periods (month to year).  110 

These authors demonstrated that the first approach is not complete because real forcings 111 

cannot be deduced from the combination of simple idealized scenarios. The second 112 

approach relies on a subjective selection of scenarios by an expert and it will have an 113 

expensive computational cost for simulations if the need is to get on overview of the 114 

different kind of realistic responses of the estuarine-plume mean behavior. In this case, 115 

and to minimize subjectivity, a methodology based on data mining should be able to 116 

select the most relevant condensed hydrodynamic scenarios, taking into account the time 117 

evolution and the occurrence probability of the forcings. 118 

Plume classifications based on satellite observations or hydrodynamic model output have 119 

been defined in several river-sea systems using Empirical Orthogonal Function or Self-120 

Organizing-Map (Falcieri et al., 2014; Xu et al., 2019). Such classification method deals 121 

with large spatial scale but implies a heavy data pretreatment like « masking » to treat 122 

the satellite data or for the computation of the model. In addition, the need of long-term 123 

environmental databases (e.g., 10–20 years) to assess probabilities implies significant 124 

computational costs as well as long and multiple series of data to be used as boundary 125 

conditions and climatic forcings. Another approach is to classify the main hydrodynamics 126 

drivers by looking for example at the catchment discharge and the winds intensities and 127 

directions (Kaufmann & Whiteman 1999; Zhang et al., 2011). Since the plume response 128 

to these forcings can be longer than 24h (Demarcq & Wald, 1984 ; Estournel et al., 1997), 129 

the classification should work observation by observationbut must also keep consistency 130 
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over longer temporal scales of few days in order to be accurate. Clustering performed on 131 

temporal series helps to assess the consistency of a trend over time, and a fuzzy 132 

clustering algorithm provides a continuous cluster membership function allowing to spot 133 

significant trend changes. 134 

In this context, this paper presents a methodology based on statistical analysis and 135 

numerical modelling that was developed to address the limitations of the previously 136 

mentioned approaches. Firstly, we used a fuzzy c-mean algorithm to identify and classify 137 

combinations of winds and discharge at the mouth of the Rhone river in order to define 138 

“model scenarios” of realistic forcings. Secondly, the consequences for sea surface 139 

currents will be assessed and the resulting plume pattern will be modeled for each 140 

scenario, as well as the distribution of dissolved radionuclides due to a hypothetical and 141 

episodic release on the Rhone River. These plumes scenario can be used as a support for 142 

operational tools improvement and decision. 143 

 144 

2.Matérial and Methods 145 

2.1 Field study and data 146 

 147 

The Rhone River hourly discharges have been provided by the C.N.R (Compagnie 148 

Nationale du Rhône) thanks to the Rhone Sediment Observatory (OSR program). They 149 

were measured at the SORA station, in the city of Arles located 47 km upstream of 150 

Rhone River mouth (Fig 1). It must be noted that the Rhone River splits in two branches 151 

upstream of this station: the Grand Rhone and Petit Rhone. The station reports the 152 

discharge for the Grand Rhone River only, which represents about 90 % of the total 153 

Rhone River discharge (Boudet et al., 2017). In our case we focus only on the river plume 154 

at the Grand Rhone outlet. 155 
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Weather data and subsurface marine currents data are issued from the MesuRho station 156 

(Pairaud et al., 2016), operational since June 2009 and located at the Buoy Float 157 

Immersed (BFI) maritime buoyage Roustan East (43 ° 19.2 N, 4 ° 52 E) on the Rhone 158 

prodelta (20 m water depth). It is about 1 mile southeast of the mouth and was 159 

configured to collect physico-chemical data in near real time and at high frequency 160 

(about 30 min) in the fresh/marine waters transition zone. It is equipped with a weather 161 

station at 10 m height and an Acoustic Current Doppler Profiler (ADCP). The 162 

instrumentation is connected by a cable to a controller located above the sea surface and 163 

powered by solar panels. The measurements are transmitted to the Coriolis data center 164 

via GPRS (about 1 transmission every 12h since 2015, 4h before).  165 

Weather variables used are the average wind speed over 30 min and the gust wind 166 

speed. Gust wind speed is the maximal mean wind speed over 0.5 second observed 167 

during a period of 30 min. 168 

The observations used were registered between 2009 and 2019 and result in a total of 169 

