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Abstract

Multimodal merging encompasses the ability to localize stimuli based on imprecise

information sampled through individual senses such as sight and hearing. Merging de-

cisions are standardly described using Bayesian models that fit behaviors over many

trials, encapsulated in a probability distribution. We introduce a novel computational



model based on Dynamic Neural Fields able to simulate decision dynamics and gen-

erate localization decisions, trial by trial, adapting to varying degrees of discrepancy

between audio and visual stimulations. Neural fields are commonly used to model

neural processes at a mesoscopic scale, for instance neurophysiological activity in the

superior colliculus. Our model is fit to human psychophysical data of the ventrilo-

quist effect, additionally testing the influence of retinotopic projection onto the superior

colliculus, and also providing a quantitative performance comparison to the Bayesian

reference model. While models performs equally on average, a qualitative analysis of

free parameters in our model allows insights into the dynamics of the decision and the

individual variations in perception caused by noise. We finally show that the increase

in the number of free parameters does not result in overfitting, and that the parameter

space may either be reduced to fit specific criteria or exploited to perform well on more

demanding tasks in the future. Indeed, beyond decision or localization tasks, our model

opens the door to the simulation of behavioral dynamics as well as saccade generation

driven by multimodal stimulation.

1 Introduction

Humans have versatile and diverse ways of perceiving the world around them. Senses

provide a dense and continuous flow of data, yet our ability to process information is

limited, so we need to select a subset of all available data in order to engage in adequate

interactions with the environment. Performing relevant selection involves processes

pertaining to (selective) attention.
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Focusing on visual attention, human vision is constrained by the heterogeneous

disposition of sensors on the retina, with a denser distribution near the center of the

visual field (called fovea). As a consequence, humans will tend to gaze at objects of

interest, in order to see them better. One outcome of this kind of overt attention is that it

may trigger visual saccades towards objects located in the periphery of the retinotopic

space. Because of its weaker resolution, saccades are less precise and more likely to be

disturbed by artifacts.

That issue can be circumvented with the use of additional information from other

modalities (Calvert et al., 2004). For example, a sound congruent to a visual stimu-

lus may guide saccades to this particular target (Frens et al., 1995; Kapoula and Pain,

2020). Generally speaking, it is common to merge sensory data coming from multiple

modalities. They might enhance each other (Meredith and Stein, 1986), complement

one another (Newell et al., 2001), or even compete together to form an interpolation of

different sensory inputs (McGurk and MacDonald, 1976; Alais and Burr, 2004). These

mechanisms depend on the relative reliability of the modalities, with factors includ-

ing stimulus noisiness (Ernst and Banks, 2002), sensor precision (Witten and Knud-

sen, 2005), and possible top-down interference (such as selective attention; Driver and

Spence, 2004). Studies on this topic vary from macroscopic (at a behavioral level) to

microscopic (neurological) scale, but it is common for such insights to be shared across

these two domains (Calvert et al., 2004; Alais et al., 2010).

Our aim is to build a computational model of multisensory integration that can be

embedded in attention processes. We will focus on audiovisual merging especially.
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1.1 Biological inspiration

One source of inspiration for our computational model is the superior colliculus (SC). It

has been reported to integrate cues from multiple modalities, including visual, auditory

and somatosensory (Wallace and Stein, 1996; Calvert et al., 2004), which makes it a

relevant neural structure to be used as a reference for our model. It is also involved

in the generation of motor commands such as saccades (Gandhi and Katnani, 2011).

However, please note that our purpose is not to build a biologically-accurate simulation

of the SC, but rather get inspiration from the brain workflow, for which mesoscopic

scale models of multisensory integration are available. Such scale should allow us to

remain neurally plausible, as we later turn our attention to macroscopic observations

and directly model behavioral data.

In previous works, the SC has already been used as a target of computational models

of visual (Taouali et al., 2015) and multimodal (Casey et al., 2012; Bauer et al., 2015)

perception. A common representation of a visual map in the SC is given by Ottes et al.

(1986), where the retinotopic space is mapped to the collicular space using a logpolar

transformation. That transformation has been suggested to lie at the core of complex

mechanisms of visual attention (Taouali et al., 2015), including saccades (Manfredi

et al., 2009).

1.2 Computational model

Computational neural models of the SC exist in various forms, both for multisensory

integration (Bauer, 2015, chapter 3) and for saccade generation (Girard and Berthoz,

2005). One frequently used theoretical paradigm that encompasses both aspects, and
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that has been predominant when it comes to visual processing in the SC, is that of dy-

namic neural fields (DNF) (Marino et al., 2012; Taouali et al., 2015; Quinton and Gof-

fart, 2018). It originated as a mathematical model of neural dynamics (Amari, 1977),

and has been used to model neural activity in sensorimotor maps at a mesoscopic scale

(Schöner et al., 2015). DNF describe the evolution of mean field potential over a contin-

uous domain (usually simply called a map), for instance the average membrane poten-

tial of neurons in the intermediate layers of the SC (Trappenberg et al., 2001; Wilimzig

et al., 2006). While interactions at the microscopic scale may be of interest for many

neural processes, focusing on neural fields at a mesoscopic scale helps to bridge the

gap with behavioral data. This is not only useful to better understand adaptive func-

tions found in living systems (Schöner et al., 2015), but also makes it possible to build

artificial systems able to reproduce them (including decision-making and attentional ca-

pabilities based on noisy sensor data) and to implement them on robots (with topologies

of sensors that differ from humans). Depending on their parametrization, DNF may for

instance achieve selection or interpolation between several conflicting signals (Taouali

et al., 2015), robust selective attention in presence of noise and distractors (Fix et al.,

2011), working or long term memory of stimuli (Sandamirskaya, 2014).

