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Multimodal merging encompasses the ability to localize stimuli based on imprecise information sampled through individual senses such as sight and hearing. Merging decisions are standardly described using Bayesian models that fit behaviors over many trials, encapsulated in a probability distribution. We introduce a novel computational model based on Dynamic Neural Fields able to simulate decision dynamics and generate localization decisions, trial by trial, adapting to varying degrees of discrepancy between audio and visual stimulations. Neural fields are commonly used to model neural processes at a mesoscopic scale, for instance neurophysiological activity in the superior colliculus. Our model is fit to human psychophysical data of the ventriloquist effect, additionally testing the influence of retinotopic projection onto the superior colliculus, and also providing a quantitative performance comparison to the Bayesian reference model. While models performs equally on average, a qualitative analysis of free parameters in our model allows insights into the dynamics of the decision and the individual variations in perception caused by noise. We finally show that the increase in the number of free parameters does not result in overfitting, and that the parameter space may either be reduced to fit specific criteria or exploited to perform well on more demanding tasks in the future. Indeed, beyond decision or localization tasks, our model opens the door to the simulation of behavioral dynamics as well as saccade generation driven by multimodal stimulation.

Introduction

Humans have versatile and diverse ways of perceiving the world around them. Senses provide a dense and continuous flow of data, yet our ability to process information is limited, so we need to select a subset of all available data in order to engage in adequate interactions with the environment. Performing relevant selection involves processes pertaining to (selective) attention.

Focusing on visual attention, human vision is constrained by the heterogeneous disposition of sensors on the retina, with a denser distribution near the center of the visual field (called fovea). As a consequence, humans will tend to gaze at objects of interest, in order to see them better. One outcome of this kind of overt attention is that it may trigger visual saccades towards objects located in the periphery of the retinotopic space. Because of its weaker resolution, saccades are less precise and more likely to be disturbed by artifacts.

That issue can be circumvented with the use of additional information from other modalities [START_REF] Calvert | The Handbook of Multisensory Processes[END_REF]. For example, a sound congruent to a visual stimulus may guide saccades to this particular target [START_REF] Frens | Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements[END_REF][START_REF] Kapoula | Differential impact of sound on saccades vergence and combine eye movements: A multiple case study[END_REF]. Generally speaking, it is common to merge sensory data coming from multiple modalities. They might enhance each other [START_REF] Meredith | Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration[END_REF], complement one another [START_REF] Newell | Viewpoint dependence in visual and haptic object recognition[END_REF], or even compete together to form an interpolation of different sensory inputs [START_REF] Mcgurk | Hearing lips and seeing voices[END_REF][START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF]). These mechanisms depend on the relative reliability of the modalities, with factors including stimulus noisiness [START_REF] Ernst | Humans integrate visual and haptic information in a statistically optimal fashion[END_REF], sensor precision (Witten and Knudsen, 2005), and possible top-down interference (such as selective attention; [START_REF] Driver | Crossmodal spatial attention: Evidence from human performance[END_REF]. Studies on this topic vary from macroscopic (at a behavioral level) to microscopic (neurological) scale, but it is common for such insights to be shared across these two domains [START_REF] Calvert | The Handbook of Multisensory Processes[END_REF][START_REF] Alais | Multisensory processing in review: from physiology to behaviour[END_REF].

Our aim is to build a computational model of multisensory integration that can be embedded in attention processes. We will focus on audiovisual merging especially.

Biological inspiration

One source of inspiration for our computational model is the superior colliculus (SC). It has been reported to integrate cues from multiple modalities, including visual, auditory and somatosensory (Wallace and Stein, 1996;[START_REF] Calvert | The Handbook of Multisensory Processes[END_REF], which makes it a relevant neural structure to be used as a reference for our model. It is also involved in the generation of motor commands such as saccades [START_REF] Gandhi | Motor functions of the superior colliculus[END_REF].

However, please note that our purpose is not to build a biologically-accurate simulation of the SC, but rather get inspiration from the brain workflow, for which mesoscopic scale models of multisensory integration are available. Such scale should allow us to remain neurally plausible, as we later turn our attention to macroscopic observations and directly model behavioral data.

In previous works, the SC has already been used as a target of computational models of visual [START_REF] Taouali | A parsimonious computational model of visual target position encoding in the superior colliculus[END_REF] and multimodal [START_REF] Casey | Audio-visual localization with hierarchical topographic maps: Modeling the superior colliculus[END_REF][START_REF] Bauer | Attention modeled as information in learning multisensory integration[END_REF] perception. A common representation of a visual map in the SC is given by [START_REF] Ottes | Visuomotor fields of the superior colliculus: A quantitative model[END_REF], where the retinotopic space is mapped to the collicular space using a logpolar transformation. That transformation has been suggested to lie at the core of complex mechanisms of visual attention [START_REF] Taouali | A parsimonious computational model of visual target position encoding in the superior colliculus[END_REF], including saccades [START_REF] Manfredi | Neurophysiological models of gaze control in humanoid robotics[END_REF].