128262 data. The subsurface currents (maximum depth of 1.5 m) from 2010 to 2019 were 170 

also used, when available and after quality control validation, leading to a total of 31826 171 

observations. 172 

In order to perform multivariate analysis and regression, wind and currents variables 173 

(expressed in terms of velocities u and directions θ) are described by an Eastward and a 174 

Northward component X and Y and calculated as follow : 175 

{
𝑋 = 𝑢. 𝑐𝑜𝑠(𝜃)
𝑌 = 𝑢. sin(𝜃)

(1) 176 

The corresponding hourly discharges in Arles (64131 obs.) were shifted with a 24 h 177 

delay, which corresponds to the transit time between Arles and the river mouth for a 178 

mean liquid discharge.  179 
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 180 

2.2 Principal Component Analysis 181 

 182 

Principal Component Analysis (PCA) has been widely used in environmental sciences 183 

including hydrologic and hydrodynamics (e.g. Hannah et al., 2000; Pairaud et al., 2008). 184 

The common goal to all principal component methods is to describe a data set (X with i 185 

individuals or observations and w variables) using a small number (p<w) of uncorrelated 186 

variables, while retaining as much information (variance) as possible. The reduction is 187 

achieved by transforming the data into a new set of continuous variables named the 188 

principal components. 189 

The reduction of dimensionality provides a framework to visualize data which is 190 

especially important for large datasets (Husson et al., 2010). This facilitates the analyses 191 

based on geometrical criteria such as separate observations into k distinct sub-groups 192 

(clustering) or determination of extreme points (Renner, 1993; Napoleon & Pavalakodi, 193 

2011)).  194 

Using PCA as a pre-processing tool in order to cluster presents two additional 195 

advantages. The reduction of dimensionality speeds up the convergence of classification 196 

algorithms, which usually depends on the square of p and i (Ben-Dor et al., 2004), and it 197 

reduces the noise, the essential of the information being on the first components whereas 198 

the noise is on the lasting ones (Husson et al., 2010). PCA has been performed using the 199 

R package “FactoMineR” (Lê et al., 2008). 200 

2.3 Fuzzy c-mean algorithm 201 

Clustering is a usual method for data mining when it comes to identify groups and 202 

classify individuals, but many algorithms exist and present different results and 203 

convergence speeds (Jain et al., 1999). The first goal is to find an algorithm based on 204 

geometrical criteria as simple as possible for a more realistic interpretability, and the 205 
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second one is to find a fast convergence algorithm in order to treat the important 206 

dataset. 207 

The most usual method is the c-mean or k-mean (MacQueen, 1965 ;Yadav & Sharma, 208 

2013) and its fuzzy alternative (Bezdek, 1981 ; Fu Lai & Tong, 1994). C-means are 209 

iterative algorithms that classify individuals of a dataset into C groups. The algorithm 210 

allows to randomly define C centroids in the same coordinate systems as the individuals. 211 

Each individual x (total of K) is then assigned to the closest centroid center ci. The 212 

barycenter of each subgroup is then calculated and becomes the new centroid. Again, 213 

individuals are reassigned to the closest centroid. This iterative procedure minimizes the 214 

objective function (J) and the procedure ends when J reaches an inferior threshold in Eq 215 

(2).  216 

 217 

𝐽 =∑ ∑ ‖𝑥𝑘 − 𝑐𝑖‖
2

𝑋𝑘∈𝐶𝑖

𝐶

𝑖=1

(2) 218 

This method is defined as “crisp”, which means that each observation is set to belong to 219 

its closest centroid cluster. Consequences are that observations with different distances 220 

from the nearest cluster are classified into this cluster without degree of uncertainty and 221 

the ambiguity of the data is eliminated. 222 

Cluster boundaries are usually not sharp in environmental sciences (Zadeh et al., 1965), 223 

especially when ambiguous data exist, and membership degrees are more realistic than 224 

crisp assignments (Klawonn & Höppner, 2003). A priori we do not expect a crisp 225 

classification and it is important to have feedback on the confidence of classification for 226 

each individual. As a result, the ambiguity of the data can be preserved and his 227 

probability can be used later for post treatments (Kim et al., 2011). 228 

The fuzzy alternative introduces two new parameters. The first one is the membership 229 

coefficient µik, the coefficient of the kth observation to the ith cluster. This membership 230 
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represents how closely the kth data object (xk) is located from the ith cluster center. It 231 

varies from 0 to 1 depending on the distance ( ‖𝑥𝑘 − 𝑐𝑖‖
2
 ), and a higher membership 232 

coefficient indicates stronger association between the kth data object to the ith cluster. 233 

