Homotopy Hubbard trees for post-singularly finite exponential maps - Archive ouverte HAL
Article Dans Une Revue Ergodic Theory and Dynamical Systems Année : 2022

Homotopy Hubbard trees for post-singularly finite exponential maps

David Pfrang
  • Fonction : Auteur
Michael Rothgang
  • Fonction : Auteur
Dierk Schleicher
  • Fonction : Auteur
  • PersonId : 1129677

Résumé

Abstract We extend the concept of a Hubbard tree, well established and useful in the theory of polynomial dynamics, to the dynamics of transcendental entire functions. We show that Hubbard trees in the strict traditional sense, as invariant compact trees embedded in $\mathbb {C}$ , do not exist even for post-singularly finite exponential maps; the difficulty lies in the existence of asymptotic values. We therefore introduce the concept of a homotopy Hubbard tree that takes care of these difficulties. Specifically for the family of exponential maps, we show that every post-singularly finite map has a homotopy Hubbard tree that is unique up to homotopy, and that post-singularly finite exponential maps can be classified in terms of homotopy Hubbard trees, using a transcendental analogue of Thurston’s topological characterization theorem of rational maps.

Dates et versions

hal-03600798 , version 1 (07-03-2022)

Identifiants

Citer

David Pfrang, Michael Rothgang, Dierk Schleicher. Homotopy Hubbard trees for post-singularly finite exponential maps. Ergodic Theory and Dynamical Systems, In press, pp.1-46. ⟨10.1017/etds.2021.103⟩. ⟨hal-03600798⟩
63 Consultations
0 Téléchargements

Altmetric

Partager

More