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Abstract

In order to provide a balanced protection against a range of shift sizes in high-

quality processes, a new one-sided adaptive truncated exponentially weighted

moving average (ATEWMA) control chart with known and estimated parame-

ters is developed for monitoring time-between-events (TBE) data. A dedicated

Markov chain model is established for evaluating the run length properties in

known and estimated parameters operating conditions. Furthermore, a two-stage

optimal design procedure of the proposed scheme is developed based on the aver-

age run length (ARL) criteria. Simulation results show that the one-sided ATEWMA

TBE scheme with known parameters is superior to its competitors in detecting

both upward and downward shifts. Finally, two real data applications are em-

ployed to show the implementation of the recommended scheme in the monitoring

of TBE data.
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1. Introduction

As one of the most influential tools in statistical process monitoring (SPM),

control charts have been extensively used in various fields, for example, manu-

facturing industry (see Chong et al. (2021)) and network monitoring (see Perry

(2020)). According to Castagliola et al. (2019), in SPM, there are two categories

of control charts: the memoryless-type charts (for instance, the Shewhart charts)

and the memory-type charts (such as the exponentially weighted moving average

(EWMA) charts). Shewhart-type charts are easy to implement and efficient in

detecting large shifts, but the fact that they only use the current sample informa-

tion makes them insensitive to detect small to moderate shifts. As alternatives to

Shewhart-type charts, the memory-type charts are more sensitive to detect small

to moderate shifts, because they are designed to take both the past and the current

information into account. This makes the memory-type charts involve more ad-

vantages that motivate more interesting research works.

The conventional control charts are known to be designed for a particular shift

level. But, in practice, the potential shift size of the process is rarely know in

advance. In this context, Capizzi & Masarotto (2003) designed a new adaptive

EWMA (AEWMA) control chart for detecting both small and large mean shifts
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simultaneously. In the construction of the AEWMA charting statistic, a suitable

function of the current error is used to dynamically weight the current and the past

observations, which makes the AEWMA chart in Capizzi & Masarotto (2003) be

a smooth combination of a Shewhart chart and an EWMA chart. As mentioned by

Psarakis (2015), AEWMA type schemes for normally distributed data have been

extensively investigated by researchers, see, for instance, Mitra et al. (2019), Haq

& Khoo (2019), and Tang et al. (2019b). Without a doubt, AEWMA type schemes

are better choices that can achieve a reasonable balance for both small and large

mean shifts. However, most of them introduced above are two-sided schemes.

As pointed out by Chiu & Tsai (2013), the traditional two-sided schemes may

spend more time on generating an out-of-control signal when a shift in the pro-

cess parameter occurs. Conversely, one-sided schemes are more appropriate for

monitoring processes if the direction of the shift can be anticipated, or when the

investigator is only interested in a particular directional shift. For example, in-

formation on the increase in the infection rate of a particular disease (such as the

COVID-19) is very important for a government to adjust epidemic prevention and

to take control measures. Although numerous studies have shown that one-sided

schemes have wide potential applications in practice, see, for instance, Wang et al.

(2019), Qiao et al. (2020 in press), and Haq (2020), there are few studies on one-

sided schemes with an adaptive feature. This fact means that the design of a

one-sided adaptive type scheme is a topic of interest.

With the improvement of manufacturing capacity, the occurrence rate of de-
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fects (or nonconformities) can be maintained at a very low level, say, parts per mil-

lion (ppm). These processes are usually named “high-quality processes”. The tra-

ditional attribute control charts (such as p chart or np chart) are no longer valid for

monitoring such processes. In this context, time-between-events (TBE) schemes

have been developed to overcome the limits of using traditional attribute charts.

A common assumption for high-quality processes is that the occurrence of events

(i.e., defects, or nonconformities) can be modeled as a homogeneous Poisson pro-

cess, for which the time between two consecutive events follows an exponential

distribution. Extensive research works and extensions of TBE type schemes based

on the geometric, negative binomial, exponential, Gamma, and Weibull distribu-

tions have since evolved, see, for example, Urbieta et al. (2017), Xie et al. (2021

in press), Ali & Pievatolo (2016), and Sanusi et al. (2020). Among all available

distributions, the exponential one is considered as very suitable for modelling

high-quality processes and TBE data. This distribution is not only widely em-

ployed in the field of reliability engineering as a model of the time to failure of a

component or a system (see Montgomery (2012)), but also potentially be applied

to other systems or areas. For instance, in the waiting time modelling (see Xie

et al. (2010)), in the monitoring of workplace accidents (see Zhang et al. (2006)),

in human health surveillance and monitoring (see Aslam et al. (2014)), and even

in earthquake analysis (see Santiago & Smith (2013)). All these applications show

that the design of TBE control charts based on the exponential distribution is nec-

essary.
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An essential assumption for the design of control charts is that the process

parameters are assumed known. But, in real applications, the process parameters

are usually unknown. This fact means that the parameters of the process should

be estimated before the process monitoring starts. Numerous researches on pa-

rameter estimations have been conducted on control charts over these years, see,

for instance, Zwetsloot & Woodall (2017), Testik et al. (2020), and Jardim et al.

(2020). It is worth noting that, the process parameters used to determine the con-

trol limits in Phase II usually need to be estimated from a limited number of Phase

I observations. According to Tang et al. (2019a), using the control limit obtained

from the known parameter case leads to a deteriorated performance for the scheme

with estimated parameters. One effective way is to increase the number of Phase

I observations. However, in practice, practitioners cannot wait long to collect

such a large amount of Phase I observations, especially in the case of high-quality

processes. Meanwhile, a shift may also occur in the process parameter when col-

lecting these Phase I observations. Therefore, an attractive alternative suggested

by Mahmoud & Maravelakis (2010) is to adjust the corresponding control limit

of the scheme, so that it can provide an effective detection ability for the specified

shift that occurs in the process parameter.

In this study, a new one-sided AEWMA scheme using the truncation method is

developed for monitoring exponentially distributed TBE data assuming a known

shift direction (hereafter named as the one-sided ATEWMA TBE scheme). The

main contributions of this paper can be summarized as follows: (1) proposing a
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new one-sided ATEWMA TBE scheme in the case of known and estimated pa-

rameters, (2) establishing a dedicated Markov chain model for run length (RL)

evaluation, and (3) developing an ARL-based optimal design procedure to pro-

vide a balanced protection against a range of shift sizes. The outline of this paper

is organized as follows: In Section 2, a new one-sided ATEWMA TBE scheme

with known and estimated parameters is developed. Subsequently, a dedicated

Markov chain model is established in Section 3 to evaluate the RL properties of

the recommended scheme. In Section 4, an ARL-based optimal design procedure

is developed for detecting both small and large shifts simultaneously. In Section

5, numerical comparisons are performed with two comparative schemes for the

detection of both upward and downward mean shifts. Some guidelines concern-

ing the construction of the proposed scheme are also provided. Furthermore, two

real data applications are employed in Section 6 to illustrate the implementation of

the one-sided ATEWMA TBE scheme in OLED failure time monitoring and air-

craft reliability monitoring, respectively. Finally, Section 7 concludes with some

remarks and directions for future researches.

2. The proposed one-sided ATEWMA TBE scheme

Let us assumed that the TBE random variable Xt, t = 1, 2, . . ., used in a

high-quality process follows an exponential distribution with scale parameter θ,

i.e., Xt ∼ exp(θ). In what follows, a new one-sided ATEWMA TBE scheme is

developed in the case of known and estimated parameters to detect both small and

large shifts simultaneously.
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2.1. The process parameters are known

For the known parameter case, let us assume that θ0 is the known in-control

scale parameter (or mean) of the process. In order to simplify the design of the

one-sided ATEWMA TBE scheme with known parameters, a scaled TBE random

variable Mt is defined as follows:

Mt =
Xt

θ0

=
θ1

θ0

· Xt

θ1

, (1)

where θ1 is the out-of-control scale parameter (or mean) of the exponential dis-

tribution. For simplicity, let τ = θ1/θ0 and Θt = Xt/θ1, then the scaled TBE

random variable Mt in (1) can be restated as:

Mt = τ ·Θt, (2)

where τ represents the shift level that occurs in the in-control scale parameter θ0,

and Θt is a standard exponentially distributed random variable with mean equals

to 1. The case τ = 1 denotes that no shift occurs in the scale parameter θ0, and

the process is deemed to be in-control. Otherwise, the case τ > 1 (or 0 < τ < 1)

means that an upward (or a downward) shift occurs in the scale parameter θ0.

The truncation method developed by Shu et al. (2007) is adopted for the pro-

posed scheme for the effective detection of upward (or downward) shifts. Taking

the one-sided ATEWMA TBE scheme for monitoring upward shifts (hereafter

named as the upper-sided ATEWMA TBE scheme) as an example, the idea of
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the truncation method used in the upper-sided ATEWMA TBE scheme can be de-

scribed as follows: at sampling point t, we reset the TBE observation Xt to the

value of θ0 when Xt falls below the in-control mean θ0. Otherwise, if the TBE

observationXt is larger than the in-control mean value θ0, the original value ofXt

is retained. This new “resetting rule” makes the proposed scheme more sensitive

for the process monitoring, as it keeps the shift information in the direction of

interest. Without loss of generality, two truncated TBE random variables can be

defined to describe the truncation method used in this paper, namely,

• the upper-truncated TBE random variable: X+
t = max (θ0, Xt),

• the lower-truncated TBE random variable: X−t = min (θ0, Xt).

Based on the scaled TBE random variable Mt defined in (1), both the upper-

truncated and the lower-truncated TBE random variables can be restated as:

M+
t = max (1,Mt) , (3)

M−
t = min (1,Mt) . (4)

When τ = 1, the in-control mean values of the upper-truncated and lower-truncated

TBE random variablesM+
t andM−

t areE(M+
t ) = 1+e−1 andE(M−

t ) = 1−e−1,

respectively (see Appendix A in Xie et al. (2021 in press) for details). To further

simplify the design of the one-sided ATEWMA TBE chart, the scaling of the

upper-truncated and lower-truncated TBE random variables M+
t and M−

t are de-
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fined, say,

Z+
t =

M+
t

E(M+
t )
, (5)

Z−t =
M−

t

E(M−
t )
. (6)

Different from the one-sided REWMA TBE scheme developed in Gan (1998)

using a fixed EWMA smoothing parameter λR, the proposed upper-sided (or

lower-sided) ATEWMA TBE scheme is designed by adjusting its smoothing pa-

rameter λ as a function of the prediction error e+
t = Z+

t −W+
t−1

(
e−t = Z−t −W−

t−1

)
,

where W+
t−1 and W−

t−1 are the upper-sided and lower-sided ATEWMA TBE chart-

ing statistics at sampling point t − 1, respectively. Based on this condition, two

one-sided ATEWMA TBE schemes for respectively detecting increases and de-

creases in the in-control scale parameter θ0 are designed as follows:

• For the upward shift detection, the charting statistic W+
t of the upper-sided

ATEWMA TBE scheme, at sampling point t = 1, 2, . . ., is defined as,

W+
t = W+

t−1 + φ(e+
t ) = ω(e+

t )Z+
t +

(
1− ω(e+

t )
)
W+
t−1. (7)

• Meanwhile, for detecting downward shifts, the charting statistic W−
t of the

lower-sided ATEWMA TBE scheme is defined as,

W−
t = W−

t−1 + φ(e−t ) = ω(e−t )Z−t +
(
1− ω(e−t )

)
W−
t−1, (8)
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where ω(e+
t ) = φ(e+

t )/e+
t and ω(e−t ) = φ(e−t )/e−t are the weights of the upper-

sided and lower-sided ATEWMA TBE charting statistics, respectively. The initial

values for W+
t and W−

t are set to W+
0 = W−

0 = 1. Meanwhile, note that φ(e+
t )

and φ(e−t ) are the Huber’s score functions defined as follows:

φ(ε) =


ε+ (1− λ)× k, ε < −k

λ× ε, |ε| 6 k

ε− (1− λ)× k, ε > k

(9)

where k > 0, and λ ∈ (0, 1] is the smoothing parameter of the one-sided ATEWMA

TBE scheme. The implementation of Huber’s score function makes the suggested

one-sided ATEWMA TBE scheme to be a smooth combination of the Shewhart

TBE chart and the one-sided EWMA TBE chart using the truncation method. For

the upper-sided (or lower-sided) ATEWMA TBE scheme, an out-of-control signal

is generated, if W+
t (W−

t ) falls above (below) the control limit H+ (H−) of the

proposed scheme.