𝜇𝑖𝑘 = [∑(
‖𝑥𝑘 − 𝑐𝑖‖

2

‖𝑥𝑘 − 𝑐𝑗‖
2)

2
𝑚−1𝐶

𝑗=1

]

−1

(3) 234 

The second parameter m is the fuzziness coefficient. It is greater than 1 and usually 235 

dependent on the dataset structure because it represents the degree of overlap of the 236 

clusters (Klawonn & Höppner, 2003). If we set m to a smaller value, more (less) weight is 237 

given to the objects that are located closer to (farther from) a cluster center. As m is close 238 

to 1, µik converges to 0 for the objects that are far from a cluster center, or 1 for those 239 

close to a cluster center, which implies less fuzziness (i.e. clearer cut). 240 

The symbol ‖ ‖ denotes any vector norm that represents the distance between the data 241 

object and the cluster center. Here we use the 2-norm (Euclidean norm) which is widely 242 

used in the FCM. 243 

The new c-mean function to minimize becomes: 244 

𝐽 =∑∑(𝜇𝑖𝑘)
𝑚‖𝑥𝑘 − 𝑐𝑖‖

2

𝐾

𝑘=1

(4)

𝐶

𝑖=1

 245 

The robustness brought by the fuzzy approach over the crisp classification is a 246 

significant improvement in term of efficiency and convergence. Because each individual 247 

(observations) has a probability to belong to each center, centers are adjusted faster and 248 

the algorithm converges faster (Fu Lai & Tong, 1994;Ferraro & Giordani, 2015). 249 

Also, without any prior information on the cluster structure (sphericity of clusters, 250 

possible overlap) the fuzzy c-mean provides better results than its crisp counterpart 251 

(Selim & Kamel, 1992). As a result, hydrologic and climatologic combinations can be 252 

identified by fuzzy-cmean (Kim et al., 2011; Zhang et al., 2011; Bárcena et al., 2015). 253 
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In this study the fuzzy-cmean algorithm is performed using the “e1071” package from R 254 

software (Hornik et al., 2019). 255 

 256 

 2.4 Choice of the number of clusters C and the coefficient of fuzziness m 257 

Fuzzy c-mean algorithm needs to be initialized with the number of clusters C and the 258 

coefficient of fuzziness m. The best combination of these parameters is not determined by 259 

the algorithm. One approach is to run different simulations with different {C, m} pairs 260 

and to check the efficiency of clustering with a quality criteria (Ramze Rezaee et al., 261 

1998; Setnes & Babuška, 1999) 262 

Many criteria and their efficiency are available in Wang & Zhang (2007) and Liu et al. 263 

(2010). Some have fast calculation like partition coefficient (PC) or partition entropy 264 

(PE), but they monotonously decrease with the number of clusters and the lack of direct 265 

connection to the geometry of the dataset. Others are more complete but computationally 266 

expensive, such as the Dunn index (Dunn, 1974) or the fuzzy silhouette (Campello & 267 

Hruschka, 2006), and they could not be calculated with this dataset.The Xie and Beni 268 

index (Xie & Beni, 1991) could be calculated  based on Eq (5). XB has a direct connection 269 

to the geometrical property of dataset because it takes into account both compacity and 270 

separation of the clusters. It deals correctly with noisy datasets, size or density 271 

variations (Liu et al., 2010). 272 

𝑋𝐵 =
∑ ∑ 𝜇𝑖𝑘

𝑚‖𝑥𝑘 − 𝑐𝑖‖
2𝐾

𝑘=1
𝐶
𝑖=1

𝐾𝑚𝑖𝑛𝑖,𝑗‖𝑐𝑗 − 𝑐𝑖‖
2 (5) 273 

Calculation of XB is also fast for our dataset: from 4 to 10 seconds depending on {C,m} 274 

pair. 275 

C could be any integer number between 2 and 358, the last one being theorically the 276 

square root of the dataset length (Chaimontree et al., 2010). The fuzzifier m can be in 277 
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theory any real number between 1 and ∞. In our case, the interval of {C, m} simulations 278 

has been restrained based on the following: 279 

 - Depending on the river-sea system involved, a different number of plume 280 

patterns exist. In literature, we found that a river plume can present up to 8 patterns 281 