DNF have long been used as models of visual attention (Fix et al., 2011) and (vi-

suo)motor control (Wilimzig et al., 2006; Sandamirskaya, 2014; Quinton and Goffart,

2018). However, the literature is scarcer when it comes to using DNF for multimodal

fusion (Schauer and Gross, 2004; Ménard and Frezza-Buet, 2005; Lefort et al., 2013).

Schauer and Gross (2004) have shown promising results with a bio-inspired DNF-based

model of audiovisual integration. With very little preprocessing, they achieved a sig-
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nificant response enhancement when exposed to congruent visual and auditory signals,

although they did not draw connections to known psychophysical phenomena.

1.3 Psychophysical reference

In this paper, we will show that applications of DNF go as far as to account for well

known psychophysical effects of multisensory integration. As an illustration of such

possibilities, we will use the ventriloquist effect (Alais and Burr, 2004), which is an

example of audiovisual merging. From a human participant viewpoint exposed to spa-

tially incongruent visual and audio stimuli, the position of a stimulus is shifted towards

the other, depending on which modality has the highest relative precision. The effect

takes its name from ventriloquist shows, where spectators have the illusion that a puppet

is speaking, while the sound is actually produced by the ventriloquist holding it.

We will draw on psychophysical data reported in Alais and Burr (2004), because

their experimental paradigm and protocol can easily be replicated in silico, they pro-

vide extensive results in all conditions, and their paper is a seminal contribution to the

field, with results that have not yet been challenged. One might notice that in their

experiment, only the visual precision varied. However, by manipulating the relative

precision between the two modalities, they showed the multiple sides of the ventrilo-

quist effect (either vision capturing audition, the reverse, or an interpolation between

both). We want our computational model to exhibit the diversity of behaviors linked to

multimodal fusion, so this experiment constitutes an interesting showcase.

In addition to empirical data, we will also compare the performance of our model to

optimal Bayesian integration, usually considered as the golden standard among formal
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and computational models of multisensory integration (Ernst and Bulthoff, 2004; Rohde

et al., 2016). However, note that we do not strive for a perfect quantitative fit of our

model to the data. Indeed, even though optimization and sensitivity analysis will be

combined to assess the ability of our model to robustly converge with behavioral data,

our model enables a broad set of perspectives by building on past DNF models, of which

the ventriloquist effect is only one illustration.

The remainder of this article is structured as follows. In section 2, we describe our

computational model and its evaluation criteria in the context of the ventriloquist effect.

We present the results in section 3, and discuss further on the capabilities of our model

in section 4.

2 Method

2.1 General model

From a neurophysiological standpoint, the (deep) SC has been reported to receive pro-

jections from different modalities on a series of multimodal neural maps (King, 2004).

In this section, we first described how these maps are modeled, before turning to the

projections they receive. An overview of our general model is given in figure 1.

2.1.1 Dynamic neural fields

Our model of a SC map activity is based on dynamic field theory (Schöner et al., 2015).

DNF model the evolution of the neural activity over time on each point of a topological

space X that maps a portion of the brain. The mean field potential U at position x ∈ X
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Figure 1: Visual representation of the audiovisual merging DNF model. Each rect-

angle represents a map, either in retinal space (shown with concentric circles) or SC

(hourglass shape, obtained by performing a logpolar transformation on the visual map).

The blue arrow and text relate to visual preprocessing, green to auditory. Steps and

parameters from the model, other than preprocessing, are shown in red.
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and time t is described by the following stochastic integro-differential equation:

τ
∂U

∂t
(x, t) = −U(x, t) + I(x, t) +

∫
x′∈X

W (‖x− x′‖) f(U(x′, t)) dx′ + ε (1)

where τ is the time constant which determines the response timescale of the entire

field, I is the input stimulation over the field and f is a non-linear activation function;

as often chosen to simplify numerical simulations, we will use a ReLU function to

approximate the mean firing rate of neurons (Quinton and Goffart, 2018). The last

term ε represents noise which, like the entire dynamic neural fields, can be interpreted

at either a neurological (a sum of numerous variations of activity induced by external

neurons) or psychophysical level (e.g. perceptual noise) (Schöner et al., 2015, box 1.4,

p. 36). Due to the variations being summed over a large population of neurons, white

noise is often used, and ε is therefore sampled from a normal distribution N (0, σN).

Finally, the kernel approximating lateral interactions within the continuous popula-

tion of neurons is defined by:

W (∆x) = λ+ exp

(
−∆x 2

2σ 2
+

)
− λ− exp

(
−∆x 2

2σ 2
−

)
(2)

with λ+ > λ− and σ+ < σ−, thus giving rise to local excitation and more diffuse

inhibition. In the case of visual attention models, with such constraints on parame-

ters, and spatially coherent input stimulation reflecting the presence of localized objects

within the visual field, the numerical simulation of the DNF equation will converge to

a stereotypical peak of activity, filtering out noise (Fix et al., 2011; Quinton, 2010). In

the case of overt attention, it is then possible to directly project the DNF activity to

control eye movements (Quinton and Goffart, 2018), in agreement with visual fixations

being correlated with a balance of activity in the SC (Gandhi and Katnani, 2011). In our
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numerical simulations, we will simply estimate the stimulus position within the field as

the barycenter of the field output f(U) (Rougier, 2006).

The time course of field activity before convergence will not be the focus of this ar-

ticle, since we are mostly interested in the location of peaks after stabilization. Readers

interested in activity evolution over time will find extensive insights in Schöner et al.

(2015) and an illustration of SC dynamics simulation in (Taouali et al., 2015, figure 5).