2.2. The process parameters are unknown

In real situations, process parameters are rarely known in advance. This fact

means that the process parameters need to be estimated from different Phase I

TBE observations Yt, t = 1, 2, . . .. In this paper, the in-control scale parameter

(or mean) θ0 is estimated using ` in-control TBE observations collected in Phase

I, namely, Y1, Y2, · · · , Y`. According to Zhang et al. (2014), the maximum likeli-
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hood estimator θ̂0 of θ0 is given as follows:

θ̂0 =
1

`

∑̀
t=1

Yt. (10)

Similar to the known parameter case, the scaled TBE random variable M̂t with

estimated parameter θ̂0 can be given as follows:

M̂t =
Xt

θ̂0

=
θ0

θ̂0

· θ1

θ0

· Xt

θ1

. (11)

Furthermore, according to Ozsan et al. (2010), let us define U = θ0/θ̂0, and then

the estimated TBE random variable M̂t in (11) can be restated as:

M̂t = U · τ ·Θt, (12)

where τ and Θt have already been defined in Section 2.1. Additionally, U is a

random variable, which represents the ratio of the in-control scale parameter θ0 to

its estimator θ̂0. It has been proven that U follows an inverse Gamma distribution

(see Ozsan et al. (2010)), and the probability density function (p.d.f.) fU(u|`) of

U is defined as follows:

fU(u|`) =
``

(`− 1)!
u−`−1exp

(
− `
u

)
. (13)

Due to the use of the estimator θ̂0 in (10), the corresponding truncated TBE

random variables M̂+
t and M̂−

t with estimated parameters can be, respectively,
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written as,

M̂+
t = max(1, M̂t), (14)

M̂−
t = min(1, M̂t). (15)

The in-control mean values of M̂+
t and M̂−

t areE(M̂+
t ) = 1+Ue−

1
U andE(M̂−

t ) =

U − Ue− 1
U , respectively, conditioned on U (see Appendix A in Xie et al. (2021

in press) for details). Similarly, the scaling of the upper-truncated and lower-

truncated TBE random variables M̂+
t and M̂−

t with estimated parameters are given

as follows:

Ẑt
+

=
M̂+

t

E(M̂+
t )
, (16)

Ẑt
−

=
M̂−

t

E(M̂−
t )
. (17)

The upper-sided and lower-sided ATEWMA TBE charting statistics with esti-

mated parameters, at sampling point t, can be written as follows:

Ŵ+
t = Ŵ+

t−1 + φ(êt
+) = ω(êt

+)Ẑt
+

+
(
1− ω(êt

+)
)
Ŵ+
t−1, (18)

Ŵ−
t = Ŵ−

t−1 + φ(êt
−) = ω(êt

−)Ẑt
−

+
(
1− ω(êt

−)
)
Ŵ−
t−1, (19)

where the initial value for Ŵ+
t (or Ŵ−

t ) is set to Ŵ+
0 = E(Ẑt

+
) = 1 (Ŵ−

0 =

E(Ẑt
−

) = 1), and φ(·) is the Huber’s score function given in (9). The upper-sided

(or lower-sided) ATEWMA TBE scheme gives an out-of-control signal when the
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charting statistic Ŵ+
t > Ĥ+ (Ŵ−

t < Ĥ−), where Ĥ+ and Ĥ− are the adjusted

control limits of the upper-sided and lower-sided ATEWMA TBE schemes, re-

spectively.

3. Run length evaluation

As one of the most widely used criterion in control charts, the average run

length (ARL) is defined as the expected number of charting statistics plotted on

the one-sided ATEWMA TBE scheme until an out-of-control signal is generated.

Commonly, if there is no shift occurs in the process, a control chart is expected

to run with a large in-control ARL value (hereafter denoted as the ARL0), but

when the process is out-of-control, the corresponding out-of-control ARL (here-

after denoted as the ARL1) value is expected to be as small as possible. In this

section, an appropriate discrete-state Markov chain model is established to inves-

tigate the ARL performance of the one-sided ATEWMA TBE scheme in the case

of known and estimated parameters. Due to the space limitation, only the upper-

sided ATEWMA TBE scheme with known and estimated parameters is selected

as an example to illustrate the establishment of the Markov chain model. For more

details about the Markov chain model of the lower-sided ATEWMA TBE scheme

with known and estimated parameters, readers can refer to Appendix A.

3.1. The Markov chain model for the known parameter case

The basic idea of the Markov chain model is to define the transition states by

dividing the in-control region into a finite number of sub-intervals, and then to ap-

proximate the charting statistic using the mid-point value of each sub-interval. In
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this study, we divide the in-control region into m sub-intervals, namely, transient

state 1, transient state 2, · · · , transient state m, and then the ARL of the upper-

sided ATEWMA TBE scheme with known parameters can be computed using,

ARL = pT(I−Q)−11, (20)

where p = (p1, p2, . . . , pm)T is the initial probability vector that corresponds tom

transient states, and Q = [qi,j]m×m is the transition probability matrix. Moreover,

1 is an m× 1-dimensional vector of 1’s, and I is an m×m-dimensional identity

matrix. It is easy to obtain that the in-control region is [1/ (1 + e−1) , H+]. Hence,

the width ∆+ of each sub-interval can be given as,

∆+ =
1

m

(
H+ − 1

1 + e−1

)
. (21)

For the proposed scheme with known parameters, the charting statistic W+
t is

regarded as in “transient state i”, whenW+
t ∈

(
E+
i −∆+/2, E+

i + ∆+/2
]
, where

E+
i = 1/ (1 + e−1) + (i − 1/2)∆+ is the mid-point value of the ith sub-interval,

i = 1, 2, . . . ,m, see Figure 1.

(Please insert Figure 1 here)

As the elements of the transition probability matrix Q, the one-step transient

probabilities qi,j from transient state i to transient state j can be computed as
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follows:

qi,j = Pr
(
W+
t ∈ transient state j

∣∣W+
t−1 ∈ transient state i

)
= Pr

(
E+
j −

∆+

2
< W+

t 6 E+
j +

∆+

2

∣∣∣∣W+
t−1 = E+

i

)
= Pr

(
E+
j − E+

i −
∆+

2
< φ(Z+

t −W+
t−1) 6 E+

j − E+
i +

∆+

2

) (22)

where i = 1, 2, . . . ,m, and j = 1, 2, . . . ,m. After some algebraic calculations,

the one-step transient probabilities qi,j are equivalent to,

qi,j = Pr

(
E+
i + φ−1

(
E+
j − E+

i −
∆+

2

)
< Z+

t 6 E+
i + φ−1

(
E+
j − E+

i +
∆+

2

))
= Pr

((
1 + e−1

) [
E+
i + φ−1

(
E+
j − E+

i −
∆+

2

)]
< M+

t 6
(
1 + e−1

)
[
E+
i + φ−1

(
E+
j − E+

i +
∆+

2

)])
(23)

where the Huber’s inverse score function φ−1(·) is given as,

φ−1(ε) =


ε− (1− λ)× k, ε < −λ× k

ε/λ, |ε| 6 λ× k

ε+ (1− λ)× k. ε > λ× k

(24)
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For simplicity, let us define,

Ψ1 =
(
1 + e−1

) [
E+
i + φ−1

(
E+
j − E+

i −
∆+

2

)]
, (25)

Ψ2 =
(
1 + e−1

) [
E+
i + φ−1

(
E+
j − E+

i +
∆+

2

)]
. (26)

Therefore, the one-step transient probabilities qi,j can be computed as follows:

qi,j =



0, if Ψ2 < 1

FΘ

(
Ψ2

τ

)
, if Ψ2 > 1 and Ψ1 < 1

FΘ

(
Ψ2

τ

)
− FΘ

(
Ψ1

τ

)
, if Ψ2 > 1 and Ψ1 > 1

(27)

where FΘ(·) is the cumulative distribution function (c.d.f.) of the standard expo-

nentially distributed random variable Θt defined in (2). Furthermore, the elements

pj of the initial probability vector p are defined as follows:

pj =


1, E+

j −
∆+

2
< W+

0 6 E+
j +

∆+

2

0, otherwise
(28)

where j = 1, 2, . . . ,m, and W+
0 = E(Z+

t ) = 1.

3.2. The Markov chain model for the estimated parameter case

Unlike the upper-sided ATEWMA TBE scheme with known parameters, the

unconditional ARL value (hereafter denoted as ÂRL) for the parameter estimation

case can be computed by integrating the ÂRL(τ |u) (i.e., the conditional ARL
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value) with respect to u, i.e.,

ÂRL =

∫ +∞

0

ÂRL(τ |u)× fU(u|`) du, (29)

where

ÂRL(τ |u) = p̂T(I− Q̂)−11, (30)

and fU(u|`) is the p.d.f. of the random variable U defined in (13). Note that

p̂ = (p̂1, p̂2, · · · , p̂m)T is an m × 1-dimensional initial probability vector with

estimated parameters, and Q̂ contains the corresponding transient probabilities

q̂i,j of going from transient state i to transient state j. The establishment of the

Markov chain model for the estimated parameter case is similar to that one for

the known parameter case, where the one-step transient probabilities q̂i,j in the

estimated parameter case are given as:

q̂i,j = Pr
(
Ŵ+
t ∈ transient state j

∣∣ Ŵ+
t−1 ∈ transient state i

)
= Pr

((
1 + ue−

1
u

)[
Ê+
i + φ−1

(
Ê+
j − Ê+

i −
∆̂+

2

)]
< M̂+

t 6
(

1 + ue−
1
u

)
[
Ê+
i + φ−1

(
Ê+
j − Ê+

i +
∆̂+

2

)])
(31)

Note that Ê+
j = 1

/(
1 + ue−

1
u

)
+ (j − 1/2)∆̂+ is the mid-point value of the

jth sub-interval, and ∆̂+ =
(
Ĥ+ − 1/

(
1 + ue−

1
u

))/
m is the width of the jth
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sub-interval, where j = 1, 2, . . . ,m. Furthermore, if we define,

Ψ̂1 =
(

1 + ue−
1
u

)[
Ê+
i + φ−1

(
Ê+
j − Ê+

i −
∆̂+

2

)]
, (32)

Ψ̂2 =
(

1 + ue−
1
u

)[
Ê+
i + φ−1

(
Ê+
j − Ê+

i +
∆̂+

2

)]
. (33)

Then, the entire one-step transient probabilities q̂i,j can be computed using,

q̂i,j =



0, if Ψ̂2 < 1

FΘ

(
Ψ̂2

u× τ

)
, if Ψ̂2 > 1 and Ψ̂1 < 1

FΘ

(
Ψ̂2

u× τ

)
− FΘ

(
Ψ̂1

u× τ

)
, if Ψ̂2 > 1 and Ψ̂1 > 1

(34)

where i = 1, 2, . . . ,m, and j = 1, 2, . . . ,m. Meanwhile, the elements p̂j of the

initial probability vector p̂ are,

p̂j =


1, Ê+

j −
∆̂+

2
< Ŵ+

0 6 Ê+
j +

∆̂+

2

0, otherwise
(35)

where Ŵ+
0 = E(Ẑ+

t ) = 1.