(Xu et al. 2019). As a result, we do not expect our number of cluster to exceed 8 and the 282 

number of clusters C was set between 2 and 8. 283 

 - Previous studies report that values of m can range from 1 to 4. Most of them use 284 

m ϵ [1.5,2.5] and as result m is usually set to 2 by default (Hathaway and Bezdek 2001; 285 

Klawonn & Höppner, 2003). Overall m is lower for large datasets (Klawonn & Höppner, 286 

2003), and the lower limit will be fix in our case to 1. Using the empirical threshold 287 

equation based on the length and dimensions of the dataset proposed by Schwämmle & 288 

Jensen (2010), we found that the superior threshold value of m for our dataset is around 289 

2.5. By safety, this threshold value is increased by +0.25. 290 

As a result, parameter m will be tested in the interval [1;2.75] and C in the interval [2;8].  291 

 292 

 293 

3. Results and discussion 294 

3.1 Principal Component Analysis 295 

PCA successfully reduced the five original variables (Wind speed toward North and East, 296 

Gust wind speed toward North and East and Rhone discharge) into three components 297 

and gave a summed variance of 96.4% (Fig1 supplementary material). This is not 298 

surprising since the gust wind speed and mean wind speed are correlated due to same 299 

direction (Fig 2 supplementary material. The first axis contains 51% of variability with 300 
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the information on wind direction. The second axis with 25 % of variability contains the 301 

information on wind speed, and the last one (20% variability) corresponds to the Rhone 302 

discharge. The “elbow criteria”, the “Kaiser rule” and the interpretation of the 303 

components confirm without ambiguity these three components (Fig 1 supplementary 304 

material). The lasting 3.6% carried by the two remaining components concern really 305 

specific and scarce interactions like the anticorrelation between mean wind speed and 306 

gust wind speed. 307 

 As a result, 80 and 20% of the variability are due to the variations of winds and liquid 308 

discharge respectively. 309 

3.2 Clustering results and performances 310 

Fuzzy-c-mean clustering was performed on the 128262 observations and the three main 311 

dimensions resulting from PCA. A summary on classification performances based on XB 312 

index is shown Fig 2. All configurations performs reasonably well except the one with 3 313 

clusters. An interesting result is that the 2 clusters configuration performed reasonably 314 

well, which confirms that the plume dynamics can be described as a first approach by 315 

considering only the wind direction that is South East against North West winds. This is 316 

in agreement with the 50% of variability held by the wind direction discussed hereunder.  317 

However, the configuration selected is the one giving the better result for XB, with 6 318 

clusters optimized at m=2.45 (XB=0.19). 319 

 320 

3.3 Characterization of the scenarios 321 

A cluster gathers observations having close values for one or more variables. These 322 

properties on variables are specific to each cluster and are then interpreted hereunder as 323 

a scenario.  324 
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In order to interpret the clustering and to characterize the resulting scenarios we 325 

present the distribution of winds and discharges in Fig 3 and 4, whereas Fig 5 shows the 326 

percentage of occurrence of these scenarios for each month. The discharge distribution in 327 

each cluster was significantly different from the global distribution of Rhone discharge in 328 

Arles based on the Kolmogorov-Smirnov test (see Fig 4).  329 

In the description below, a flood event for the Rhone River refers to a discharge above a 330 

threshold set at 3900m3/s in Arles (Boudet et al., 2017). A storm criteria is usually the 331 

significant wave height, but this parameter showed too many breaks in the time series 332 

transmitted in near real time by the buoy over the 2009-2019 period. Also, we defined 333 

sea storm here by using as a threshold the quantile 98 of our offshore gust wind speed 334 

dataset (50.3% of total dataset) which is27.8 m/s (100 km/h) (Klawa & Ulbrich, 2003). 335 

 336 

Cluster 1 gathers South-East winds (paragon 126°) with 9.2 m/s mean wind-speed and 337 

16 m/s mean gust. It contains 86% of all observed sea storm events (with the highest 338 

intensity) and 19% of the flood events. The distribution of the hourly water discharge 339 

does not characterize this cluster. Observations belonging to this cluster have less than 340 