Computational model

Computational neural models of the SC exist in various forms, both for multisensory integration (Bauer, 2015, chapter 3) and for saccade generation [START_REF] Girard | From brainstem to cortex: Computational models of saccade generation circuitry[END_REF]. One frequently used theoretical paradigm that encompasses both aspects, and that has been predominant when it comes to visual processing in the SC, is that of dynamic neural fields (DNF) [START_REF] Marino | Spatial interactions in the superior colliculus predict saccade behavior in a neural field model[END_REF][START_REF] Taouali | A parsimonious computational model of visual target position encoding in the superior colliculus[END_REF][START_REF] Quinton | A unified dynamic neural field model of goal directed eye movements[END_REF]. It originated as a mathematical model of neural dynamics [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF], and has been used to model neural activity in sensorimotor maps at a mesoscopic scale [START_REF] Schöner | Dynamic Thinking: A Primer on Dynamic Field Theory[END_REF]. DNF describe the evolution of mean field potential over a continuous domain (usually simply called a map), for instance the average membrane potential of neurons in the intermediate layers of the SC (Trappenberg et al., 2001;Wilimzig et al., 2006). While interactions at the microscopic scale may be of interest for many neural processes, focusing on neural fields at a mesoscopic scale helps to bridge the gap with behavioral data. This is not only useful to better understand adaptive functions found in living systems [START_REF] Schöner | Dynamic Thinking: A Primer on Dynamic Field Theory[END_REF], but also makes it possible to build artificial systems able to reproduce them (including decision-making and attentional capabilities based on noisy sensor data) and to implement them on robots (with topologies of sensors that differ from humans). Depending on their parametrization, DNF may for instance achieve selection or interpolation between several conflicting signals [START_REF] Taouali | A parsimonious computational model of visual target position encoding in the superior colliculus[END_REF], robust selective attention in presence of noise and distractors [START_REF] Fix | A dynamic neural field approach to the covert and overt deployment of spatial attention[END_REF], working or long term memory of stimuli [START_REF] Sandamirskaya | Dynamic neural fields as a step toward cognitive neuromorphic architectures[END_REF].

DNF have long been used as models of visual attention [START_REF] Fix | A dynamic neural field approach to the covert and overt deployment of spatial attention[END_REF] and (visuo)motor control (Wilimzig et al., 2006;[START_REF] Sandamirskaya | Dynamic neural fields as a step toward cognitive neuromorphic architectures[END_REF][START_REF] Quinton | A unified dynamic neural field model of goal directed eye movements[END_REF]. However, the literature is scarcer when it comes to using DNF for multimodal fusion [START_REF] Schauer | Design and optimization of Amari neural fields for early auditory-visual integration[END_REF][START_REF] Ménard | Model of multi-modal cortical processing: Coherent learning in self-organizing modules[END_REF][START_REF] Lefort | SOMMA: Cortically inspired paradigms for multimodal processing[END_REF]. [START_REF] Schauer | Design and optimization of Amari neural fields for early auditory-visual integration[END_REF] have shown promising results with a bio-inspired DNF-based model of audiovisual integration. With very little preprocessing, they achieved a sig-nificant response enhancement when exposed to congruent visual and auditory signals, although they did not draw connections to known psychophysical phenomena.

Psychophysical reference

In this paper, we will show that applications of DNF go as far as to account for well known psychophysical effects of multisensory integration. As an illustration of such possibilities, we will use the ventriloquist effect [START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF]), which is an example of audiovisual merging. From a human participant viewpoint exposed to spatially incongruent visual and audio stimuli, the position of a stimulus is shifted towards the other, depending on which modality has the highest relative precision. The effect takes its name from ventriloquist shows, where spectators have the illusion that a puppet is speaking, while the sound is actually produced by the ventriloquist holding it.

We will draw on psychophysical data reported in [START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF], because their experimental paradigm and protocol can easily be replicated in silico, they provide extensive results in all conditions, and their paper is a seminal contribution to the field, with results that have not yet been challenged. One might notice that in their experiment, only the visual precision varied. However, by manipulating the relative precision between the two modalities, they showed the multiple sides of the ventriloquist effect (either vision capturing audition, the reverse, or an interpolation between both). We want our computational model to exhibit the diversity of behaviors linked to multimodal fusion, so this experiment constitutes an interesting showcase.

In addition to empirical data, we will also compare the performance of our model to optimal Bayesian integration, usually considered as the golden standard among formal and computational models of multisensory integration [START_REF] Ernst | Merging the senses into a robust percept[END_REF][START_REF] Rohde | Statistically optimal multisensory cue integration: A practical tutorial[END_REF]. However, note that we do not strive for a perfect quantitative fit of our model to the data. Indeed, even though optimization and sensitivity analysis will be combined to assess the ability of our model to robustly converge with behavioral data, our model enables a broad set of perspectives by building on past DNF models, of which the ventriloquist effect is only one illustration.

The remainder of this article is structured as follows. In section 2, we describe our computational model and its evaluation criteria in the context of the ventriloquist effect.

We present the results in section 3, and discuss further on the capabilities of our model in section 4.

Method

General model

From a neurophysiological standpoint, the (deep) SC has been reported to receive projections from different modalities on a series of multimodal neural maps [START_REF] King | The superior colliculus[END_REF].

In this section, we first described how these maps are modeled, before turning to the projections they receive. An overview of our general model is given in figure 1.

Dynamic neural fields

Our model of a SC map activity is based on dynamic field theory [START_REF] Schöner | Dynamic Thinking: A Primer on Dynamic Field Theory[END_REF]. and time t is described by the following stochastic integro-differential equation:

DNF

τ ∂U ∂t (x, t) = -U (x, t) + I(x, t) + x ∈X W ( x -x ) f (U (x , t)) dx + ε (1)
where τ is the time constant which determines the response timescale of the entire field, I is the input stimulation over the field and f is a non-linear activation function;

as often chosen to simplify numerical simulations, we will use a ReLU function to approximate the mean firing rate of neurons [START_REF] Quinton | A unified dynamic neural field model of goal directed eye movements[END_REF]. The last term ε represents noise which, like the entire dynamic neural fields, can be interpreted at either a neurological (a sum of numerous variations of activity induced by external neurons) or psychophysical level (e.g. perceptual noise) (Schöner et al., 2015, box 1.4, p. 36). Due to the variations being summed over a large population of neurons, white noise is often used, and ε is therefore sampled from a normal distribution N (0, σ N ).