Finally, in order to overcome the computational difficulties caused by the eval-

uation of (29), the Gauss-Legendre quadrature method is considered in this paper

to obtain an accurate approximation.
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4. Optimal design of the one-sided ATEWMA TBE scheme

The optimal design of the one-sided ATEWMA TBE scheme aims at find-

ing a scheme, which can simultaneously provide the minimum ARL1 (denoted as

ARLmin) value for a specified small shift τS and an approximate ARLmin value

for a specified large shift τL, among those one-sided ATEWMA TBE schemes

leading to the same desired ARL0 value.

For the proposed one-sided ATEWMA TBE scheme, the combination of the

design parameters obtained from the optimal design procedure is named as the op-

timal parameter combination, and the scheme with the optimal parameter combi-

nation is denoted as the optimal one-sided ATEWMA TBE scheme. In this study,

a two-stage optimal design procedure, similar to the one presented in Capizzi &

Masarotto (2003), is introduced for determining the optimal parameter combina-

tion of the one-sided ATEWMA TBE scheme. Due to the space limitation, only

the upper-sided ATEWMA TBE scheme with known parameters is selected here

for illustration, and the steps are given as follows:

Step 1: Choose a desired ARL0 value, and two different shift values, i.e., a small

mean shift τS , and a large mean shift τL.

Step 2: With the constraint on the desired ARL0, search the optimal parame-

ter combination γ∗ = {λ∗L, k∗L, H+∗
L } of the upper-side ATEWMA TBE

scheme for the specified large shift τL. The corresponding result can be

regarded as the solution of the following nonlinear minimization problem,
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i.e., 

γ∗ = arg min
γ={λL,kL,H+

L }
ARL1(γ, τL).

Subject to :

ARL(γ∗, τL = 1) = ARL0,

(36)

where the ARL value of the upper-sided ATEWMA TBE scheme with

known parameters can be computed using (20).

Step 3: Select a small positive constant α, for example, α = 0.05, and then the op-

timal parameter combination ζ∗ = {λ∗, k∗, H+∗} of the proposed scheme

can be searched for detecting both the small shift τS and the large shift τL

using the following equations,



ζ∗ = arg min
ζ={λ,k,H+}

ARL1(ζ, τS).

Subject to :

ARL(ζ∗, τS = 1) = ARL0,

ARL1(ζ∗, τL) 6 (1 + α)× ARL1(γ∗, τL).

(37)

More specifically, using equation (37), the upper-sided ATEWMA TBE

scheme with optimal parameter combination ζ∗ provides the ARLmin value

for the specified small shift τS . Meanwhile, the implementation of the

positive constant α in (37) ensures that the ARL1 value of the proposed

scheme for the specified large shift τL is “nearly minimum”.

Considering the computational difficulties in the optimal design procedure, we
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suggest the use of an improved particle swarm optimization algorithm, named the

DNSPSO algorithm, to solve the nonlinear minimization problem presented in

(36) and (37). For more details on the DNSPSO algorithm, readers can refer to

Wang et al. (2013).

According to the optimal design procedure described above, for several de-

sired values of ARL0 ∈ {200, 370, 500} and different shift combinations (τS, τL),

the optimal parameter combinations ζ∗ of the upper-sided and lower-sided ATEWMA

TBE schemes with known parameters are listed in Tables 1 and 2, respectively.

For instance, when the desired ARL0 = 370, the optimal parameter combination

ζ∗ = {λ∗, k∗, H+∗} of the upper-sided ATEWMA TBE scheme is {0.2051, 4.9170, 1.7620}

for (τS, τL) = (1.3, 3). Meanwhile, when (τS, τL) = (0.7, 0.1), the corresponding

optimal parameter combination ζ∗ = {λ∗, k∗, H−∗} of the lower-sided ATEWMA

TBE scheme is {0.2951, 2.3076, 0.3983}.

(Please insert Tables 1 and 2 here)

As pointed out by Saleh et al. (2013), the parameter estimation has a signif-

icant impact on the Phase II performance of the conventional AEWMA scheme.

Motivated by this fact, we further study the effect of parameter estimation on the

one-sided ATEWMA TBE scheme. Due to the space limitation, only the case of

ARL0 = 370 is considered here for illustration. Similar to the study in Saleh et al.

(2013), with the optimal parameter combinations ζ∗ determined in the known pa-

rameter case, the in-control ÂRL (i.e., ÂRL0) values of the proposed scheme with

estimated parameters are shown in Table 3.
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(Please insert Table 3 here)

In order to provide a fair performance comparison between the one-sided ATEWMA

TBE scheme with estimated parameters and its known parameter counterpart,

both schemes should be designed based on the same in-control ARL value (i.e.,

ÂRL0 = ARL0). One effective way to achieve this condition is to adjust the

control limits in the estimated parameter case, so that the scheme can provide a

desired ÂRL0 when various numbers ` of TBE observations collected in Phase I

are pre-specified. Based on this way, the upper-sided (or lower-sided) ATEWMA

TBE scheme with estimated parameters can produce the desired ÂRL0 using the

design parameter combination {λ∗, k∗, Ĥ+∗} (or {λ∗, k∗, Ĥ−∗}), where λ∗ and

k∗ are those optimal design parameters determined in the known parameter case,

and Ĥ+∗ (or Ĥ−∗) is the corresponding adjusted upper (lower) control limit of

the proposed scheme with estimated parameters. In this paper, we define the de-

sign parameter combinations ζ̂∗ = {λ∗, k∗, Ĥ+∗} and ζ̂∗ = {λ∗, k∗, Ĥ−∗} as the

optimal parameter combinations of the upper-sided and lower-sided ATEWMA

TBE schemes with estimated parameters, respectively. With the constraint on the

desired ÂRL0 = 370, the adjusted control limits Ĥ+∗ and Ĥ−∗ of the proposed

schemes are given in Table 4 for ` ∈{20, 50, 100, 300, 500, 1000}.

(Please insert Table 4 here)

From Tables 3 and 4, we can draw the following conclusions:

• As it can be seen from Table 3, for a fixed shift combination (τS, τL), the

difference between ARL0 (corresponding to the known parameter case, say,
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` = +∞) and ÂRL0 (associated with ` ∈ {20, 50, 100, 300, 500, 1000})

decreases as ` increases. That is to say, the effect of the parameter estima-

tion on the ÂRL0 is large when ` is small.

• Note from Tables 1, 2, and 4 that, for a fixed shift combination (τS, τL), the

adjusted control limits Ĥ+∗ (or Ĥ−∗) of the proposed upper-sided (lower-

sided) ATEWMA TBE scheme increases (decreases) as ` increases.

It should be stressed that the goal of the study for the parameter estimation case

is not to show the superiority of the one-sided ATEWMA TBE scheme over its

competitors, but to investigate the impact of the Phase I parameter estimation on

the ARL performance of the proposed scheme.

5. Comparative studies

Two comparative schemes are introduced here for comparison with the one-

sided ATEWMA TBE scheme in the case of known and estimated parameters: one

is the one-sided REWMA TBE scheme designed by Gan (1998), and the other one

is the one-sided AEWMA TBE scheme proposed in Hu et al. (2021).

5.1. The one-sided REWMA TBE scheme

The one-sided exponential EWMA chart with reflecting boundaries (i.e., the

one-sided REWMA TBE scheme in this paper) was firstly designed by Gan (1998)

to monitor either increases or decreases in the process mean.
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• For the upper-sided REWMA TBE scheme, its charting statistic is given as:

Q+
R,t = max

(
BU , λRMt + (1− λR)Q+

R,t−1

)
. (38)

• Meanwhile, the monitoring statistic of the lower-sided REWMA TBE scheme

is defined as follows:

Q−R,t = min
(
BL, λRMt + (1− λR)Q−R,t−1

)
, (39)

whereBU andBL are the reflecting boundaries of the upper-sided and lower-sided

REWMA TBE schemes, respectively. In addition, λR represents the smoothing

factor, the initial value Q+
R,0 = Q−R,0 = E(Mt) = 1, and both BU and BL are

suggested to be set at 1. Similar to the optimal design procedure designed in

Xie et al. (2021 in press), the optimal parameter combination of the one-sided

REWMA TBE scheme can be easily obtained for a fixed mean shift τR. More

specifically, based on ARL0 = ÂRL0 = 370, the optimal parameter combinations

of the one-sided REWMA TBE scheme with known (i.e., ` = +∞) and estimated

(i.e., ` = 100) parameters are presented in Table 5 for different designed shift

levels τR, where τR is a particular shift size for which the one-sided REWMA

TBE scheme is optimally designed, λ∗R is the optimal smoothing factor, h+∗
R (or

h−∗R ) is the control limit of the upper-sided (lower-sided) REWMA TBE scheme

with known parameters, and ĥ+∗
R (or ĥ−∗R ) is the adjusted control limit of the upper-

sided (lower-sided) REWMA TBE scheme with estimated parameters.
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5.2. The one-sided AEWMA TBE scheme

Similar to the methodology used for the one-sided REWMA TBE scheme,

the one-sided AEWMA TBE scheme was firstly introduced by Hu et al. (2021)

for detecting both small and large shifts simultaneously. As a comparison, the

charting statistic of the upper-sided AEWMA TBE scheme is given as:

Q+
A,t = max

(
1, ω(e+

A,t)Mt +
(
1− ω(e+

A,t)
)
Q+
A,t−1

)
, (40)

where e+
A,t = Mt − Q+

A,t−1, and the weight ω(e+
A,t) = φ(e+

A,t)/e
+
A,t. The Huber’s

score function φ(·) used in the one-sided AEWMA TBE scheme is the same as

it is shown in (11), excepted that λ should be replaced with λA, where λA is the

smoothing parameter of one-sided AEWMA TBE scheme. On the other side, for

the lower-sided AEWMA TBE scheme, its charting statistic is defined as follows:

Q−A,t = min
(
1, ω(e−A,t)Mt +

(
1− ω(e−A,t)

)
Q−A,t−1

)
, (41)

where the error e−A,t = Mt−Q−A,t−1, and ω(e−A,t) = φ(e−A,t)/e
−
A,t. Additionally, the

initial values of this comparative scheme are set to Q+
A,0 = Q−A,0 = E(Mt) = 1.