6% occurrence in July-September, rising up to 23% in October and November. This 341 

cluster can be interpreted as moderate to high waves scenario resulting from fresh 342 

breeze to violent storm South-East marine winds.  343 

Observations in cluster 2 are winds with velocities around 4.5m/s, and 9.2 m/s gust fully 344 

coming from the South (171°). It contains 12% of all observed sea storm events. It 345 

gathers discharges values under 2500 m3/s, with a median at 960 m3/s. The observations 346 

mainly occur in August-September with 23% occurrence. This cluster can be interpreted 347 

as a Rhone River low flow scenario mainly associated with South-East marine breeze or 348 

sometimes a Sirocco wind coming from the South (Reiter, 1975). 349 



15 
 

Wind observations in cluster 3 show an important variability and are superimposed with 350 

clusters 4 and 5. Most representative winds present a mean speed of 8.5 m/s, and gust 351 

speed of 13.1 m/s. The Rhone discharge distribution for cluster 3 is very different from 352 

the reference distribution (highest Kolmogorov’s D statistic). It gathers discharges 353 

higher than 2000 m3/s and contains most of the flood events (79% of them). This is also 354 

the cluster showing the highest contrast in seasonality, with an occurrence up to 33% 355 

from November to February, decreasing to 0-2% during the July-October period. Cluster 356 

3 can be interpreted as the “high river flow” scenario with a combination of different 357 

winds coming from the North West.   358 

 359 

In cluster 4, observations are usually winds with 7.2m/s mean wind-speed and 9.1 m/s 360 

mean gust coming from the West (272°). It contains 2% of all observed sea storm events. 361 

Discharges are below 2500 m3/s with a median around 1070 m3/s. These observations 362 

mainly occur in July-August-September with 33% of occurrence. A specific point is that 363 

their occurrence increases during the afternoon with a peak around 1h AM (Fig 3 364 

supplementary material). Interpretation of this cluster is a Rhone River low flow 365 

scenario gathering moderate sea-breeze coming from the South-West (Cros et al., 2004), 366 

with sometimes a strong onshore gale from West. 367 

 368 

Cluster 5 corresponds to winds with 12.3 m/s average speed and 18.6 m/s gust coming 369 

from a restricted area in the North (325°). The corresponding water discharge 370 

distribution is on the lower part of the global distribution (median of 1140 m3/s) and 371 

discharges are always below 3000 m3/s. The monthly occurrence is stable (15%) with a 372 

peak in February at 25%. The strong average wind intensities and gust speeds (highest 373 

at 340 °) combined with the restricted wind direction parallel to the Rhone valley stand 374 
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for the characteristics of the Mistral wind (Reiter, 1975). This last author also found that 375 

the highest peak of occurrence for Mistral is in February. As a result, cluster 5 can be 376 

interpreted as a Mistral wind scenario (dry and strong breeze to strong gale) associated 377 

with low to moderate discharges. 378 

Cluster 6 usually gathers winds with 5.7 m/s average speed, and gusts of 12.5 m/s 379 

coming from the North East (11°). However, winds coming from 340-360° (North/North-380 

West) are also observed. The related hourly water discharges distribution is in the lower 381 

part of the global one (median of 1230 m3/s) and few discharges higher than 3000 m3/s 382 

are observed. Occurrence of cluster 6 observations is very stable all along the year, 383 

ranging between 14 and 18 %. This cluster presents the largest gap between the wind 384 

speed average and the gust wind speed, and shows an increasing occurrence in the early 385 

morning. The highest gusts reach 50 m/s and occur episodically in winter with an origin 386 

from 10 to 60°(North-West). These are the strongest gusts observed among all scenarios. 387 

We interpret cluster 6 as a scenario gathering land breeze or valley flow during summer 388 

and winds channeled by Pre Alps moutains (Cros et al., 2004; Duine et al., 2017)which 389 

become stronger in winter (“orsure” according Reiter, 1975)).  390 

 391 

3.4 Consequences for surface currents 392 

 393 

Six clear wind/discharge patterns have been identified, but did they correspond or induce 394 

different hydrodynamics responses of the surface currents in the vicinity of the Rhone 395 

River mouth? Consequences for subsurface currents observations issued from the ADCP 396 

on the MesuRho station are investigated through a least squares multiple regression. 397 

Observation membership to clusters Ci are the explanatory variables and currents in 398 

Eastward and Northward directions are the response variables.  399 
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Estimators Xi and Yi are then used to calculate current orientation θ (rad) and speed u 400 

(m/s) observed on each cluster with equation (1). 401 

Confidence intervals are calculated with the robust White standard errors with “lmtest” 402 

package (White, 1980; Hothorn et al., 2019) to avoid heteroscedasticity and 403 

underestimation of confidence intervals. The main current direction for each cluster 404 

obtained by least square regression on memberships is presented on figure 6 (right) 405 

along with the global current rose (left). 406 

Currents oriented at 280° correspond to scenario 1 and are in agreement with the more 407 

general modelling and satellite observations during similar south easterlies wind 408 

conditions  showing the plume tackled to the Camargue coast (Marsaleix et al., 1998; 409 