2.1.2 Projections to the neural field

Empirical evidence supports that signals emanating from a common location in the en-

vironment, even through different modalities, will project to nearby locations in the SC

(Wallace and Stein, 1996). At the same time, the structure of the SC can be linked back

to retinotopic space (Ottes et al., 1986). Given these neurophysiological findings, we

decompose the input I defined at each point of the DNF as the sum of a visual input

IV and an auditory input IA. Although summing projections from different modalities

introduces a strong assumption into the model, it is frequent in the literature (San-

damirskaya, 2014; Schöner et al., 2015).

The projection of visual stimuli from the retina to the SC has been modeled math-

ematically in the form of a logpolar transformation (Ottes et al., 1986). Formally, a

visual signal at a position (u, v) in the retinotopic space will be mapped to the SC at a

position x = (x, y) given by:
x = Bx log

(√
(u+ A)2 + v2

A

)
y = By arctan

(
v

u+ A

) (3)

A, Bx and By are constant parameters that originate from the literature (Ottes et al.,
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1986). Their values are given in table 1.

As for the auditory inputs and to our knowledge, there is no mathematical formula-

tion of their projection onto the SC. To avoid introducing additional model parameters

or uninformed constraints, we thus simply aligned the audio stimuli to their spatially

congruent visual counterparts, since we do not aim at modeling the learning of sensory

maps in the current research work. As projections to the SC through complex neural

pathways are usually quite distant from raw sensory stimulation, we generate population

coded auditory inputs as gaussian blobs of amplitude λA and width (standard deviation)

σA. While the gaussian blob associated to the auditory stimulation is directly projected

without distortion to the SC neural map, a similar gaussian blob is generated for the

visual stimulation yet transformed through equation (3) during its projection on the SC.

Amplitude and width of the audio stimuli are added to the list of free parameters of the

model, while visual amplitude is fixed (since redundant with λA) and visual width is

driven by the experimental setup.

2.2 Application to the ventriloquist effect

Even with constraints imposed on projections to the DNF, the model of the SC presented

in the previous section and recapped in figure 1 is designed to accomplish a variety of

tasks related to audio-visual perception, attention or memory, building upon existing

works on neural fields (Schauer and Gross, 2004; Sandamirskaya, 2014; Taouali et al.,

2015). In order to validate its capabilities for multimodal fusion, we here apply and test

this generic model using an experimental paradigm associated with the ventriloquist

effect, this effect being largely documented, and human data available. We use the
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seminal work by Alais and Burr (2004), using human performance as ground truth for

the evaluation of audio-visual fusion in our model. In their article, they reported detailed

psychophysical results aggregated over hundreds of trials per condition and participant,

with psychometric functions estimated in both unimodal and bimodal blocks of trials.

For the latter, they relied on a fully crossed experimental design, manipulating various

fusion-relevant parameters of the stimuli. Among other things, this makes their study

particularly fit to replication using their data as a ground truth for computer simulations.

2.2.1 Experimental data

For each bimodal trial, participants were exposed to a sequence of two presentations

of audio-visual stimuli (conflicting and non-conflicting, in random order), and had to

report which of them was perceived more leftward. In the non-conflict presentation,

auditory information (1.5 ms sound click with position determined by the interaural

time difference) and visual information (15 ms low-contrast Gaussian blob of controlled

width, with standard deviation σV ∈ {2◦, 16◦, 32◦}) were perfectly aligned with each

other, but their eccentricity relative to the center of the participant’s field of view was

manipulated (from−20° to +20°, as depicted on the horizontal axis of figure 1 of Alais

and Burr, 2004). In the conflict presentation, stimuli were still aligned on the azimuthal

axis, but an horizontal spatial discrepancy was introduced between the two, with the

visual stimulus moving of ∆ ∈ {−5◦,−2.5◦, 0◦, 2.5◦, 5◦} (from left to right) and the

auditory stimulus moving of −∆ (horizontal positions in figure 2).

As a consequence, we aim at replicating the psychometric curves (proportion of

conflict stimuli perceived rightward as a function of eccentricity of the non-conflict
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Figure 2: List of scenarios and experimental measures from Alais and Burr (2004).

In each line: The green speaker symbol gives the position of the auditory stimulus in

the conflicting presentation. The blue circle of growing size gives the position of the

visual stimulus, of width σV = 2°, 16° or 32° (not to scale). The measures of bimodal

localization are represented by an orange error bar (mean ± SD).
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stimuli) obtained in the 15 scenarios of the original study (3 visual precisions × 5 spa-

tial distances). These psychometric curves were approximated by cumulative Gaussian

functions (sigmoids with near-logistic shape; Bowling et al., 2009), thus reducing them

to two parameters: median (also named point of subjective equality, equal to the mean

for a Gaussian distribution) and standard deviation (accuracy). The Gaussian distribu-

tions associated to the unimodal and bimodal psychometric functions from Alais and

Burr (2004) are reproduced on figure 2.

As a synthesis of their results, a thin visual stimulis (σV = 2°) captures the location

of the merged signal given its high accuracy. When it is very wide (32°), the auditory

stimulus does. In-between (16°), the merging is located between both. In addition,

the higher the precision of the inputs (e.g. 2° visual stimulus), the lower the standard

deviation of the human localization distribution after fusion, reflecting that auditory

and visual information were taken into account in a statistically optimal manner (Rohde

et al., 2016).

2.2.2 Model constraints and simulation

For this specific operationalization of the ventriloquist effect, all presentations happen

on a single azimuthal axis: y = 0. While the version of our DNF model presented

in section 2.1.1 could be used as a suitable model of two-dimensional maps in the

SC, it introduces parameters that are not directly supported by empirical data from the

selected study, and would simply make optimization and interpretation more complex.