Although an optimal design procedure of the one-sided AEWMA TBE scheme

has been introduced by Hu et al. (2021), the corresponding two-stage procedure

developed in this paper is also popular and it is adopted for this existing compara-

tive scheme to provide a fair comparison with the proposed one-sided ATEWMA

TBE scheme. The optimal parameter combinations of the one-sided AEWMA
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TBE chart with known and estimated parameters are presented in Table 5 for

ARL0 = ÂRL0 = 370 and ` = 100, where h+∗
A and h−∗A (or ĥ+∗

A and ĥ−∗A )

are the control limits (adjusted control limits) of the upper-sided and lower-sided

AEWMA TBE schemes with known (estimated) parameters, respectively.

5.3. Performance comparison

Without loss of generality, with the constraint on the desired ARL0, the smaller

the ARL1 for the specified shift level τ , the better the performance of the control

chart. In this paper, based on ARL0 = 370 and m = 151, the ARL1 performance

of the one-sided ATEWMA TBE scheme in detecting either upward or downward

shift is compared with that of two comparative schemes, respectively.

In the case of known parameter, the ARL1 values of the one-sided ATEWMA

TBE scheme and the one-sided AEWMA TBE scheme in detecting both upward

and downward shifts τ are presented in Tables 6 and 7, respectively. Note that

the optimal parameter combinations of these two schemes for different shift com-

binations (τS, τL) are obtained from Tables 1, 2, and 5, respectively. For ex-

ample, when the desired ARL0 = 370 and the specified upward shift combi-

nation (τS, τL) = (1.5, 3), the ARL1 values of the upper-sided ATEWMA TBE

scheme and the upper-sided AEWMA TBE scheme for the upward shift τ = 2

are 11.46 and 12.13, respectively (see Table 6). Meanwhile, if a downward shift

combination (τS, τL) = (0.7, 0.2) is selected, the ARL1 values of the lower-sided

ATEWMA TBE scheme and the lower-sided AEWMA TBE scheme for the down-
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ward shift τ = 0.8 are 89.92 and 119.26, respectively (see Table 7).

(Please insert Tables 6 and 7 here)

For the estimated parameter case, the settings in this scenario are similar to

the known parameter case, excepted that the number ` of in-control TBE obser-

vations collected in Phase I need to be fixed first. Taking ` = 100 for illustra-

tion, the ÂRL1 values of the one-sided ATEWMA TBE scheme and the one-sided

AEWMA TBE scheme in detecting both upward and downward shifts τ are pre-

sented in Tables 8 and 9, respectively. Meanwhile, the corresponding optimal

parameter combinations of these two control charts for ÂRL0 = 370 and ` = 100

are shown in Tables 4 and 5, respectively. For instance, when (τs, τL) = (1.5, 5),

the optimal parameter combinations of the upper-sided ATEWMA TBE scheme

and the upper-sided AEWMA TBE scheme for ÂRL0 = 370 and ` = 100 are

{λ∗, k∗, Ĥ+∗} = {0.3105, 7.0272, 2.0854} and {λ∗A, k∗, ĥ+∗
A } = {0.2524, 5.1444, 2.4029},

respectively (see Tables 1, 4, and 5). Additionally, the corresponding ÂRL1 val-

ues of these two schemes for detecting the upward shift τ = 1.1 are 190.19 and

186.10, respectively (see Table 8).

(Please insert Tables 8 and 9 here)

On the other hand, in order to provide some intuitive comparisons between

the one-sided ATEWMA TBE scheme and the one-sided REWMA TBE scheme

in both the known and the estimated parameter cases, three one-sided REWMA

TBE schemes optimally designed for different specified shifts τR are selected in

this study. The ln(ARL1) and ln(ÂRL1) curves of these schemes for detecting
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both upward and downward shifts τ are given in Figures 2 to 5, respectively.

Due to the space limitation, irrespective of the known or the estimated parameter

case, the upper-sided ATEWMA TBE scheme is designed based on τS = 1.5

and τL = 4.0, and the other three different upper-sided REWMA TBE charts are

respectively designed to provide the ARLmin for different specified upward shifts

τR ∈ {1.1, 2.5, 5.0}. Similarly, in the case of a downward shift detection, the

lower-sided ATEWMA TBE scheme is designed for τS = 0.7 and τL = 0.2, and

the other three different lower-sided REWMA TBE charts are designed based on

three specified downward shifts τR ∈ {0.9, 0.6, 0.3}, respectively.

(Please insert Figures 2 to 5 here)

Based on these comparisons, some conclusions can be drawn as follows:

• For the known parameter case, the one-sided ATEWMA TBE scheme is

uniformly more sensitive than the one-sided AEWMA TBE scheme for de-

tecting both upward and downward shifts, especially for small shift ranges.

Moreover, in the detection of the upward (downward) shift, the ARL1 dif-

ference between the upper-sided (lower-sided) ATEWMA TBE scheme and

the upper-sided (lower-sided) AEWMA TBE scheme decreases, as τ in-

creases (decreases) (see Tables 6 and 7).

• For the estimated parameter case (for instance, ` = 100), most ARL1 val-

ues of the upper-sided AEWMA TBE scheme are smaller than those of

the upper-sided ATEWMA TBE scheme. On the contrary, the lower-sided

ATEWMA TBE scheme performs better than the lower-sided AEWMA
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TBE chart in most downward shift detections. This fact means that the

parameter estimation has a significant impact on the ARL performance of

these two schemes (see Tables 8 and 9).

• Irrespective of the upward or the downward shift detection case, the ad-

verse effect of parameter estimation on the one-sided ATEWMA TBE chart

is relatively smaller than that on the one-sided AEWMA TBE chart. For ex-

ample, when shift combination (τS, τL) = (1.1, 3.0), the ARL1 and ÂRL1

values of the upper-sided ATEWMA TBE scheme for τ = 1.1 are 176.06

and 175.51, respectively. Meanwhile, the corresponding ARL1 and ÂRL1

values of the upper-sided AEWMA TBE scheme are 182.06 and 170.42,

respectively (see Tables 6 and 8).

• No matter in the known or the estimated parameter case, the upper-sided

(or lower-sided) ATEWMA TBE scheme can provide an effective protec-

tion against both small and large upward (downward) shifts simultaneously.

Moreover, the one-sided ATEWMA TBE scheme outperforms the one-sided

REWMA TBE scheme over a wide range of shifts, especially for detecting

a shift that is much larger or smaller than its designed shift size τR. For

instance, in the known parameter case, the upper-sided ATEWMA TBE

scheme designed for (τS, τL) = (1.5, 4.0) and the upper-sided REWMA

TBE chart designed for τR = 1.1 have almost the same ARL1 profiles

when the magnitude of upward shift τ < 1.5, but when a large upward shift

(for example, τ > 2) occurs in the process, the corresponding upper-sided
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ATEWMA TBE scheme can provide a better protection than the upper-sided

REWMA TBE scheme designed for τR = 1.1 (see Figure 2).

To sum up, in the case of known parameter, the one-sided ATEWMA TBE

scheme is a better alternative to the one-sided AEWMA TBE chart for detecting

both upward and downward shifts. On the other hand, irrespective of the known

or the estimated parameter case, the one-sided ATEWMA TBE scheme is signif-

icantly superior to the one-sided REWMA TBE chart in detecting a shift that is

much larger or smaller than the designed shift size τR.

6. Real data applications

In this section, two real datasets are employed to illustrate the implementa-

tion of the one-sided ATEWM TBE schemes for monitoring mean shifts of high-

quality processes. More specifically, one is based on the electronic component

failure time monitoring from Samsung company as reported in Qu et al. (2018),

and the other one is based on the aircraft reliability monitoring from the Hellenic

Air Force (HAF) as reported in Alevizakos & Koukouvinos (2020).

6.1. Failure time monitoring

Samsung company manufactures many kinds of electronic components, in-

cluding the organic light-emitting diode (OLED). The dataset of OLED failure

time using an accelerated life test (ALT) employed here is adapted from Qu et al.

(2018), which consists of 30 in-control TBE observations and 20 out-of-control

TBE observations, see Table 10.
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(Please insert Table 10 here)

As it has been shown in Qu et al. (2018), the failure time Xt under the ALT

follows an exponential distribution, and the in-control mean value of the expo-

nential distribution can be estimated from those 30 in-control TBE observations

in Table 10 using (10), say,

θ̂0 =
1

30

30∑
t=1

Xt ≈ 1.27 min

When the OLED manufacturing process is in-control, we take this estimate as the

mean value θ0 of the OLED failure time under the ALT. In order to ensure the

quality of the OLEDs, quality engineers need to pay more attention to the down-

ward shift that occurs in the in-control mean value θ0, because a decrease in θ0

means that the quality of OLED deteriorates. On the other hand, since the shift

size in the real manufacturing process usually cannot be predicted in advance, it is

more realistic to assume that the engineers are interested in detecting both a small

downward shift τL and a large downward shift τS simultaneously, rather than mon-

itoring a particular mean shift level. In this context, the lower-sided ATEWMA

TBE scheme can be used to monitor the OLED manufacturing process by check-

ing the time Xt to failure under the ALT.

In this example, the optimal design parameters of the lower-sided ATEWMA

TBE scheme can be searched by using the optimal design procedure introduced

in Section 4, with the constraint on the desired ARL0 and the specified shift com-
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bination (τS, τL). More specifically, assuming that ARL0 = 200, and engineers

are interested in detecting both the small downward shift 0.8 × θ0 and the large

downward shift 0.2 × θ0, i.e., (τS, τL) = (0.8, 0.2). Based on these two set-

tings, the optimal parameter combination ζ∗ = {λ∗, k∗, H−∗} of the proposed

scheme is {0.1354, 18.2366, 0.6526}. Furthermore, three comparative schemes,

namely, a lower-sided AEWMA TBE scheme and the other two different lower-

sided REWMA TBE schemes (which are respectively designed for τR = 0.8 and

τR = 0.2), are used here to provide a comparison with the lower-sided ATEWMA

TBE scheme in monitoring the downward shift of the OLED failure time. Based

on ARL0 = 200, the optimal parameter combination {λ∗A, k∗, h−∗A } of the lower-

sided AEWMA TBE scheme is {0.2545, 11.0204, 0.3453}, and the optimal pa-

rameter combinations {λ∗R, h−∗R } of the lower-sided REWMA TBE schemes for

τR = 0.8 and τR = 0.2 are {0.0235, 0.8162} and {0.3708, 0.2496}, respectively.