Finally, the kernel approximating lateral interactions within the continuous population of neurons is defined by:

W (∆x) = λ + exp - ∆x 2 2σ 2 + -λ -exp - ∆x 2 2σ 2 - ( 2 
)
with λ + > λ -and σ + < σ -, thus giving rise to local excitation and more diffuse inhibition. In the case of visual attention models, with such constraints on parameters, and spatially coherent input stimulation reflecting the presence of localized objects within the visual field, the numerical simulation of the DNF equation will converge to a stereotypical peak of activity, filtering out noise [START_REF] Fix | A dynamic neural field approach to the covert and overt deployment of spatial attention[END_REF][START_REF] Quinton | Exploring and optimizing dynamic neural fields parameters using genetic algorithms[END_REF]. In the case of overt attention, it is then possible to directly project the DNF activity to control eye movements [START_REF] Quinton | A unified dynamic neural field model of goal directed eye movements[END_REF], in agreement with visual fixations being correlated with a balance of activity in the SC [START_REF] Gandhi | Motor functions of the superior colliculus[END_REF]. In our numerical simulations, we will simply estimate the stimulus position within the field as the barycenter of the field output f (U ) [START_REF] Rougier | Dynamic neural field with local inhibition[END_REF].

The time course of field activity before convergence will not be the focus of this article, since we are mostly interested in the location of peaks after stabilization. Readers interested in activity evolution over time will find extensive insights in [START_REF] Schöner | Dynamic Thinking: A Primer on Dynamic Field Theory[END_REF] and an illustration of SC dynamics simulation in [START_REF] Taouali | A parsimonious computational model of visual target position encoding in the superior colliculus[END_REF], figure 5).

Projections to the neural field

Empirical evidence supports that signals emanating from a common location in the environment, even through different modalities, will project to nearby locations in the SC (Wallace and Stein, 1996). At the same time, the structure of the SC can be linked back to retinotopic space [START_REF] Ottes | Visuomotor fields of the superior colliculus: A quantitative model[END_REF]. Given these neurophysiological findings, we decompose the input I defined at each point of the DNF as the sum of a visual input I V and an auditory input I A . Although summing projections from different modalities introduces a strong assumption into the model, it is frequent in the literature [START_REF] Sandamirskaya | Dynamic neural fields as a step toward cognitive neuromorphic architectures[END_REF][START_REF] Schöner | Dynamic Thinking: A Primer on Dynamic Field Theory[END_REF].

The projection of visual stimuli from the retina to the SC has been modeled mathematically in the form of a logpolar transformation [START_REF] Ottes | Visuomotor fields of the superior colliculus: A quantitative model[END_REF]. Formally, a visual signal at a position (u, v) in the retinotopic space will be mapped to the SC at a position x = (x, y) given by:

         x = B x log (u + A) 2 + v 2 A y = B y arctan v u + A (3)
A, B x and B y are constant parameters that originate from the literature [START_REF] Ottes | Visuomotor fields of the superior colliculus: A quantitative model[END_REF]. Their values are given in table 1.

As for the auditory inputs and to our knowledge, there is no mathematical formulation of their projection onto the SC. To avoid introducing additional model parameters or uninformed constraints, we thus simply aligned the audio stimuli to their spatially congruent visual counterparts, since we do not aim at modeling the learning of sensory maps in the current research work. As projections to the SC through complex neural pathways are usually quite distant from raw sensory stimulation, we generate population coded auditory inputs as gaussian blobs of amplitude λ A and width (standard deviation) σ A . While the gaussian blob associated to the auditory stimulation is directly projected without distortion to the SC neural map, a similar gaussian blob is generated for the visual stimulation yet transformed through equation ( 3) during its projection on the SC. Amplitude and width of the audio stimuli are added to the list of free parameters of the model, while visual amplitude is fixed (since redundant with λ A ) and visual width is driven by the experimental setup.

Application to the ventriloquist effect

Even with constraints imposed on projections to the DNF, the model of the SC presented in the previous section and recapped in figure 1 is designed to accomplish a variety of tasks related to audio-visual perception, attention or memory, building upon existing works on neural fields [START_REF] Schauer | Design and optimization of Amari neural fields for early auditory-visual integration[END_REF][START_REF] Sandamirskaya | Dynamic neural fields as a step toward cognitive neuromorphic architectures[END_REF][START_REF] Taouali | A parsimonious computational model of visual target position encoding in the superior colliculus[END_REF]. In order to validate its capabilities for multimodal fusion, we here apply and test this generic model using an experimental paradigm associated with the ventriloquist effect, this effect being largely documented, and human data available. We use the seminal work by [START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF], using human performance as ground truth for the evaluation of audio-visual fusion in our model. In their article, they reported detailed psychophysical results aggregated over hundreds of trials per condition and participant, with psychometric functions estimated in both unimodal and bimodal blocks of trials.

For the latter, they relied on a fully crossed experimental design, manipulating various fusion-relevant parameters of the stimuli. Among other things, this makes their study particularly fit to replication using their data as a ground truth for computer simulations.