Gangloff et al., 2017). Scenario 2 presents small currents not related to the wind 410 

direction. In this case, winds are probably too low and currents are driven by the general 411 

circulation, which has a current speed similar to those of this scenario: 10 cm/s. 412 

In scenario 3 the current direction correspond to those at the Rhone River mouth, 413 

meaning that during high water events (discharges superior to 2500 m3/s) the river 414 

influence becomes significant.  415 

Scenario 4, 5 and 6 seem to follow the surface Ekman transport, with a deflection to the 416 

left relative to the wind direction. Scenario 5 is the one presenting the largest interval of 417 

confidence despite having the straightest wind distribution. A closer look at the data 418 

shows that, in this scenario, the currents deeper than 1.2 m present an important 419 

heterogeneity in their direction. However, for wind average speeds superior to 15 m/s 420 

and gust wind speeds over 25 m/s this heterogeneity does no longer exist and all currents 421 

are oriented in a 150° direction. For comparison, scenario 5 paragon is an average wind 422 

speed of 12.3 m/s and gust wind speed of 18.6 m/s, values which areinferior to the two 423 

thresholds and may explain the currents discrepancies associated with this scenario. 424 
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To conclude, each scenario has its own current direction and intensity, statistically 425 

different and significant. 426 

 427 

3.5 Application 428 

 429 

 The main objective of this work is to define the general trends of dispersal in the GoL 430 

that can be expected in the case of artificial radionuclides release within the river.  Since 431 

releases may occur at any time in a year, we modeled the dispersion of a radioactive 432 

plume in the GoL for each of the previous hydrodynamic scenario, in order to get an 433 

overview of the potential impacts, whatever the hydrodynamic and climatological 434 

conditions. 435 

The simulation code used at IRSN for the marine area is STERNE (“Simulation du 436 

Transport et du transfert d'Eléments Radioactifs dans l'environNEment marin”, or 437 

“Simulation of radionuclide transport and transfer in marine environments”). It was 438 

designed to assess the radiological impact of accidental releases affecting the marine 439 

environment. Eulerian radionuclide dispersion is calculated using a tracer advection 440 

diffusion equation. More details on the code can be found in Duffa et al. (2016).  441 

We use the 2010 hydrodynamic outputs provided by IFREMER with its MARS3D model 442 

implemented on the North-western Mediterranean Sea (Nicolle et al., 2009). The 443 

simulations assumed a release of 1 TBq of 137Cs dissolved activity in the river, over a 444 

temporal window of 48 h. 137Cs was chosen because this radionuclide is released at each 445 

nuclear accident and is also found in authorized releases from nuclear powerplants. This 446 

radionuclide presents a high radiotoxicity (Garnier-Laplace et al., 2011) and is relatively 447 

soluble in seawater with a Kd ranging from 450 to 2000 L/kg (Delaval et al., 2020). For 448 

comparison, the estimated average direct discharge of 137Cs to the ocean during the 449 

Fukushima Daiichi nuclear power plants was around 5000 TBq (Buesseler et al., 2017).  450 
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The simulations were done for each hydro-meteorological scenario defined on the basis of 451 

the 2009-2019 dataset and the plume extension in the GoL was modelled for each 452 

scenario. Since the hydrodynamic inputs are only available for the year 2010, we selected 453 

in this input the most representative temporal window for each scenario simulation by 454 

integrating observations memberships over a sliding window of 48h. The temporal 455 

window presenting the highest summed membership values were selected for each 456 

cluster.  457 

The results of the 6 simulations  are very different in terms of plume shape and thus 458 

affected areas (Fig 7). Mean winds and discharges conditions over 48 h hours are 459 

indicated in the figure. It must be noted that these values are specific to the chosen 460 

temporal windows, and thus can be different from the parangons presented in the 461 

previous chapter. 462 

In scenario 1 (strong marine wind with moderate discharge conditions), the plume is 463 

constrained to the coast and extends west in agreement with the currents at the buoy. 464 

This scenario has already been highlighted by Demarcq & Wald, (1984) and Many et al., 465 