With the optimal parameter combinations of these schemes, the charting statis-

tics W−
t of the lower-sided ATEWMA TBE scheme can be computed using (1),

(4), (6), (8), and (9). Meanwhile, the charting statistics Q−A,t of the lower-sided

AEWMA TBE scheme can be obtained using (1), (9), and (41), and the corre-

sponding charting statistics Q−R,t of the lower-sided REWMA TBE scheme can

be given using (1) and (39). All charting statistics are shown in Columns 6 to 9

of Table 10, respectively. It should be noted that, for these lower-sided schemes,

an out-of-control signal is generated if the charting statistic falls below the corre-

sponding control limit. For example, when t = 38, the charting statistic W−
t of
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the lower-sided ATEWMA TBE scheme falls below its control limitH−∗, see Fig-

ure 6 (a). This means that an out-of-control signal of the lower-sided ATEWMA

TBE scheme is generated and corresponding actions should be taken to identify

and remove the downward mean shift. Meanwhile, as we can see from Table 10

and Figures 6 (b), (c), and (d), the lower-sided AEWMA TBE scheme gives an

out-of-signal at the 44th TBE observation, the lower-sided REWMA TBE scheme

designed for τR = 0.8 signals at the 43th TBE observation, and the lower-sided

REWMA TBE scheme designed for τR = 0.2 signals at the 46th TBE observa-

tion. This indicates that, in this example, the lower-sided ATEWMA TBE scheme

is superior to both the lower-sided AEWMA TBE scheme and the lower-sided

REWMA TBE schemes in monitoring the OLED manufacturing process.

(Please insert Figure 6 here)

6.2. Aircraft reliability monitoring

Another real dataset from the Hellenic Air Force (HAF) as reported in Aleviza-

kos & Koukouvinos (2020) is also employed here to show the implementation of

the one-sided ATEWMA TBE scheme. This dataset is related to the accidents of

F-16 aircrafts in the HAF. It is worth noting that the time between two accidents

of F-16 aircrafts can be regarded as an important quality characteristic concerning

aircraft reliability monitoring, as the decrease in the mean value of those time in-

tervals indicates that the reliability of the aircraft declined. In this real dataset, 16

time intervals Xt between successive accidents of F-16 aircrafts are recorded, see

Column 2 in Table 11. It has been proved by Alevizakos & Koukouvinos (2020)
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that these time intervals Xt between two consecutive accidents of F-16 aircrafts

fit an exponential distribution with scale parameter θ1 = 615 (days). Similar to

the assumption in Hu et al. (2021), the in-control value of θ0 in this example is

assumed to be known as 1460 (days). That is to say, the process is acceptable if an

accident occurs every four years. Since the investigators are more concerned with

a decrease in the mean value of those time intervals Xt, a lower-sided ATEWMA

TBE scheme is suggested here to monitor those 16 Phase II TBE observations,

where the potential downward shift is τ = θ1/θ0 = 615/1460 = 0.42.

(Please insert Table 11 here)

Similar to the steps introduced in Alevizakos & Koukouvinos (2020), the de-

sign parameters of the scheme should be determined first, imposing the constraint

that the acceptable ARL0 reaches its pre-specified target. In this example, as-

suming that the investigators decide to set ARL0 = 370, and the lower-sided

ATEWMA TBE scheme designed for (τs, τL) = (0.7, 0.2) can be considered to

provide a good protection against the potential downward shift τ = 0.42. With

the constraint on ARL0 = 370, the optimal parameter combination of the pro-

posed scheme is {λ∗, k∗, H−∗}={0.0729,13.5426,0.7412} (see Table 2). Mean-

while, the lower-sided AEWMA TBE scheme and the other two different lower-

sided REWMA TBE schemes (which are respectively designed for τR = 0.7 and

τR = 0.2) are also used here for comparison. Based on ARL0 = 370, the opti-

mal parameter combination of the lower-sided AEWMA TBE scheme designed

for (τs, τL) = (0.7, 0.2) is {λ∗A, k∗, h−∗A }={0.2202, 7.9248, 0.3488} (see Table

5), and the corresponding optimal parameter combinations of the lower-sided
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REWMA TBE charts for τR = 0.7 and τR = 0.2 are {λ∗R, h−∗R }={0.0362,0.7252}

and {λ∗R, h−∗R }={0.3454,0.2388}, respectively (see Table 5).

After determining the optimal parameter combinations, all charting statistics

generated by those schemes are recorded in Table 11 and plotted in Figures 7

(a), (b), (c), and (d). As it can be seen that, the lower-sided ATEWMA TBE

scheme gives an out-of-control signal at the 16th TBE observation (note that

the corresponding 16th charting statistic is bolded in Table 11), while the lower-

sided AEWMA TBE scheme and the other two lower-sided REWMA TBE charts

cannot detect this downward shift at all. This fact implies that the lower-sided

ATEWMA TBE scheme in this example is more effective than the lower-sided

AEWMA TBE scheme and the lower-sided REWMA TBE schemes for detecting

the downward shift in aircraft reliability monitoring.

(Please insert Figure 7 here)

7. Conclusions

In the manufacturing industry, there are many high-quality processes that can

be reasonably modelled using the exponential distribution. In order to monitor

such processes, a new one-sided ATEWMA TBE scheme with known and esti-

mated parameters is proposed in this study, for providing a good protection against

both small and large shifts assuming a known shift direction. Due to the imple-

mentation of Huber’s score function, the proposed scheme can be regarded as a

smooth combination of a Shewhart TBE chart and a one-sided EWMA TBE chart
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using the truncation method. A dedicated Markov chain model is established to

evaluate the RL properties of the proposed scheme with known and estimated

parameters. Based on the ARL criteria, a two-stage optimal design procedure

is developed for searching the optimal parameter combination of the proposed

scheme. Numerical results show that, in the case of known parameter, the one-

sided ATEWMA TBE scheme performs uniformly better than the other two exist-

ing comparative schemes. In addition, the recommended scheme with estimated

parameters performs better than the one-sided AEWMA TBE chart in compensat-

ing the adverse effect of parameter estimation.

Several research directions are summarized here for future research works.

First, a bootstrap-based design approach can be considered to overcome the is-

sue that a large number of Phase I TBE observations are usually unavailable in

practice. Secondly, from a practical point of view, both the steady-state and the

worst-case scenarios of the recommended scheme are worth studying. Last but

not least, the one-sided ATEWMA TBE scheme based on exponential distribu-

tion can theoretically be extended to that one based on Gamma distribution for

monitoring the sum of inter-arrival times before the rth event.

Disclosure statement

No potential conflict of interest was reported by the author(s).

36



References

Alevizakos, V., & Koukouvinos, C. (2020). A double exponentially weighted

moving average chart for time between events. Communications in Statistics-

Simulation and Computation, 49, 2765–2784.

Ali, S., & Pievatolo, A. (2016). High quality process monitoring using a class of

inter-arrival time distributions of the renewal process. Computers & Industrial

Engineering, 94, 45–62.

Aslam, M., Khan, N., Azam, M., & Jun, C. H. (2014). Designing of a new moni-

toring t-chart using repetitive sampling. Information Sciences, 269, 210–216.

Capizzi, G., & Masarotto, G. (2003). An adaptive exponentially weighted moving

average control chart. Technometrics, 45, 199–207.

Castagliola, P., Tran, K., Celano, G., Rakitzis, A., & Maravelakis, P. (2019). An

EWMA-type sign chart with exact run length properties. Journal of Quality

Technology, 51, 51–63.

Chiu, J., & Tsai, C. (2013). Properties and performance of one-sided cumulative

count of conforming chart with parameter estimation in high-quality processes.

Journal of Applied Statistics, 40, 2341–2353.

Chong, N. L., Khoo, M. B., Castagliola, P., Saha, S., & Mim, F. N. (2021). A vari-

able parameters auxiliary information based quality control chart with applica-

tion in a spring manufacturing process: The markov chain approach. Quality

Engineering, 33, 252–270.

37



Gan, F. (1998). Designs of one-and two-sided exponential ewma charts. Journal

of Quality Technology, 30, 55–69.

Haq, A. (2020). One-sided and two one-sided MEWMA charts for monitoring

process mean. Journal of Statistical Computation and Simulation, 90, 699–

718.

Haq, A., & Khoo, M. B. (2019). New adaptive EWMA control charts for monitor-

ing univariate and multivariate coefficient of variation. Computers & Industrial

Engineering, 131, 28–40.

Hu, X., Castagliola, P., Zhong, J., Tang, A., & Qiao, Y. (2021). On the perfor-

mance of the adaptive ewma chart for monitoring time between events. Journal

of Statistical Computation and Simulation, 91, 1175–1211.

Jardim, F. S., Chakraborti, S., & Epprecht, E. K. (2020). Two perspectives for

designing a phase II control chart with estimated parameters: The case of the

shewhart X chart. Journal of Quality Technology, 52, 198–217.

Mahmoud, M. A., & Maravelakis, P. E. (2010). The performance of the MEWMA

control chart when parameters are estimated. Communications in Statistics-

Simulation and Computation, 39, 1803–1817.

Mitra, A., Lee, K. B., & Chakraborti, S. (2019). An adaptive exponentially

weighted moving average-type control chart to monitor the process mean. Eu-

ropean Journal of Operational Research, 279, 902–911.

38



Montgomery, D. C. (2012). Introduction to statistical quality control. (Seventh

ed.). New York: John Wiley & Sons.

Ozsan, G., Testik, M. C., & Weiß, C. H. (2010). Properties of the exponential

EWMA chart with parameter estimation. Quality and Reliability Engineering

International, 26, 555–569.

Perry, M. B. (2020). An EWMA control chart for categorical processes with

applications to social network monitoring. Journal of Quality Technology, 52,

182–197.

Psarakis, S. (2015). Adaptive control charts: recent developments and extensions.

Quality and Reliability Engineering International, 31, 1265–1280.

Qiao, Y., Sun, J., Castagliola, P., & Hu, X. (2020 in press). Optimal design of

one-sided exponential EWMA charts based on median run length and expected

median run length. Communications in Statistics-Theory and Methods, 0, 1–21.

doi:10.1080/03610926.2020.1782937.

Qu, L., Khoo, M. B. C., Castagliola, P., & He, Z. (2018). Exponential cumulative

sums chart for detecting shifts in time-between-events. International Journal

of Production Research, 56, 3683–3698.

Saleh, N. A., Mahmoud, M. A., & Abdel-Salam, A. S. G. (2013). The perfor-

mance of the adaptive exponentially weighted moving average control chart

with estimated parameters. Quality and Reliability Engineering International,

29, 595–606.

39



Santiago, E., & Smith, J. (2013). Control charts based on the exponential distri-

bution: Adapting runs rules for the t chart. Quality Engineering, 25, 85–96.

Sanusi, R. A., Teh, S. Y., & Khoo, M. B. (2020). Simultaneous monitoring of

magnitude and time-between-events data with a Max-EWMA control chart.

Computers & Industrial Engineering, 142, 106378.

Shu, L., Jiang, W., & Wu, S. (2007). A one-sided ewma control chart for monitor-

ing process means. Communications in Statistics-Simulation and Computation,

36, 901–920.

Tang, A., Castagliola, P., Hu, X., & Sun, J. (2019a). The adaptive EWMA median

chart for known and estimated parameters. Journal of Statistical Computation

and Simulation, 89, 844–863.

Tang, A., Sun, J., Hu, X., & Castagliola, P. (2019b). A new nonparametric adap-

tive EWMA control chart with exact run length properties. Computers & In-

dustrial Engineering, 130, 404–419.

Testik, M. C., Kara, O., & Knoth, S. (2020). An algorithmic approach to outlier

detection and parameter estimation in Phase I for designing Phase II EWMA

control chart. Computers & Industrial Engineering, 144, 106440.