Committing to the principle of parcimony, we have therefore chosen to restrict our

model to a unidimensional projection of the SC, reducing the computational cost of the
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simulations.

Whereas asking which stimuli were perceived as more leftward made sense exper-

imentally to reduce task difficulty and prevent biases in responses, numerical simula-

tions allow to directly estimate localization probability density functions. Yet given

the noise and non-linearities from equation (1), we rely on the Monte Carlo method to

sample the localization distribution under each condition through repeated simulation,

and estimate summary statistics (mean and standard deviation of the empirical Gaussian

distribution) for the conflict presentation alone. This means that the (static) inputs used

in our model always consist of a bimodal signal, having a median location set at the

fovea, and made of two unimodal components located opposite from each other. The

non-conflict presentation is no longer necessary in this numerical setting. Since there is

no generic analytical solution to this class of stochastic integro-differential equations,

we rely on numerical resolution, which makes simulations computationally intensive

and parameter estimation complex.

To correctly model the spatial distribution of stimuli used in the ventriloquist experi-

ment, the simulated neural field covers angles from−20° to 20° in retinal space (which,

after the transformation of equation (3), corresponds to ±2.85 mm in SC) with a spatial

resolution of 100 points (∆x = 0.057 mm). Similarly, to ensure a correct approxima-

tion of the temporal dynamics of the multimodal fusion and guarantee convergence to

a stable localization, we solve equation (1) using the Euler scheme with a temporal

resolution of 100 iterations per second (∆t = 0.01 s). All simulation constants are re-

capitulated in table 1. Algorithmically, the mean field potential (vector U ) is initialized
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to zero and updated by applying the following equation:

∀k ∈ K,U(k∆x, t+ ∆t) = U(k∆x, t)

+
∆t

τ

(
− U(k∆x, t)

+ I(k∆x, t)

+
∑
k′∈K

W
(
|k∆x− k′∆x|

)
f
(
U(k′∆x, t)

)
+ ε

)
(4)

where K = {−50,−49, . . . , 50} = {−2.85
∆x

, −2.85+∆x
∆x

, . . . , +2.85
∆x
} and I can be decom-

posed according to section 2.1.2:

I(k∆x, t) = IV (k∆x, t) + IA(k∆x, t) (5)

Table 1: Constant settings for all simulations. The values and descriptions of A, Bx

and By are taken from Ottes et al. (1986). High spatial and temporal resolutions were

chosen to prevent any qualitative impact on the results.

Constant Value Unit Description

Bx 1.4 mm x-axis scaling for the SC map

By 1.8 mm/° y-axis scaling for the SC map

A 3 ° Shape of the mapping, relatively to Bx

By

∆t 0.01 s Simulation time step

X [-2.85, 2.85] mm Spatial domain in SC

∆x 0.057 mm Spatial discretization step

Given that we model a forced decision task (i.e. where human participants were

asked to always answer even if they needed to guess), adequate parameters should al-

ways lead to the (quick) emergence of a stable activity pattern in presence of stimuli,
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usually under the form of a stereotyped peak of activity on the neural field. An example

of this output is given in figure 3, using artificial inputs and zero noise for the demon-

stration. We can see that, given two similar but conflicting stimuli, the DNF will in

any case generate a prototypical peak of activity (an attractor in the dynamical system

modelled by the set of differential equations), from which the barycenter can be used as

the bimodal stimulus localization estimate, as developed at the end of section 2.1.1. The

ensuing decision will either correspond to an interpolation between unimodal signals,

or to the selection of the strongest one (barring random fluctuations not shown here).

The choice between these two behaviors will depend on both the distance between the

stimuli (as in this figure) and their relative precision (illustrated in the result section,

with much lower stimuli precision).
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Figure 3: Evolution of DNF potential U on neural field (x) over time (top), using two

different custom-made static inputs I (bottom). Parameters are taken from the “Se-

lected” column of DNF+id in table 2, except noise is reduced to zero for explanatory

purpose (on this figure only). To break the symmetry, in both subfigures, the right stim-

ulus is 1% stronger than the left. Left and right subfigures differ by the distance between

the stimuli.
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2.3 Evaluation

While our task is not limited to a quantitative fit to empirical data, we will use the

differences between model outputs and psychophysical results as a performance metric,

which allows an indirect comparison of numerical models using human behavior as

ground truth. As all (human and simulated) localization distributions roughly follow a

Gaussian profile, performance will be computed based on estimated means and standard

deviations on all scenarios from figure 2.

2.3.1 Compared models

The seminal experimental results on which we rely were already accompanied by a

mathematical model (Alais and Burr, 2004). It is based on Bayesian modeling using

maximum a posteriori estimates on localization distributions, which remains the domi-

nant paradigm for multisensory integration (Rohde et al., 2016) to which we will com-

pare. It explicitely relies on the hypothesis that the psychometric functions of visual and

auditory stimuli are Gaussian cumulative distribution functions. The mean estimate and

derived variance for their Bayes optimal combination are given by:

ŜAV =
1/σ2

V

1/σ2
V + 1/σ2

A

ŜV +
1/σ2

A

1/σ2
V + 1/σ2

A

ŜA (6)

σ2
AV =

σ2
V σ

2
A

σ2
V + σ2

A

(7)

where ŜV and ŜA are the mean estimates of the visual and auditory signals positions

respectively (assumed to coincide with the actual position of the sources), and σ2
V and

σ2
A their variances (derived from the unimodal psychometric functions, as described in

Rohde et al., 2016). The Bayesian model differs by design from ours, insofar that it uses
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the unimodal performance to predict the bimodal behavior, whereas we fit our model

directly on the bimodal scenarios, without prior knowledge of the unimodal variances.