Experimental data

For each bimodal trial, participants were exposed to a sequence of two presentations of audio-visual stimuli (conflicting and non-conflicting, in random order), and had to report which of them was perceived more leftward. In the non-conflict presentation, auditory information (1.5 ms sound click with position determined by the interaural time difference) and visual information (15 ms low-contrast Gaussian blob of controlled width, with standard deviation σ V ∈ {2 • , 16 • , 32 • }) were perfectly aligned with each other, but their eccentricity relative to the center of the participant's field of view was manipulated (from -20°to +20°, as depicted on the horizontal axis of figure 1 of [START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF]). In the conflict presentation, stimuli were still aligned on the azimuthal axis, but an horizontal spatial discrepancy was introduced between the two, with the visual stimulus moving of ∆ ∈ {-5 • , -2.5 • , 0 • , 2.5 • , 5 • } (from left to right) and the auditory stimulus moving of -∆ (horizontal positions in figure 2).

As a consequence, we aim at replicating the psychometric curves (proportion of conflict stimuli perceived rightward as a function of eccentricity of the non-conflict stimuli) obtained in the 15 scenarios of the original study (3 visual precisions × 5 spatial distances). These psychometric curves were approximated by cumulative Gaussian functions (sigmoids with near-logistic shape; [START_REF] Bowling | A logistic approximation to the cumulative normal distribution[END_REF], thus reducing them to two parameters: median (also named point of subjective equality, equal to the mean for a Gaussian distribution) and standard deviation (accuracy). The Gaussian distributions associated to the unimodal and bimodal psychometric functions from [START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF] are reproduced on figure 2.

As a synthesis of their results, a thin visual stimulis (σ V = 2°) captures the location of the merged signal given its high accuracy. When it is very wide (32°), the auditory stimulus does. In-between (16°), the merging is located between both. In addition, the higher the precision of the inputs (e.g. 2°visual stimulus), the lower the standard deviation of the human localization distribution after fusion, reflecting that auditory and visual information were taken into account in a statistically optimal manner [START_REF] Rohde | Statistically optimal multisensory cue integration: A practical tutorial[END_REF].

Model constraints and simulation

For this specific operationalization of the ventriloquist effect, all presentations happen on a single azimuthal axis: y = 0. While the version of our DNF model presented in section 2.1.1 could be used as a suitable model of two-dimensional maps in the SC, it introduces parameters that are not directly supported by empirical data from the selected study, and would simply make optimization and interpretation more complex.

Committing to the principle of parcimony, we have therefore chosen to restrict our model to a unidimensional projection of the SC, reducing the computational cost of the simulations.

Whereas asking which stimuli were perceived as more leftward made sense experimentally to reduce task difficulty and prevent biases in responses, numerical simulations allow to directly estimate localization probability density functions. Yet given the noise and non-linearities from equation (1), we rely on the Monte Carlo method to sample the localization distribution under each condition through repeated simulation, and estimate summary statistics (mean and standard deviation of the empirical Gaussian distribution) for the conflict presentation alone. This means that the (static) inputs used in our model always consist of a bimodal signal, having a median location set at the fovea, and made of two unimodal components located opposite from each other. The non-conflict presentation is no longer necessary in this numerical setting. Since there is no generic analytical solution to this class of stochastic integro-differential equations, we rely on numerical resolution, which makes simulations computationally intensive and parameter estimation complex.

To correctly model the spatial distribution of stimuli used in the ventriloquist experiment, the simulated neural field covers angles from -20°to 20°in retinal space (which, after the transformation of equation ( 3), corresponds to ±2.85 mm in SC) with a spatial resolution of 100 points (∆x = 0.057 mm). Similarly, to ensure a correct approximation of the temporal dynamics of the multimodal fusion and guarantee convergence to a stable localization, we solve equation (1) using the Euler scheme with a temporal resolution of 100 iterations per second (∆t = 0.01 s). All simulation constants are recapitulated in table 1. Algorithmically, the mean field potential (vector U ) is initialized to zero and updated by applying the following equation:

∀k ∈ K, U (k∆x, t + ∆t) = U (k∆x, t) + ∆t τ -U (k∆x, t) + I(k∆x, t) + k ∈K W |k∆x -k ∆x| f U (k ∆x, t) + ε (4) 
where K = {-50, -49, . . . , 50} = { -2.85 ∆x , -2.85+∆x ∆x , . . . , +2.85 ∆x } and I can be decomposed according to section 2.1.2: Given that we model a forced decision task (i.e. where human participants were asked to always answer even if they needed to guess), adequate parameters should always lead to the (quick) emergence of a stable activity pattern in presence of stimuli, usually under the form of a stereotyped peak of activity on the neural field. An example of this output is given in figure 3, using artificial inputs and zero noise for the demonstration. We can see that, given two similar but conflicting stimuli, the DNF will in any case generate a prototypical peak of activity (an attractor in the dynamical system modelled by the set of differential equations), from which the barycenter can be used as the bimodal stimulus localization estimate, as developed at the end of section 2.1.1. The ensuing decision will either correspond to an interpolation between unimodal signals,

I(k∆x, t) = I V (k∆x, t) + I A (k∆x, t) (5) 
or to the selection of the strongest one (barring random fluctuations not shown here).

The choice between these two behaviors will depend on both the distance between the stimuli (as in this figure) and their relative precision (illustrated in the result section, with much lower stimuli precision). 

Evaluation

While our task is not limited to a quantitative fit to empirical data, we will use the differences between model outputs and psychophysical results as a performance metric, which allows an indirect comparison of numerical models using human behavior as ground truth. As all (human and simulated) localization distributions roughly follow a Gaussian profile, performance will be computed based on estimated means and standard deviations on all scenarios from figure 2.