Urbieta, P., Lee HO, L., & Alencar, A. (2017). CUSUM and EWMA control

charts for negative binomial distribution. Quality and Reliability Engineering

International, 33, 793–801.

40



Wang, F., Bizuneh, B., & Cheng, X. (2019). One-sided control chart based on

support vector machines with differential evolution algorithm. Quality and Re-

liability Engineering International, 35, 1634–1645.

Wang, H., Sun, H., Li, C., Rahnamayan, S., & Pan, J. (2013). Diversity enhanced

particle swarm optimization with neighborhood search. Information Sciences,

223, 119–135.

Xie, F., Castagliola, P., Qiao, Y., Hu, X., & Sun, J. (2021 in press). A one-sided

exponentially weighted moving average control chart for time between events.

Journal of Applied Statistics, 0, 1–30. doi:10.1080/02664763.2021.1967894.

Xie, Y., Tsui, K., Xie, M., & Goh, T. (2010). Monitoring time-between-events

for health management. In 2010 Prognostics and System Health Management

Conference (pp. 1–8). IEEE.

Zhang, C., Xie, M., & Goh, T. N. (2006). Design of exponential control charts

using a sequential sampling scheme. IIE Transactions, 38, 1105–1116.

Zhang, M., Megahed, F. M., & Woodall, W. H. (2014). Exponential CUSUM

charts with estimated control limits. Quality and Reliability Engineering Inter-

national, 30, 275–286.

Zwetsloot, I. M., & Woodall, W. H. (2017). A head-to-head comparative study of

the conditional performance of control charts based on estimated parameters.

Quality Engineering, 29, 244–253.

41



Appendix A

Similar to the establishment of the Markov chain model for the upper-sided

ATEWMA TBE scheme, the in-control region in the downward shift case is de-

noted as [H−, 1/(1 − e−1)], and the transient states are obtained by diving the

in-control region into m sub-intervals of the width ∆−, where

∆− =
1

m

(
1

1− e−1
−H−

)
. (A.1)

If we define E−j as the mid-point value of the jth sub-interval, say,

E−j =
1

1− e−1
− (j − 1

2
)∆−, (A.2)

where j = 1, 2, . . . ,m. Then, the charting statistic W−
t in the transient state j

can be written as E−j −∆−/2 < W−
t 6 E−j + ∆−/2. Furthermore, the transient

probabilities qi,j from transient state i to transient state j are computed as follows:

qi,j = Pr
(
W−
t ∈ transient state j

∣∣W−
t−1 ∈ transient state i

)
= Pr

(
E−j − E−i −

∆−

2
< φ(Z−t −W−

t−1) 6 E−j − E−i +
∆−

2

)
= Pr

((
1− e−1

) [
E−i + φ−1

(
E−j − E−i −

∆−

2

)]
< M−

t 6

(
1− e−1

) [
E−i + φ−1

(
E−j − E−i +

∆−

2

)])
.

(A.3)
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where φ−1(·) is defined in (24), i = 1, 2, . . . ,m, and j = 1, 2, . . . ,m. If we define,

Ψ3 =
(
1− e−1

) [
E−i + φ−1

(
E−j − E−i −

∆−

2

)]
, (A.4)

Ψ4 =
(
1− e−1

) [
E−i + φ−1

(
E−j − E−i +

∆−

2

)]
, (A.5)

the transient probabilities qi,j can be denoted as:

qi,j =



0, if Ψ3 > 1

1− FΘ

(
Ψ3

τ

)
, if Ψ3 6 1 and Ψ4 > 1

FΘ

(
Ψ4

τ

)
− FΘ

(
Ψ3

τ

)
, if Ψ3 6 1 and Ψ4 6 1

(A.6)

Additionally, the elements pj of the initial probability vector p are given as:

pj =


1, E−j −

∆−

2
< W−

0 6 E−j +
∆−

2

0, otherwise
(A.7)

where j = 1, 2, . . . ,m, and W−
0 = E(Z−t ) = 1. Finally, the ARL value of the

lower-sided ATEWMA TBE scheme can be computed using (20).

For the lower-sided ATEWMA TBE scheme with estimated parameters, we

define the width of the jth sub-interval as ∆̂− =
(

1/
(
u− ue− 1

u

)
− Ĥ−

)/
m,

and the mid-point value of the jth sub-interval as Ê−j = 1
/(

u− ue− 1
u

)
− (j −

1/2)∆̂−. Then, the one-step transient probabilities q̂i,j in matrix Q̂ are computed
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as follows:

q̂i,j =



0, if Ψ̂3 > 1

1− FΘ

(
Ψ̂3

u× τ

)
, if Ψ̂3 6 1 and Ψ̂4 > 1

FΘ

(
Ψ̂4

u× τ

)
− FS

(
Ψ̂3

u× τ

)
, if Ψ̂3 6 1 and Ψ̂4 6 1

(A.8)

where

Ψ̂3 =
(
u− ue−

1
u

)[
Ê−i + φ−1

(
Ê−j − Ê−i −

∆̂−

2

)]
, (A.9)

Ψ̂4 =
(
u− ue−

1
u

)[
Ê−i + φ−1

(
Ê−j − Ê−i +

∆̂−

2

)]
, (A.10)

and i = 1, 2, . . . ,m, j = 1, 2, . . . ,m. In addition, the elements p̂j of the initial

probability vector p̂ are given as,

p̂j =


1, Ê−j −

∆̂−

2
< Ŵ−

0 6 Ê−j +
∆̂−

2

0, otherwise
(A.11)

where Ŵ−
0 = E(Ẑ−t ) = 1. After determining the matrix Q̂ and the vector p̂, the

ARL value of the lower-sided ATEWMA TBE scheme with estimated parameters

are computed using (29) and (30).
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Table 1: Optimal parameter combinations ζ∗ of the upper-sided ATEWMA TBE scheme for
ARL0 ∈ {200, 370, 500}.

τS τL

ARL0 = 200 ARL0 = 370 ARL0 = 500

λ∗ k∗ H+∗ λ∗ k∗ H+∗ λ∗ k∗ H+∗

1.1 3 0.1883 10.0043 1.6032 0.1857 14.9105 1.6990 0.0710 5.0794 1.3378
1.3 3 0.1414 4.7324 1.4687 0.2051 4.9170 1.7620 0.0891 13.8196 1.4046
1.5 3 0.0997 19.3077 1.3443 0.1167 13.8295 1.4705 0.1013 18.1002 1.4495
1.1 4 0.1972 18.7462 1.6286 0.2286 14.6487 1.8375 0.2941 6.8258 2.1175
1.3 4 0.3070 3.6431 1.9368 0.1585 10.9228 1.6104 0.1508 7.0995 1.6268
1.5 4 0.3698 19.5277 2.1067 0.1216 8.6812 1.4872 0.1874 7.2428 1.7544
1.1 5 0.1284 6.9732 1.4307 0.1865 4.1443 1.7107 0.1213 10.2955 1.5227
1.3 5 0.1896 9.5962 1.6068 0.1671 13.9985 1.6391 0.2758 13.3147 2.0555
1.5 5 0.1655 19.3518 1.5380 0.3105 7.0272 2.0981 0.1347 7.0693 1.5702

Table 2: Optimal parameter combinations ζ∗ of the lower-sided ATEWMA TBE scheme for
ARL0 ∈ {200, 370, 500}.

τS τL

ARL0 = 200 ARL0 = 370 ARL0 = 500

λ∗ k∗ H−∗ λ∗ k∗ H−∗ λ∗ k∗ H−∗

0.9 0.3 0.1411 8.9318 0.6428 0.1124 14.4142 0.6561 0.1127 4.5151 0.6388
0.8 0.3 0.0687 15.2093 0.7845 0.0700 13.9071 0.7478 0.1103 2.8205 0.6437
0.7 0.3 0.1417 13.6767 0.6420 0.0713 18.4310 0.7450 0.0741 5.3099 0.7228
0.9 0.2 0.1848 6.1138 0.5754 0.1820 13.2921 0.5387 0.1534 13.8204 0.5655
0.8 0.2 0.1354 18.2366 0.6526 0.1422 10.5375 0.6017 0.1787 17.9492 0.5258
0.7 0.2 0.2623 2.1815 0.4754 0.0729 13.5426 0.7412 0.1381 2.1017 0.5917
0.9 0.1 0.2833 16.5755 0.4517 0.2788 12.4893 0.4157 0.2669 12.2793 0.4111
0.8 0.1 0.2552 7.4753 0.4837 0.3418 6.6908 0.3520 0.2784 17.8617 0.3984
0.7 0.1 0.2997 12.6632 0.4341 0.2951 2.3076 0.3983 0.2216 16.6469 0.4660
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Table 3: In-control ARL comparisons of the upper-sided and lower-sided ATEWMA TBE
schemes for ` ∈ {20, 50, 100, 300, 500, 1000,+∞}.

τS τL

`

20 50 100 300 500 1000 +∞

1.1 3 518.55 415.28 390.90 376.62 373.86 371.92 370.00
1.3 3 516.66 414.89 390.81 376.63 373.98 371.97 370.00
1.5 3 526.28 416.00 391.09 376.68 373.85 371.87 370.00
1.1 4 513.36 414.25 390.57 376.56 373.88 371.92 370.00
1.3 4 522.67 416.01 391.35 376.81 374.10 372.09 369.99
1.5 4 525.68 415.93 391.06 376.54 373.86 371.91 370.00
1.1 5 529.28 417.98 392.16 377.03 374.21 372.06 370.00
1.3 5 521.32 415.72 391.17 376.71 373.94 371.97 370.00
1.5 5 504.58 412.34 389.77 376.32 373.74 371.85 370.00

0.9 0.3 452.39 397.87 383.04 373.97 372.11 370.90 370.00
0.8 0.3 444.44 395.99 382.92 374.12 372.79 371.52 370.00
0.7 0.3 443.67 395.41 381.92 373.87 372.21 370.66 370.00
0.9 0.2 453.93 398.98 383.96 374.52 372.64 371.36 370.00
0.8 0.2 454.02 398.68 383.69 374.26 372.42 371.16 369.99
0.7 0.2 444.18 395.58 381.91 373.38 371.82 371.00 370.00
0.9 0.1 447.93 397.42 383.11 374.40 372.64 371.36 370.00
0.8 0.1 442.56 395.60 382.24 373.88 372.21 371.03 370.00
0.7 0.1 446.62 396.97 383.13 374.26 372.57 371.33 370.00
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Table 4: The adjusted control limits Ĥ+∗ and Ĥ−∗ of the upper-sided and lower-sided
ATEWMA TBE schemes for ` ∈ {20, 50, 100, 300, 500, 1000}.