In the case of our DNF model, for a given set of parameters allowing convergence

to a stable localization decision through numerical resolution, each simulation should

generate a single scalar output (between−20° and 20° after projecting back to the visual

space). By replicating such simulations, the Monte Carlo method therefore produces an

approximate localization distribution in each condition. As the 15 generated distribu-

tions (one per condition) are expected to be roughly Gaussian and were tested against

extreme observations (to prevent biaises in mean and standard deviation estimates due

to statistical outliers), 50 simulations per condition were assessed as sufficient to extract

accurate distribution parameters, and used as indices of model performance.

To test the usefulness of the logpolar transformation to correctly explain the exper-

imental results for different eccentricities (confounded with varying degrees of audio-

visual discrepencies), as well as to test the robustness of the DNF model to distortions

in inputs projections, we will use two versions of our model: one where visual inputs

go through a logpolar transformation following equation (3) (referenced as DNF+log in

tables and figures); another where the transformation is replaced by an identity function

(DNF+id), meaning x = u and y = v. In the latter case, the DNF will operate directly

on a visual map, i.e. X = [−20◦, 20◦], ∆x = 0.2°, and the auditory inputs need no

realignment.
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2.3.2 Model parametrization

Following previous definitions and constraints, our model has eight free parameters (see

table 2): six from the DNF equation, and two from our modeling of auditory inputs in

the SC as a Gaussian blob. This is true for both versions (DNF+log and DNF+id), since

the logpolar transformation parameters are constant and derived from the literature. The

behavior of a DNF depends mostly on the shape of its interaction kernel W . Therefore,

fusion performance can mainly be correlated to the four parameters λ+, λ−, σ+ and

σ−. The dynamic and nonlinear nature of the DNF equation can make the dependencies

very hard to comprehend, with strong interactions between parameters, especially when

related to the kernel. Since we will also measure the variance of the model localization

output, σN , which controls the amount of noise in the equation, will also play an im-

portant role; as well as τ , which controls the integration rate, and thus the weight of

the noise compared to stimuli. Finally, while λA and σA do not intervene in the inner

dynamics of the DNF, they can also be tweaked as part of the audio preprocessing of

the model. They do have some interaction with the other parameters, as the shape of

the interaction kernel determines which shape of input signals will be favored.

To ensure a fair comparison of models, free parameters had to be adjusted to the

multimodal merging task. Within the high-dimensional parameter space, meta-heuristics

that were already applied to the optimization of DNF parameters (such as Quinton,

2010) did not prove to be robust enough in the case of our multimodal fusion sce-

narios and evaluation procedure. Indeed, we could not easily combine into a single

optimization criteria our two metrics: mean multimodal localization and localization

variance. Trying to tackle this multicriteria optimization problem on stochastic integro-
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differential equations also did not lead to acceptable Pareto-optimal sets of solutions.

Therefore, after a review of articles in the DNF literature, and extended preliminary

simulations, we extracted for each parameter an interval in which suitable behavior was

possible, and simply relied on an iterative and partial grid-search approach. Similarly

to Jenkins et al. (2021), we started by picking some expertise-driven parameter values,

then analyzed model performance as a function of one or two parameters at a time.

Keeping the best values found, we iterated over sets of parameters until convergence.

In a way similar to a simplex algorithm, we obtained the parameter values in column

“Selected” of table 2. We have found that a change in σA was sufficient at first sight

to compensate most of the distortion of visual inputs by the logpolar transformation.

Consequently, it is possible to switch between DNF+log and DNF+id and obtain results

of the same order of magnitude, by tweaking σA and leaving other parameters intact.

3 Results

Relying on the (locally) optimal parameters from table 2, this section first shows qual-

itative and illustrative behaviors of the DNF, before comparing performance between

the different models described in section 2.3.1 (Bayesian, DNF+id, DNF+log), and

then turning to a sensitivity analysis of the DNF model performance, studying the im-

pact of pairs of parameters when keeping the others fixed. The objectives are to show

that good performance from either DNF model versions cannot be attributed to over-

parametrization (and thus overfit to the experimental data), and to study the effect of

parameters on the DNF behavior.
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Table 2: Model parameters. When one is fixed, its value is given in the “Selected”

column. When one varies, either for exploration or visualization, it takes its values in

the specified interval, discretized uniformly into 20 values. For DNF+log, values in

italics have to be rescaled by a factor 2.85
20

to accommodate for the change in field size

from [−20, 20] degrees to [−2.85, 2.85] millimeters: while the transformation in the

model is not linear, we use this field-wide rescaling to express all width and SD values

in the same unit, opting for degrees. After the input is transformed, the DNF always

operates on a regular space. σA has two different values for DNF+id and DNF+log

respectively.

Parameter Min. Max. Selected Description

τ 0.05 0.5 0.15 Time constant

λ+ 0.1 1 0.425 Amplitude of lateral excitation

λ− 0.05 0.2 0.15 Amplitude of lateral inhibition

σ+ 0.2 2 0.85 Width of lateral excitation

σ− 2 100 40 Width of lateral inhibition

σN 0.5 5 2.8 Standard deviation of noise distribution

λA 0.1 2 1.1 Amplitude of auditory input

σA 2 64 20 | 26 Standard deviation of auditory input

3.1 Evolution of field potential

As a way to showcase the behaviors of our models, we start by observing their dynam-

ics in realistic experimental conditions, complementing the illustration of qualitative

differences in DNF outputs based on stimuli distance in section 2.2.2. For this subsec-
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tion, we will make tests using the DNF+id model, as its output can be directly read and

easily interpreted in the topological space of the source stimuli. We use the parameters

from the “Selected” column of table 2. The inputs in the second experimental scenario