Compared models

The seminal experimental results on which we rely were already accompanied by a mathematical model [START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF]. It is based on Bayesian modeling using maximum a posteriori estimates on localization distributions, which remains the dominant paradigm for multisensory integration [START_REF] Rohde | Statistically optimal multisensory cue integration: A practical tutorial[END_REF] to which we will compare. It explicitely relies on the hypothesis that the psychometric functions of visual and auditory stimuli are Gaussian cumulative distribution functions. The mean estimate and derived variance for their Bayes optimal combination are given by:

ŜAV = 1/σ 2 V 1/σ 2 V + 1/σ 2 A ŜV + 1/σ 2 A 1/σ 2 V + 1/σ 2 A ŜA (6) σ 2 AV = σ 2 V σ 2 A σ 2 V + σ 2 A ( 7 
)
where ŜV and ŜA are the mean estimates of the visual and auditory signals positions respectively (assumed to coincide with the actual position of the sources), and σ 2 V and σ 2 A their variances (derived from the unimodal psychometric functions, as described in [START_REF] Rohde | Statistically optimal multisensory cue integration: A practical tutorial[END_REF]. The Bayesian model differs by design from ours, insofar that it uses the unimodal performance to predict the bimodal behavior, whereas we fit our model directly on the bimodal scenarios, without prior knowledge of the unimodal variances.

In 

Model parametrization

Following previous definitions and constraints, our model has eight free parameters (see table 2): six from the DNF equation, and two from our modeling of auditory inputs in the SC as a Gaussian blob. This is true for both versions (DNF+log and DNF+id), since the logpolar transformation parameters are constant and derived from the literature. The behavior of a DNF depends mostly on the shape of its interaction kernel W . Therefore, fusion performance can mainly be correlated to the four parameters λ + , λ -, σ + and σ -. The dynamic and nonlinear nature of the DNF equation can make the dependencies very hard to comprehend, with strong interactions between parameters, especially when related to the kernel. Since we will also measure the variance of the model localization output, σ N , which controls the amount of noise in the equation, will also play an important role; as well as τ , which controls the integration rate, and thus the weight of the noise compared to stimuli. Finally, while λ A and σ A do not intervene in the inner dynamics of the DNF, they can also be tweaked as part of the audio preprocessing of the model. They do have some interaction with the other parameters, as the shape of the interaction kernel determines which shape of input signals will be favored.

To ensure a fair comparison of models, free parameters had to be adjusted to the multimodal merging task. Within the high-dimensional parameter space, meta-heuristics that were already applied to the optimization of DNF parameters (such as [START_REF] Quinton | Exploring and optimizing dynamic neural fields parameters using genetic algorithms[END_REF] did not prove to be robust enough in the case of our multimodal fusion scenarios and evaluation procedure. Indeed, we could not easily combine into a single optimization criteria our two metrics: mean multimodal localization and localization variance. Trying to tackle this multicriteria optimization problem on stochastic integro-differential equations also did not lead to acceptable Pareto-optimal sets of solutions.

Therefore, after a review of articles in the DNF literature, and extended preliminary simulations, we extracted for each parameter an interval in which suitable behavior was possible, and simply relied on an iterative and partial grid-search approach. Similarly to [START_REF] Jenkins | Learning words in space and time: Contrasting models of the suspicious coincidence effect[END_REF], we started by picking some expertise-driven parameter values, then analyzed model performance as a function of one or two parameters at a time.

Keeping the best values found, we iterated over sets of parameters until convergence.

In a way similar to a simplex algorithm, we obtained the parameter values in column "Selected" of table 2. We have found that a change in σ A was sufficient at first sight to compensate most of the distortion of visual inputs by the logpolar transformation.

Consequently, it is possible to switch between DNF+log and DNF+id and obtain results of the same order of magnitude, by tweaking σ A and leaving other parameters intact.

Results

Relying on the (locally) optimal parameters from table 2, this section first shows qualitative and illustrative behaviors of the DNF, before comparing performance between the different models described in section 2.3.1 (Bayesian, DNF+id, DNF+log), and then turning to a sensitivity analysis of the DNF model performance, studying the impact of pairs of parameters when keeping the others fixed. The objectives are to show that good performance from either DNF model versions cannot be attributed to overparametrization (and thus overfit to the experimental data), and to study the effect of parameters on the DNF behavior. 

Evolution of field potential

As a way to showcase the behaviors of our models, we start by observing their dynamics in realistic experimental conditions, complementing the illustration of qualitative differences in DNF outputs based on stimuli distance in section 2.2.2. For this subsec-tion, we will make tests using the DNF+id model, as its output can be directly read and easily interpreted in the topological space of the source stimuli. We use the parameters from the "Selected" column of table 2. The inputs in the second experimental scenario (∆ = -5°, σ V = 16°) and related model activity are given in figure 4. 

Model evaluation

Given the aforementioned models, we simulated the experimental scenarios to compare with the psychophysical data. The results are summarized on figure 5. As a reminder, we observe two metrics: the mean localization of a bimodal presentation (center of the intervals on figure 5) and its standard deviation (half-amplitude of the intervals). To mitigate the influence of extreme observations due to the stochasticity of the model, and thus provide accurate estimates, results presented in this section have been aggregated

over 2500 runs instead of 50.

The quality of fit varies between scenarios. For example, DNF-based models achieve better fits in scenarios 6, 14 and 15, while the Bayesian model fares better in scenarios 3, 11 and 13. The distances between model and experimental outputs are summarized 

Parameter exploration

Our model already shows quantitative results comparable to the most standard modeling paradigm, but there are other useful properties that can be displayed. In this section, we will verify that performance is indeed consequent to our design choices, and not of overfitting. We will also show that there is still room for finetuning if one were to target some more specific criteria (such as a maximal fit of localization variance).