(2018) or modelled by Estournel et al., (1997). A part of the activity remains blocked in 466 

the estuary due to winds in opposition with its flowing path and an increase in sea level 467 

at the mouth limiting the power of the jet. 468 

The lowest expansion of the plume is observed with scenario 2 (weak wind with 469 

discharge slightly under the annual mean). The plume has the lowest surface spatial 470 

expansion among the 6 plumes and is nearly stagnant and remains with a high activity. 471 

This is in agreement with the currents observed at the buoy showing really low speeds. 472 

This scenario appears mostly during summer (Fig 4), and satellite images confirmed that 473 

the turbid plume present effectively its smallest area at this period (Gangloff et al. 474 

(2017). 475 
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Scenario 3 corresponds to a high Rhone River discharge and northwest winds conditions. 476 

The plume presents a large area but the northwesterly wind is powerful enough to carry 477 

the plume offshore. For different wind stress simulations, Marsaleix et al., (1998) 478 

showed that winds around 30 km/h were sufficient to detach the plume from the coast. 479 

According to this author this threshold is independent of Rhone River discharge. 480 

In scenario 4 (strong westerly wind and low discharge conditions), the plume extends 481 

over a large area favored by the presence of a summer stratification at low discharge. A 482 

part of the plume at the latitude of the buoy can be deflected eastwards in the Gulf of 483 

Fos, in agreement with current data at the buoy. According to Fraysse et al., (2014) this 484 

plume shape is the first step toward an intrusion in the Bay of Marseille if this scenario 485 

is followed by south east winds conditions. To note, such intrusions occurred in summer 486 

(Fraysse et al, 2014) when the probability of occurrence of this scenario are the highest. 487 

In scenario 5, with a strong northwest wind (Mistral) and low discharge conditions the 488 

plume stands out from the coast as shown by Demarcq & Wald, (1984) and Gangloff et 489 

al., (2017) and modelled by Estournel et al., (1997). This case is favorable to an export of 490 

the plume far away from the coast, even at low discharge conditions and moderate 491 

Mistral (but the wind speed are however above the 30 km/h threshold proposed by 492 

Marsaleix et al., (1998)). 493 

Finally, the northeast wind and moderate discharge conditions of scenario 6 maintain 494 

the plume towards the coast, similarly to scenario 1. It is here again in agreement with 495 

the currents measured at the buoy. This is confirmed by Gangloff et al., (2017) who 496 

showed that for the most northern winds (higher than 340 °) the plume tends to be 497 

tacked to the coast .The part of the plume going East towards the gulf of Fos is quite 498 

unexpected. A closer look at the dataset shows that this temporal window of 48 h, 499 

despite being classified as scenario 6, presented 16 consecutives observations (8 hours 500 
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period)corresponding to scenario 2. This explains why the plume extends toward the gulf 501 

of Fos in a similar fashion as in scenario 2.   502 

 503 

All these simulations shown that the activity plume may be maintained along the 504 

western coast of the Rhone river outlet (Scenarios 1 and 6), its eastern side (Scenario 4) 505 

or can extend far away from the coast (Scenario 5). Plume of different extents can also 506 

remain nearly stable (Scenarios 2 and 3) until a change of hydrodynamic, conditions and 507 

thus scenario (most likely shifts from 2 to 4, 5, 6 and from 3 to 5, 6, 1). 508 

 509 

 510 

Each cluster of hydrodynamic forcings has thus its own patterns for Rhone River plume 511 

spreading in the GoL. Their hydrodynamic variables and resulting trends were 512 

presented in the previous chapters, and these results now allow to better evaluate the 513 

risk of propagation of 137Cs activity. However, it is also interesting to define thresholds 514 

values for these variables, in order to be able to select the most appropriate scenario to 515 

apply in case of alert on accidental release of radionuclides (or any kind of chemical 516 

contaminants). To summarize the differences obtained between the scenarios, a 517 

simplified decision tree has been constructed (Fig 8). From top to bottom it allows to 518 

outline practical separation criteria (Fig 8).  519 

The classification of these 6 scenarios is based on the wind (and gust) direction, wind 520 

speed and water discharge. These in situ conditions can thus be associated with a 521 

scenario in near real-time, as they are available at this time scale from the websites of 522 