(∆ = −5°, σV = 16°) and related model activity are given in figure 4.
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Figure 4: Evolution of DNF+id activity having ∆ = −5° and σV = 16°. (a) Inputs

summed with noise on neural field (x) over time. (b) Theoretical distribution of inputs

in absence of noise. (c) Field potential U during one single run. The white line shows

the evolution of the barycenter of field output f(U). (d) Barycenters of DNF output for

30 other runs of the model. The black line shows the approximate Gaussian distribution

obtained with the mean and SD of the final 30 positions.
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As can be seen in subfigure (a), the amount of noise in the simulated data makes

it almost impossible to distinguish the raw stimuli (b) with the naked eye. The evolu-

tion of DNF potential U is shown for one run of the model in subfigure (c). A peak

forms at a seemingly random position, which is actually biased by the position of the

stimuli. The underlying distribution of selected multimodal locations becomes apparent

when the model is run multiple times (d). Some decisions do happen quite far from the

source, which is consistent with stereotypical psychophysical studies, in which partic-

ipants sometimes realize extreme guesses. But the distribution of selected multimodal

locations shows that on average, decisions are made in between the two stimuli. The

mean and variance of this DNF output distribution are the summary statistics used for

model evaluation.

3.2 Model evaluation

Given the aforementioned models, we simulated the experimental scenarios to compare

with the psychophysical data. The results are summarized on figure 5. As a reminder,

we observe two metrics: the mean localization of a bimodal presentation (center of

the intervals on figure 5) and its standard deviation (half-amplitude of the intervals). To

mitigate the influence of extreme observations due to the stochasticity of the model, and

thus provide accurate estimates, results presented in this section have been aggregated

over 2500 runs instead of 50.

The quality of fit varies between scenarios. For example, DNF-based models achieve

better fits in scenarios 6, 14 and 15, while the Bayesian model fares better in scenarios

3, 11 and 13. The distances between model and experimental outputs are summarized
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Figure 5: Experimental results of bimodal presentation (orange intervals, same as fig-

ure 2) and corresponding model outputs (in blue). For each error bar, the center dot

represents the average localization, and the half-amplitude is the standard deviation.
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in table 3. This shows a slight superiority of DNF+log over DNF+id, and a slight ad-

vantage of the Bayesian model when it comes to representing the localization variance

only.

Table 3: Comparison between our model with logpolar transformation (DNF+log),

without logpolar transformation (DNF+id), and the reference Bayesian model, using

root mean square error between simulated and experimental data over the 15 scenarios.

Error between means Error between SD

DNF+log 0.626 1.33

DNF+id 0.638 1.38

Bayesian 0.677 1.28

Meanwhile, DNF come with the ability to model complex dynamical behaviors and

are closer to known neurobiological mechanisms. So it is worth noting that our model

enables a versatile point of view of multisensory integration, for a quantitative fit sim-

ilar to the classical model. In particular, our model can simulate observations on a

smaller scale (one run is one human decision) than Bayesian models (mostly focusing

on the global distribution of the results). Our model can simulate all random variations

between observations, while staying faithful to important mechanisms of multisensory

integration.

3.3 Parameter exploration

Our model already shows quantitative results comparable to the most standard modeling

paradigm, but there are other useful properties that can be displayed. In this section,
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we will verify that performance is indeed consequent to our design choices, and not of

overfitting. We will also show that there is still room for finetuning if one were to target

some more specific criteria (such as a maximal fit of localization variance).

In order to emphasize parameter interactions in the most readable way, we have

chosen to display the effects of two parameters at a time. In figures 6 to 8, six parameters

keep the selected values mentioned in section 2.3.2, and two vary on a regular grid

within the bounds given by table 2. We will only consider the DNF+log model from

now on, our original and most complete version (even though similar analyses could be

obtained with DNF+id).

We have found that depending on parameters, model behavior could fall into one of

the following four categories. Only the first one is relevant to our simulation, the others

will be masked in following figures.

1. For all scenarios, one single peak of activity emerges and stabilizes (often called

a “bubble” in DNF literature). The rest of the field is inhibited thanks to lateral

inhibition.

2. One bubble emerges but does not stabilize. The maximum potential increases

indefinitely because of self-excitation. This is clearly implausible on a neural

level.

3. No bubble emerges by lack of interaction, i.e. the term factored by W in equa-

tion (4) is negligible compared to the others. So the potential U will converge

to an approximation of I . Two peaks will be observable when the stimuli are

spatially discrepant, but they do not correspond to a bubble enhanced by self-
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excitation. The outcome is that the decision-making role of DNF goes missing,

which falls far away from our objectives.

4. In scenarios where stimuli are far apart, two distinct bubbles emerge. This hap-

pens when there is not enough long-range inhibition for one bubble to take over

the other. Psychophysically, that would account for an observer explicitely notic-

ing that there are two distinct stimuli. Alais and Burr (2004) do not report this

happening in their experiments.

3.3.1 Pairwise variations

Our first step is to make all 8 parameters of our model vary by pairs. The results are

compiled in two triangular matrices (one for each error measure) in figure 6 (means

bottom left, SD top right), of which each element contains a 2D regular grid. The

bounds of each parameter are listed in table 2.

First, we can see that τ and σN have a strong effect on the localization standard

deviation, and a slight effect on the mean localization. In general, increasing σN or

decreasing τ would give moderately less reliable localization means, but more plau-

sible standard deviations. This is coherent with our simulation paradigm: increasing

σN means adding more noise, and decreasing τ means a quicker integration of new in-

formation through time, both increasing the weight of the noise relatively to the stable

audio and visual stimuli. We can also see that the mean localization is not completely

smooth, and even less so for higher σN or lower τ . As a reminder, our results are by

default aggregated over 50 runs for each parameter combination, for the purposes of

smoothing the graphics. Fluctuations caused by extreme values are still expected, so it
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Figure 6: RMSE obtained by the DNF+log model depending on pairs of parameters.