In order to emphasize parameter interactions in the most readable way, we have chosen to display the effects of two parameters at a time. In figures 6 to 8, six parameters keep the selected values mentioned in section 2.3.2, and two vary on a regular grid within the bounds given by table 2. We will only consider the DNF+log model from now on, our original and most complete version (even though similar analyses could be obtained with DNF+id).

We have found that depending on parameters, model behavior could fall into one of the following four categories. Only the first one is relevant to our simulation, the others will be masked in following figures.

1. For all scenarios, one single peak of activity emerges and stabilizes (often called a "bubble" in DNF literature). The rest of the field is inhibited thanks to lateral inhibition.

2. One bubble emerges but does not stabilize. The maximum potential increases indefinitely because of self-excitation. This is clearly implausible on a neural level.

3. No bubble emerges by lack of interaction, i.e. the term factored by W in equation (4) is negligible compared to the others. So the potential U will converge to an approximation of I. Two peaks will be observable when the stimuli are spatially discrepant, but they do not correspond to a bubble enhanced by self-excitation. The outcome is that the decision-making role of DNF goes missing, which falls far away from our objectives.

4. In scenarios where stimuli are far apart, two distinct bubbles emerge. This happens when there is not enough long-range inhibition for one bubble to take over the other. Psychophysically, that would account for an observer explicitely noticing that there are two distinct stimuli. [START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF] do not report this happening in their experiments.

Pairwise variations

Our first step is to make all 8 parameters of our model vary by pairs. The results are compiled in two triangular matrices (one for each error measure) in figure 6 (means bottom left, SD top right), of which each element contains a 2D regular grid. The bounds of each parameter are listed in table 2.

First, we can see that τ and σ N have a strong effect on the localization standard deviation, and a slight effect on the mean localization. In general, increasing σ N or decreasing τ would give moderately less reliable localization means, but more plausible standard deviations. This is coherent with our simulation paradigm: increasing σ N means adding more noise, and decreasing τ means a quicker integration of new information through time, both increasing the weight of the noise relatively to the stable audio and visual stimuli. We can also see that the mean localization is not completely smooth, and even less so for higher σ N or lower τ . As a reminder, our results are by default aggregated over 50 runs for each parameter combination, for the purposes of smoothing the graphics. Fluctuations caused by extreme values are still expected, so it The bottom left triangular matrix is based on errors in mean localization of bimodal presentations, the top right one on their standard deviations. For each entry, the parameter labeled in row increases from bottom to top, and the parameter labeled in column increases from left to right. The blank areas filled with geometrical shapes designate parameter sets that fall out of scope of our simulation plan (cf. section 3.3). Dotted: no convergence, or overflowing activity (case 2). Hatched: more than one peak (cases 3 and 4). Crossed: no interaction (case 3). is consistent that they become more apparent when the amount of noise in the system is increased.

There is some predictible interaction between λ A and σ A . The graphs outline a parabola-shaped ridge, along which these parameters can evolve with little impact on the results. It is worth noting that an increase of σ A can be compensated by an increase of λ A . That is a characteristic of the DNF. The model is designed to select in priority stimuli whose profile match the positive part of the interaction kernel, which is very thin in the case of the selected parameters (σ + = 0.85°, or 0.12 mm after rescaling).

When σ A augments, the auditory stimulus strays further away from the thin template, and loses weight in the DNF integration. This loss of importance can be artificially compensated by an increase of λ A .

Interaction kernel parameters λ + , λ -, σ + and σ -have clear bounds. In a DNF, when a peak forms due to self-excitation, a minimum amount of inhibition is necessary for the system to stabilize. Too much excitation or too little inhibition will cause the peak to increase in amplitude indefinitely, which does not fit plausibly to any neural mechanism. On the contrary, too little excitation and no peak will form, no interaction will happen and the model will simply replicate its inputs as outputs. This is out-ofscope because it is impossible to generate a saccade or focus for fine-grained processing two stimuli that lie in different locations of the visual field. It is worth noting that λ + has an impact on the thresholds for λ -and σ + , and vice versa. That means that any of these parameters can be tweaked largely, as long as some ratios of excitation or inhibition are maintained. Interestingly enough, σ -is less affected by the other three. The main use of this parameter is to ensure the presence of long-range inhibition, so it primarily needs to be sufficiently high. That is consistent with alternative implementations of DNF in the literature, where local inhibition in W is replaced by a constant global inhibition parameter, in situations where only one stimulus should be selected in the entire field [START_REF] Schöner | Dynamic Thinking: A Primer on Dynamic Field Theory[END_REF][START_REF] Taouali | A parsimonious computational model of visual target position encoding in the superior colliculus[END_REF]. This can be seen as a reduction of equation ( 2) with σ -tending to infinity. Our model does not make this restriction: while a multi-selection is irrelevant in our application to the ventriloquist effect, we did not make the assumption of a unique selection in the entire SC.

Reducing the dimensionality of the parameter space

Some regular grids present ridges along which the two parameters vary while the model error stays approximately constant. This is particularly clear for the pair (λ + , σ + ),

allowing us to define a parametric curve on the optimal performance ridge which covers the whole range of parameter values. This curve is defined as a function of an abstract parameter p + , with the grids and curves for the localization mean and standard deviation reproduced on figure 7. The use of p + allows us to check for interaction with other parameters, with one less dimension, and to cancel the effect of the local excitation parameters on the model error. The new grids made with p + are given in figure 8.

We can see that there are no interaction effects left, including between p + and λ -.