Coriolis Cotier (wind) and Vigicrues (river flow). The tree reproduces the classification 523 

using 80% of the hydrodynamic raw data (without PCA treatment) as training, and 20% 524 

as a validation set. It allows a fast crisp classification into one of the 6 established 525 

scenario with 83% of accuracy on both trained and tested data. As an example, in case of 526 
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wind direction of 270° and a river discharge of 2500 m3/s, the shape of the plume will 527 

correspond to scenario 3. Currents directions at the buoy (Coriolis Cotier) can also be 528 

used as an additional verification. 529 

Conclusion 530 

 531 

In this paper, a 10-year period was considered in order to identify the main combinations 532 

of hydrodynamic forcings (wind and Rhone River discharge) using a fuzzy c-mean 533 

clustering. These combinations, called scenario summarized mean shelf behavior 534 

providing a very important information to estimate and understand the Rhone plume 535 

patterns in case of accidental release. In addition, existence of observations memberships 536 

allowed to spot the best temporal windows to run simulations covering all possible 537 

patterns. 538 

6 scenarios have been identified and simulations showed that the plume behavior was 539 

different for each of them. These plume patterns are more or less critical in terms of 540 

radiologic risks regarding the areas affected and the dilution of the activity.  If 541 

necessary, wind speed measured on one point are sufficient to extrapolate plume shape 542 

for 48 hours on this zone, and the surface currents measured at the Roustan buoy will 543 

give a first idea of plume orientation. This study provided a first global picture of main 544 

Rhone River plume patterns and consequences for radionuclides accidental releases, but 545 

the methodology may be applied to other estuaries. 546 

 547 
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  770 

Fig 1 : Map of the GoL (Mediterranean sea) and Rhone River estuary indicating the 771 

locations of discharge and weather stations used in the fuzzy-clustering algorithm. 772 

Scheme of MesuRho buoy devices Weather station + PAR (1), solar panels and 773 

control and transmission automat ABIN (2), Multiparameters sonds (3 and 6) 774 

nitrates captor ISUS (4), benthic station  (5), ADCP (7). 775 

 776 

 777 

FIG 2 : XIE AND BENI INDEX VALUES FOR DIFFERENT {C,M} SIMULATIONS WITH FUZZY C-778 

MEAN ALGORITHM. A LOWER INDEX INDICATES A BETTER CLASSIFICATION. 779 
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 780 
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 782 

 783 

 784 

 785 

 786 

 787 

Fig 3: Grey dots: mean wind origin and speed (m/s) over 30 min from 2009 to 788 

2019 measured at the Mesurho buoy, in front of the Rhone river. Color dots: 789 

cluster mean wind  and speed sub-distributions. 790 
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 796 

Fig 4 : Rhône river hourly discharge (SORA, Arles) from 2009 to 2019 distribution 797 

(grey) and cluster Rhône discharge sub-distributions. Results from two-sample 798 

Kolmogorov-Smirnov test are shown. D statistic indicates how the distribution in 799 

each cluster is different from the reference distribution (all Rhône discharge 800 

values) Higher values of D indicates larger differences. 801 
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 811 

Fig 5: Monthly occurrence of the 6 different scenarios over the 2009-2019 period. 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 



36 
 

 828 

 829 

Fig 6: Surface currents (depth<1.5m) direction and module measured at the 830 

Mesurho (a) buoy and main direction (thick black dashes) and current speed for 831 

each scenario (b) obtained by least square regression. Confidence intervals are for 832 

α=0.05 833 
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Scenario 5: “Mistral” scenario 

Mean wind speed : 46 km/h 

Mean Rhone discharge 1170 m3/s 

 

Scenario 6: “Orsure” scenario 

Mean wind speed : 17 km/h 

Mean Rhone discharge 2016 m3/s 

 

Scenario 4: West wind low water 

Mean wind speed : 40 km/h 

Mean Rhone discharge 1125 m3/s 

 

Scenario 3: NW wind high river water 

Mean wind speed : 33 km/h 

Mean Rhone discharge 2480 m3/s 

 

Scenario 1: Marine wind 

Mean wind speed : 44 km/h 

Mean Rhone discharge 2000 m3/s 

 

Scenario 2: “Scirocco” low water 

Mean wind speed : 9.6 km/h 

Mean Rhone discharge 1548 m3/s 
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 853 

 854 

Fig 7 : Radioactive surface plume shape in the GoL under the most representatives 855 

temporal windows of the 6 scenarios for a released activity of 1TBq of  137Cs in 48 856 

hours. Wind orientation is shown by the yellow arrows. 857 
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 874 

Fig 8 : Simplified decision tree for scenario identification 875 
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