The bottom left triangular matrix is based on errors in mean localization of bimodal

presentations, the top right one on their standard deviations. For each entry, the param-

eter labeled in row increases from bottom to top, and the parameter labeled in column

increases from left to right. The blank areas filled with geometrical shapes designate

parameter sets that fall out of scope of our simulation plan (cf. section 3.3). Dotted: no

convergence, or overflowing activity (case 2). Hatched: more than one peak (cases 3

and 4). Crossed: no interaction (case 3).
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is consistent that they become more apparent when the amount of noise in the system is

increased.

There is some predictible interaction between λA and σA. The graphs outline a

parabola-shaped ridge, along which these parameters can evolve with little impact on

the results. It is worth noting that an increase of σA can be compensated by an increase

of λA. That is a characteristic of the DNF. The model is designed to select in priority

stimuli whose profile match the positive part of the interaction kernel, which is very

thin in the case of the selected parameters (σ+ = 0.85°, or 0.12 mm after rescaling).

When σA augments, the auditory stimulus strays further away from the thin template,

and loses weight in the DNF integration. This loss of importance can be artificially

compensated by an increase of λA.

Interaction kernel parameters λ+, λ−, σ+ and σ− have clear bounds. In a DNF,

when a peak forms due to self-excitation, a minimum amount of inhibition is necessary

for the system to stabilize. Too much excitation or too little inhibition will cause the

peak to increase in amplitude indefinitely, which does not fit plausibly to any neural

mechanism. On the contrary, too little excitation and no peak will form, no interaction

will happen and the model will simply replicate its inputs as outputs. This is out-of-

scope because it is impossible to generate a saccade or focus for fine-grained processing

two stimuli that lie in different locations of the visual field. It is worth noting that λ+ has

an impact on the thresholds for λ− and σ+, and vice versa. That means that any of these

parameters can be tweaked largely, as long as some ratios of excitation or inhibition

are maintained. Interestingly enough, σ− is less affected by the other three. The main

use of this parameter is to ensure the presence of long-range inhibition, so it primarily
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Figure 7: RMSE obtained by the DNF+log model depending on λ+ and σ+ (expanded

from figure 6). The left graph is based on mean localization of bimodal presentations,

the right graph on their standard deviations. The white cross indicates the default values

used in the previous section. The white line shows the parametric curve that will be

used for parameter reduction. The blank areas filled with geometrical shapes designate

parameter sets that fall out of scope of our simulation plan. Dotted: no convergence, or

overflowing activity. Crossed: no interaction (U replicates I).

needs to be sufficiently high. That is consistent with alternative implementations of

DNF in the literature, where local inhibition in W is replaced by a constant global

inhibition parameter, in situations where only one stimulus should be selected in the

entire field (Schöner et al., 2015; Taouali et al., 2015). This can be seen as a reduction

of equation (2) with σ− tending to infinity. Our model does not make this restriction:

while a multi-selection is irrelevant in our application to the ventriloquist effect, we did

not make the assumption of a unique selection in the entire SC.
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3.3.2 Reducing the dimensionality of the parameter space

Some regular grids present ridges along which the two parameters vary while the model

error stays approximately constant. This is particularly clear for the pair (λ+, σ+),

allowing us to define a parametric curve on the optimal performance ridge which covers

the whole range of parameter values. This curve is defined as a function of an abstract

parameter p+, with the grids and curves for the localization mean and standard deviation

reproduced on figure 7. The use of p+ allows us to check for interaction with other

parameters, with one less dimension, and to cancel the effect of the local excitation

parameters on the model error. The new grids made with p+ are given in figure 8.

We can see that there are no interaction effects left, including between p+ and λ−.

This confirms that the model behavior remains approximately invariant to its excitation

parameters as long as as certain ratio is kept. Consequently, the number of parameters

in our model could be decreased: for each value of σ+ within a certain range, there is a

value of λ+ that achieves a similar fit.

The representation of figure 8 also makes clear the tolerable range of certain param-

eters, and the latitude in their tuning. Inhibition parameters have to exceed a certain

threshold (λ− > 0.11, σ− > 5°), otherwise the self-excitation of the DNF will not be

compensated, and the membrane potential U will increase endlessly. In addition, σ−

must be high enough (above approximately 30°) to ensure that only one peak is se-

lected. We can see that a better fit in localization standard deviation can be attained by

either decreasing τ or increasing σN , but at the detriment of the fit in mean localization.

Similarly, λA and σA show vertical strips where the fit is maximal, but these strips do

not coincide between both error measures. Given our goal of reproducing in general
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Figure 8: RMSE obtained by the DNF+log model depending on p+ (from the parametric

curve of figure 7) and other parameters. The bottom row is based on mean localization

of bimodal presentations, the top row on their standard deviations. In each entry, the

parameter labeled on the top increases from left to right. The bottom of a square cor-

responds to a low λ+ and high σ+, the top corresponds to a high λ+ and low σ+. See

figure 6 for the rest of the legend.

aspects a psychophysical experiment, we have had to settle for a good quantitative fit in

both criteria. But as we can see, if our objective was to fit either the mean localization

or its standard deviation, performance could be increased substantially. There are no

sharp ridges or spikes, and the local optima (see darkened areas on figure 8) are quite

wide, so the parameter fitting would be relatively smooth, and the results we obtained

in table 3 do not rely exclusively on finetuned values of many parameters.

In summary, there are several ways the number of parameters can be decreased.