This confirms that the model behavior remains approximately invariant to its excitation parameters as long as as certain ratio is kept. Consequently, the number of parameters in our model could be decreased: for each value of σ + within a certain range, there is a value of λ + that achieves a similar fit.

The representation of figure 8 also makes clear the tolerable range of certain parameters, and the latitude in their tuning. Inhibition parameters have to exceed a certain threshold (λ -> 0.11, σ -> 5°), otherwise the self-excitation of the DNF will not be compensated, and the membrane potential U will increase endlessly. In addition, σ - must be high enough (above approximately 30°) to ensure that only one peak is selected. We can see that a better fit in localization standard deviation can be attained by either decreasing τ or increasing σ N , but at the detriment of the fit in mean localization.

Similarly, λ A and σ A show vertical strips where the fit is maximal, but these strips do not coincide between both error measures. Given our goal of reproducing in general aspects a psychophysical experiment, we have had to settle for a good quantitative fit in both criteria. But as we can see, if our objective was to fit either the mean localization or its standard deviation, performance could be increased substantially. There are no sharp ridges or spikes, and the local optima (see darkened areas on figure 8) are quite wide, so the parameter fitting would be relatively smooth, and the results we obtained in table 3 do not rely exclusively on finetuned values of many parameters.

In summary, there are several ways the number of parameters can be decreased.

We have seen earlier that changes in λ A and σ A can compensate each other, so λ A could be fixed arbitrarily, and some finetuning would be feasible with σ A alone. σ A determines, together with the kernel parameters, the relative weight each stimulus will have in the DNF. For an estimation of the mean localization of the bimodal signal, if we assume that λ -and σ -always remain above a necessary threshold, and that λ + and σ + are restricted to the parametric curve in figure 7, then we are left with only two free parameters: p + and σ A . Remaining parameters intervene in the dynamic capabilities of our model (e.g. to predict response times) and its ability to explain some of the interobservational variations.

Conclusion

Models of multimodal merging in psychophysics come predominantly from the Bayesian paradigm. We have shown, using the ventriloquist effect as an illustrative example, that it is possible to model such a task using a neurally-inspired, population-based dynamical system. The model we created conciliates known characteristics of the superior colliculus and the paradigm of dynamic field theory, reaching a quantitative fit comparable to the classical paradigm. The difference between the two models has to be examined at a more theoretical level, given that they operate at different levels of abstraction. DNF are meant to model neural dynamics [START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF]. While they do not constitute an exact simulation of neurons at a microscopic level, the behaviors that emerge from the dynamic system echo physically observable neural patterns at a larger scale, aggregating over thousands ot neurons. Bayesian models of multimodal fusion, on the contrary, were not derived to accurately relate to biological mechanisms (although fine-grained Bayesian models may be perfectly fit to model such mechanisms), but rather to estimate subjects' decision distributions at coarser spatiotemporal scales. Using the terminology from [START_REF] Marr | Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information[END_REF], the Bayesian model operates at the level of the computational theory, in that it describes the logic by which information coming from different sensory modalities will be integrated, without delving into the ways the inputs are represented or the algorithm is implemented. DNF models could be placed in the other two levels: either representation-algorithm, when the way inputs are transformed into a decision is described through mathematical equations; or hardware implementation, when we consider the discretized field where each neuron acts as a processing unit. Note that these levels are not mutually exclusive, and previous works have hinted at perspectives to analyze either Bayesian modeling [START_REF] Ma | Bayesian inference with probabilistic population codes[END_REF] or DNF [START_REF] Gepperth | Learning to be attractive: Probabilistic computation with dynamic attractor networks[END_REF] at the level of the other. In any case, this different positioning does not preclude the ability of any of these paradigms to generalize to a wide range of tasks and mechanisms. Both make sense at their own level, although it can be argued that Bayesian modeling might be too broad to capture some of the most subtle behaviors that may emerge from neural interaction [START_REF] Jenkins | Learning words in space and time: Contrasting models of the suspicious coincidence effect[END_REF]. That additional precision of DNF comes at the cost of an extended parameter space.

It is worth noting that our choice of parameters is not detrimentally constraining.

There is some latitude in the parameter tuning, thus our modeling hypotheses do not particularly weaken the value of our results. In particular, there is flexibility in the shape of auditory inputs (the model does not rely on one specific pair of values (λ A , σ A )), and quantitative fit did not discriminate against the use of the logpolar transformation.

The relative freedom in model optimization opens up new simulation perspectives.

First, there is room for additional parameters and tuning, not included in our current simulations as a first parsimonious approximation. For instance, in our model, as in many previous DNF models (Wilimzig et al., 2006;[START_REF] Fix | A dynamic neural field approach to the covert and overt deployment of spatial attention[END_REF], white noise is used while not spatially correlated. One could expect that spatially correlated noise (as used in [START_REF] Taouali | A parsimonious computational model of visual target position encoding in the superior colliculus[END_REF][START_REF] Jenkins | Learning words in space and time: Contrasting models of the suspicious coincidence effect[END_REF] would help fit the variance better, especially in scenarios involving a very thin visual stimulus. Then, we have seen that the parameter dimensionality could be reduced (for example by removing σ -and using global inhibition), and that some pairs of parameters could compensate one another in an optimization task (most notably, λ + and σ + , τ and σ N , λ A and σ A ). Consequently, we have reason to believe that our model can be used to fit more demanding tasks. A hypothetical situation would be to simulate a bimodal perception task and fit both the signal localization and an observer's response time. One could then consider locking pairs of parameters on parametric curves (as we did with λ + and σ + ) for localization fitting, and use the newly freed dimensions (such as p + ) to fit for the additional constraints. Indeed, our model has room for the integration of additional functionalities, and the first novelty brought by DNF stands in its dynamic properties. DNF are fully capable of integrating any kind of time-dependant signals (so long as they can be projected onto a topological map). Moreover, their inner dynamics may account for behavioral responses of a human during the perception process. For instance, the peaks of activity in the DNF can generate population-coded motor commands for visual saccades (Wilimzig et al., 2006;[START_REF] Quinton | A unified dynamic neural field model of goal directed eye movements[END_REF]. While the experimental data we have used did not highlight any particular time-related merging effect, our model incorpo-rates by design the groundwork for the modeling of new dynamic properties.