τS τL

`

20 50 100 300 500 1000

1.1 3 1.6504 1.6809 1.6902 1.6961 1.6973 1.6982
1.3 3 1.7098 1.7425 1.7524 1.7589 1.7601 1.7611
1.5 3 1.4350 1.4574 1.4641 1.4684 1.4693 1.4699
1.1 4 1.7815 1.8165 1.8272 1.8341 1.8355 1.8365
1.3 4 1.5665 1.5940 1.6024 1.6077 1.6088 1.6096
1.5 4 1.4508 1.4737 1.4807 1.4851 1.4860 1.4866
1.1 5 1.6551 1.6891 1.7000 1.7072 1.7086 1.7097
1.3 5 1.5937 1.6221 1.6308 1.6364 1.6375 1.6383
1.5 5 2.0291 2.0722 2.0854 2.0939 2.0956 2.0968

0.9 0.3 0.6667 0.6602 0.6580 0.6567 0.6564 0.6562
0.8 0.3 0.7564 0.7511 0.7495 0.7483 0.7481 0.7480
0.7 0.3 0.7537 0.7484 0.7466 0.7455 0.7453 0.7451
0.9 0.2 0.5506 0.5433 0.5409 0.5395 0.5391 0.5389
0.8 0.2 0.6131 0.6060 0.6038 0.6023 0.6021 0.6019
0.7 0.2 0.7499 0.7445 0.7428 0.7416 0.7414 0.7413
0.9 0.1 0.4270 0.4200 0.4178 0.4164 0.4161 0.4159
0.8 0.1 0.3623 0.3560 0.3539 0.3527 0.3524 0.3522
0.7 0.1 0.4093 0.4025 0.4003 0.3989 0.3987 0.3985
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Table 5: Optimal parameter combinations of the one-sided AEWMA TBE scheme and the
one-sided REWMA TBE scheme in both the known (` = +∞) and the estimated (` = 100)

parameter cases for in-control ARL = 370.

AEWMA REWMA

` = +∞ ` = 100 ` = +∞ ` = 100

τS τL λ∗A k∗ h+∗
A ĥ+∗

A τR λ∗R h+∗
R ĥ+∗

R

1.1 3 0.1925 12.2082 2.2150 2.0742 1.1 0.0070 1.0973 1.0721
1.3 3 0.2459 7.9165 2.4726 2.3280 1.3 0.0233 1.2510 1.2086
1.5 3 0.0931 6.9417 1.7027 1.5652 1.5 0.0430 1.3962 1.3462
1.1 4 0.1802 5.0758 2.2261 2.0794 1.7 0.0636 1.5288 1.4740
1.3 4 0.2638 6.3455 2.5572 2.4112 2 0.0945 1.7087 1.6487
1.5 4 0.2839 10.3390 2.6514 2.5033 2.5 0.1435 1.9699 1.9033
1.1 5 0.1725 5.3827 2.1560 2.0147 3 0.1884 2.1951 2.1230
1.3 5 0.3131 13.2758 2.7879 2.6369 4 0.2666 2.5711 2.4898
1.5 5 0.2524 5.1444 2.5603 2.4029 5 0.3328 2.8795 2.7907

τS τL λ∗A k∗ h−∗A ĥ−∗A τR λ∗R h−∗R ĥ−∗R

0.9 0.3 0.1541 2.4721 0.4347 0.4538 0.9 0.0071 0.9080 0.9291
0.8 0.3 0.1506 9.3503 0.4400 0.4594 0.8 0.0187 0.8168 0.8434
0.7 0.3 0.1436 15.0109 0.4512 0.4716 0.7 0.0362 0.7252 0.7506
0.9 0.2 0.2171 15.9662 0.3522 0.3648 0.6 0.0613 0.6331 0.6547
0.8 0.2 0.2300 5.5258 0.3381 0.3498 0.5 0.0970 0.5394 0.5567
0.7 0.2 0.2202 7.9248 0.3488 0.3611 0.4 0.1484 0.4434 0.4565
0.9 0.1 0.3396 0.5974 0.2219 0.2241 0.3 0.2243 0.3442 0.3533
0.8 0.1 0.3830 10.3640 0.2139 0.2192 0.2 0.3454 0.2388 0.2443
0.7 0.1 0.3852 16.0606 0.2125 0.2178 0.1 0.5628 0.1248 0.1271
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Table 6: ARL1 values of the upper-sided ATEWMA TBE scheme and the upper-sided AEWMA
TBE scheme in detecting upward shifts τ (ARL0 = 370).

τS τL Schemes
τ

1.1 1.3 1.5 1.7 2 2.5 3 3.5 4 5

1.1 3
AEWMA 182.06 65.37 33.13 20.65 12.73 7.73 5.66 4.55 3.86 3.06

ATEWMA 176.06 61.83 31.32 19.60 12.12 7.37 5.39 4.32 3.67 2.91

1.3 3
AEWMA 188.05 69.53 35.33 21.85 13.25 7.88 5.69 4.54 3.83 3.02

ATEWMA 178.89 63.56 32.18 20.04 12.31 7.42 5.40 4.32 3.66 2.90

1.5 3
AEWMA 165.49 55.88 28.87 18.70 12.13 7.77 5.83 4.75 4.06 3.24

ATEWMA 162.97 54.68 28.03 17.95 11.46 7.20 5.35 4.34 3.70 2.95

1.1 4
AEWMA 189.54 69.67 35.16 21.71 13.20 7.89 5.70 4.54 3.83 3.01

ATEWMA 182.04 65.61 33.24 20.62 12.58 7.52 5.44 4.34 3.67 2.90

1.3 4
AEWMA 189.76 70.79 36.02 22.24 13.44 7.94 5.71 4.54 3.83 3.01

ATEWMA 171.47 59.12 29.99 18.89 11.80 7.26 5.34 4.30 3.66 2.91

1.5 4
AEWMA 191.53 72.13 36.78 22.68 13.65 8.02 5.74 4.55 3.83 3.01

ATEWMA 164.15 55.27 28.29 18.08 11.50 7.21 5.35 4.34 3.70 2.95

1.1 5
AEWMA 184.87 66.70 33.68 20.93 12.85 7.77 5.66 4.53 3.83 3.02

ATEWMA 178.86 63.28 32.00 19.96 12.30 7.45 5.43 4.36 3.69 2.92

1.3 5
AEWMA 193.88 73.95 37.83 23.30 13.95 8.13 5.79 4.57 3.84 3.00

ATEWMA 173.01 60.01 30.43 19.13 11.91 7.30 5.36 4.32 3.67 2.91

1.5 5
AEWMA 193.95 73.46 37.36 22.96 13.77 8.06 5.75 4.55 3.82 2.99

ATEWMA 190.69 71.70 36.57 22.53 13.51 7.88 5.61 4.43 3.71 2.91

Table 7: ARL1 values of the lower-sided ATEWMA TBE scheme and the lower-sided AEWMA
TBE scheme in detecting downward shifts τ (ARL0 = 370).

τS τL Schemes
τ

0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9 0.3
AEWMA 270.40 197.00 104.62 56.86 32.63 20.29 13.77 10.10 7.87 6.41

ATEWMA 265.76 191.48 101.14 55.45 32.03 19.67 12.84 8.86 6.45 4.97

0.8 0.3
AEWMA 269.70 196.02 103.74 56.32 32.38 20.21 13.77 10.13 7.92 6.45

ATEWMA 253.14 175.58 88.91 48.77 29.09 18.70 12.79 9.19 6.89 5.41

0.7 0.3
AEWMA 268.31 194.12 102.05 55.30 31.90 20.05 13.77 10.21 8.02 6.56

ATEWMA 253.77 176.36 89.51 49.14 29.29 18.82 12.86 9.23 6.92 5.43

0.9 0.2
AEWMA 280.62 211.55 118.61 66.17 37.57 22.34 14.24 9.82 7.28 5.70

ATEWMA 278.97 209.62 117.62 66.02 37.59 22.06 13.55 8.79 6.06 4.47

0.8 0.2
AEWMA 282.39 214.14 121.29 68.08 38.68 22.86 14.42 9.82 7.19 5.59

ATEWMA 272.19 200.12 108.65 60.05 34.33 20.58 13.05 8.77 6.23 4.68

0.7 0.2
AEWMA 281.06 212.18 119.26 66.63 37.84 22.46 14.28 9.82 7.25 5.67

ATEWMA 254.28 176.97 89.92 49.30 29.31 18.77 12.79 9.16 6.85 5.38

0.9 0.1
AEWMA 306.41 249.78 161.22 99.88 59.38 34.09 19.24 11.02 6.66 4.29

ATEWMA 291.03 227.48 136.47 80.12 46.32 26.68 15.57 9.41 6.03 4.19

0.8 0.1
AEWMA 298.41 238.78 149.23 90.37 53.25 30.88 17.99 10.84 6.94 4.80

ATEWMA 296.86 236.53 146.97 88.76 52.22 30.14 17.29 10.08 6.15 4.04

0.7 0.1
AEWMA 298.59 239.07 149.59 90.68 53.47 31.02 18.06 10.86 6.95 4.79

ATEWMA 292.63 229.94 139.26 82.36 47.82 27.53 15.98 9.56 6.04 4.14
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Table 8: ÂRL1 values of the upper-sided ATEWMA TBE scheme and the upper-sided AEWMA
TBE scheme in detecting upward shifts τ (ÂRL0 = 370, ` = 100).

τS τL Schemes
τ

1.1 1.3 1.5 1.7 2 2.5 3 3.5 4 5

1.1 3
AEWMA 170.42 57.83 28.96 18.11 11.28 6.97 5.16 4.18 3.57 2.86

ATEWMA 175.51 61.38 31.04 19.40 11.99 7.29 5.33 4.28 3.64 2.88

1.3 3
AEWMA 178.82 63.10 31.65 19.58 11.96 7.21 5.26 4.23 3.59 2.86

ATEWMA 178.40 63.18 31.94 19.89 12.22 7.37 5.37 4.30 3.64 2.88

1.5 3
AEWMA 144.14 44.34 22.88 15.05 9.98 6.56 5.02 4.14 3.58 2.90

ATEWMA 162.41 54.27 27.78 17.78 11.34 7.13 5.31 4.30 3.67 2.93

1.1 4
AEWMA 180.78 63.13 31.36 19.37 11.89 7.23 5.30 4.27 3.63 2.88

ATEWMA 181.51 65.18 32.96 20.44 12.47 7.46 5.40 4.31 3.64 2.88

1.3 4
AEWMA 181.16 64.66 32.48 20.05 12.19 7.30 5.30 4.24 3.60 2.86

ATEWMA 170.98 58.75 29.77 18.75 11.72 7.21 5.31 4.28 3.64 2.90

1.5 4
AEWMA 183.42 66.24 33.35 20.54 12.43 7.39 5.34 4.27 3.61 2.86

ATEWMA 163.55 54.82 28.01 17.88 11.38 7.13 5.30 4.30 3.67 2.93

1.1 5
AEWMA 175.25 59.84 29.78 18.53 11.51 7.08 5.23 4.23 3.61 2.88

ATEWMA 177.87 62.62 31.62 19.73 12.16 7.38 5.39 4.32 3.67 2.90

1.3 5
AEWMA 186.43 68.41 34.56 21.25 12.78 7.53 5.41 4.30 3.63 2.86

ATEWMA 172.50 59.62 30.19 18.96 11.81 7.24 5.32 4.28 3.64 2.89

1.5 5
AEWMA 186.10 67.47 33.83 20.77 12.54 7.45 5.38 4.30 3.63 2.87

ATEWMA 190.19 71.28 36.30 22.35 13.40 7.82 5.57 4.40 3.69 2.89

Table 9: ÂRL1 values of the lower-sided ATEWMA TBE scheme and the lower-sided AEWMA
TBE scheme in detecting downward shifts τ (ÂRL0 = 370, ` = 100).