We have seen earlier that changes in λA and σA can compensate each other, so λA
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could be fixed arbitrarily, and some finetuning would be feasible with σA alone. σA

determines, together with the kernel parameters, the relative weight each stimulus will

have in the DNF. For an estimation of the mean localization of the bimodal signal, if

we assume that λ− and σ− always remain above a necessary threshold, and that λ+ and

σ+ are restricted to the parametric curve in figure 7, then we are left with only two free

parameters: p+ and σA. Remaining parameters intervene in the dynamic capabilities of

our model (e.g. to predict response times) and its ability to explain some of the inter-

observational variations.

4 Conclusion

Models of multimodal merging in psychophysics come predominantly from the Bayesian

paradigm. We have shown, using the ventriloquist effect as an illustrative example, that

it is possible to model such a task using a neurally-inspired, population-based dynamical

system. The model we created conciliates known characteristics of the superior collicu-

lus and the paradigm of dynamic field theory, reaching a quantitative fit comparable to

the classical paradigm. The difference between the two models has to be examined at

a more theoretical level, given that they operate at different levels of abstraction. DNF

are meant to model neural dynamics (Amari, 1977). While they do not constitute an

exact simulation of neurons at a microscopic level, the behaviors that emerge from the

dynamic system echo physically observable neural patterns at a larger scale, aggregat-

ing over thousands ot neurons. Bayesian models of multimodal fusion, on the contrary,

were not derived to accurately relate to biological mechanisms (although fine-grained
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Bayesian models may be perfectly fit to model such mechanisms), but rather to estimate

subjects’ decision distributions at coarser spatiotemporal scales. Using the terminology

from Marr (1982), the Bayesian model operates at the level of the computational the-

ory, in that it describes the logic by which information coming from different sensory

modalities will be integrated, without delving into the ways the inputs are represented

or the algorithm is implemented. DNF models could be placed in the other two levels:

either representation-algorithm, when the way inputs are transformed into a decision

is described through mathematical equations; or hardware implementation, when we

consider the discretized field where each neuron acts as a processing unit. Note that

these levels are not mutually exclusive, and previous works have hinted at perspectives

to analyze either Bayesian modeling (Ma et al., 2006) or DNF (Gepperth and Lefort,

2016) at the level of the other. In any case, this different positioning does not preclude

the ability of any of these paradigms to generalize to a wide range of tasks and mech-

anisms. Both make sense at their own level, although it can be argued that Bayesian

modeling might be too broad to capture some of the most subtle behaviors that may

emerge from neural interaction (Jenkins et al., 2021). That additional precision of DNF

comes at the cost of an extended parameter space.

It is worth noting that our choice of parameters is not detrimentally constraining.

There is some latitude in the parameter tuning, thus our modeling hypotheses do not

particularly weaken the value of our results. In particular, there is flexibility in the shape

of auditory inputs (the model does not rely on one specific pair of values (λA, σA)), and

quantitative fit did not discriminate against the use of the logpolar transformation.

The relative freedom in model optimization opens up new simulation perspectives.
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First, there is room for additional parameters and tuning, not included in our current

simulations as a first parsimonious approximation. For instance, in our model, as in

many previous DNF models (Wilimzig et al., 2006; Fix et al., 2011), white noise is

used while not spatially correlated. One could expect that spatially correlated noise

(as used in Taouali et al., 2015; Jenkins et al., 2021) would help fit the variance better,

especially in scenarios involving a very thin visual stimulus. Then, we have seen that

the parameter dimensionality could be reduced (for example by removing σ− and using

global inhibition), and that some pairs of parameters could compensate one another in

an optimization task (most notably, λ+ and σ+, τ and σN , λA and σA). Consequently,

we have reason to believe that our model can be used to fit more demanding tasks. A

hypothetical situation would be to simulate a bimodal perception task and fit both the

signal localization and an observer’s response time. One could then consider locking

pairs of parameters on parametric curves (as we did with λ+ and σ+) for localization

fitting, and use the newly freed dimensions (such as p+) to fit for the additional con-

straints.

Indeed, our model has room for the integration of additional functionalities, and the

first novelty brought by DNF stands in its dynamic properties. DNF are fully capa-

ble of integrating any kind of time-dependant signals (so long as they can be projected

onto a topological map). Moreover, their inner dynamics may account for behavioral

responses of a human during the perception process. For instance, the peaks of activity

in the DNF can generate population-coded motor commands for visual saccades (Wil-

imzig et al., 2006; Quinton and Goffart, 2018). While the experimental data we have

used did not highlight any particular time-related merging effect, our model incorpo-
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rates by design the groundwork for the modeling of new dynamic properties.

Additionally, we have seen that DNF are suitable when perceptive fields are not

homogeneous across the map, as was showcased by the logpolar transformation. In

that particular case, the expectation is that a visual stimulus that appears further away

from the fovea will have an increased precedence in the audiovisual fusion. Indeed, in

the periphery of the retina, the logpolar transformation will activate a smaller region

of the multisensory map, and in our case the DNF matches thinner signals better. This

situation is out of scope in the classical ventriloquist experiment, which centers on the

fovea, with little eccentricity. This limitation in the experimental data may explain the

lack of difference we found between DNF+id and DNF+log. But our simulation would

still provide an interesting baseline for the modeling of eccentric audiovisual merging,

especially with regards to saccade generation. A visual signal in the border of the field

of view will be a likely target for a saccade, although (or, according to many models of

saccade generation, because) it is seen less precisely. At the psychophysical level, how

much this interferes with the general paradigm of multisensory integration (for which a

less precise visual stimulus would actually be captured more easily by other modalities)

is still an open question. However, on a computational level, our model reunites some

of the keys to a common ground between multimodal fusion and active perception.
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