Additionally, we have seen that DNF are suitable when perceptive fields are not homogeneous across the map, as was showcased by the logpolar transformation. In that particular case, the expectation is that a visual stimulus that appears further away from the fovea will have an increased precedence in the audiovisual fusion. Indeed, in the periphery of the retina, the logpolar transformation will activate a smaller region of the multisensory map, and in our case the DNF matches thinner signals better. This situation is out of scope in the classical ventriloquist experiment, which centers on the fovea, with little eccentricity. This limitation in the experimental data may explain the lack of difference we found between DNF+id and DNF+log. But our simulation would still provide an interesting baseline for the modeling of eccentric audiovisual merging, especially with regards to saccade generation. A visual signal in the border of the field of view will be a likely target for a saccade, although (or, according to many models of saccade generation, because) it is seen less precisely. At the psychophysical level, how much this interferes with the general paradigm of multisensory integration (for which a less precise visual stimulus would actually be captured more easily by other modalities)

is still an open question. However, on a computational level, our model reunites some of the keys to a common ground between multimodal fusion and active perception.

  model the evolution of the neural activity over time on each point of a topological space X that maps a portion of the brain. The mean field potential U at position x ∈ X
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 1 Figure 1: Visual representation of the audiovisual merging DNF model. Each rect-
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 2 Figure2: List of scenarios and experimental measures from[START_REF] Alais | The ventriloquist effect results from near-optimal bimodal integration[END_REF].
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 3 Figure 3: Evolution of DNF potential U on neural field (x) over time (top), using two

  the case of our DNF model, for a given set of parameters allowing convergence to a stable localization decision through numerical resolution, each simulation should generate a single scalar output (between -20°and 20°after projecting back to the visual space). By replicating such simulations, the Monte Carlo method therefore produces an approximate localization distribution in each condition. As the 15 generated distributions (one per condition) are expected to be roughly Gaussian and were tested against extreme observations (to prevent biaises in mean and standard deviation estimates due to statistical outliers), 50 simulations per condition were assessed as sufficient to extract accurate distribution parameters, and used as indices of model performance. To test the usefulness of the logpolar transformation to correctly explain the experimental results for different eccentricities (confounded with varying degrees of audiovisual discrepencies), as well as to test the robustness of the DNF model to distortions in inputs projections, we will use two versions of our model: one where visual inputs go through a logpolar transformation following equation (3) (referenced as DNF+log in tables and figures); another where the transformation is replaced by an identity function (DNF+id), meaning x = u and y = v. In the latter case, the DNF will operate directly on a visual map, i.e. X = [-20 • , 20 • ], ∆x = 0.2°, and the auditory inputs need no realignment.
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 4 Figure 4: Evolution of DNF+id activity having ∆ = -5°and σ V = 16°. (a) Inputs
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 5 Figure 5: Experimental results of bimodal presentation (orange intervals, same as fig-
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 6 Figure 6: RMSE obtained by the DNF+log model depending on pairs of parameters.
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 7 Figure 7: RMSE obtained by the DNF+log model depending on λ + and σ + (expanded
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 8 Figure 8: RMSE obtained by the DNF+log model depending on p + (from the parametric

Table 1 :

 1 Constant settings for all simulations. The values and descriptions of A, B

	Constant	Value	Unit Description
	B x	1.4	mm x-axis scaling for the SC map
	B y	1.8	mm/°y-axis scaling for the SC map
	A	3	°Shape of the mapping, relatively to Bx By
	∆t	0.01	s	Simulation time step
	X	[-2.85, 2.85] mm Spatial domain in SC
	∆x	0.057	mm Spatial discretization step

x and B y are taken from

[START_REF] Ottes | Visuomotor fields of the superior colliculus: A quantitative model[END_REF]

. High spatial and temporal resolutions were chosen to prevent any qualitative impact on the results.

Table 2 :

 2 Model parameters. When one is fixed, its value is given in the "Selected" column. When one varies, either for exploration or visualization, it takes its values in

	the specified interval, discretized uniformly into 20 values. For DNF+log, values in
	italics have to be rescaled by a factor 2.85 20 to accommodate for the change in field size
	from [-20, 20] degrees to [-2.85, 2.85] millimeters: while the transformation in the
	model is not linear, we use this field-wide rescaling to express all width and SD values
	in the same unit, opting for degrees. After the input is transformed, the DNF always
	operates on a regular space. σ A has two different values for DNF+id and DNF+log
	respectively.				
	Parameter Min. Max. Selected Description
	τ	0.05 0.5	0.15	Time constant
	λ +	0.1	1	0.425	Amplitude of lateral excitation
	λ -	0.05 0.2	0.15	Amplitude of lateral inhibition
	σ +	0.2	2	0.85	Width of lateral excitation
	σ -	2	100	40	Width of lateral inhibition
	σ N	0.5	5	2.8	Standard deviation of noise distribution
	λ A	0.1	2	1.1	Amplitude of auditory input
	σ A	2	64	20 | 26 Standard deviation of auditory input
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