τS τL Schemes
τ

0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9 0.3
AEWMA 265.38 190.06 98.17 52.45 29.93 18.66 12.75 9.43 7.39 6.08

ATEWMA 266.16 191.98 101.51 55.62 32.07 19.64 12.78 8.80 6.39 4.90

0.8 0.3
AEWMA 264.44 188.79 97.08 51.80 29.62 18.55 12.74 9.45 7.43 6.12

ATEWMA 253.66 176.22 89.39 49.05 29.23 18.78 12.82 9.20 6.88 5.40

0.7 0.3
AEWMA 262.65 186.41 95.06 50.61 29.05 18.34 12.70 9.48 7.50 6.20

ATEWMA 254.15 176.80 89.77 49.21 29.27 18.75 12.78 9.15 6.85 5.37

0.9 0.2
AEWMA 277.66 207.23 114.16 62.85 35.43 21.05 13.47 9.34 6.96 5.51

ATEWMA 279.39 210.22 118.20 66.42 37.81 22.17 13.59 8.80 6.06 4.46

0.8 0.2
AEWMA 279.69 210.17 117.13 64.94 36.63 21.61 13.67 9.37 6.91 5.42

ATEWMA 272.63 200.72 109.17 60.37 34.49 20.65 13.07 8.76 6.22 4.66

0.7 0.2
AEWMA 278.16 207.96 114.89 63.36 35.72 21.18 13.52 9.35 6.95 5.48

ATEWMA 254.71 177.48 90.27 49.47 29.37 18.78 12.77 9.13 6.82 5.36

0.9 0.1
AEWMA 304.93 249.03 161.27 100.15 59.60 34.19 19.23 10.97 6.60 4.24

ATEWMA 291.38 228.01 137.05 80.57 46.60 26.82 15.63 9.42 6.02 4.17

0.8 0.1
AEWMA 297.28 236.99 147.06 88.48 51.86 29.97 17.44 10.53 6.77 4.73

ATEWMA 297.18 237.02 147.55 89.23 52.54 30.31 17.37 10.10 6.15 4.02

0.7 0.1
AEWMA 297.48 237.30 147.44 88.80 52.09 30.11 17.52 10.56 6.78 4.72

ATEWMA 292.97 230.46 139.85 82.82 48.11 27.68 16.04 9.57 6.04 4.12
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Table 10: The OLED failure time Xt and the charting statistics corresponding to the lower-sided
ATEWMA TBE, the lower-sided AEWMA TBE, and the lower-sided REWMA TBE schemes.

t Xt (mins) Mt

ATEWMA AEWMA
REWMA REWMA
(τR = 0.8) (τR = 0.2)

M−
t Z−t W−

t Q−A,t Q−R,t Q−R,t

1. 1.07 0.8425 0.8425 1.3328 1.0451 0.9599 0.9963 0.9416
2. 0.54 0.4252 0.4252 0.6727 0.9946 0.8238 0.9829 0.7501
3. 0.54 0.4252 0.4252 0.6727 0.9510 0.7224 0.9698 0.6296
4. 0.72 0.5669 0.5669 0.8969 0.9437 0.6828 0.9603 0.6064
5. 2.53 1.9921 1 1.5820 1.0301 1 0.9846 1
6. 1.26 0.9921 0.9921 1.5695 1.1032 0.9980 0.9847 0.9971
7. 0.48 0.3780 0.3780 0.5979 1.0348 0.8402 0.9705 0.7675
8. 1.78 1.4016 1 1.5820 1.1088 0.9831 0.9806 1
9. 1.26 0.9921 0.9921 1.5695 1.1712 0.9854 0.9809 0.9971

10. 2.27 1.7874 1 1.5820 1.2268 1 0.9998 1
11. 2.19 1.7244 1 1.5820 1.2749 1 1 1
12. 1.10 0.8661 0.8661 1.3702 1.2878 0.9659 0.9969 0.9504
13. 0.60 0.4724 0.4724 0.7474 1.2147 0.8403 0.9845 0.7732
14. 0.97 0.7638 0.7638 1.2083 1.2138 0.8209 0.9793 0.7697
15. 3.16 2.4882 1 1.5820 1.2636 1 1 1
16. 2.93 2.3071 1 1.5820 1.3067 1 1 1
17. 0.99 0.7795 0.7795 1.2332 1.2968 0.9439 0.9948 0.9182
18. 1.28 1.0079 1 1.5820 1.3354 0.9602 0.9951 0.9515
19. 0.12 0.0945 0.0945 0.1495 1.1748 0.7399 0.9740 0.6337
20. 0.19 0.1496 0.1496 0.2367 1.0478 0.5896 0.9546 0.4542
21. 0.94 0.7402 0.7402 1.1709 1.0645 0.6279 0.9495 0.5602
22. 1.08 0.8504 0.8504 1.3453 1.1025 0.6846 0.9472 0.6678
23. 2.31 1.8189 1 1.5820 1.1674 0.9732 0.9677 1
24. 3.11 2.4488 1 1.5820 1.2235 1 1 1
25. 0.28 0.2205 0.2205 0.3488 1.1051 0.8016 0.9817 0.7110
26. 0.66 0.5197 0.5197 0.8221 1.0668 0.7299 0.9708 0.6400
27. 0.68 0.5354 0.5354 0.8470 1.0370 0.6804 0.9606 0.6012
28. 0.75 0.5906 0.5906 0.9342 1.0231 0.6575 0.9519 0.5973
29. 0.47 0.3701 0.3701 0.5855 0.9639 0.5844 0.9382 0.5130
30. 1.82 1.4331 1 1.5820 1.0476 0.8004 0.9499 0.8542
31. 0.06 0.0472 0.0472 0.0747 0.9158 0.6087 0.9286 0.5550
32. 0.44 0.3465 0.3465 0.5481 0.8660 0.5420 0.9150 0.4777
33. 0.21 0.1654 0.1654 0.2616 0.7842 0.4461 0.8973 0.3619
34. 0.25 0.1969 0.1969 0.3114 0.7202 0.3827 0.8809 0.3007
35. 1.75 1.3780 1 1.5820 0.8369 0.6360 0.8926 0.7001
36. 0.07 0.0551 0.0551 0.0872 0.7354 0.4881 0.8729 0.4610
37. 0.36 0.2835 0.2835 0.4484 0.6965 0.4361 0.8590 0.3951
38. 0.28 0.2205 0.2205 0.3488 0.6494 0.3812 0.8440 0.3304
39. 1.43 1.1260 1 1.5820 0.7757 0.5707 0.8507 0.6254
40. 0.31 0.2441 0.2441 0.3862 0.7230 0.4876 0.8364 0.4840
41. 0.86 0.6772 0.6772 1.0713 0.7701 0.5359 0.8327 0.5556
42. 0.17 0.1339 0.1339 0.2118 0.6945 0.4335 0.8162 0.3992
43. 0.29 0.2283 0.2283 0.3612 0.6494 0.3813 0.8024 0.3359
44. 0.30 0.2362 0.2362 0.3737 0.6121 0.3444 0.7891 0.2989
45. 0.29 0.2283 0.2283 0.3612 0.5781 0.3149 0.7759 0.2728
46. 0.22 0.1732 0.1732 0.2740 0.5369 0.2788 0.7618 0.2358
47. 0.04 0.0315 0.0315 0.0498 0.4710 0.2159 0.7446 0.1601
48. 0.47 0.3701 0.3701 0.5855 0.4865 0.2551 0.7358 0.2379
49. 0.23 0.1811 0.1811 0.2865 0.4594 0.2363 0.7228 0.2169
50. 0.44 0.3465 0.3465 0.5481 0.4714 0.2643 0.7139 0.2649
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Table 11: The time Xt between consecutive F-16 accidents and the corresponding charting
statistics of the lower-sided ATEWMA TBE, the lower-sided AEWMA TBE, and the lower-sided

REWMA TBE schemes.

t Xt (days) Mt

ATEWMA AEWMA
REWMA REWMA
(τR = 0.7) (τR = 0.2)

M−
t Z−t W−

t Q−A,t Q−R,t Q−R,t

1. 1456 0.9973 0.9973 1.5776 1.0421 0.9994 0.9999 0.9991
2. 231 0.1582 0.1582 0.2503 0.9844 0.8142 0.9694 0.7086
3. 691 0.4733 0.4733 0.7487 0.9672 0.7391 0.9515 0.6273
4. 122 0.0836 0.0836 0.1322 0.9063 0.5948 0.9201 0.4395
5. 718 0.4918 0.4918 0.7780 0.8970 0.5721 0.9045 0.4576
6. 1147 0.7856 0.7856 1.2428 0.9222 0.6191 0.9002 0.5709
7. 225 0.1541 0.1541 0.2438 0.8727 0.5167 0.8732 0.4269
8. 706 0.4836 0.4836 0.7650 0.8649 0.5094 0.8591 0.4465
9. 499 0.3418 0.3418 0.5407 0.8412 0.4725 0.8404 0.4103

10. 587 0.4021 0.4021 0.6360 0.8263 0.4570 0.8245 0.4075
11. 561 0.3842 0.3842 0.6079 0.8104 0.4410 0.8086 0.3994
12. 547 0.3747 0.3747 0.5927 0.7945 0.4264 0.7929 0.3909
13. 448 0.3068 0.3068 0.4854 0.7720 0.4000 0.7753 0.3619
14. 1561 1.0692 1 1.5820 0.8310 0.5474 0.7859 0.6062
15. 53 0.0363 0.0363 0.0574 0.7746 0.4348 0.7588 0.4093
16. 280 0.1918 0.1918 0.3034 0.7403 0.3813 0.7383 0.3342
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Figure 1: The Markov chain model of the upper-sided ATEWMA TBE scheme.
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Figure 2: ln(ARL1) comparisons among the upper-sided ATEWMA TBE scheme and three
different upper-sided REWMA TBE schemes in detecting upward shifts τ (ARL0 = 370).
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Figure 3: ln(ARL1) comparisons among the lower-sided ATEWMA TBE scheme and three
different lower-sided REWMA TBE schemes in detecting downward shifts τ (ARL0 = 370).
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Figure 4: ln(ÂRL1) comparisons among the upper-sided ATEWMA TBE scheme and three
different upper-sided REWMA TBE schemes in detecting upward shifts τ (ARL0 = 370,

` = 100).
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Figure 5: ln(ÂRL1) comparisons among the lower-sided ATEWMA TBE scheme and three
different lower-sided REWMA TBE schemes in detecting downward shifts τ (ARL0 = 370,

` = 100).

55



0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) The lower-sided ATEWMA TBE scheme
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(b) The lower-sided AEWMA TBE scheme
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(c) The lower-sided REWMA TBE scheme designed for τR = 0.8
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(d) The lower-sided REWMA TBE scheme designed for τR = 0.2

Figure 6: The OLED failure time monitoring presented in Table 10.
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(a) The lower-sided ATEWMA TBE scheme
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(b) The lower-sided AEWMA TBE scheme
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(c) The lower-sided REWMA TBE scheme designed for τR = 0.7
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(d) The lower-sided REWMA TBE scheme designed for τR = 0.2

Figure 7: The aircraft accident monitoring shown in Table 11.
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